1
|
Plümers R, Jelinek S, Lindenkamp C, Osterhage MR, Knabbe C, Hendig D. Investigation on ABCC6-Deficient Human Hepatocytes Generated by CRISPR-Cas9 Genome Editing. Cells 2025; 14:576. [PMID: 40277901 PMCID: PMC12025709 DOI: 10.3390/cells14080576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Patients affected by the rare disease pseudoxanthoma elasticum (PXE) exhibit the calcification of elastic fibers in ocular, dermal, and vascular tissues. These symptoms are triggered by mutations in the ATP-binding cassette transporter subfamily C member 6 (ABCC6), whose substrate remains unknown. Interestingly, ABCC6 is predominantly expressed in the liver tissue, leading to the hypothesis that PXE is a metabolic disorder. We developed a genome-editing system targeting ABCC6 in human immortalized hepatocytes (HepIms) for further investigations. The HepIms were transfected with an ABCC6-specific clustered regulatory interspaced short palindromic repeat (CRISPR-Cas9) genome-editing plasmid, resulting in the identification of a heterozygous (htABCC6HepIm) and a compound heterozygous (chtABCC6HepIm) clone. These clones were analyzed for key markers associated with the PXE pathobiochemistry. Hints of impaired lipid trafficking, defects in the extracellular matrix remodeling, the induction of calcification inhibitor expression, and the down regulation of senescence and inflammatory markers in ABCC6-deficienct HepIms were found. Our ABCC6 knock-out model of HepIms provides a valuable tool for studying the metabolic characteristics of PXE in vitro. The initial analysis of the clones mirrors various features of the PXE pathobiochemistry and provides an outlook on future research approaches.
Collapse
Affiliation(s)
- Ricarda Plümers
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Medizinische Fakultät OWL (Universität Bielefeld), Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Trenkwalder T, Maj C, Al-Kassou B, Debiec R, Doppler SA, Musameh MD, Nelson CP, Dasmeh P, Grover S, Knoll K, Naamanka J, Mordi IR, Braund PS, Dreßen M, Lahm H, Wirth F, Baldus S, Kelm M, von Scheidt M, Krefting J, Ellinghaus D, Small AM, Peloso GM, Natarajan P, Thanassoulis G, Engert JC, Dufresne L, Franke A, Görg S, Laudes M, Nowak-Göttl U, Vaht M, Metspalu A, Stoll M, Berger K, Pellegrini C, Kastrati A, Hengstenberg C, Lang CC, Kessler T, Hovatta I, Nickenig G, Nöthen MM, Krane M, Schunkert H, Samani NJ, Schumacher J. Distinct Genetic Risk Profile in Aortic Stenosis Compared With Coronary Artery Disease. JAMA Cardiol 2025; 10:145-154. [PMID: 39504041 PMCID: PMC11541746 DOI: 10.1001/jamacardio.2024.3738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/11/2024] [Indexed: 11/09/2024]
Abstract
Importance Aortic stenosis (AS) and coronary artery disease (CAD) frequently coexist. However, it is unknown which genetic and cardiovascular risk factors might be AS-specific and which could be shared between AS and CAD. Objective To identify genetic risk loci and cardiovascular risk factors with AS-specific associations. Design, Setting, and Participants This was a genomewide association study (GWAS) of AS adjusted for CAD with participants from the European Consortium for the Genetics of Aortic Stenosis (EGAS) (recruited 2000-2020), UK Biobank (recruited 2006-2010), Estonian Biobank (recruited 1997-2019), and FinnGen (recruited 1964-2019). EGAS participants were collected from 7 sites across Europe. All participants were of European ancestry, and information on comorbid CAD was available for all participants. Follow-up analyses with GWAS data on cardiovascular traits and tissue transcriptome data were also performed. Data were analyzed from October 2022 to July 2023. Exposures Genetic variants. Main Outcomes and Measures Cardiovascular traits associated with AS adjusted for CAD. Replication was performed in 2 independent AS GWAS cohorts. Results A total of 18 792 participants with AS and 434 249 control participants were included in this GWAS adjusted for CAD. The analysis found 17 AS risk loci, including 5 loci with novel and independently replicated associations (RNF114A, AFAP1, PDGFRA, ADAMTS7, HAO1). Of all 17 associated loci, 11 were associated with risk specifically for AS and were not associated with CAD (ALPL, PALMD, PRRX1, RNF144A, MECOM, AFAP1, PDGFRA, IL6, TPCN2, NLRP6, HAO1). Concordantly, this study revealed only a moderate genetic correlation of 0.15 (SE, 0.05) between AS and CAD (P = 1.60 × 10-3). Mendelian randomization revealed that serum phosphate was an AS-specific risk factor that was absent in CAD (AS: odds ratio [OR], 1.20; 95% CI, 1.11-1.31; P = 1.27 × 10-5; CAD: OR, 0.97; 95% CI 0.94-1.00; P = .04). Mendelian randomization also found that blood pressure, body mass index, and cholesterol metabolism had substantially lesser associations with AS compared with CAD. Pathway and transcriptome enrichment analyses revealed biological processes and tissues relevant for AS development. Conclusions and Relevance This GWAS adjusted for CAD found a distinct genetic risk profile for AS at the single-marker and polygenic level. These findings provide new targets for future AS research.
Collapse
Affiliation(s)
- Teresa Trenkwalder
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Carlo Maj
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Baravan Al-Kassou
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Stefanie A. Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Muntaser D. Musameh
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Pouria Dasmeh
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Sandeep Grover
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Katharina Knoll
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Joonas Naamanka
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ify R. Mordi
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Peter S. Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Felix Wirth
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine, Heart Center, University of Cologne, Cologne, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Moritz von Scheidt
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Johannes Krefting
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Aeron M. Small
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - James C. Engert
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute for Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ulrike Nowak-Göttl
- Thrombosis and Hemostasis Unit, Institute of Clinical Chemistry, University Hospital Kiel, Kiel, Germany
| | - Mariliis Vaht
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Monika Stoll
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Munster, Germany
| | - Costanza Pellegrini
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Adnan Kastrati
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Thorsten Kessler
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Georg Nickenig
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Markus Krane
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Yale School of Medicine, Division of Cardiac Surgery, Department of Surgery, New Haven, Connecticut
| | - Heribert Schunkert
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Johannes Schumacher
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Zhong Z, Hu X, Zhang R, Liu X, Chen W, Zhang S, Sun J, Zhong TP. Improving precision base editing of the zebrafish genome by Rad51DBD-incorporated single-base editors. J Genet Genomics 2025; 52:105-115. [PMID: 39428086 DOI: 10.1016/j.jgg.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Single-base editors, including cytosine base editors (CBEs) and adenine base editors (ABEs), facilitate accurate C⋅G to T⋅A and A⋅T to G⋅C, respectively, holding promise for the precise modeling and treatment of human hereditary disorders. Efficient base editing and expanded base conversion range have been achieved in human cells through base editors fusing with Rad51 DNA binding domain (Rad51DBD), such as hyA3A-BE4max. Here, we show that hyA3A-BE4max catalyzes C-to-T substitution in the zebrafish genome and extends editing positions (C12-C16) proximal to the protospacer adjacent motif. We develop a codon-optimized counterpart zhyA3A-CBE5, which exhibits substantially high C-to-T conversion with 1.59- to 3.50-fold improvement compared with the original hyA3A-BE4max. With these tools, disease-relevant hereditary mutations can be more efficaciously generated in zebrafish. We introduce human genetic mutation rpl11Q42∗ and abcc6aR1463C by zhyA3A-CBE5 in zebrafish, mirroring Diamond-Blackfan anemia and Pseudoxanthoma Elasticum, respectively. Our study expands the base editing platform targeting the zebrafish genomic landscape and the application of single-base editors for disease modeling and gene function study.
Collapse
Affiliation(s)
- Zhilin Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Renjie Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenqi Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shubin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianjian Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Tao P Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Behzadi P, Cuevas RA, Crane A, Wendling AA, Chu CC, Moorhead WJ, Wong R, Brown M, Tamakloe J, Suresh S, Salehi P, Jaffe IZ, Kuipers AL, Lukashova L, Verdelis K, St Hilaire C. Rapamycin Reduces Arterial Mineral Density and Promotes Beneficial Vascular Remodeling in a Murine Model of Severe Medial Arterial Calcification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606196. [PMID: 39149364 PMCID: PMC11326142 DOI: 10.1101/2024.08.01.606196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Peripheral artery disease (PAD) is the narrowing of the arteries that carry blood to the lower extremities. PAD has been traditionally associated with atherosclerosis. However, recent studies have found that medial arterial calcification (MAC) is the primary cause of chronic limb ischemia below the knee. MAC involves calcification of the elastic fibers surrounding smooth muscle cells (SMCs) in arteries. Matrix GLA protein (MGP) inhibits vascular calcification by binding circulating calcium and preventing hydroxyapatite crystal deposition, while also modulating osteogenic signaling by blocking BMP-2 activation of RUNX2. Mgp -/- mice develop severe MAC and die around 8 weeks after birth due to aortic rupture or heart failure. We previously discovered a rare genetic disease Arterial Calcification due to Deficiency in CD73 (ACDC) in which patients present with extensive MAC in their lower extremity arteries. Using a patient-specific induced pluripotent stem cell model we found that rapamycin inhibited calcification. Here we investigated whether rapamycin could reduce MAC in vivo using the Mgp -/- murine model. Mgp +/+ and Mgp -/- mice received 5mg/kg rapamycin or vehicle. Calcification content was assessed via microCT, and vascular morphology and extracellular matrix content assessed histologically. Immunostaining and western blot analysis were used to examine SMC phenotype and extracellular matrix content. Rapamycin prolonged Mgp -/- mice lifespan, decreased mineral density in the arteries, maintained SMC contractile phenotype, and improved vessel structure, however, calcification volume was unchanged. Mgp -/- mice with SMC-specific deletion of Raptor or Rictor, did not recapitulate treatment with rapamycin. These findings suggest rapamycin promotes beneficial vascular remodeling in vessels with MAC.
Collapse
Affiliation(s)
- Parya Behzadi
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rolando A Cuevas
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex Crane
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Wendling
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire C Chu
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William J Moorhead
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Wong
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark Brown
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua Tamakloe
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Swathi Suresh
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Payam Salehi
- CardioVascular Center, Vascular Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111-1800, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111-1800, USA
| | - Allison L Kuipers
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lyudmila Lukashova
- Departments of Endodontics and Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos Verdelis
- Departments of Endodontics and Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia St Hilaire
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Song T, Cerruti M. Unraveling the role of carboxylate groups and elastin particle size in medial calcification. Int J Biol Macromol 2024; 274:133267. [PMID: 38906359 DOI: 10.1016/j.ijbiomac.2024.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
While it is known that calcium phosphate (CaP) minerals deposit in elastin-rich medial layers of arteries during medial calcification, their nucleation and growth sites are still debated. Neutral carbonyl groups and carboxylate groups are possible candidates. Also, while it is known that elastin degradation leads to calcification, it is unclear whether this is due to formation of new carboxylate groups or elastin fragmentation. In this work, we disentangle effects of carboxylate groups and particle size on elastin calcification; in doing so, we shed light on CaP mineralization sites on elastin. We find carboxylate groups accelerate calcification only in early stages; they mainly function as Ca2+ ion chelation sites but not calcification sites. Their presence promotes formation (likely on Ca2+ ions adsorbed on nearby carbonyl groups) of CaP minerals with high calcium-to-phosphate ratio as intermediate phases. Larger elastin particles calcify slower but reach similar amounts of CaP minerals in late stages; they promote direct formation of hydroxyapatite and CaP minerals with low calcium-to-phosphate ratio as intermediate phases. This work provides new perspectives on how carboxylate groups and elastin particle size influence calcification; these parameters can be tuned to study the mechanism of medial calcification and design drugs to inhibit the process.
Collapse
Affiliation(s)
- Tao Song
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| |
Collapse
|
6
|
Brampton C, Pomozi V, Le Corre Y, Zoll J, Kauffenstein G, Ma C, Hoffmann PR, Martin L, Le Saux O. Bone Marrow-Derived ABCC6 Is an Essential Regulator of Ectopic Calcification In Pseudoxanthoma Elasticum. J Invest Dermatol 2024; 144:1772-1783.e3. [PMID: 38367909 PMCID: PMC11260544 DOI: 10.1016/j.jid.2024.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Physiological calcification of soft tissues is a common occurrence in aging and various acquired and inherited disorders. ABCC6 sequence variations cause the calcification phenotype of pseudoxanthoma elasticum (PXE) as well as some cases of generalized arterial calcification of infancy, which is otherwise caused by defective ENPP1. ABCC6 is primarily expressed in the liver, which has given the impression that the liver is central to the pathophysiology of PXE/generalized arterial calcification of infancy. The emergence of inflammation as a contributor to the calcification in PXE suggested that peripheral tissues play a larger role than expected. In this study, we investigated whether bone marrow-derived ABCC6 contributes to the calcification in PXE. In Abcc6‒/‒ mice, we observed prevalent mineralization in several lymph nodes and surrounding connective tissues and an extensive network of lymphatic vessels within vibrissae, a calcified tissue in Abcc6‒/‒ mice. Furthermore, we found evidence of lymphangiogenesis in patients with PXE and mouse skin, suggesting an inflammatory process. Finally, restoring wild-type bone marrow in Abcc6‒/‒ mice produced a significant reduction of calcification, suggesting that the liver alone is not sufficient to fully inhibit mineralization. With evidence that ABCC6 is expressed in lymphocytes, we suggest that the adaptative immune system and inflammation largely contribute to the calcification in PXE/generalized arterial calcification of infancy.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Bio-Rad Laboratories, Hercules, California, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Yannick Le Corre
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Gilles Kauffenstein
- UMR INSERM 1260, Nano Regenerative Medicine, University of Strasbourg, Strasbourg, France
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Ludovic Martin
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France; CNRS 6015, UMR INSERM U1083, MITOVASC Laboratory, University of Angers, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
7
|
Ferrante EA, Cudrici CD, Rashidi M, Fu YP, Huffstutler R, Carney K, Chen MY, St Hilaire C, Smith K, Bagheri H, Katz JD, Ferreira CR, Gahl WA, Boehm M, Brofferio A. Pilot study to evaluate the safety and effectiveness of etidronate treatment for arterial calcification due to deficiency of CD73 (ACDC). Vasc Med 2024; 29:245-255. [PMID: 38568107 PMCID: PMC11608424 DOI: 10.1177/1358863x241235669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND Arterial calcification due to deficiency of CD73 (ACDC; OMIM 211800) is a rare genetic disease resulting in calcium deposits in arteries and small joints causing claudication, resting pain, severe joint pain, and deformities. Currently, there are no standard treatments for ACDC. Our previous work identified etidronate as a potential targeted ACDC treatment, using in vitro and in vivo disease models with patient-derived cells. In this study, we test the safety and effectiveness of etidronate in attenuating the progression of lower-extremity arterial calcification and vascular blood flow based on the computed tomography (CT) calcium score and ankle-brachial index (ABI). METHODS Seven adult patients with a confirmed genetic diagnosis of ACDC were enrolled in an open-label, nonrandomized, single-arm pilot study for etidronate treatment. They took etidronate daily for 14 days every 3 months and were examined at the NIH Clinical Center bi-annually for 3 years. They received a baseline evaluation as well as yearly follow up after treatment. Study visits included imaging studies, exercise tolerance tests with ABIs, clinical blood and urine testing, and full dental exams. RESULTS Etidronate treatment appeared to have slowed the progression of further vascular calcification in lower extremities as measured by CT but did not have an effect in reversing vascular and/or periarticular joint calcifications in our small ACDC cohort. CONCLUSIONS Etidronate was found to be safe and well tolerated by our patients and, despite the small sample size, appeared to show an effect in slowing the progression of calcification in our ACDC patient cohort.(ClinicalTrials.gov Identifier NCT01585402).
Collapse
Affiliation(s)
- Elisa A Ferrante
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cornelia D Cudrici
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mahmood Rashidi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Ping Fu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Huffstutler
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Carney
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia St Hilaire
- Departments of Medicine and Bioengineering, Vascular Medicine Institute, University of Pittsburg, PA, USA
| | - Kevin Smith
- Clinical Center Nursing Department, Hatfield Clinical Center at the National Institutes of Health, Bethesda, MD, USA
| | - Hadi Bagheri
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - James D Katz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alessandra Brofferio
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Sullivan JM, Bagnell AM, Alevy J, Avila EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA, Aisenberg WH, Zuberi AR, Bogdanik L, Lutz CM, Qiu Z, Quinlan KA, Searson PC, Sumner CJ. Gain-of-function mutations of TRPV4 acting in endothelial cells drive blood-CNS barrier breakdown and motor neuron degeneration in mice. Sci Transl Med 2024; 16:eadk1358. [PMID: 38776392 PMCID: PMC11316273 DOI: 10.1126/scitranslmed.adk1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jonathan Alevy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jennifer S. Huh
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - William H. Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | | | | | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Katharina A. Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Bartstra JW, van den Beukel T, Kranenburg G, Geurts LJ, den Harder AM, Witkamp T, Wolterink JM, Zwanenburg JJM, van Valen E, Koek HL, Mali WPTM, de Jong PA, Hendrikse J, Spiering W. Increased Intracranial Arterial Pulsatility and Microvascular Brain Damage in Pseudoxanthoma Elasticum. AJNR Am J Neuroradiol 2024; 45:386-392. [PMID: 38548304 PMCID: PMC11288551 DOI: 10.3174/ajnr.a8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/02/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND PURPOSE Carotid siphon calcification might contribute to the high prevalence of cerebrovascular disease in pseudoxanthoma elasticum through increased arterial flow pulsatility. This study aimed to compare intracranial artery flow pulsatility, brain volumes, and small-vessel disease markers between patients with pseudoxanthoma elasticum and controls and the association between arterial calcification and pulsatility in pseudoxanthoma elasticum. MATERIALS AND METHODS Fifty patients with pseudoxanthoma elasticum and 40 age- and sex-matched controls underwent 3T MR imaging, including 2D phase-contrast acquisitions for flow pulsatility in the assessment of ICA and MCA and FLAIR acquisitions for brain volumes, white matter lesions, and infarctions. All patients with pseudoxanthoma elasticum underwent CT scanning to measure siphon calcification. Flow pulsatility (2D phase-contrast), brain volumes, white matter lesions, and infarctions (3D T1 and 3D T2 FLAIR) were compared between patients and controls. The association between siphon calcification and pulsatility in pseudoxanthoma elasticum was tested with linear regression models. RESULTS Patients with pseudoxanthoma elasticum (mean age, 57 [SD, 12] years; 24 men) had significantly higher pulsatility indexes (1.05; range, 0.94-1.21 versus 0.94; range, 0.82-1.04; P = .02), lower mean GM volumes (597 [SD, 53] mL versus 632 [SD, 53] mL; P < .01), more white matter lesions (2.6; range, 0.5-7.5 versus 1.1; range, 0.5-2.4) mL; P = .05), and more lacunar infarctions (64 versus 8, P = .04) than controls (mean age, 58 [SD, 11] years; 20 men). Carotid siphon calcification was associated with higher pulsatility indexes in patients with pseudoxanthoma elasticum (β = 0.10; 95% CI, 0.01-0.18). CONCLUSIONS Patients with pseudoxanthoma elasticum have increased intracranial artery flow pulsatility and measures of small-vessel disease. Carotid siphon calcification might underlie the high prevalence of cerebrovascular disease in pseudoxanthoma elasticum.
Collapse
Affiliation(s)
- J W Bartstra
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - T van den Beukel
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - G Kranenburg
- Department of Vascular Medicine (G.K., W.S.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - L J Geurts
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - A M den Harder
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - T Witkamp
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - J M Wolterink
- Department of Applied Mathematics (J.M.W., E.v.V., H.L.K.), Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - J J M Zwanenburg
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - E van Valen
- Department of Applied Mathematics (J.M.W., E.v.V., H.L.K.), Technical Medical Centre, University of Twente, Enschede, the Netherlands
- Department of Geriatrics (E.v.V., H.L.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - H L Koek
- Department of Applied Mathematics (J.M.W., E.v.V., H.L.K.), Technical Medical Centre, University of Twente, Enschede, the Netherlands
- Department of Geriatrics (E.v.V., H.L.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - W P T M Mali
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - P A de Jong
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - J Hendrikse
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - W Spiering
- Department of Vascular Medicine (G.K., W.S.), University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
10
|
Villa-Bellosta R. Vascular Calcification: A Passive Process That Requires Active Inhibition. BIOLOGY 2024; 13:111. [PMID: 38392329 PMCID: PMC10886409 DOI: 10.3390/biology13020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The primary cause of worldwide mortality and morbidity stems from complications in the cardiovascular system resulting from accelerated atherosclerosis and arterial stiffening. Frequently, both pathologies are associated with the pathological calcification of cardiovascular structures, present in areas such as cardiac valves or blood vessels (vascular calcification). The accumulation of hydroxyapatite, the predominant form of calcium phosphate crystals, is a distinctive feature of vascular calcification. This phenomenon is commonly observed as a result of aging and is also linked to various diseases such as diabetes, chronic kidney disease, and several genetic disorders. A substantial body of evidence indicates that vascular calcification involves two primary processes: a passive process and an active process. The physicochemical process of hydroxyapatite formation and deposition (a passive process) is influenced significantly by hyperphosphatemia. However, the active synthesis of calcification inhibitors, including proteins and low-molecular-weight inhibitors such as pyrophosphate, is crucial. Excessive calcification occurs when there is a loss of function in enzymes and transporters responsible for extracellular pyrophosphate metabolism. Current in vivo treatments to prevent calcification involve addressing hyperphosphatemia with phosphate binders and implementing strategies to enhance the availability of pyrophosphate.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- The Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
12
|
Novais EJ, Narayanan R, Canseco JA, van de Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR, Risbud MV. A new perspective on intervertebral disc calcification-from bench to bedside. Bone Res 2024; 12:3. [PMID: 38253615 PMCID: PMC10803356 DOI: 10.1038/s41413-023-00307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
| | - Rajkishen Narayanan
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alan S Hilibrand
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Kroll RG, Powell C, Chen J, Snider NT, St. Hilaire C, Reddy A, Kim J, Pinsky DJ, Murthy VL, Sutton NR. Circulating Ectonucleotidases Signal Impaired Myocardial Perfusion at Rest and Stress. J Am Heart Assoc 2023; 12:e027920. [PMID: 37119076 PMCID: PMC10227209 DOI: 10.1161/jaha.122.027920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 04/30/2023]
Abstract
Background Ectonucleotidases maintain vascular homeostasis by metabolizing extracellular nucleotides, modulating inflammation and thrombosis, and potentially, myocardial flow through adenosine generation. Evidence implicates dysfunction or deficiency of ectonucleotidases CD39 or CD73 in human disease; the utility of measuring levels of circulating ectonucleotidases as plasma biomarkers of coronary artery dysfunction or disease has not been previously reported. Methods and Results A total of 529 individuals undergoing clinically indicated positron emission tomography stress testing between 2015 and 2019 were enrolled in this single-center retrospective analysis. Baseline demographics, clinical data, nuclear stress test, and coronary artery calcium score variables were collected, as well as a blood sample. CD39 and CD73 levels were assessed as binary (detectable, undetectable) or continuous variables using ELISAs. Plasma CD39 was detectable in 24% of White and 8% of Black study participants (P=0.02). Of the clinical history variables examined, ectonucleotidase levels were most strongly associated with underlying liver disease and not other traditional coronary artery disease risk factors. Intriguingly, detection of circulating ectonucleotidase was inversely associated with stress myocardial blood flow (2.3±0.8 mL/min per g versus 2.7 mL/min per g±1.1 for detectable versus undetectable CD39 levels, P<0.001) and global myocardial flow reserve (Pearson correlation between myocardial flow reserve and log(CD73) -0.19, P<0.001). A subanalysis showed these differences held true independent of liver disease. Conclusions Vasodilatory adenosine is the expected product of local ectonucleotidase activity, yet these data support an inverse relationship between plasma ectonucleotidases, stress myocardial blood flow (CD39), and myocardial flow reserve (CD73). These findings support the conclusion that plasma levels of ectonucleotidases, which may be shed from the endothelial surface, contribute to reduced stress myocardial blood flow and myocardial flow reserve.
Collapse
Affiliation(s)
- Rachel G. Kroll
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Corey Powell
- Consulting for Statistics, Computing, and Analytics ResearchUniversity of MichiganAnn ArborMI
| | - Jun Chen
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Natasha T. Snider
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and BioengineeringVascular Medicine Institute, University of PittsburghPittsburghPAUSA
| | - Akshay Reddy
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Judy Kim
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - David J. Pinsky
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMI
| | - Venkatesh L. Murthy
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
| | - Nadia R. Sutton
- Division of Cardiovascular Medicine, Department of MedicineMichigan MedicineAnn ArborMI
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTN
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN
| |
Collapse
|
14
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
15
|
Ralph D, Levine M, Millán JL, Uitto J, Li Q. Weighing the Evidence for the Roles of Plasma Versus Local Pyrophosphate in Ectopic Calcification Disorders. J Bone Miner Res 2023; 38:457-463. [PMID: 36807615 PMCID: PMC10365072 DOI: 10.1002/jbmr.4791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Ectopic calcification is characterized by inappropriate deposition of calcium mineral in nonskeletal connective tissues and can cause significant morbidity and mortality, particularly when it affects the cardiovascular system. Identification of the metabolic and genetic determinants of ectopic calcification could help distinguish individuals at the greatest risk of developing these pathological calcifications and could guide development of medical interventions. Inorganic pyrophosphate (PPi ) has long been recognized as the most potent endogenous inhibitor of biomineralization. It has been intensively studied as both a marker and a potential therapeutic for ectopic calcification. Decreased extracellular concentrations of PPi have been proposed to be a unifying pathophysiological mechanism for disorders of ectopic calcification, both genetic and acquired. However, are reduced plasma concentrations of PPi a reliable predictor of ectopic calcification? This perspective article evaluates the literature in favor and against a pathophysiological role of plasma versus tissue PPi dysregulation as a determinant of, and as a biomarker for, ectopic calcification. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Douglas Ralph
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Levine
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Kozák E, Bartstra JW, de Jong PA, Mali WPTM, Fülöp K, Tőkési N, Pomozi V, Risseeuw S, Norel JOV, van Leeuwen R, Váradi A, Spiering W. Plasma Level of Pyrophosphate Is Low in Pseudoxanthoma Elasticum Owing to Mutations in the ABCC6 Gene, but It Does Not Correlate with ABCC6 Genotype. J Clin Med 2023; 12:jcm12031047. [PMID: 36769695 PMCID: PMC9917606 DOI: 10.3390/jcm12031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE), a monogenic disorder resulting in calcification affecting the skin, eyes and peripheral arteries, is caused by mutations in the ABCC6 gene, and is associated with low plasma inorganic pyrophosphate (PPi). It is unknown how ABCC6 genotype affects plasma PPi. METHODS We studied the association of ABCC6 genotype (192 patients with biallelic pathogenic ABCC6 mutations) and PPi levels, and its association with the severity of arterial and ophthalmological phenotypes. ABCC6 variants were classified as truncating or non-truncating, and three groups of the 192 patients were formed: those with truncating mutations on both chromosomes (n = 121), those with two non-truncating mutations (n = 10), and a group who had one truncating and one non-truncating ABCC6 mutation (n = 61). The hypothesis formulated before this study was that there was a negative association between PPi level and disease severity. RESULTS Our findings confirm low PPi in PXE compared with healthy controls (0.53 ± 0.15 vs. 1.13 ± 0.29 µM, p < 0.01). The PPi of patients correlated with increasing age (β: 0.05 µM, 95% CI: 0.03-0.06 per 10 years) and was higher in females (0.55 ± 0.17 vs. 0.51 ± 0.13 µM in males, p = 0.03). However, no association between PPi and PXE phenotypes was found. When adjusted for age and sex, no association between PPi and ABCC6 genotype was found. CONCLUSIONS Our data suggest that the relationship between ABCC6 mutations and reduced plasma PPi may not be as direct as previously thought. PPi levels varied widely, even in patients with the same ABCC6 mutations, further suggesting a lack of direct correlation between them, even though the ABCC6 protein-mediated pathway is responsible for ~60% of this metabolite in the circulation. We discuss potential factors that may perturb the expected associations between ABCC6 genotype and PPi and between PPi and disease severity. Our findings support the argument that predictions of pathogenicity made on the basis of mutations (or on the structure of the mutated protein) could be misleading.
Collapse
Affiliation(s)
- Eszter Kozák
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Jonas W. Bartstra
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Pim A. de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Willem P. T. M. Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Krisztina Fülöp
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Natália Tőkési
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Viola Pomozi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-88-7571188
| |
Collapse
|
17
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
18
|
Morikane S, Ishida K, Taniguchi T, Ashizawa N, Matsubayashi M, Kurita N, Kobashi S, Iwanaga T. Identification of a DBA/2 Mouse Sub-strain as a Model for Pseudoxanthoma Elasticum-Like Tissue Calcification. Biol Pharm Bull 2023; 46:1737-1744. [PMID: 38044132 DOI: 10.1248/bpb.b23-00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.
Collapse
|
19
|
Soma K, Watanabe K, Izumi M. Anticalcification effects of DS-1211 in pseudoxanthoma elasticum mouse models and the role of tissue-nonspecific alkaline phosphatase in ABCC6-deficient ectopic calcification. Sci Rep 2022; 12:19852. [PMID: 36400944 PMCID: PMC9674622 DOI: 10.1038/s41598-022-23892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a multisystem, genetic, ectopic mineralization disorder with no effective treatment. Inhibition of tissue-nonspecific alkaline phosphatase (TNAP) may prevent ectopic soft tissue calcification by increasing endogenous pyrophosphate (PPi). This study evaluated the anticalcification effects of DS-1211, an orally administered, potent, and highly selective small molecule TNAP inhibitor, in mouse models of PXE. Calcium content in vibrissae was measured in KK/HlJ and ABCC6-/- mice after DS-1211 administration for 13-14 weeks. Pharmacokinetic and pharmacodynamic effects of DS-1211 were evaluated, including plasma alkaline phosphatase (ALP) activity and biomarker changes in PPi and pyridoxal-phosphate (PLP). Anticalcification effects of DS-1211 through TNAP inhibition were further evaluated in ABCC6-/- mice with genetically reduced TNAP activity, ABCC6-/-/TNAP+/+ and ABCC6-/-/TNAP+/-. In KK/HlJ and ABCC6-/- mouse models, DS-1211 inhibited plasma ALP activity in a dose-dependent manner and prevented progression of ectopic calcification compared with vehicle-treated mice. Plasma PPi and PLP increased dose-dependently with DS-1211 in ABCC6-/- mice. Mice with ABCC6-/-/TNAP+/- phenotype had significantly less calcification and higher plasma PPi and PLP than ABCC6-/-/TNAP+/+ mice. TNAP plays an active role in pathomechanistic pathways of dysregulated calcification, demonstrated by reduced ectopic calcification in mice with lower TNAP activity. DS-1211 may be a potential therapeutic drug for PXE.
Collapse
Affiliation(s)
- Kaori Soma
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Kengo Watanabe
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Masanori Izumi
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| |
Collapse
|
20
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
21
|
Ding P, Gao Y, Wang J, Xiang H, Zhang C, Wang L, Ji G, Wu T. Progress and challenges of multidrug resistance proteins in diseases. Am J Cancer Res 2022; 12:4483-4501. [PMID: 36381332 PMCID: PMC9641395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023] Open
Abstract
Chemotherapy remains the first choice for patients with advanced cancers when other treatments are ineffective. Multidrug resistance (MDR) is an unavoidable factor that negatively affects the effectiveness of cancer chemotherapy drugs. Researchers are trying to reduce MDR, improve the effectiveness of chemotherapeutic drugs, and alleviate patient suffering to positively contribute to disease treatment. MDR also occurs in inflammation and genetic disorders, which increases the difficulty of clinically beneficial treatments. The ATP-binding cassette (ABC) is an active transporter that plays an important role in the barrier and secretory functions of many normal cells. As the C subfamily in the ABC family, multidrug resistance proteins (MRPs/ABCCs) export a variety of antitumour drugs and are expressed in a variety of cancers. The present review summarises the role of MRPs in cancer and other diseases and recent research progress of MRP inhibitors to better examine the mechanism and function of MRPs, and establish a good relationship with clinical treatment.
Collapse
Affiliation(s)
- Peilun Ding
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| |
Collapse
|
22
|
Soma K, Izumi M, Yamamoto Y, Miyazaki S, Watanabe K. In Vitro and In Vivo Pharmacological Profiles of DS-1211, a Novel Potent, Selective, and Orally Bioavailable Tissue-Nonspecific Alkaline Phosphatase Inhibitor. J Bone Miner Res 2022; 37:2033-2043. [PMID: 36054139 PMCID: PMC9826446 DOI: 10.1002/jbmr.4680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023]
Abstract
Inhibition of tissue-nonspecific alkaline phosphatase (TNAP) may prevent ectopic soft tissue calcification by increasing endogenous pyrophosphate (PPi). DS-1211 is a potent and selective novel small molecule TNAP inhibitor with well-characterized pharmacokinetics (PKs) in rodent and monkey. Herein, we report a comprehensive summary of studies establishing the pharmaceutical profile of DS-1211. In vitro studies characterized the mode of inhibition and inhibitory effects of DS-1211 on three human alkaline phosphatase (ALP) isozymes-TNAP, human intestinal ALP, human placental ALP-and on ALP activity across species in mouse, monkey, and human plasma. In vivo PK and pharmacodynamic (PD) effects of a single oral dose of DS-1211 in mice and monkeys were evaluated, including biomarker changes in PPi and pyridoxal 5'-phosphate (PLP). Oral bioavailability (BA) was determined through administration of DS-1211 at a 0.3-mg/kg dose in monkeys. In vitro experiments demonstrated DS-1211 inhibited ALP activity through an uncompetitive mode of action. DS-1211 exhibited TNAP selectivity and potent inhibition of TNAP across species. In vivo studies in mice and monkeys after single oral administration of DS-1211 showed linear PKs, with dose-dependent inhibition of ALP activity and increases in plasma PPi and PLP. Inhibitory effects of DS-1211 were consistent in both mouse and monkey. Mean absolute oral BA was 73.9%. Overall, in vitro and in vivo studies showed DS-1211 is a potent and selective TNAP inhibitor across species. Further in vivo pharmacology studies in ectopic calcification animal models and clinical investigations of DS-1211 in patient populations are warranted. © 2022 Daiichi Sankyo, Inc. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
|
23
|
Ralph D, Levine MA, Richard G, Morrow M, Flynn E, Uitto J, Li Q. Mutation update: Variants of the ENPP1 gene in pathologic calcification, hypophosphatemic rickets, and cutaneous hypopigmentation with punctate keratoderma. Hum Mutat 2022; 43:1183-1200. [PMID: 35475527 PMCID: PMC9357117 DOI: 10.1002/humu.24391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
ENPP1 encodes ENPP1, an ectonucleotidase catalyzing hydrolysis of ATP to AMP and inorganic pyrophosphate (PPi), and an endogenous plasma protein physiologically preventing ectopic calcification of connective tissues. Mutations in ENPP1 have been reported in association with a range of human genetic diseases. In this mutation update, we provide a comprehensive review of all the pathogenic variants, likely pathogenic variants, and variants of unknown significance in ENPP1 associated with three autosomal recessive disorders-generalized arterial calcification of infancy (GACI), autosomal recessive hypophosphatemic rickets type 2 (ARHR2), and pseudoxanthoma elasticum (PXE), as well as with a predominantly autosomal dominant disorder-Cole disease. The classification of all variants is determined using the latest ACMG guidelines. A total of 140 ENPP1 variants were curated consisting of 133 previously reported variants and seven novel variants, with missense variants being the most prevalent (70.0%, 98/140). While the pathogenic variants are widely distributed in the ENPP1 gene of patientsgen without apparent genotype-phenotype correlation, eight out of nine variants associated with Cole disease are confined to the somatomedin-B-like (SMB) domains critical for homo-dimerization of the ENPP1 protein.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
24
|
Serum Calcification Propensity T50 Associates with Disease Severity in Patients with Pseudoxanthoma Elasticum. J Clin Med 2022; 11:jcm11133727. [PMID: 35807012 PMCID: PMC9267205 DOI: 10.3390/jcm11133727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a currently intractable genetic disorder characterized by progressive ectopic calcification in the skin, eyes and arteries. Therapeutic trials in PXE are severely hampered by the lack of reliable biomarkers. Serum calcification propensity T50 is a blood test measuring the functional anticalcifying buffer capacity of serum. Here, we evaluated T50 in PXE patients aiming to investigate its determinants and suitability as a potential biomarker for disease severity. Fifty-seven PXE patients were included in this cross-sectional study, and demographic, clinical, imaging and biochemical data were collected from medical health records. PXE severity was assessed using Phenodex scores. T50 was measured using a validated, nephelometry-based assay. Multivariate models were then created to investigate T50 determinants and associations with disease severity. In short, the mean age of patients was 45.2 years, 68.4% was female and mean serum T50 was 347 min. Multivariate regression analysis identified serum fetuin-A (p < 0.001), phosphorus (p = 0.007) and magnesium levels (p = 0.034) as significant determinants of T50, while no correlations were identified with serum calcium, eGFR, plasma PPi levels or the ABCC6 genotype. After correction for covariates, T50 was found to be an independent determinant of ocular (p = 0.013), vascular (p = 0.013) and overall disease severity (p = 0.016) in PXE. To conclude, shorter serum T50—indicative of a higher calcification propensity—was associated with a more severe phenotype in PXE patients. This study indicates, for the first time, that serum T50 might be a clinically relevant biomarker in PXE and may thus be of importance to future therapeutic trials.
Collapse
|
25
|
Yan J, Shen M, Sui B, Lu W, Han X, Wan Q, Liu Y, Kang J, Qin W, Zhang Z, Chen D, Cao Y, Ying S, Tay FR, Niu LN, Jiao K. Autophagic LC3 + calcified extracellular vesicles initiate cartilage calcification in osteoarthritis. SCIENCE ADVANCES 2022; 8:eabn1556. [PMID: 35544558 PMCID: PMC9094669 DOI: 10.1126/sciadv.abn1556] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pathological cartilage calcification plays an important role in osteoarthritis progression but in which the origin of calcified extracellular vesicles (EVs) and their effects remain unknown. Here, we demonstrate that pathological cartilage calcification occurs in the early stage of the osteoarthritis in which the calcified EVs are closely involved. Autophagosomes carrying the minerals are released in EVs, and calcification is induced by those autophagy-regulated calcified EVs. Autophagy-derived microtubule-associated proteins 1A/1B light chain 3B (LC3)-positive EVs are the major population of calcified EVs that initiate pathological calcification. Release of LC3-positive calcified EVs is caused by blockage of the autophagy flux resulted from histone deacetylase 6 (HDAC6)-mediated microtubule destabilization. Inhibition of HDAC6 activity blocks the release of the LC3-positive calcified EVs by chondrocytes and effectively reverses the pathological calcification and degradation of cartilage. The present work discovers that calcified EVs derived from autophagosomes initiate pathological cartilage calcification in osteoarthritis, with potential therapeutic targeting implication.
Collapse
Affiliation(s)
- Jianfei Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minjuan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bingdong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Weicheng Lu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoxiao Han
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qianqian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junjun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zibing Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Da Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Cao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siqi Ying
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- The Graduate School, Augusta University, Augusta, GA, USA
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| | - Li-na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| |
Collapse
|
26
|
Villa-Bellosta R. Role of the extracellular ATP/pyrophosphate metabolism cycle in vascular calcification. Purinergic Signal 2022:10.1007/s11302-022-09867-1. [PMID: 35511317 DOI: 10.1007/s11302-022-09867-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 10/18/2022] Open
Abstract
Conventionally, ATP is considered to be the principal energy source in cells. However, over the last few years, a novel role for ATP as a potent extracellular signaling molecule and the principal source of extracellular pyrophosphate, the main endogenous inhibitor of vascular calcification, has emerged. A large body of evidence suggests that two principal mechanisms are involved in the initiation and progression of ectopic calcification: high phosphate concentration and pyrophosphate deficiency. Pathologic calcification of cardiovascular structures, or vascular calcification, is a feature of several genetic diseases and a common complication of chronic kidney disease, diabetes, and aging. Previous studies have shown that the loss of function of several enzymes and transporters involved in extracellular ATP/pyrophosphate metabolism is associated with vascular calcification. Therefore, pyrophosphate homeostasis should be further studied to facilitate the design of novel therapeutic approaches for ectopic calcification of cardiovascular structures, including strategies to increase pyrophosphate concentrations by targeting the ATP/pyrophosphate metabolism cycle.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av Barcelona, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Leftheriotis G, Navasiolava N, Clotaire L, Duranton C, Le Saux O, Bendahhou S, Laurain A, Rubera I, Martin L. Relationships between Plasma Pyrophosphate, Vascular Calcification and Clinical Severity in Patients Affected by Pseudoxanthoma Elasticum. J Clin Med 2022; 11:jcm11092588. [PMID: 35566717 PMCID: PMC9100273 DOI: 10.3390/jcm11092588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE; OMIM 264800) is an autosomal recessive metabolic disorder characterized by progressive calcification in the skin, the Bruch’s membrane, and the vasculature. Calcification in PXE results from a low level of circulating pyrophosphate (PPi) caused by ABCC6 deficiency. In this study, we used a cohort of 107 PXE patients to determine the pathophysiological relationship between plasma PPi, coronary calcification (CAC), lower limbs arterial calcification (LLAC), and disease severity. Overall, our data showed a deficit in plasma PPi in PXE patients compared to controls. Remarkably, affected females showed higher PPi levels than males, but a lower LLAC. There was a strong correlation between age and PPi in PXE patients (r = 0.423, p < 0.0001) but not in controls (r = 0.059, p = 0.828). A weak correlation was found between PPi and CAC (r = 0.266, p < 0.02); however, there was no statistically significant connection with LLAC (r = 0.068, p = 0.518) or a severity score (r = 0.077, p = 0.429). Surprisingly, we found no significant correlation between plasma alkaline phosphatase activity and PPi (r = 0.113, p = 0.252) or between a 10-year cardiovascular risk score and all other variables. Multivariate analysis confirmed that LLAC and CAC were strongly dependent on age, but not on PPi. Our data showed that arterial calcification is only weakly linked to circulating PPi levels and that time (i.e., age) appears to be the major determinant of disease severity and calcification in PXE. These data are important to better understand the natural history of this disease but also for the follow-up and management of patients, and the design of future clinical trials. Our results also show that PPi is not a good biomarker for the evaluation of disease severity and progression.
Collapse
Affiliation(s)
- Georges Leftheriotis
- University Hospital Nice, Vascular Physiology and Medicine Unit, 06000 Nice, France
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
- Correspondence: or
| | - Nastassia Navasiolava
- PXE Reference Center, MAGEC Nord, University Hospital of Angers, 49000 Angers, France; (N.N.); (L.M.)
| | - Laetitia Clotaire
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Christophe Duranton
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA;
| | - Saïd Bendahhou
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Audrey Laurain
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Isabelle Rubera
- Université Côte d’Azur, LP2M, UMR CNRS 7370, LabEx ICST, 06107 Nice, France; (L.C.); (C.D.); (S.B.); (A.L.); (I.R.)
| | - Ludovic Martin
- PXE Reference Center, MAGEC Nord, University Hospital of Angers, 49000 Angers, France; (N.N.); (L.M.)
| |
Collapse
|
28
|
Ralph D, van de Wetering K, Uitto J, Li Q. Inorganic Pyrophosphate Deficiency Syndromes and Potential Treatments for Pathologic Tissue Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:762-770. [PMID: 35182493 PMCID: PMC9088198 DOI: 10.1016/j.ajpath.2022.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Pathologic soft tissue calcification can occur in both genetic and acquired clinical conditions, causing significant morbidity and mortality. Although the pathomechanisms of pathologic calcification are poorly understood, major progress has been made in recent years in defining the underlying genetic defects in Mendelian disorders of ectopic calcification. This review presents an overview of the pathophysiology of five monogenic disorders of pathologic calcification: pseudoxanthoma elasticum, generalized arterial calcification of infancy, arterial calcification due to deficiency of CD73, ankylosis, and progeria. These hereditary disorders, caused by mutations in genes encoding ATP binding cassette subfamily C member 6, ectonucleotide pyrophosphatase/phosphodiesterase 1, CD73, progressive ankylosis protein, and lamin A/C proteins, respectively, are inorganic pyrophosphate (PPi) deficiency syndromes with reduced circulating levels of PPi, the principal physiologic inhibitor of calcium hydroxyapatite deposition in soft connective tissues. In addition to genetic diseases, PPi deficiency has been encountered in acquired clinical conditions accompanied by pathologic calcification. Because specific and effective treatments are lacking for pathologic calcification, the unifying finding of PPi deficiency suggests that PPi-targeted therapies may be beneficial to counteract pathologic soft tissue calcification in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Douglas Ralph
- Genetics, Genomics, and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, and the PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Huang J, Ralph D, Boraldi F, Quaglino D, Uitto J, Li Q. Inhibition of the DNA Damage Response Attenuates Ectopic Calcification in Pseudoxanthoma Elasticum. J Invest Dermatol 2022; 142:2140-2148.e1. [PMID: 35143822 PMCID: PMC9329183 DOI: 10.1016/j.jid.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable ectopic calcification disorder with multi-organ clinical manifestations. The gene at default, ABCC6, encodes an efflux transporter, ABCC6, which is a new player regulating the homeostasis of inorganic pyrophosphate (PPi), a potent endogenous anti-calcification factor. Previous studies suggested that systemic PPi deficiency is the major, but not the exclusive, cause of ectopic calcification in PXE. In this study, we demonstrate that the DNA damage response (DDR) and poly(ADP-ribose) (PAR) pathways are involved locally in PXE at sites of ectopic calcification. Genetic inhibition of PARP1, the predominant PAR-producing enzyme, showed a 54% reduction of calcification in the muzzle skin in Abcc6-/-Parp1-/- mice, as compared to age-matched Abcc6-/-Parp1+/+ littermates. Subsequently, oral administration of minocycline, an inhibitor of DDR/PAR signaling, resulted in an 86% reduction of calcification in the muzzle skin of Abcc6-/- mice. Minocycline treatment also attenuated the DDR/PAR signaling and reduced calcification of dermal fibroblasts derived from PXE patients. The anti-calcification effect of DDR/PAR inhibition was not accompanied by alterations in plasma PPi concentrations. These results suggest that local DDR/PAR signaling in calcification-prone tissues contributes to PXE pathogenesis, and its inhibition might provide a promising treatment strategy for ectopic calcification in PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Jianhe Huang
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Douglas Ralph
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Jouni Uitto
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiaoli Li
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
30
|
Martin-Ventura JL, Roncal C, Orbe J, Blanco-Colio LM. Role of Extracellular Vesicles as Potential Diagnostic and/or Therapeutic Biomarkers in Chronic Cardiovascular Diseases. Front Cell Dev Biol 2022; 10:813885. [PMID: 35155428 PMCID: PMC8827403 DOI: 10.3389/fcell.2022.813885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the first cause of death worldwide. In recent years, there has been great interest in the analysis of extracellular vesicles (EVs), including exosomes and microparticles, as potential mediators of biological communication between circulating cells/plasma and cells of the vasculature. Besides their activity as biological effectors, EVs have been also investigated as circulating/systemic biomarkers in different acute and chronic CVDs. In this review, the role of EVs as potential diagnostic and prognostic biomarkers in chronic cardiovascular diseases, including atherosclerosis (mainly, peripheral arterial disease, PAD), aortic stenosis (AS) and aortic aneurysms (AAs), will be described. Mechanistically, we will analyze the implication of EVs in pathological processes associated to cardiovascular remodeling, with special emphasis in their role in vascular and valvular calcification. Specifically, we will focus on the participation of EVs in calcium accumulation in the pathological vascular wall and aortic valves, involving the phenotypic change of vascular smooth muscle cells (SMCs) or valvular interstitial cells (IC) to osteoblast-like cells. The knowledge of the implication of EVs in the pathogenic mechanisms of cardiovascular remodeling is still to be completely deciphered but there are promising results supporting their potential translational application to the diagnosis and therapy of different CVDs.
Collapse
Affiliation(s)
- Jose Luis Martin-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- *Correspondence: Jose Luis Martin-Ventura, ; Carmen Roncal,
| | - Carmen Roncal
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- *Correspondence: Jose Luis Martin-Ventura, ; Carmen Roncal,
| | - Josune Orbe
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - Luis Miguel Blanco-Colio
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
31
|
Maruyama S, Visser H, Ito T, Limsakun T, Zahir H, Ford D, Tao B, Zamora CA, Stark JG, Chou HS. Phase I studies of the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-1211, a tissue-nonspecific alkaline phosphatase inhibitor. Clin Transl Sci 2022; 15:967-980. [PMID: 35021269 PMCID: PMC9010257 DOI: 10.1111/cts.13214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes and inactivates inorganic pyrophosphate (PPi), a potent inhibitor of calcification; therefore, TNAP inhibition is a potential target to treat ectopic calcification. These two first-in-human studies evaluated safety, tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of single (SAD) and multiple-ascending doses (MAD) of DS-1211, a TNAP inhibitor. Healthy adults were randomized 6:2 to DS-1211 or placebo, eight subjects per dose cohort. SAD study subjects received one dose of DS-1211 (range, 3-3000 mg) or placebo, whereas MAD study subjects received DS-1211 (range, 10-300 mg) once daily, 150 mg twice daily (b.i.d.), or placebo for 10 days. Primary end points were safety and tolerability. PK and PD assessments included plasma concentrations of DS-1211, alkaline phosphatase (ALP) activity, and TNAP substrates (PPi, pyridoxal 5'-phosphate [PLP], and phosphoethanolamine [PEA]). A total of 56 (DS-1211: n = 42; placebo: n = 14) and 40 (DS-1211: n = 30; placebo: n = 10) subjects enrolled in the SAD and MAD studies, respectively. In both studies, adverse events were mild or moderate and did not increase with dose. PKs of DS-1211 were linear up to 100 mg administered as a single dose and 150 mg b.i.d. administered as a multiple-dose regimen. In multiple dosing, there was minimal accumulation of DS-1211. Increased DS-1211 exposure correlated with dose-dependent ALP inhibition and concomitant increases in PPi, PLP, and PEA. In two phase I studies, DS-1211 appeared safe and well-tolerated. Post-treatment PD assessments were consistent with exposure-dependent TNAP inhibition. These data support further evaluation of DS-1211 for ectopic calcification diseases.
Collapse
Affiliation(s)
| | - Hester Visser
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | | | | | - Hamim Zahir
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Daniel Ford
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Ben Tao
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | | | | | - Hubert S Chou
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| |
Collapse
|
32
|
Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines 2021; 9:biomedicines9121895. [PMID: 34944710 PMCID: PMC8698611 DOI: 10.3390/biomedicines9121895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare, genetic, metabolic disease with an estimated prevalence of between 1 per 25,000 and 56,000. Its main hallmarks are characteristic skin lesions, development of choroidal neovascularization, and early-onset arterial calcification accompanied by a severe reduction in quality-of-life. Underlying the pathology are recessively transmitted pathogenic variants of the ABCC6 gene, which results in a deficiency of ABCC6 protein. This results in reduced levels of peripheral pyrophosphate, a strong inhibitor of peripheral calcification, but also dysregulation of blood lipids. Although various treatment options have emerged during the last 20 years, many are either already outdated or not yet ready to be applied generally. Clinical physicians often are left stranded while patients suffer from the consequences of outdated therapies, or feel unrecognized by their attending doctors who may feel uncertain about using new therapeutic approaches or not even know about them. In this review, we summarize the broad spectrum of treatment options for PXE, focusing on currently available clinical options, the latest research and development, and future perspectives.
Collapse
|
33
|
Chronic Kidney Disease-Induced Arterial Media Calcification in Rats Prevented by Tissue Non-Specific Alkaline Phosphatase Substrate Supplementation Rather Than Inhibition of the Enzyme. Pharmaceutics 2021; 13:pharmaceutics13081138. [PMID: 34452102 PMCID: PMC8399849 DOI: 10.3390/pharmaceutics13081138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with chronic kidney disease (CKD) suffer from arterial media calcification and a disturbed bone metabolism. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the calcification inhibitor pyrophosphate (PPi) into inorganic phosphate (Pi) and thereby stimulates arterial media calcification as well as physiological bone mineralization. This study investigates whether the TNAP inhibitor SBI-425, PPi or the combination of both inhibit arterial media calcification in an 0.75% adenine rat model of CKD. Treatments started with the induction of CKD, including (i) rats with normal renal function (control diet) treated with vehicle and CKD rats treated with either (ii) vehicle, (iii) 10 mg/kg/day SBI-425, (iv) 120 µmol/kg/day PPi and (v) 120 µmol/kg/day PPi and 10 mg/kg/day SBI-425. All CKD groups developed a stable chronic renal failure reflected by hyperphosphatemia, hypocalcemia and high serum creatinine levels. CKD induced arterial media calcification and bone metabolic defects. All treatments, except for SBI-425 alone, blocked CKD-related arterial media calcification. More important, SBI-425 alone and in combination with PPi increased osteoid area pointing to a less efficient bone mineralization. Clearly, potential side effects on bone mineralization will need to be assessed in any clinical trial aimed at modifying the Pi/PPi ratio in CKD patients who already suffer from a compromised bone status.
Collapse
|
34
|
Ziegler SG, Ferreira CR. Response to Stern et al. Genet Med 2021; 23:2008. [PMID: 34135486 DOI: 10.1038/s41436-021-01229-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shira G Ziegler
- Departments of Pediatrics and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Roberts FL, Rashdan NA, Phadwal K, Markby GR, Dillon S, Zoll J, Berger J, Milne E, Orriss IR, Karsenty G, Le Saux O, Morton NM, Farquharson C, MacRae VE. Osteoblast-specific deficiency of ectonucleotide pyrophosphatase or phosphodiesterase-1 engenders insulin resistance in high-fat diet fed mice. J Cell Physiol 2021; 236:4614-4624. [PMID: 33305372 PMCID: PMC9665351 DOI: 10.1002/jcp.30194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Supraphysiological levels of the osteoblast-enriched mineralization regulator ectonucleotide pyrophosphatase or phosphodiesterase-1 (NPP1) is associated with type 2 diabetes mellitus. We determined the impact of osteoblast-specific Enpp1 ablation on skeletal structure and metabolic phenotype in mice. Female, but not male, 6-week-old mice lacking osteoblast NPP1 expression (osteoblast-specific knockout [KO]) exhibited increased femoral bone volume or total volume (17.50% vs. 11.67%; p < .01), and reduced trabecular spacing (0.187 vs. 0.157 mm; p < .01) compared with floxed (control) mice. Furthermore, an enhanced ability of isolated osteoblasts from the osteoblast-specific KO to calcify their matrix in vitro compared to fl/fl osteoblasts was observed (p < .05). Male osteoblast-specific KO and fl/fl mice showed comparable glucose and insulin tolerance despite increased levels of insulin-sensitizing under-carboxylated osteocalcin (195% increase; p < .05). However, following high-fat-diet challenge, osteoblast-specific KO mice showed impaired glucose and insulin tolerance compared with fl/fl mice. These data highlight a crucial local role for osteoblast NPP1 in skeletal development and a secondary metabolic impact that predominantly maintains insulin sensitivity.
Collapse
Affiliation(s)
- Fiona L. Roberts
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Nabil A. Rashdan
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Kanchan Phadwal
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Greg R. Markby
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Scott Dillon
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Julian Berger
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Elspeth Milne
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Isabel R. Orriss
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Nicholas M. Morton
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Colin Farquharson
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Vicky E. MacRae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
36
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
37
|
Brampton C, Pomozi V, Chen LH, Apana A, McCurdy S, Zoll J, Boisvert WA, Lambert G, Henrion D, Blanchard S, Kuo S, Leftheriotis G, Martin L, Le Saux O. ABCC6 deficiency promotes dyslipidemia and atherosclerosis. Sci Rep 2021; 11:3881. [PMID: 33594095 PMCID: PMC7887252 DOI: 10.1038/s41598-021-82966-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
ABCC6 deficiency promotes ectopic calcification; however, circumstantial evidence suggested that ABCC6 may also influence atherosclerosis. The present study addressed the role of ABCC6 in atherosclerosis using Ldlr-/- mice and pseudoxanthoma elasticum (PXE) patients. Mice lacking the Abcc6 and Ldlr genes were fed an atherogenic diet for 16 weeks before intimal calcification, aortic plaque formation and lipoprotein profile were evaluated. Cholesterol efflux and the expression of several inflammation, atherosclerosis and cholesterol homeostasis-related genes were also determined in murine liver and bone marrow-derived macrophages. Furthermore, we examined plasma lipoproteins, vascular calcification, carotid intima-media thickness and atherosclerosis in a cohort of PXE patients with ABCC6 mutations and compared results to dysmetabolic subjects with increased cardiovascular risk. We found that ABCC6 deficiency causes changes in lipoproteins, with decreased HDL cholesterol in both mice and humans, and induces atherosclerosis. However, we found that the absence of ABCC6 does not influence overall vascular mineralization induced with atherosclerosis. Decreased cholesterol efflux from macrophage cells and other molecular changes such as increased pro-inflammation seen in both humans and mice are likely contributors for the phenotype. However, it is likely that other cellular and/or molecular mechanisms are involved. Our study showed a novel physiological role for ABCC6, influencing plasma lipoproteins and atherosclerosis in a haploinsufficient manner, with significant penetrance.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
- Bio-Rad Laboratories, Inc., Hercules, CA, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Li-Hsieh Chen
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Ailea Apana
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Sara McCurdy
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Department of Medicine, University of California San Diego, San Diego, USA
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - William A Boisvert
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Gilles Lambert
- University of La Réunion Medical School (France) INSERM UMR1188 DéTROI, Ste Clotilde, La Réunion, France
| | - Daniel Henrion
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083, University of Angers, Angers, France
| | - Simon Blanchard
- Département d'Immunologie et d'Allergologie, University Hospital of Angers, 49000, Angers, France
- Inserm U1232, CRCINA, University of Angers, 44000, Nantes, France
| | - Sheree Kuo
- Department of Pediatrics Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI, USA
| | - Georges Leftheriotis
- Faculty of Medicine, University of Nice-Sophia Antipolis, 06107, Nice, France
- Laboratory of Physiology and Molecular Medicine (LP2M) UMR CNRS 7073, 06107, Nice, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA.
| |
Collapse
|
38
|
Ibold B, Tiemann J, Faust I, Ceglarek U, Dittrich J, Gorgels TGMF, Bergen AAB, Vanakker O, Van Gils M, Knabbe C, Hendig D. Genetic deletion of Abcc6 disturbs cholesterol homeostasis in mice. Sci Rep 2021; 11:2137. [PMID: 33483533 PMCID: PMC7822913 DOI: 10.1038/s41598-021-81573-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/22/2020] [Indexed: 02/05/2023] Open
Abstract
Genetic studies link adenosine triphosphate-binding cassette transporter C6 (ABCC6) mutations to pseudoxanthoma elasticum (PXE). ABCC6 sequence variations are correlated with altered HDL cholesterol levels and an elevated risk of coronary artery diseases. However, the role of ABCC6 in cholesterol homeostasis is not widely known. Here, we report reduced serum cholesterol and phytosterol levels in Abcc6-deficient mice, indicating an impaired sterol absorption. Ratios of cholesterol precursors to cholesterol were increased, confirmed by upregulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression, suggesting activation of cholesterol biosynthesis in Abcc6-/- mice. We found that cholesterol depletion was accompanied by a substantial decrease in HDL cholesterol mediated by lowered ApoA-I and ApoA-II protein levels and not by inhibited lecithin-cholesterol transferase activity. Additionally, higher proprotein convertase subtilisin/kexin type 9 (Pcsk9) serum levels in Abcc6-/- mice and PXE patients and elevated ApoB level in knockout mice were observed, suggesting a potentially altered very low-density lipoprotein synthesis. Our results underline the role of Abcc6 in cholesterol homeostasis and indicate impaired cholesterol metabolism as an important pathomechanism involved in PXE manifestation.
Collapse
Affiliation(s)
- Bettina Ibold
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Janina Tiemann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Uta Ceglarek
- Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Julia Dittrich
- Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
- Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Arthur A B Bergen
- Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
- Academic Medical Centre, University of Amsterdam, 1100 DD, Amsterdam, The Netherlands
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
39
|
Yu L, Wei M. Biomineralization of Collagen-Based Materials for Hard Tissue Repair. Int J Mol Sci 2021; 22:944. [PMID: 33477897 PMCID: PMC7833386 DOI: 10.3390/ijms22020944] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite (HA) reinforced collagen fibrils serve as the basic building blocks of natural bone and dentin. Mineralization of collagen fibrils play an essential role in ensuring the structural and mechanical functionalities of hard tissues such as bone and dentin. Biomineralization of collagen can be divided into intrafibrillar and extrafibrillar mineralization in terms of HA distribution relative to collagen fibrils. Intrafibrillar mineralization is termed when HA minerals are incorporated within the gap zone of collagen fibrils, while extrafibrillar mineralization refers to the minerals that are formed on the surface of collagen fibrils. However, the mechanisms resulting in these two types of mineralization still remain debatable. In this review, the evolution of both classical and non-classical biomineralization theories is summarized. Different intrafibrillar mineralization mechanisms, including polymer induced liquid precursor (PILP), capillary action, electrostatic attraction, size exclusion, Gibbs-Donnan equilibrium, and interfacial energy guided theories, are discussed. Exemplary strategies to induce biomimetic intrafibrillar mineralization using non-collagenous proteins (NCPs), polymer analogs, small molecules, and fluidic shear stress are discussed, and recent applications of mineralized collagen fibers for bone regeneration and dentin repair are included. Finally, conclusions are drawn on these proposed mechanisms, and the future trend of collagen-based materials for bone regeneration and tooth repair is speculated.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA;
| | - Mei Wei
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA;
- Department of Mechanical Engineering, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
40
|
Luo H, Li Q, Cao Y, Uitto J. Therapeutics Development for Pseudoxanthoma Elasticum and Related Ectopic Mineralization Disorders: Update 2020. J Clin Med 2020; 10:E114. [PMID: 33396306 PMCID: PMC7795895 DOI: 10.3390/jcm10010114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE), the prototype of heritable ectopic mineralization disorders, manifests with deposition of calcium hydroxyapatite crystals in the skin, eyes and arterial blood vessels. This autosomal recessive disorder, due to mutations in ABCC6, is usually diagnosed around the second decade of life. In the spectrum of heritable ectopic mineralization disorders are also generalized arterial calcification of infancy (GACI), with extremely severe arterial calcification diagnosed by prenatal ultrasound or perinatally, and arterial calcification due to CD73 deficiency (ACDC) manifesting with arterial and juxta-articular mineralization in the elderly; the latter disorders are caused by mutations in ENPP1 and NT5E, respectively. The unifying pathomechanistic feature in these three conditions is reduced plasma levels of inorganic pyrophosphate (PPi), a powerful endogenous inhibitor of ectopic mineralization. Several on-going attempts to develop treatments for these conditions, either with the goal to normalize PPi plasma levels or by means of preventing calcium hydroxyapatite deposition independent of PPi, are in advanced preclinical levels or in early clinical trials. This overview summarizes the prospects of treatment development for ectopic mineralization disorders, with PXE, GACI and ACDC as the target diseases, from the 2020 vantage point.
Collapse
Affiliation(s)
- Hongbin Luo
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and the PXE International Center for Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.L.); (Q.L.)
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China;
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and the PXE International Center for Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.L.); (Q.L.)
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China;
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and the PXE International Center for Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.L.); (Q.L.)
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
41
|
Terry SF. The Human Face of ABCC6. FEBS Lett 2020; 594:4151-4157. [DOI: 10.1002/1873-3468.14002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023]
|
42
|
Verschuere S, Van Gils M, Nollet L, Vanakker OM. From membrane to mineralization: the curious case of the ABCC6 transporter. FEBS Lett 2020; 594:4109-4133. [PMID: 33131056 DOI: 10.1002/1873-3468.13981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette subfamily C member 6 gene/protein (ABCC6) is an ATP-dependent transmembrane transporter predominantly expressed in the liver and the kidney. ABCC6 first came to attention in human medicine when it was discovered in 2000 that mutations in its encoding gene, ABCC6, caused the autosomal recessive multisystemic mineralization disease pseudoxanthoma elasticum (PXE). Since then, the physiological and pathological roles of ABCC6 have been the subject of intense research. In the last 20 years, significant findings have clarified ABCC6 structure as well as its physiological role in mineralization homeostasis in humans and animal models. Yet, several facets of ABCC6 biology remain currently incompletely understood, ranging from the precise nature of its substrate(s) to the increasingly complex molecular genetics. Nonetheless, advances in our understanding of pathophysiological mechanisms causing mineralization lead to several treatment options being suggested or already tested in pilot clinical trials for ABCC6 deficiency. This review highlights current knowledge of ABCC6 and the challenges ahead, particularly the attempts to translate basic science into clinical practice.
Collapse
Affiliation(s)
- Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| |
Collapse
|
43
|
Rutsch F, Buers I, Nitschke Y. Hereditary Disorders of Cardiovascular Calcification. Arterioscler Thromb Vasc Biol 2020; 41:35-47. [PMID: 33176451 DOI: 10.1161/atvbaha.120.315577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arterial calcification is a common phenomenon in the elderly, in patients with atherosclerosis or renal failure and in diabetes. However, when present in very young individuals, it is likely to be associated with an underlying hereditary disorder of arterial calcification. Here, we present an overview of the few monogenic disorders presenting with early-onset cardiovascular calcification. These disorders can be classified according to the function of the respective disease gene into (1) disorders caused by an altered purine and phosphate/pyrophosphate metabolism, (2) interferonopathies, and (3) Gaucher disease. The finding of arterial calcification in early life should alert the clinician and prompt further genetic work-up to define the underlying genetic defect, to establish the correct diagnosis, and to enable appropriate therapy.
Collapse
Affiliation(s)
- Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Insa Buers
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| |
Collapse
|
44
|
Ferreira CR, Hackbarth ME, Ziegler SG, Pan KS, Roberts MS, Rosing DR, Whelpley MS, Bryant JC, Macnamara EF, Wang S, Müller K, Hartley IR, Chew EY, Corden TE, Jacobsen CM, Holm IA, Rutsch F, Dikoglu E, Chen MY, Mughal MZ, Levine MA, Gafni RI, Gahl WA. Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI). Genet Med 2020; 23:396-407. [PMID: 33005041 PMCID: PMC7867608 DOI: 10.1038/s41436-020-00983-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Generalized arterial calcification of infancy (GACI), characterized by vascular calcifications that are often fatal shortly after birth, is usually caused by deficiency of ENPP1. A small fraction of GACI cases result from deficiency of ABCC6, a membrane transporter. The natural history of GACI survivors has not been established in a prospective fashion. METHODS We performed deep phenotyping of 20 GACI survivors. RESULTS Sixteen of 20 subjects presented with arterial calcifications, but only 5 had residual involvement at the time of evaluation. Individuals with ENPP1 deficiency either had hypophosphatemic rickets or were predicted to develop it by 14 years of age; 14/16 had elevated intact FGF23 levels (iFGF23). Blood phosphate levels correlated inversely with iFGF23. For ENPP1-deficient individuals, the lifetime risk of cervical spine fusion was 25%, that of hearing loss was 75%, and the main morbidity in adults was related to enthesis calcification. Four ENPP1-deficient individuals manifested classic skin or retinal findings of PXE. We estimated the minimal incidence of ENPP1 deficiency at ~1 in 200,000 pregnancies. CONCLUSION GACI appears to be more common than previously thought, with an expanding spectrum of overlapping phenotypes. The relationships among decreased ENPP1, increased iFGF23, and rickets could inform future therapies.
Collapse
Affiliation(s)
- Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mary E Hackbarth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shira G Ziegler
- Departments of Pediatrics and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen S Pan
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mary S Roberts
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Douglas R Rosing
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Margaret S Whelpley
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joy C Bryant
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen F Macnamara
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Iris R Hartley
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy E Corden
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christina M Jacobsen
- Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ingrid A Holm
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children's Hospital, Boston, MA, USA
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, Germany
| | - Esra Dikoglu
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcus Y Chen
- Cardiovascular CT Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Zulf Mughal
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University Hospital's NHS Trust, Manchester, UK
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel I Gafni
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Tőkési N, Kozák E, Fülöp K, Dedinszki D, Hegedűs N, Király B, Szigeti K, Ajtay K, Jakus Z, Zaworski J, Letavernier E, Pomozi V, Váradi A. Pyrophosphate therapy prevents trauma-induced calcification in the mouse model of neurogenic heterotopic ossification. J Cell Mol Med 2020; 24:11791-11799. [PMID: 32885586 PMCID: PMC7579705 DOI: 10.1111/jcmm.15793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Trauma‐induced calcification is the pathological consequence of complex injuries which often affect the central nervous system and other parts of the body simultaneously. We demonstrated by an animal model recapitulating the calcification of the above condition that adrenaline transmits the stress signal of brain injury to the calcifying tissues. We have also found that although the level of plasma pyrophosphate, the endogenous inhibitor of calcification, was normal in calcifying animals, it could not counteract the acute calcification. However, externally added pyrophosphate inhibited calcification even when it was administered after the complex injuries. Our finding suggests a potentially powerful clinical intervention of calcification triggered by polytrauma injuries which has no effective treatment.
Collapse
Affiliation(s)
- Natália Tőkési
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Eszter Kozák
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Krisztina Fülöp
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Dóra Dedinszki
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Nikolett Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bálint Király
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Kitti Ajtay
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Jeremy Zaworski
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,INSERM, UMR S 1155, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,INSERM, UMR S 1155, Paris, France
| | - Viola Pomozi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| |
Collapse
|
46
|
Opdebeeck B, Neven E, Millán JL, Pinkerton AB, D'Haese PC, Verhulst A. Pharmacological TNAP inhibition efficiently inhibits arterial media calcification in a warfarin rat model but deserves careful consideration of potential physiological bone formation/mineralization impairment. Bone 2020; 137:115392. [PMID: 32360899 PMCID: PMC8406684 DOI: 10.1016/j.bone.2020.115392] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Arterial media calcification is frequently seen in elderly and patients with chronic kidney disease (CKD), diabetes and osteoporosis. Pyrophosphate is a well-known calcification inhibitor that binds to nascent hydroxyapatite crystals and prevents further incorporation of inorganic phosphate into these crystals. However, the enzyme tissue-nonspecific alkaline phosphatase (TNAP), which is expressed in calcified arteries, degrades extracellular pyrophosphate into phosphate ions, by which pyrophosphate loses its ability to block vascular calcification. Here, we aimed to evaluate whether pharmacological TNAP inhibition is able to prevent the development of arterial calcification in a rat model of warfarin-induced vascular calcification. To investigate the effect of the pharmacological TNAP inhibitor SBI-425 on vascular calcification and bone metabolism, a 0.30% warfarin rat model was used. Warfarin exposure resulted in distinct calcification in the aorta and peripheral arteries. Daily administration of the TNAP inhibitor SBI-425 (10 mg/kg/day) for 7 weeks significantly reduced vascular calcification as indicated by a significant decrease in calcium content in the aorta (vehicle 3.84 ± 0.64 mg calcium/g wet tissue vs TNAP inhibitor 0.70 ± 0.23 mg calcium/g wet tissue) and peripheral arteries and a distinct reduction in area % calcification on Von Kossa stained aortic sections as compared to vehicle. Administration of SBI-425 resulted in decreased bone formation rate and mineral apposition rate, and increased osteoid maturation time and this without significant changes in osteoclast- and eroded perimeter. Administration of TNAP inhibitor SBI-425 significantly reduced the calcification in the aorta and peripheral arteries of a rat model of warfarin-induced vascular calcification. However, suppression of TNAP activity should be limited in order to maintain adequate physiological bone mineralization.
Collapse
Affiliation(s)
- Britt Opdebeeck
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States of America
| | - Anthony B Pinkerton
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States of America
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| |
Collapse
|
47
|
Novais EJ, Tran VA, Miao J, Slaver K, Sinensky A, Dyment NA, Addya S, Szeri F, Wetering K, Shapiro IM, Risbud MV. Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 2020; 19:e13148. [PMID: 32319726 PMCID: PMC7253061 DOI: 10.1111/acel.13148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Intervertebral disc degeneration presents a wide spectrum of clinically degenerative disc phenotypes; however, the contribution of genetic background to the degenerative outcomes has not been established. We characterized the spinal phenotype of 3 mouse strains with varying cartilage-regenerative potential at 6 and 23 months: C57BL/6, LG/J and SM/J. All strains showed different aging phenotypes. Importantly, LG/J mice showed an increased prevalence of dystrophic disc calcification in caudal discs with aging. Quantitative-histological analyses of LG/J and SM/J caudal discs evidenced accelerated degeneration compared to BL6, with cellular disorganization and cell loss together with fibrosis of the NP, respectively. Along with the higher grades of disc degeneration, SM/J, at 6M, also differed the most in terms of NP gene expression compared to other strains. Moreover, although we found common DEGs between BL6 and LG/J aging, most of them were divergent between the strains. Noteworthy, the common DEGs altered in both LG/J and BL6 aging were associated with inflammatory processes, response to stress, cell differentiation, cell metabolism and cell division. Results suggested that disc calcification in LG/J resulted from a dystrophic calcification process likely aggravated by cell death, matrix remodelling, changes in calcium/phosphate homeostasis and cell transformation. Lastly, we report 7 distinct phenotypes of human disc degeneration based on transcriptomic profiles, that presented similar pathways and DEGs found in aging mouse strains. Together, our results suggest that disc aging and degeneration depends on the genetic background and involves changes in various molecular pathways, which might help to explain the diverse phenotypes seen during disc disease.
Collapse
Affiliation(s)
- Emanuel J. Novais
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
- Graduate Program in Cell Biology and Regenerative Medicine Thomas Jefferson University Philadelphia PA USA
- Life and Health Sciences Research Institute (ICVS) School of Medicine University of Minho Braga Portugal
- ICVS/3B’s – PT Government Associate Laboratory Braga Portugal
| | - Victoria A. Tran
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Jingya Miao
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Katie Slaver
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Andrew Sinensky
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
| | - Nathaniel A. Dyment
- Department of Orthopaedic Surgery University of Pennsylvania Philadelphia PA USA
| | - Sankar Addya
- Sidney Kimmel Cancer Center Thomas Jefferson University Philadelphia PA USA
| | - Flora Szeri
- Department of Dermatology and Cutaneous Biology Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
- The PXE International Center of Excellence in Research and Clinical Care Thomas Jefferson University Philadelphia PA USA
- The Jefferson Institute of Molecular Medicine Thomas Jefferson University Philadelphia PA USA
| | - Koen Wetering
- Department of Dermatology and Cutaneous Biology Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
- The PXE International Center of Excellence in Research and Clinical Care Thomas Jefferson University Philadelphia PA USA
- The Jefferson Institute of Molecular Medicine Thomas Jefferson University Philadelphia PA USA
| | - Irving M. Shapiro
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
- Graduate Program in Cell Biology and Regenerative Medicine Thomas Jefferson University Philadelphia PA USA
| | - Makarand V. Risbud
- Department of Orthopedic Surgery Sidney Kimmel Medical College Philadelphia PA USA
- Graduate Program in Cell Biology and Regenerative Medicine Thomas Jefferson University Philadelphia PA USA
| |
Collapse
|
48
|
Orriss IR. Extracellular pyrophosphate: The body's "water softener". Bone 2020; 134:115243. [PMID: 31954851 DOI: 10.1016/j.bone.2020.115243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Extracellular pyrophosphate (ePPi) was first identified as a key endogenous inhibitor of mineralisation in the 1960's by Fleisch and colleagues. The main source of ePPi seems to be extracellular ATP which is continually released from cells in a controlled way. ATP is rapidly broken down by enzymes including ecto-nucleotide pyrophosphatase/phosphodiesterases to produce ePPi. The major function of ePPi is to directly inhibit hydroxyapatite formation and growth meaning that this simple molecule acts as the body's own "water softener". However, studies have also shown that ePPi can influence gene expression and regulate its own production and breakdown. This review will summarise our current knowledge of ePPi metabolism and how it acts to prevent pathological soft tissue calcification and regulate physiological bone mineralisation.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
49
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
50
|
Chen Y, Zhao X, Wu H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb Vasc Biol 2020; 40:1078-1093. [PMID: 32237904 DOI: 10.1161/atvbaha.120.313131] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the association between vascular calcification and arterial stiffness, highlighting the important genetic factors, systemic and local microenvironmental signals, and underlying signaling pathways and molecular regulators of vascular calcification. Elevated oxidative stress appears to be a common procalcification factor that induces osteogenic differentiation and calcification of vascular cells in a variety of disease conditions such as atherosclerosis, diabetes mellitus, and chronic kidney disease. Thus, the role of oxidative stress and oxidative stress-regulated signals in vascular smooth muscle cells and their contributions to vascular calcification are highlighted. In relation to diabetes mellitus, the regulation of both hyperglycemia and increased protein glycosylation, by AGEs (advanced glycation end products) and O-linked β-N-acetylglucosamine modification, and its role in enhancing intracellular pathophysiological signaling that promotes osteogenic differentiation and calcification of vascular smooth muscle cells are discussed. In the context of chronic kidney disease, this review details the role of calcium and phosphate homeostasis, parathyroid hormone, and specific calcification inhibitors in regulating vascular calcification. In addition, the impact of the systemic and microenvironmental factors on respective intrinsic signaling pathways that promote osteogenic differentiation and calcification of vascular smooth muscle cells and osteoblasts are compared and contrasted, aiming to dissect the commonalities and distinctions that underlie the paradoxical vascular-bone mineralization disorders in aging and diseases.
Collapse
Affiliation(s)
- Yabing Chen
- From the Departments of Pathology (Y.C.), The University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Department, AL (Y.C.)
| | - Xinyang Zhao
- Biochemistry (X.Z.), The University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), The University of Alabama at Birmingham
| |
Collapse
|