1
|
Amrane K, Le Noac'h P, Hemon P, Abgral R, Le Meur C, Pradier O, Misery L, Legoupil D, Berthou C, Uguen A. MHC class II: a predictor of outcome in melanoma treated with immune checkpoint inhibitors. Melanoma Res 2025; 35:176-186. [PMID: 39945603 DOI: 10.1097/cmr.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
This study aimed to evaluate the predictive value of MHC class II (MHC-II) expression by melanoma cells in a large cohort of metastatic cutaneous melanoma patients treated with immune checkpoint inhibitors (ICIs). We conducted a single-center, retrospective study involving stage IV cutaneous melanoma patients who received ICI as first-line therapy. MHC-II expression in melanoma cells was quantified using dual-color anti-SOX10 and anti-MHC-II immunohistochemistry on tumor samples from 95 patients. The primary endpoint was event-free survival (EFS), with secondary endpoints including 1-year EFS, 1-year overall survival (OS), disease control rate (DCR), and the correlation between MHC-II expression and clinico-biological characteristics. The cohort had a median age of 67 years (range, 33-90), with a male-to-female ratio of 50 : 45. Thirty-three percent of patients received the ipilimumab-nivolumab combination. The median follow-up was 16.8 months. Disease progression occurred in 58 patients (61%), with a median time to progression of 4.8 months. Forty-six patients (48.4%) experienced an event within the first year, and 52 patients (54.7%) died during follow-up. MHC-II positivity was observed in ≥10% of melanoma cells in 6.3% of patients. MHC-II expression was significantly associated with 1-year EFS ( P = 0.037) and DCR ( P = 0.032), but not with EFS or 1-year OS. Age, phototype, and brain metastases were correlated with MHC-II expression status. Our findings suggest that MHC-II expression by melanoma cells may serve as a favorable predictive biomarker for survival in metastatic cutaneous melanoma patients treated with ICIs.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Regional Hospital of Morlaix, Morlaix
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
| | - Pierre Le Noac'h
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
- Department of Pathology, University Hospital of Brest
| | - Patrice Hemon
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany
| | - Coline Le Meur
- Department of Radiotherapy, University Hospital of Brest
| | - Olivier Pradier
- Department of Radiotherapy, University Hospital of Brest
- Inserm, UMR1101, LaTIM, University of Western Brittany
| | - Laurent Misery
- Department of Dermatology, University Hospital of Brest
- Laboratoire sur les Interactions Épithéliums-Neurones (LIEN-EA4685), Université de Bretagne Occidentale
| | - Delphine Legoupil
- Department of Dermatology, University Hospital of Brest
- Laboratoire sur les Interactions Épithéliums-Neurones (LIEN-EA4685), Université de Bretagne Occidentale
| | - Christian Berthou
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
- Department of Hematology, University Hospital of Brest, Brest, France
| | - Arnaud Uguen
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany
| |
Collapse
|
2
|
Xu L, Xiao T, Chao T, Xiong H, Yao W. From genes to therapy: a lipid Metabolism-Related genetic risk model predicts HCC outcomes and enhances immunotherapy. BMC Cancer 2025; 25:895. [PMID: 40389832 PMCID: PMC12090435 DOI: 10.1186/s12885-025-14306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is related to dysregulated lipid metabolism and immunosuppressive microenvironment. This study developed a genetic risk model using lipid metabolism-related genes to predict survival and immune patterns in HCC patients. METHODS Differentially expressed genes (DEGs) related to lipid metabolism were identified in HCC via the TCGA-LIHC dataset. A risk model for survival prediction was constructed via DEGs related to survival. The immune signature associated with the risk model was also evaluated by the CIBERSORT algorithm, tumor immune dysfunction and exclusion algorithm, and single sample gene set enrichment analysis. RESULTS This study identified six lipid metabolism-related genes, ADH4, LCAT, CYP2C9, CYP17A1, LPCAT1, and ACACA, to construct a lipid metabolism-related gene risk model that can divide HCC patients into low- and high-risk groups. Internal and external validation verified that the risk model could be a signature that could effectively predict HCC patient prognosis. High-risk patients showed disrupted immune cell profiles, reduced tumor-killing capacity, and increased expression of immune checkpoint genes. However, they responded more favorably to immune checkpoint inhibitor (ICB) therapy. The top ten hub genes related to the risk model were associated with tumor progression and deteriorating prognosis. In vitro experiments verified that the downregulation of the top 1 hub gene CDK1 was correlated to the HCC cell proliferation. CONCLUSION The risk model constructed using lipid metabolism-related genes could effectively predict prognosis and was related to the immunosuppressive microenvironment and ICB immunotherapy. The hub genes related to the risk model were potential therapeutic targets.
Collapse
Affiliation(s)
- Lei Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Xiao
- Department of Ultrasonography, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Barroux M, Househam J, Lakatos E, Ronel T, Baker AM, Salié H, Mossner M, Smith K, Kimberley C, Nowinski S, Berner A, Gunasri V, Borgmann M, Liffers S, Jansen M, Caravagna G, Steiger K, Slotta-Huspenina J, Weichert W, Zapata L, Giota E, Lorenzen S, Alberstmeier M, Chain B, Friess H, Bengsch B, Schmid RM, Siveke JT, Quante M, Graham TA. Evolutionary and immune microenvironment dynamics during neoadjuvant treatment of esophageal adenocarcinoma. NATURE CANCER 2025; 6:820-837. [PMID: 40369175 PMCID: PMC12122370 DOI: 10.1038/s43018-025-00955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/21/2025] [Indexed: 05/16/2025]
Abstract
Locally advanced esophageal adenocarcinoma remains difficult to treat and the ecological and evolutionary dynamics responsible for resistance and recurrence are incompletely understood. Here, we performed longitudinal multiomic analysis of patients with esophageal adenocarcinoma in the MEMORI trial. Multi-region multi-timepoint whole-exome and paired transcriptome sequencing was performed on 27 patients before, during and after neoadjuvant treatment. We found major transcriptomic changes during treatment with upregulation of immune, stromal and oncogenic pathways. Genetic data revealed that clonal sweeps through treatment were rare. Imaging mass cytometry and T cell receptor sequencing revealed remodeling of the tumor microenvironment during treatment. The presence of genetic immune escape, a less-cytotoxic T cell phenotype and a lack of clonal T cell expansions were linked to poor treatment response. In summary, there were widespread transcriptional and environmental changes through treatment, with limited clonal replacement, suggestive of phenotypic plasticity.
Collapse
Affiliation(s)
- Melissa Barroux
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany.
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Munich, Munich, Germany.
| | - Jacob Househam
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Data Science Team, The Institute of Cancer Research, London, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Tahel Ronel
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Ann-Marie Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Henrike Salié
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Mossner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Kane Smith
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Chris Kimberley
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Salpie Nowinski
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Alison Berner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Vinaya Gunasri
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Martin Borgmann
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Sven Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT), Division of Solid Tumor Translational Oncology (DKTK) and Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Marnix Jansen
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Giulio Caravagna
- Department of Mathematics, Informatics and Geosciences, University of Triest, Triest, Italy
| | - Katja Steiger
- iBioTUM - Tissue, Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, Technical University of Munich, Munich, Germany
- Department of Nephrology, School of Medicine, Technical University Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Eleftheria Giota
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Sylvie Lorenzen
- Department of Internal Medicine III (Haematology/Medical Oncology), Technical University of Munich Hospital Rechts der Isar, Munich, Germany
| | - Markus Alberstmeier
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Helmut Friess
- Department of Surgery, TUM University Hospital, rechts der Isar, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany
| | - Roland M Schmid
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Munich, Munich, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT), Division of Solid Tumor Translational Oncology (DKTK) and Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Michael Quante
- Medical Clinic and Polyclinic II, TUM University Hospital, Klinikum rechts der Isar, Munich, Germany
- Clinic for Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
4
|
Sam I, Benhamouda N, Biard L, Da Meda L, Desseaux K, Baroudjan B, Nakouri I, Renaud M, Sadoux A, Alkatrib M, Deleuze JF, Battistella M, Shen Y, Resche-Rigon M, Mourah S, Lebbe C, Tartour E. Soluble CD27 differentially predicts resistance to anti-PD1 alone but not with anti-CTLA-4 in melanoma. EMBO Mol Med 2025; 17:909-922. [PMID: 40148586 DOI: 10.1038/s44321-025-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/25/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Metastatic melanoma can be treated with anti-PD-1 monotherapy or in combination with anti-CTLA-4 or anti-Lag3. However, combination therapy is associated with a high risk of toxicity. Recently, we reported that high plasma soluble CD27 (sCD27) levels reflect the intratumoral interaction of CD70-CD27 and dysfunctional T cells in the tumor microenvironment of renal cell carcinoma. In this study, we first characterized the intratumoral expression of CD70 and CD27 in melanoma tumors and their interaction in vivo. We then reported a significant association between baseline sCD27 and anti-PD-1 resistance as assessed by progression-free survival, overall survival, or 12-month complete response in two prospective cohorts of melanoma patients. Multivariate analysis confirmed that sCD27 was independently associated with clinical outcomes. Notably, sCD27 did not predict clinical response to combination therapy in either cohort. This differential predictive value of sCD27 for the two therapeutic options was later confirmed by propensity score analysis. Our results suggest that high plasma sCD27 levels predict poorer efficacy of anti-PD1 monotherapy in metastatic melanoma, justifying therapeutic escalation with a combination of anti-PD1 and anti-CTLA-4.
Collapse
Affiliation(s)
- Ikuan Sam
- Universite Paris Cite, INSERM, PARCC, Paris, France
- Department of Immunology, APHP, Hôpital Europeen Georges Pompidou (HEGP)-Hôpital Necker, Paris, France
| | - Nadine Benhamouda
- Universite Paris Cite, INSERM, PARCC, Paris, France
- Department of Immunology, APHP, Hôpital Europeen Georges Pompidou (HEGP)-Hôpital Necker, Paris, France
| | - Lucie Biard
- APHP, Department of Biostatistics and Medical Information, APHP, Saint-Louis Hospital, Paris, INSERM, UMR-1153, ECSTRRA Team, Paris, France
| | - Laetitia Da Meda
- Universite Paris Cité, APHP Dermato-Oncology, Cancer Institute AP-HP, Nord Paris Cité, INSERM U976, Saint Louis Hospital Paris, Paris, France
| | - Kristell Desseaux
- APHP, Department of Biostatistics and Medical Information, APHP, Saint-Louis Hospital, Paris, INSERM, UMR-1153, ECSTRRA Team, Paris, France
| | - Barouyr Baroudjan
- Universite Paris Cité, APHP Dermato-Oncology, Cancer Institute AP-HP, Nord Paris Cité, INSERM U976, Saint Louis Hospital Paris, Paris, France
| | - Ines Nakouri
- Universite Paris Cité, APHP Dermato-Oncology, Cancer Institute AP-HP, Nord Paris Cité, INSERM U976, Saint Louis Hospital Paris, Paris, France
| | - Marion Renaud
- Universite Paris Cité, APHP Dermato-Oncology, Cancer Institute AP-HP, Nord Paris Cité, INSERM U976, Saint Louis Hospital Paris, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Jean-François Deleuze
- Fondation Jean Dausset-CEPH (Centre d'Etude du Polymorphisme Humain), CEPH-Biobank, Paris, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yimin Shen
- Fondation Jean Dausset-CEPH (Centre d'Etude du Polymorphisme Humain), CEPH-Biobank, Paris, France
| | - Matthieu Resche-Rigon
- APHP, Department of Biostatistics and Medical Information, APHP, Saint-Louis Hospital, Paris, INSERM, UMR-1153, ECSTRRA Team, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| | - Celeste Lebbe
- Universite Paris Cité, APHP Dermato-Oncology, Cancer Institute AP-HP, Nord Paris Cité, INSERM U976, Saint Louis Hospital Paris, Paris, France.
| | - Eric Tartour
- Universite Paris Cite, INSERM, PARCC, Paris, France.
- Department of Immunology, APHP, Hôpital Europeen Georges Pompidou (HEGP)-Hôpital Necker, Paris, France.
| |
Collapse
|
5
|
Yamazawa S, Fukasawa-Hokazono M, Takase A, Kondo A, Matsubara J, Shinozaki-Ushiku A, Seto Y, Ushiku T. Immune evasion strategies in AFP-producing gastric carcinoma: characterized by HLA-G expression and HLA class I deficiency. Virchows Arch 2025:10.1007/s00428-025-04108-3. [PMID: 40278871 DOI: 10.1007/s00428-025-04108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Alpha-fetoprotein-producing gastric carcinoma (AFPGC) is an aggressive subtype of gastric cancer characterized by a primitive cellular phenotype and poor prognosis. The tumor immunology of AFPGC remains largely unexplored. Given its embryonic-like properties, AFPGC is hypothesized to employ distinct immune evasion strategies, with the oncofetal protein human leukocyte antigen (HLA)-G-a key mediator of maternal-fetal immune tolerance-likely playing a pivotal role. To test this, we assessed the expression of HLA-G, along with other key immune evasion markers, including HLA class I (HLA-I) deficiency and PD-L1 expression, in 39 cases of AFPGC, and compared them with those of 44 Epstein-Barr virus (EBV)-positive, 57 microsatellite instability (MSI), 54 intestinal-type, and 45 diffuse-type gastric carcinomas. HLA-G expression was significantly higher in AFPGCs (71%) than in other subtypes (7-28%; P < 0.001). HLA-I deficiency (≥ 1% of tumor cells) was most prevalent in AFPGC (69%), followed by MSI tumors (56%), with lower rates in other subtypes (22-29%). PD-L1 positivity (combined positive score ≥ 5) was observed in 41% of AFPGCs, lower than in EBV-positive (77%) and MSI tumors (44%), but higher than in intestinal-type (13%) and diffuse-type (9%) carcinomas. Furthermore, CD8-positive T-cell infiltration was found to be lowest in AFPGC compared to the other subtypes. These findings suggest that AFPGC employs multiple immune evasion mechanisms, notably through increased HLA-G expression and HLA-I deficiency, likely linked to its primitive cellular phenotype and reactivation of immunogenic oncofetal antigens. Such immune evasion features may underlie the aggressiveness of AFPGC and present promising targets for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Sho Yamazawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Akiko Takase
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Kondo
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joji Matsubara
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Szabó IL, Emri G, Ladányi A, Tímár J. Clinical Applications of the Molecular Landscape of Melanoma: Integration of Research into Diagnostic and Therapeutic Strategies. Cancers (Basel) 2025; 17:1422. [PMID: 40361349 PMCID: PMC12071057 DOI: 10.3390/cancers17091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The molecular landscape of cutaneous melanoma is complex and heterogeneous, and a deeper understanding of the genesis and progression of the tumor driven by genetic alterations is essential for the development of effective diagnostic and therapeutic strategies. Molecular diagnostics and the use of biomarkers are increasingly playing a role in treatment decisions. However, further research is urgently needed to elucidate the relationships between complex genetic alterations and the effectiveness of target therapies (although BRAF mutation is still the only targeted genetic alteration). Further research is required to exploit other targetable genetic alterations such as NRAS, KIT or rare mutations. Treatment guidelines for cutaneous melanoma are continually evolving based on data from recent and ongoing clinical trials. These advancements reflect changes mainly in the optimal timing of systemic therapy and the choice of combination therapies increasingly tailored to molecular profiles of individual tumors. Mono- or combination immunotherapies demonstrated unprecedented success of melanoma treatment; still, there is room for improvement: though several factors of primary or acquired resistance are known, they are not part of patient management as biomarkers. The novel developments of cancer vaccines to treat melanoma (melanoma-marker-based or personalized neoantigen-based) are encouraging; introduction of them into clinical practice without proper biomarkers would be the same mistake made in the case of first-generation immunotherapies.
Collapse
Affiliation(s)
- Imre Lőrinc Szabó
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.L.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.L.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary;
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| |
Collapse
|
7
|
He C, Han R, Zhang T, Zhong P, Huang D, Lu C, Zhang Y, Li J, Deng Y, He Y. ATF3 Within the Interferon Signaling Pathway: A Potential Biomarker for Predicting Pathological Response to Neoadjuvant Chemoimmunotherapy. Thorac Cancer 2025; 16:e70056. [PMID: 40223203 PMCID: PMC11994479 DOI: 10.1111/1759-7714.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy has achieved high downstaging and pathologic response rates in nonsmall-cell lung cancer (NSCLC), but outcomes vary significantly. Early identification of beneficiaries remains a challenge. METHODS This study analyzed baseline transcriptomic data from 24 NSCLC patients (9 major pathological response [MPR], 15 nonmajor pathological response [NMPR]) treated with neoadjuvant chemoimmunotherapy, sourced from the GEO database. Molecular analyses and immune infiltration analyses were performed using pathologic response as an endpoint. After identifying the interferon signaling subset NeoIGS, we analyzed the relationship between NeoIGS and immune scores, immune cell infiltration, and immunotherapy efficacy. A key gene in NeoIGS was screened by reveiver operating characteristic curve (ROC) analysis. Subsequently, the expression of the key gene was assessed by immunohistochemistry in 53 NSCLC patients receiving neoadjuvant chemoimmunotherapy. RESULTS Interferon signaling pathway expression and CD8+ T-cell infiltration were higher in the MPR group. NeoIGS predicted pathological response to neoadjuvant chemoimmunotherapy (AUC = 0.926) and also demonstrated predictive value in the ICIs monotherapy cohort. IPS and TIDE scores also confirmed NeoIGS's association with immunotherapy in the TCGA NSCLC dataset. Furthermore, patients with higher NeoIGS scores had more immune cell infiltration and increased expression of ICI targets. ROC analysis identified ATF3 as NeoIGS's key gene. In the clinical cohort, ATF3 outperformed PD-L1 in predicting pathologic response, with a 90.0% MPR rate in the high-expression group. CONCLUSION We established that a subset of interferon signaling pathways, NeoIGS, is closely associated with immunotherapy. Among them, ATF3 is the most critical gene that accurately predicts pathological remission in neoadjuvant chemoimmunotherapy.
Collapse
Affiliation(s)
- Chao He
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Rui Han
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
- Department of Respiratory DiseaseBishan Hospital of Chongqing Medical University, Bishan Hospital of ChongqingChongqingChina
| | - Taiming Zhang
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
- Department of Thoracic SurgeryDaping Hospital, Army Medical UniversityChongqingChina
| | - Peng Zhong
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
- Department of PathologyDaping Hospital, Army Medical UniversityChongqingChina
| | - Daijuan Huang
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Conghua Lu
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Yimin Zhang
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| | - Jianghua Li
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
- Department of Respiratory DiseaseBishan Hospital of Chongqing Medical University, Bishan Hospital of ChongqingChongqingChina
| | - Yuwen Deng
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
- Department of PathologyDaping Hospital, Army Medical UniversityChongqingChina
| | - Yong He
- Department of Respiratory DiseaseDaping Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
8
|
Schweihofer V, Bruss C, Seitz S, Glehr G, Hetterich M, Weber F, Hatzipanagiotou M, Álvarez MFP, Ortmann O, Brockhoff G, Bauer RJ, Wege AK. Breast cancer scoring based on a multiplexed profiling of soluble and cell-associated (immune) markers facilitates the prediction of pembrolizumab therapy. Cancer Cell Int 2025; 25:120. [PMID: 40148963 PMCID: PMC11948714 DOI: 10.1186/s12935-025-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The immune checkpoint targeting is nowadays an integral part of cancer therapies. However, only a minority of patients experience long-term benefits. Thus, the identification of predictive biomarkers contributing to therapy response is urgently needed. METHODS Here, we analyzed different immune and tumor specific expression and secretion profiles in the peripheral blood and tumor samples of 50 breast cancer patients by multicolor flow cytometry and bead-based immunoassays at the time of diagnosis. Due to individual phenotype variations, we quantitatively scored 25 expressed and secreted immune-associated (e.g., LAG-3, PD-1, TIM-3, CD27) and tumor relevant markers (e.g., PD-L1, CD44, MHC-I, MHC-II) in immune checkpoint-treated triple negative breast cancer patients based on the current literature. The calculated score divided the patients into individuals with predicted pCR (total score of > 0) or predicted residual disease (total score of ≤ 0). At the end of the neoadjuvant therapy, the truly achieved pathological complete response (pCR; end of observation) was determined. RESULTS The calculated score was 79% in accordance with the achieved pCR at the time of surgery. Moreover, the sensitivity was 83.3%, the specificity 76.9%, the positive predictive value 62.5%, and the negative predictive value 90.9%. In addition, we identified a correlation of PD-1 and LAG-3 expression between tumor-associated and peripheral immune cells, which was independent of the subtype. Overall, PD-1 was the most frequently expressed checkpoint. However, in a number of patient-derived tumors, additional checkpoints as LAG-3 and TIM-3 were substantially (co-)expressed, which potentially compromises anti-PD-(L)1 mono-therapy. CONCLUSIONS This study represents a proof-of-principle to identify potential checkpoint therapy responders in advance at the time of diagnosis. The work was based on a scoring derived from a multiplexed marker profiling. However, larger patient cohorts need to be prospectively evaluated for further validation.
Collapse
Affiliation(s)
- Verena Schweihofer
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Gunther Glehr
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Madeleine Hetterich
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Maria Hatzipanagiotou
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Miriam Fernández-Pacheco Álvarez
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany.
| |
Collapse
|
9
|
Giri S, Lamichhane G, Pandey J, Khadayat R, K. C. S, Devkota HP, Khadka D. Immune Modulation and Immunotherapy in Solid Tumors: Mechanisms of Resistance and Potential Therapeutic Strategies. Int J Mol Sci 2025; 26:2923. [PMID: 40243502 PMCID: PMC11989189 DOI: 10.3390/ijms26072923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Understanding the modulation of specific immune cells within the tumor microenvironment (TME) offers new hope in cancer treatments, especially in cancer immunotherapies. In recent years, immune modulation and resistance to immunotherapy have become critical challenges in cancer treatments. However, novel strategies for immune modulation have emerged as promising approaches for oncology due to the vital roles of the immunomodulators in regulating tumor progression and metastasis and modulating immunological responses to standard of care in cancer treatments. With the progress in immuno-oncology, a growing number of novel immunomodulators and mechanisms are being uncovered, offering the potential for enhanced clinical immunotherapy in the near future. Thus, gaining a comprehensive understanding of the broader context is essential. Herein, we particularly summarize the paradoxical role of tumor-related immune cells, focusing on how targeted immune cells and their actions are modulated by immunotherapies to overcome immunotherapeutic resistance in tumor cells. We also highlight the molecular mechanisms employed by tumors to evade the long-term effects of immunotherapeutic agents, rendering them ineffective.
Collapse
Affiliation(s)
- Suman Giri
- Asian College for Advance Studies, Purbanchal University, Satdobato, Lalitpur 44700, Nepal;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jitendra Pandey
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Ramesh Khadayat
- Patan Hospital, Patan Academic of Health Sciences, Lagankhel, Lalitpur 44700, Nepal;
| | - Sindhu K. C.
- Department of Pharmacology, Chitwan Medical College, Tribhuwan University, Bharatpur-05, Chitwan 44200, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | - Dipendra Khadka
- NADIANBIO Co., Ltd., Wonkwang University School of Medicine, Business Incubation Center R201-1, Iksan 54538, Jeonbuk, Republic of Korea
- KHAS Health Pvt. Ltd., Dhangadhi-04, Kailali 10910, Nepal
| |
Collapse
|
10
|
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer 2025; 24:89. [PMID: 40108693 PMCID: PMC11924818 DOI: 10.1186/s12943-025-02294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine produced mainly by immune cells and can affect cancer cells by modulating the activity of multiple signaling pathways, including the canonical Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) cascade. In melanoma, IFN-γ can exert both anticancer effects associated with cell-cycle arrest and cell death induction and protumorigenic activity related to immune evasion leading to melanoma progression. Notably, IFN-γ plays a crucial role in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors (ICIs), which are currently used in the clinic. As these agents target programmed death-1 (PD-1) and its ligand (PD-L1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and lymphocyte-activation gene 3 (LAG-3), they are designed to restore the antimelanoma immune response. In this respect, IFN-γ produced by cells in the tumor microenvironment in response to ICIs has a beneficial influence on both immune and melanoma cells by increasing antigen presentation, recruiting additional T-cells to the tumor site, and inducing direct antiproliferative effects and apoptosis in melanoma cells. Therefore, IFN-γ itself and IFN-γ-related gene signatures during the response to ICIs can constitute biomarkers or predictors of the clinical outcome of melanoma patients treated with ICIs. However, owing to its multifaceted roles, IFN-γ can also contribute to developing mechanisms associated with the acquisition of resistance to ICIs. These mechanisms can be associated with either decreased IFN-γ levels in the tumor microenvironment or diminished responsiveness to IFN-γ due to changes in the melanoma phenotypes associated with affected activity of other signaling pathways or genetic alterations e.g., in JAK, which restricts the ability of melanoma cells to respond to IFN-γ. In this respect, the influence of IFN-γ on melanoma-specific regulators of the dynamic plasticity of the cell phenotype, including microphthalmia-associated transcription factor (MITF) and nerve growth factor receptor (NGFR)/CD271 can affect the clinical efficacy of ICIs. This review comprehensively discusses the role of IFN-γ in the response of melanoma patients to ICIs with respect to its positive influence and role in IFN-γ-related mechanisms of resistance to ICIs as well as the potential use of predictive markers on the basis of IFN-γ levels and signatures of IFN-γ-dependent genes.
Collapse
Affiliation(s)
- Piotr Wawrzyniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
11
|
Dent R, Cortés J, Park YH, Muñoz-Couselo E, Kim SB, Sohn J, Im SA, Holgado E, Foukakis T, Kümmel S, Yearley J, Wang A, Nebozhyn M, Huang L, Cristescu R, Jelinic P, Karantza V, Schmid P. Molecular determinants of response to neoadjuvant pembrolizumab plus chemotherapy in patients with high-risk, early-stage, triple-negative breast cancer: exploratory analysis of the open-label, multicohort phase 1b KEYNOTE-173 study. Breast Cancer Res 2025; 27:35. [PMID: 40069763 PMCID: PMC11895130 DOI: 10.1186/s13058-024-01946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/09/2024] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The multicohort, open-label, phase 1b KEYNOTE-173 study was conducted to investigate pembrolizumab plus chemotherapy as neoadjuvant therapy for triple-negative breast cancer (TNBC). This exploratory analysis evaluated features of the tumor microenvironment that might be predictive of response. METHODS Cell fractions from 20 paired samples collected at baseline and after one cycle of neoadjuvant pembrolizumab prior to chemotherapy initiation were analyzed by spatial localization (tumor compartment, stromal compartment, or sum of tumor and stromal compartments [total tumor]) using three six-plex immunohistochemistry panels with T-cell, myeloid cell, and natural killer cell components. Area under the receiver operating characteristic curve (AUROC) was used to assess associations between immune subsets and gene expression signatures (T-cell-inflamed gene expression profile [TcellinfGEP] and 10 non-TcellinfGEP signatures using RNA sequencing) and pathologic complete response (pCR). RESULTS At baseline, six immune subsets quantitated within the tumor compartment showed AUROC with 95% CIs not crossing 0.5, including CD11c+ cells (macrophage and dendritic cell [DC]: AUROC, 0.85; 95% confidence interval [CI] 0.63-1.00), CD11c+/MHCII+/CD163-/CD68- cells (DC: 0.76; 95% CI, 0.53-0.99), CD11c+/MHCII-/CD163-/CD68- cells (nonactivated/immature DC: 0.80; 95% CI 0.54-1.00), and CD11c+/CD163+ cells (M2 macrophage: 0.77; 95% CI 0.55-0.99). Other associations with pCR included baseline CD11c+/MHCII-/CD163-/CD68- (nonactivated/immature DC) within the total tumor (AUROC, 0.76; 95% CI 0.51-1.00) and the baseline CD11c/CD3 ratio within the tumor compartment (0.75; 95% CI 0.52-0.98). Changes in immune subsets following one cycle of pembrolizumab were not strongly associated with pCR. Although T-cell associations were relatively weak, specific CD8 subsets trended toward association. The AUROC for discriminating pCR based on TcellinfGEP was 0.55 (95% CI 0.25-0.85); when detrended by TcellinfGEP, AUROC varied for the non-TcellinfGEP signatures. TcellinfGEP expression trended higher in responders than in nonresponders when evaluating pCR. CONCLUSIONS Myeloid cell populations within the tumor compartment at baseline and TcellinfGEP show a promising trend toward an association with pCR in a small subgroup of patients with early-stage TNBC treated with neoadjuvant pembrolizumab plus chemotherapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT02622074; registration date, December 2, 2015.
Collapse
Affiliation(s)
- Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore.
| | - Javier Cortés
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
- International Breast Cancer Center, Quironsalud Group, Barcelona, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Yeon Hee Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eva Muñoz-Couselo
- Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron Hospital, Barcelona, Spain
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joohyuk Sohn
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Esther Holgado
- Medical Oncology Service, Ramón y Cajal University Hospital, Madrid, Spain
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Comprehensive Cancer Center, Karolinska Institute and Breast Cancer Centre, Cancer Theme, Karolinska University Hospital, Solna, Sweden
| | - Sherko Kümmel
- Interdisciplinary Breast Unit, Essen-Mitte Clinics, Essen, and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| |
Collapse
|
12
|
Sakai SA, Saeki K, Chi S, Hamaya Y, Du J, Nakamura M, Hojo H, Kojima T, Nakamura Y, Bando H, Kojima M, Suzuki A, Suzuki Y, Akimoto T, Tsuchihara K, Haeno H, Yamashita R, Kageyama SI. Mathematical Modeling Predicts Optimal Immune Checkpoint Inhibitor and Radiotherapy Combinations and Timing of Administration. Cancer Immunol Res 2025; 13:353-364. [PMID: 39666379 PMCID: PMC11876959 DOI: 10.1158/2326-6066.cir-24-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Radiotherapy (RT) combined with immune checkpoint inhibitor (ICI) therapy has attracted substantial attention due to its potential to improve outcomes for patients with several types of cancer. However, the optimal administration timepoints and drug combinations remain unclear because the mechanisms underlying RT-induced changes in immune checkpoint molecule expression and interaction with their ligand(s) remain unclear. In this study, we demonstrated the dynamics of lymphocyte-mediated molecular interactions in tissue samples from patients with esophageal cancer throughout RT schedules. Single-cell RNA sequencing and spatial transcriptomic analyses were performed to investigate the dynamics of these interactions. The biological signal in lymphocytes transitioned from innate to adaptive immune reaction, with increases in ligand-receptor interactions, such as PD-1-PD-L1, CTLA4-CD80/86, and TIGIT-PVR interactions. A mathematical model was constructed to predict the efficacy of five types of ICIs when administered at four different timepoints. The model suggested that concurrent anti-PD-1/PD-L1 therapy or concurrent/adjuvant anti-CTLA4/TIGIT therapy would exert a maximal effect with RT. This study provides rationale for clinical trials of RT combined with defined ICI therapy, and these findings will support future studies to search for more effective targets and timing of therapy administration.
Collapse
Affiliation(s)
- Shunsuke A. Sakai
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - SungGi Chi
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yamato Hamaya
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Junyan Du
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masaki Nakamura
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hidehiro Hojo
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Haeno
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
13
|
Song Z, Tao Y, You J. The potential applications of peptide-loading complex in cancer treatment. Front Immunol 2025; 16:1526137. [PMID: 40098955 PMCID: PMC11911339 DOI: 10.3389/fimmu.2025.1526137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy for cancer has made significant strides in the last several years. The prognosis for cancer patients has significantly improved as a result, particularly in hematological diseases. However, it was discovered that translating these achievements to solid tumors proved challenging. The peptide-loading complex (PLC), a temporary multisubunit membrane assembly in the endoplasmic reticulum (ER), is crucial for initiating a hierarchical immune response. Chaperones calreticulin and tapasin make up the PLC, unique to class I glycoproteins, thiooxido-reductase ERp57, and a transporter associated with antigen processing. The loading and editing of major histocompatibility complex class I (MHC-I) molecules with peptide translocation into the ER are synchronized by the PLC. One of the immune escape strategies revealed for tumors so far is changes in the expression of MHC molecules. This is because MHC antigens are crucial in presenting antigens to T-lymphocytes and controlling NK cell activity. Furthermore, decreased MHC-I expression has been linked to malignancies resistant to T-cell-based cancer immunotherapies (adoptive transfer of antitumor CD8 T-cells or checkpoint inhibition). The PLC is essential for T-cell priming, differentiation, and tumor growth control because it can bind to a wide range of MHC-I allomorphs. In this review, we have looked into PLC's function and effects in all forms of cancer to improve cancer therapy techniques.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin You
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Reschke R, Enk AH, Hassel JC. Prognostic Biomarkers in Evolving Melanoma Immunotherapy. Am J Clin Dermatol 2025; 26:213-223. [PMID: 39707058 PMCID: PMC11850490 DOI: 10.1007/s40257-024-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Melanoma, a highly aggressive form of skin cancer, has seen significant advancements in treatment through the introduction of immunotherapy. However, the variability in patient responses underscores the need for reliable biomarkers to guide treatment decisions. This article reviews key biomarkers in melanoma immunotherapy, such as PD-L1 expression, tumor mutational burden (TMB), and gene expression profiles (GEPs). It also explores emerging biomarkers, including LAG-3 expression, immune cell phenotyping in tissue and blood, gut microbiota, and circulating tumor DNA (ctDNA). Notably, ctDNA may offer valuable insights into the efficacy of T cell-engaging bispecific molecules, such as tebentafusp. The review provides a comprehensive overview of the evolving landscape of melanoma biomarkers, their role in personalizing treatment, and future research directions, including neoadjuvant immune checkpoint inhibition.
Collapse
Affiliation(s)
- Robin Reschke
- Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120, Heidelberg, Germany.
| | - Alexander H Enk
- Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Kim K, Alam SM, Kuo F, Chen Z, Yip W, Katims AB, Chu C, Lenis AT, Hu W, Gokturk Ozcan G, Chen JF, Firouzi S, Elhanati Y, Clinton TN, Aulitzky A, Almassi N, Fujii Y, Tracey AT, Reisz PA, Budhu S, Vuong L, Eichholz J, Woo HJ, Nogueira L, Gao SP, Scherz A, Aggen DH, Rosenberg JE, Pietzak EJ, Seshan V, Greenbaum B, Becker A, Akin O, Iyer G, Al-Ahmadie H, Hakimi AA, Merghoub T, Solit DB, Coleman JA. Molecular Heterogeneity and Immune Infiltration Drive Clinical Outcomes in Upper Tract Urothelial Carcinoma. Eur Urol 2025; 87:342-354. [PMID: 39550333 PMCID: PMC12092068 DOI: 10.1016/j.eururo.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Molecular classification of upper tract urothelial carcinoma (UTUC) can provide insight into divergent clinical outcomes and provide a biological rationale for clinical decision-making. As such, we performed multi-omic analysis of UTUC tumors to identify molecular features associated with disease recurrence and response to immune checkpoint blockade (ICB). METHODS Targeted DNA and whole transcriptome RNA sequencing was performed on 100 UTUC tumors collected from patients undergoing nephroureterectomy. Consensus non-negative matrix factorization was used to identify molecular clusters associated with clinical outcomes. Gene set enrichment and immune deconvolution analyses were performed. Weighted gene co-expression network analysis was employed for unsupervised identification of gene networks in each cluster. KEY FINDINGS AND LIMITATIONS Five molecular clusters with distinct clinical outcomes were identified. Favorable subtypes (C1 and C2) were characterized by a luminal-like signature and an immunologically depleted tumor microenvironment (TME). Subtype C3 was characterized by FGFR3 alterations and a higher tumor mutational burden, and included all tumors with microsatellite instability. Despite higher rates of recurrence and inferior survival, subtypes C4 and C5 harbored an immunologically rich TME favoring response to ICB. Limitations include extrapolation of molecular features of tumors from the primary site to determine response to systemic immunotherapy and the limited resolution of bulk sequencing to distinguish gene expression in the tumor, stroma, and immune compartments. CONCLUSIONS AND CLINICAL IMPLICATIONS RNA sequencing identified previously underappreciated UTUC molecular heterogeneity and suggests that UTUC patients at the highest risk of metastatic recurrence following surgery include those most likely to benefit from perioperative ICB.
Collapse
Affiliation(s)
- Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Syed M Alam
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wesley Yip
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew B Katims
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carissa Chu
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew T Lenis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gamze Gokturk Ozcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie-Fu Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanaz Firouzi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy N Clinton
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Aulitzky
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nima Almassi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yoich Fujii
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Andrew T Tracey
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter A Reisz
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadna Budhu
- Ludwig Collaborative and Swim Across America Laboratory, Department of Pharmacology and Mayer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Lynda Vuong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jordan Eichholz
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucas Nogueira
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sizhi P Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - David H Aggen
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene J Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Greenbaum
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton Becker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Department of Pharmacology and Mayer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Pozniak J, Marine JC. Decoding melanoma's cellular mosaic to unlock immunotherapy potential. Trends Cell Biol 2025:S0962-8924(25)00032-7. [PMID: 40023663 DOI: 10.1016/j.tcb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/04/2025]
Abstract
Cancer evolution is driven by molecular events within cancer cells and their complex interactions with surrounding cells. Intra-tumor heterogeneity - driven by somatic genetic mutations, epigenetic dysregulation, immune cell infiltration, and microenvironmental factors - complicates the identification of reliable biomarkers and therapeutic targets. Single-cell sequencing and spatial multiomics technologies are revolutionizing our comprehension of how each component of the cellular machinery and tissue architecture collaborates to propel cancer progression. Much like how the restoration and interpretation of Pompeii mosaics have enriched our understanding of ancient Roman life, unraveling the intricate mosaic of cancer will transform the way this disease is diagnosed and treated. This review describes how the advent of single-cell multiomics has provided crucial insights into cutaneous melanoma biology and the mechanisms underlying resistance to immunotherapy.
Collapse
Affiliation(s)
- Joanna Pozniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
He LN, Liu YJ, Jiang JB, Wang DY, Li YL, Zeng SJ, Guo Z, Yao PY, Lin ZC, Lv SX, Liu XY, Guo W, Liu F, Du BY, Zhao TX, Xiao JY, Shi YF, Wang K. Tetrandrine augments melanoma cell immunogenicity via dual inhibition of autophagic flux and proteasomal activity enhancing MHC-I presentation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01507-9. [PMID: 40016522 DOI: 10.1038/s41401-025-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/09/2025] [Indexed: 03/01/2025]
Abstract
MHC-I-mediated antigen presentation is pivotal in antitumor immunity, enabling the recognition and destruction of tumor cells by CD8+ T cells. Both the proteasome and autophagy serve as essential cellular degradation mechanisms that regulate the stability and functionality of MHC-I molecules. In melanoma, modulating the pathways that affect MHC-I antigen presentation is pivotal and can profoundly influence the therapeutic outcomes of immunotherapy. Our initial effort of this study was a screening process to identify natural compounds capable of amplifying MHC-I surface expression on B16 melanoma cells. Utilizing flow cytometry with fluorescently tagged antibodies, we identified tetrandrine (Tet), a bisbenzylisoquinoline alkaloid derived from the root of Stephania tetrandra, as a potent enhancer of MHC-I-mediated antigen presentation in B16 melanoma cells. We demonstrate that tetrandrine (2.5, 5, 7.5 μM) dose-dependently upregulates both surface and total MHC-I protein levels in B16 or A375 melanoma cells by simultaneously inhibiting autophagy and proteasomal activity, two key pathways involved in MHC-I degradation. This dual inhibition stabilizes MHC-I molecules, leading to enhanced tumor antigen presentation and improved recognition by CD8+ T cells. In co-culture systems, tetrandrine treatment increased CD8+ T cell activation and cytotoxicity against melanoma cells, evidenced by elevated IFN-γ secretion and increased tumor cell apoptosis. Administration of tetrandrine (50 mg·kg-1·d-1, i.g., for 15 days) significantly suppressed melanoma growth in mouse models accompanied by increased CD8+ T cell infiltration and activation within the tumor microenvironment. Notably, tetrandrine synergized with anti-PD-1 immune checkpoint therapy, leading to enhanced tumor growth inhibition compared to either treatment alone. We revealed that tetrandrine (7.5 μM) blocked the lysosomal calcium efflux channel TPC2, disrupting lysosomal calcium homeostasis, thus impairing lysosomal acidification and proteasomal activity, thereby stabilizing MHC-I molecules and promoting antigen presentation. These results highlight tetrandrine's unique mechanism of action in enhancing MHC-I-mediated antigen presentation through dual inhibition of autophagic flux and proteasomal degradation. This study underscores tetrandrine's potential as a novel immunomodulatory agent to boost CD8+ T cell-mediated tumor cell eradication and enhance the efficacy of immune checkpoint therapies.
Collapse
Affiliation(s)
- Li-Na He
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Jiao Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jun-Bo Jiang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ding-Ye Wang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Ling Li
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shi-Ji Zeng
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zi Guo
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Pei-Yan Yao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zi-Chang Lin
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Xian Lv
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiao-Yi Liu
- Department of Human Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Biao-Yan Du
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ting-Xiu Zhao
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jian-Yong Xiao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ya-Fei Shi
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Kun Wang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Schoenfeld JD, Azad NS, Gross J, Chen L, Overman MJ, Kao K, Jackson L, Brunnquell D, Bu X, Coppola C, Guan P, Lee J, Sims D, Fuchs R, Weirather JL, Pfaff KL, Gunasti L, Ranasinghe S, Hamilton SR, Wang V, O’Dwyer PJ, Wu CJ, Rodig SJ, Patton DR, Harris L. Next-Generation Sequencing-Based MSI Scoring Predicts Benefit in Mismatch Repair-Deficient Tumors Treated with Nivolumab: Follow-up on NCI-MATCH Arm Z1D. Clin Cancer Res 2025; 31:667-677. [PMID: 39670863 PMCID: PMC11831103 DOI: 10.1158/1078-0432.ccr-24-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE Mismatch repair-deficient (dMMR) tumors have demonstrated favorable responses to immune checkpoint inhibition targeting PD-1. However, more in-depth identification of predictors of response could further refine patient selection for immunotherapy treatment. PATIENTS AND METHODS We undertook integrated evaluation performed on samples collected from 28 of 42 patients enrolled on the NCI-Molecular Analysis for Therapy Choice arm Z1D trial that evaluated PD-1 inhibition treatment with nivolumab in patients with noncolorectal dMMR tumors. Genomic analyses were performed using next-generation sequencing (NGS), whole-exome sequencing, and RNA sequencing and supplemented by multiplex immunofluorescence performed on tissue samples. RESULTS In this dMMR population, more extensive alterations of microsatellites as assessed by measures of NGS were associated with clinical benefit and tumor mutational burden. RNA sequencing further revealed associations between clinical benefit and immune infiltration index. Gene sets enriched in patients with clinical benefit included IFN signaling, antigen processing, and PI3K-AKT-mTOR signaling, whereas hedgehog signaling was found to be enriched in subjects lacking clinical benefit. CONCLUSIONS These genomic data highlight the importance of immune infiltration and antigen presentation in dMMR tumors that respond to immune checkpoint blockade. In addition, they suggest that, even within a dMMR population, NGS-based measures of microsatellite instability could serve as biomarkers of immunotherapy response.
Collapse
Affiliation(s)
- Jonathan D. Schoenfeld
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nilofer S. Azad
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Jacob Gross
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Li Chen
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katrina Kao
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Latifa Jackson
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Donna Brunnquell
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xiangning Bu
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Coppola
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Guan
- Cancer Diagnosis Program, National Cancer Institute, Bethesda, Maryland
| | - Jennifer Lee
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Sims
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rebecca Fuchs
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason L. Weirather
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lauren Gunasti
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Srin Ranasinghe
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Victoria Wang
- Dana-Farber Cancer Institute–ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Peter J. O’Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Catherine J. Wu
- Center for Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David R. Patton
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lyndsay Harris
- Cancer Diagnosis Program, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
19
|
Zhou L, Lu X, Qiao G. Single-cell transcriptomic sequencing analysis of mechanistic insights into the IFN-γ signaling pathway in different tumor cells. Clin Transl Oncol 2025; 27:745-755. [PMID: 39090422 DOI: 10.1007/s12094-024-03574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE This study aimed to investigate the relationship between the interferon-gamma (IFN-γ) pathway in different tumor microenvironments (TME) and patients' prognosis, as well as the regulatory mechanisms of this pathway in tumor cells. METHODS Using RNA-seq data from the TCGA database, we analyzed the predictive value of the IFN-γ pathway across various tumors. We employed a univariate Cox regression model to assess the prognostic significance of IFN-γ signaling in different tumor types. Additionally, we analyzed single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database to examine the distribution characteristics of the IFN-γ pathway and explore its regulatory mechanisms, highlighting how IFN-γ influenced cellular interactions within the TME. RESULTS Our analysis revealed a significant association between the IFN-γ pathway and adverse prognosis in pan-cancer tissues (P < 0.001). Interestingly, this correlation varied regarding positive and negative regulation across different tumor types. Through a detailed examination of scRNA-seq data, we found that the IFN-γ pathway exerted substantial regulatory effects on stromal and immune cells. In contrast, its expression and regulatory patterns in tumor cells exhibited diversity and heterogeneity. Further analysis indicated that the IFN-γ pathway not only enhanced the immunogenicity of tumor cells but also inhibited their proliferation. Cell-cell interaction analysis confirmed the pivotal role of the IFN-γ pathway within the overall regulatory network. Moreover, we identified HMGB2 (high mobility group box 2) in T cells as a potential key regulator of tumor cell proliferation. CONCLUSIONS The IFN-γ pathway exhibited a dual function by both suppressing tumor cell proliferation and enhancing their immunogenicity, positioning it as a pivotal target for refined cancer diagnosis and cancer strategies.
Collapse
Affiliation(s)
- Lifang Zhou
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated to Jiangsu University, Yixing, 214200, China
| | - Xu Lu
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated to Jiangsu University, Yixing, 214200, China
| | - Guohong Qiao
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated to Jiangsu University, Yixing, 214200, China.
| |
Collapse
|
20
|
Asselin-Labat ML, Ruhland MK, Ferris ST. Editorial: Antigen presentation in cancer immune responses. Front Immunol 2025; 16:1558249. [PMID: 39931066 PMCID: PMC11808280 DOI: 10.3389/fimmu.2025.1558249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Affiliation(s)
- Marie-Liesse Asselin-Labat
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Megan K. Ruhland
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Stephen T. Ferris
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Chen W, Baker T, Zhang Z, Ogilvie HA, Van Loo P, Gu S(S. Evolutionary trajectories of immune escape across cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.632799. [PMID: 39868264 PMCID: PMC11761017 DOI: 10.1101/2025.01.17.632799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Immune escape is a critical hallmark of cancer progression and underlies resistance to multiple immunotherapies. However, it remains unclear when the genetic events associated with immune escape occur during cancer development. Here, we integrate functional genomics studies of immunomodulatory genes with a tumor evolution reconstruction approach to infer the evolution of immune escape across 38 cancer types from the Pan-Cancer Analysis of Whole Genomes dataset. Different cancers favor mutations in different immunomodulatory pathways. For example, the antigen presentation machinery is highly mutated in colorectal adenocarcinoma, lung squamous cell carcinoma, and chromophobe renal cell carcinoma, and the protein methylation pathway is highly mutated in bladder transitional cell carcinoma and lung adenocarcinoma. We also observe different timing patterns in multiple immunomodulatory pathways. For instance, mutations impacting genes involved in cellular amino acid metabolism were more likely to happen late in pancreatic adenocarcinoma. Mutations in the glucocorticoid receptor regulatory network pathway tended to occur early, while mutations in the TNF pathways were more likely to occur late in B-cell non-Hodgkin lymphoma. Mutations in the NOD1/2 signaling pathway and DNA binding transcription factor activity tended to happen late in breast adenocarcinoma and ovarian adenocarcinoma. Together, these results delineate the evolutionary trajectories of immune escape in different cancer types and highlight opportunities for improved immunotherapy of cancer.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Toby Baker
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Francis Crick Institute, London, United Kingdom
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Zhihui Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huw A. Ogilvie
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Van Loo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Francis Crick Institute, London, United Kingdom
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shengqing (Stan) Gu
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
23
|
Sun Y, Yang B, Wen T, Guo X, Li D, Shi R, Zhang F, Wang D, Li C, Qu X. ANXA10 sensitizes microsatellite instability-high colorectal cancer to anti-PD-1 immunotherapy via assembly of HLA-DR dimers by regulating CD74. Cell Biol Toxicol 2025; 41:25. [PMID: 39789407 PMCID: PMC11717857 DOI: 10.1007/s10565-024-09982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers. METHODS The characteristic gene was screened by data analysis of single-cell and bulk transcriptome sequencing from public datasets. MSI-H CRC cells co-cultured with peripheral blood mononuclear cells and syngeneic model in C57BL/6 mice were performed to detect the sensitivity to anti-PD-1 treatments respectively. RESULTS ANXA10 was identified as a characteristic gene of MSI-H CRC and its expression was obviously greater in MSI-H than MSS CRC. ANXA10 significantly sensitized MSI-H CRC to anti-PD-1 treatments in vitro and in vivo. Specifically, ANXA10 promoted HLA-DR dimers in and on the surface of MSI-H CRC by increasing CD74 expression. Besides, this work demonstrated that ANXA10 contributed to better clinical benefits with anti-PD-1 therapy in MSI-H CRC patients. CONCLUSIONS Our results provided a novel molecular marker ANXA10 to identify benefit population of MSI-H CRC for improving efficacy of anti-PD-1 and contributed to selection of treatment strategies.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Bowen Yang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Xiaoyu Guo
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ruichuan Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Fuqiang Zhang
- Department of Anus and Intestine Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongni Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ce Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| |
Collapse
|
24
|
Yeo YY, Chang Y, Qiu H, Yiu SPT, Michel HA, Wu W, Jin X, Kure S, Parmelee L, Luo S, Cramer P, Lee JL, Wang Y, Yeung J, Ahmar NE, Simsek B, Mohanna R, Van Orden M, Lu W, Livak KJ, Li S, Shahryari J, Kingsley L, Al-Humadi RN, Nasr S, Nkosi D, Sadigh S, Rock P, Frauenfeld L, Kaufmann L, Zhu B, Basak A, Dhanikonda N, Chan CN, Krull J, Cho YW, Chen CY, Lee JYJ, Wang H, Zhao B, Loo LH, Kim DM, Boussiotis V, Zhang B, Shalek AK, Howitt B, Signoretti S, Schürch CM, Hodi FS, Burack WR, Rodig SJ, Ma Q, Jiang S. Same-Slide Spatial Multi-Omics Integration Reveals Tumor Virus-Linked Spatial Reorganization of the Tumor Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629650. [PMID: 39764057 PMCID: PMC11702642 DOI: 10.1101/2024.12.20.629650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms. This iterative approach first entails single-cell spatial proteomics and rapid analysis to guide subsequent spatial transcriptomics capture on the same slide without loss in RNA signal. To enable multi-modal insights not possible with current approaches, we introduce k-bandlimited Spectral Graph Cross-Correlation (SGCC) for integrative spatial multi-omics analysis. Application of IN-DEPTH and SGCC on lymphoid tissues demonstrated precise single-cell phenotyping and cell-type specific transcriptome capture, and accurately resolved the local and global transcriptome changes associated with the cellular organization of germinal centers. We then implemented IN-DEPTH and SGCC to dissect the tumor microenvironment (TME) of Epstein-Barr Virus (EBV)-positive and EBV-negative diffuse large B-cell lymphoma (DLBCL). Our results identified a key tumor-macrophage-CD4 T-cell immunomodulatory axis differently regulated between EBV-positive and EBV-negative DLBCL, and its central role in coordinating immune dysfunction and suppression. IN-DEPTH enables scalable, resource-efficient, and comprehensive spatial multi-omics dissection of tissues to advance clinically relevant discoveries.
Collapse
Affiliation(s)
- Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Yuzhou Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Huaying Qiu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Stephanie Pei Tung Yiu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hendrik A Michel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Wenrui Wu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xiaojie Jin
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Shoko Kure
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lindsay Parmelee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shuli Luo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Precious Cramer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jia Le Lee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yang Wang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nourhan El Ahmar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Berkay Simsek
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Razan Mohanna
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - McKayla Van Orden
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Wesley Lu
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Kenneth J Livak
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Shuqiang Li
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Jahanbanoo Shahryari
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Leandra Kingsley
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reem N Al-Humadi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sahar Nasr
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dingani Nkosi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Philip Rock
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Leonie Frauenfeld
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Louisa Kaufmann
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Bokai Zhu
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Ankit Basak
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Nagendra Dhanikonda
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chi Ngai Chan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jordan Krull
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Ye Won Cho
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Chia-Yu Chen
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Jia Ying Joey Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hongbo Wang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David M Kim
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Vassiliki Boussiotis
- Department of Hematology Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Baochun Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Alex K Shalek
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Brooke Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - F Stephan Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - W Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
25
|
Hegyi B, Csikó KG, Balatoni T, Fröhlich G, Bőcs K, Tóth E, Mohos A, Neumark AR, Menyhárt CD, Ferrone S, Ladányi A. Tumor-Infiltrating Immune Cells and HLA Expression as Potential Biomarkers Predicting Response to PD-1 Inhibitor Therapy in Stage IV Melanoma Patients. Biomolecules 2024; 14:1609. [PMID: 39766316 PMCID: PMC11674713 DOI: 10.3390/biom14121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
PD-1 inhibitors are known to be effective in melanoma; however, a considerable proportion of patients fail to respond to therapy, necessitating the identification of predictive markers. We examined the predictive value of tumor cell HLA class I and II expression and immune cell infiltration in melanoma patients treated with PD-1 inhibitors. Pretreatment surgical samples from 40 stage IV melanoma patients were studied immunohistochemically for melanoma cell expression of HLA class I molecules (using four antibody clones with different specificities), HLA-II, and immune cell infiltration (using a panel of 10 markers). Among the responders, the ratio of patients showing melanoma cell HLA-II expression was higher compared to non-responders (p = 0.0158), and similar results were obtained in the case of two anti-HLA-I antibodies. A combined score of HLA-I/II expression also predicted treatment response (p = 0.0019). Intratumoral infiltration was stronger in the responders for most immune cell types. Progression-free survival showed an association with HLA-II expression, the combined HLA score, and the density of immune cells expressing CD134 and PD-1, while overall survival was significantly associated only with HLA class II expression. Our findings corroborate previous results indicating the importance of immune cell infiltration and tumor cell HLA-II expression in the efficacy of PD-1 inhibitor treatment in a "real world" patient cohort and suggest the potential predictive role of HLA class I expression.
Collapse
Affiliation(s)
- Barbara Hegyi
- Department of Chest and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (B.H.); (K.G.C.)
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Doctoral College, Semmelweis University, H-1085 Budapest, Hungary
| | - Kristóf György Csikó
- Department of Chest and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (B.H.); (K.G.C.)
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Doctoral College, Semmelweis University, H-1085 Budapest, Hungary
| | - Tímea Balatoni
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Department of Oncodermatology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Georgina Fröhlich
- Center of Radiotherapy, National Institute of Oncology, H-1122 Budapest, Hungary;
- Department of Biophysics, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Katalin Bőcs
- Department of Diagnostic Radiology, National Institute of Oncology, H-1122 Budapest, Hungary;
| | - Erika Tóth
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Department of Surgical and Molecular Pathology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Anita Mohos
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary
| | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Ladányi
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Department of Surgical and Molecular Pathology, National Institute of Oncology, H-1122 Budapest, Hungary
| |
Collapse
|
26
|
Khalil MI, Wang J, Yang C, Vu L, Yin C, Chadha S, Nabors H, Vocelle D, May DG, Chrisopolus RJ, Zhou L, Roux KJ, Bernard MP, Mi QS, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 promotes cancer immune evasion by degrading MHC class I proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626106. [PMID: 39677690 PMCID: PMC11642734 DOI: 10.1101/2024.11.29.626106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC). MARCHF8 knockdown restores MHC-I levels on HPV+ HNC cells. We further reveal that Marchf8 knockout significantly suppresses tumor growth and increases the infiltration of natural killer (NK) and T cells in the tumor microenvironment (TME). Furthermore, Marchf8 knockout markedly increases crosstalk between the cytotoxic NK cells and CD8 + T cells with macrophages and enhances the tumor cell-killing activity of CD8 + T cells. CD8 + T cell depletion in mice abrogates Marchf8 knockout-driven tumor suppression and T cell infiltration. Interestingly, Marchf8 knockout, in combination with anti-PD-1 treatment, synergistically suppresses tumor growth in mice bearing ICI-refractory tumors. Taken together, our finding suggests that MARCHF8 could be a promising target for novel immunotherapy for HPV+ HNC patients. One Sentence Summary Targeting MARCHF8 restores MHC-I proteins, induces antitumor CD8 + T cell activity, and suppresses the growth of ICI-refractory tumors.
Collapse
|
27
|
Chen S, Huang M, Zhang L, Huang Q, Wang Y, Liang Y. Inflammatory response signature score model for predicting immunotherapy response and pan-cancer prognosis. Comput Struct Biotechnol J 2024; 23:369-383. [PMID: 38226313 PMCID: PMC10788202 DOI: 10.1016/j.csbj.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024] Open
Abstract
Background Inflammatory responses influence the outcome of immunotherapy and tumorigenesis by modulating host immunity. However, systematic inflammatory response assessment models for predicting cancer immunotherapy (CIT) responses and survival across human cancers remain unexplored. Here, we investigated an inflammatory response score model to predict CIT responses and patient survival in a pan-cancer analysis. Methods We retrieved 12 CIT response gene expression datasets from the Gene Expression Omnibus database (GSE78220, GSE19423, GSE100797, GSE126044, GSE35640, GSE67501, GSE115821 and GSE168204), Tumor Immune Dysfunction and Exclusion database (PRJEB23709, PRJEB25780 and phs000452.v2.p1), European Genome-phenome Archive database (EGAD00001005738), and IMvigor210 cohort. The tumor samples from six cancers types: metastatic urothelial cancer, metastatic melanoma, gastric cancer, primary bladder cancer, renal cell carcinoma, and non-small cell lung cancer.We further established a binary classification model to predict CIT responses using the least absolute shrinkage and selection operator (LASSO) computational algorithm. Findings The model had high predictive accuracy in both the training and validation cohorts. During sub-group analysis, area under the curve (AUC) values of 0.82, 0.80, 0.71, 0.7, 0.67, and 0.64 were obtained for the non-small cell lung cancer, gastric cancer, metastatic urothelial cancer, primary bladder cancer, metastatic melanoma, and renal cell carcinoma cohorts, respectively. CIT response rates were higher in the high-scoring training cohort subjects (51%) than the low-scoring subjects (27%). The five-year survival rates in the high- and low score groups of the training cohorts were 62% and 21%, respectively, while those of the validation cohorts were 54% and 22%, respectively (P < 0·001 in all cases). Inflammatory response signature score derived from on-treatment tumor specimens are highly predictive of response to CIT in patients with metastatic melanoma. A significant correlation was observed between the inflammatory response scores and tumor purity. Regardless of the tumor purity, patients in the low score group had a significantly poorer prognosis than those in the high score group. Immune cell infiltration analysis indicated that in the high score cohort, tumor-infiltrating lymphocytes were significantly enriched, particularly effector and natural killer cells. Inflammatory response scores were positively correlated with immune checkpoint genes, suggesting that immune checkpoint inhibitors may have benefited patients with high scores. Analysis of signature scores across different cancer types from The Cancer Genome Atlas revealed that the prognostic performance of inflammatory response scores for survival in patients who have not undergone immunotherapy can be affected by tumor purity. Interleukin 21 (IL21) had the highest weight in the inflammatory response model, suggesting its vital role in the prediction mode. Since the number of metastatic melanoma patients (n = 429) was relatively large among CIT cohorts, we further performed a co-culture experiment using a melanoma cell line and CD8 + T cell populations generated from peripheral blood monocytes. The results showed that IL21 therapy combined with anti-PD1 (programmed cell death 1) antibodies (trepril monoclonal antibodies) significantly enhanced the cytotoxic activity of CD8 + T cells against the melanoma cell line. Conclusion In this study, we developed an inflammatory response gene signature model that predicts patient survival and immunotherapy response in multiple malignancies. We further found that the predictive performance in the non-small cell lung cancer and gastric cancer group had the highest value among the six different malignancy subgroups. When compared with existing signatures, the inflammatory response gene signature scores for on-treatment samples were more robust predictors of the response to CIT in metastatic melanoma.
Collapse
Affiliation(s)
- Shuzhao Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Mayan Huang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Limei Zhang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Qianqian Huang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Lotze MT, Olejniczak SH, Skokos D. CD28 co-stimulation: novel insights and applications in cancer immunotherapy. Nat Rev Immunol 2024; 24:878-895. [PMID: 39054343 PMCID: PMC11598642 DOI: 10.1038/s41577-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Substantial progress in understanding T cell signalling, particularly with respect to T cell co-receptors such as the co-stimulatory receptor CD28, has been made in recent years. This knowledge has been instrumental in the development of innovative immunotherapies for patients with cancer, including immune checkpoint blockade antibodies, adoptive cell therapies, tumour-targeted immunostimulatory antibodies, and immunostimulatory small-molecule drugs that regulate T cell activation. Following the failed clinical trial of a CD28 superagonist antibody in 2006, targeted CD28 agonism has re-emerged as a technologically viable and clinically promising strategy for cancer immunotherapy. In this Review, we explore recent insights into the molecular functions and regulation of CD28. We describe how CD28 is central to the success of current cancer immunotherapies and examine how new questions arising from studies of CD28 as a clinical target have enhanced our understanding of its biological role and may guide the development of future therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Michael T Lotze
- Department of Surgery, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | | |
Collapse
|
29
|
Tarantino G, Ricker CA, Wang A, Ge W, Aprati TJ, Huang AY, Madha S, Chen J, Shi Y, Glettig M, Feng CH, Frederick DT, Freeman S, Holovatska MM, Manos MP, Zimmer L, Rösch A, Zaremba A, Livingstone E, Jameson JC, Saghafian S, Lee A, Zhao K, Morris LG, Reardon B, Park J, Elmarakeby HA, Schilling B, Giobbie-Hurder A, Vokes NI, Buchbinder EI, Flaherty KT, Haq R, Wu CJ, Boland GM, Hodi FS, Van Allen EM, Schadendorf D, Liu D. Genomic heterogeneity and ploidy identify patients with intrinsic resistance to PD-1 blockade in metastatic melanoma. SCIENCE ADVANCES 2024; 10:eadp4670. [PMID: 39602539 PMCID: PMC11601251 DOI: 10.1126/sciadv.adp4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
The introduction of immune checkpoint blockade (ICB) has markedly improved outcomes for advanced melanoma. However, many patients develop resistance through unknown mechanisms. While combination ICB has improved response rate and progression-free survival, it substantially increases toxicity. Biomarkers to distinguish patients who would benefit from combination therapy versus aPD-1 remain elusive. We analyzed whole-exome sequencing of pretreatment tumors from four cohorts (n = 140) of ICB-naïve patients treated with aPD-1. High genomic heterogeneity and low ploidy robustly identified patients intrinsically resistant to aPD-1. To establish clinically actionable predictions, we optimized and validated a predictive model using ploidy and heterogeneity to confidently identify (90% PPV) patients with intrinsic resistance to and worse survival on aPD-1. We further observed that three of seven (43%) patients predicted to be intrinsically resistant to single-agent PD-1 ICB responded to combination ICB, suggesting that these patients may benefit disproportionately from combination ICB. These findings highlight the importance of heterogeneity and ploidy, nominating an approach toward clinical actionability.
Collapse
Affiliation(s)
- Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cora A. Ricker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Tyler J. Aprati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Y. Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shariq Madha
- Worcester Polytechnic Institute, Worcester, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jiajia Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yingxiao Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc Glettig
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine H. Feng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Marta M. Holovatska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Lisa Zimmer
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | - Alexander Rösch
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | | | - Jacob C. Jameson
- Interfaculty Initiative in Health Policy, Harvard University, Cambridge, MA, USA
| | | | - Andrew Lee
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karena Zhao
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G.T. Morris
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Haitham A. Elmarakeby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Al-Azhar University, Cairo, Egypt
| | - Bastian Schilling
- Department of Dermatology, University HospitalEssen, Essen, Germany
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | | | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dirk Schadendorf
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
30
|
Yin X, Song Y, Deng W, Blake N, Luo X, Meng J. Potential predictive biomarkers in antitumor immunotherapy: navigating the future of antitumor treatment and immune checkpoint inhibitor efficacy. Front Oncol 2024; 14:1483454. [PMID: 39655071 PMCID: PMC11625675 DOI: 10.3389/fonc.2024.1483454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment modality, offering promising outcomes for various malignancies. However, the efficacy of ICIs varies among patients, highlighting the essential need of accurate predictive biomarkers. This review synthesizes the current understanding of biomarkers for ICI therapy, and discusses the clinical utility and limitations of these biomarkers in predicting treatment outcomes. It discusses three US Food and Drug Administration (FDA)-approved biomarkers, programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), and microsatellite instability (MSI), and explores other potential biomarkers, including tumor immune microenvironment (TIME)-related signatures, human leukocyte antigen (HLA) diversity, non-invasive biomarkers such as circulating tumor DNA (ctDNA), and combination biomarker strategies. The review also addresses multivariable predictive models integrating multiple features of patients, tumors, and TIME, which could be a promising approach to enhance predictive accuracy. The existing challenges are also pointed out, such as the tumor heterogeneity, the inconstant nature of TIME, nonuniformed thresholds and standardization approaches. The review concludes by emphasizing the importance of biomarker research in realizing the potential of personalized immunotherapy, with the goal of improving patient selection, treatment strategies, and overall outcomes in cancer treatment.
Collapse
Affiliation(s)
- Xiangyu Yin
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yunjie Song
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Wanglong Deng
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Neil Blake
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xinghong Luo
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Jia Meng
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Zhu R, Ni J, Ren J, Li D, Xu J, Yu X, Ma YJ, Kou L. Transcriptomic era of cancers in females: new epigenetic perspectives and therapeutic prospects. Front Oncol 2024; 14:1464125. [PMID: 39605897 PMCID: PMC11598703 DOI: 10.3389/fonc.2024.1464125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
In the era of transcriptomics, the role of epigenetics in the study of cancers in females has gained increasing recognition. This article explores the impact of epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNA, on cancers in females, including breast, cervical, and ovarian cancers (1). Our findings suggest that these epigenetic markers not only influence tumor onset, progression, and metastasis but also present novel targets for therapeutic intervention. Detailed analyses of DNA methylation patterns have revealed aberrant events in cancer cells, particularly promoter region hypermethylation, which may lead to silencing of tumor suppressor genes. Furthermore, we examined the complex roles of histone modifications and long non-coding RNAs in regulating the expression of cancer-related genes, thereby providing a scientific basis for developing targeted epigenetic therapies. Our research emphasizes the importance of understanding the functions and mechanisms of epigenetics in cancers in females to develop effective treatment strategies. Future therapeutic approaches may include drugs targeting specific epigenetic markers, which could not only improve therapeutic outcomes but also enhance patient survival and quality of life. Through these efforts, we aim to offer new perspectives and hope for the prevention, diagnosis, and treatment of cancers in females.
Collapse
Affiliation(s)
- Runhe Zhu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Ni
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayin Ren
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongye Li
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Xu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinru Yu
- The Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Luan Kou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
32
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
33
|
Connor A, Lyons P, Kilgallon A, Simpson J, Perry A, Lysaght J. Examining the evidence for immune checkpoint therapy in high-grade serous ovarian cancer. Heliyon 2024; 10:e38888. [PMID: 39640610 PMCID: PMC11620064 DOI: 10.1016/j.heliyon.2024.e38888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The 5-year survival rate for ovarian cancer has remained relatively static over the past number of years, which can be attributed in part to the lack of new therapeutic strategies to target this disease. Although numerous other cancer types have benefited from the success of immune checkpoint inhibitors, their use in clinical trials targeting ovarian cancer has shown limited efficacy. Most clinical trials have focused on PD-1/PD-L1 immune checkpoint blockade, either as a monotherapy or in combination with chemotherapies, however inhibiting other pathways may potentially be more efficacious in treating ovarian cancer. For example, drugs targeting some emerging immune checkpoints (such as LAG-3, TIM-3, TIGIT and PVRIG), are entering into clinical trials, which could show improved success for ovarian cancer patients. Similarly, predictive biomarkers that have been approved for use with immune checkpoint inhibitors, such as PD-L1 expression, are limited, as only the presence or absence of PD-L1 is assessed. However, the development of next generation predictive biomarkers, which assesses density and location of tumour infiltrating lymphocytes, could be more beneficial for this heterogenous cancer. In this review we discuss the use of immune checkpoint inhibitors in ovarian cancer, with a focus on high-grade serous disease, and delve into what the future may hold for immunotherapy in this cancer type.
Collapse
Affiliation(s)
- A.E. Connor
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - P.M. Lyons
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - A.M. Kilgallon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - J.C. Simpson
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - A.S. Perry
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - J. Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Li L, Wang X, Jiang M, Li L, Wang D, Li Y. Advancements in a novel model of autophagy and immune network regulation in radioresistance of cancer stem cells. Biomed Pharmacother 2024; 179:117420. [PMID: 39255736 DOI: 10.1016/j.biopha.2024.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Radiotherapy, a precise modality for treating malignant tumors, has undergone rapid advancements in primary and clinical research. The mechanisms underlying tumor radioresistance have become significant research. With the introduction and in-depth study of cancer stem cells (CSCs) theory, CSCs have been identified as the primary factor contributing to the development of tumor radioresistance. The "stemness" of CSCs is a biological characteristic of a small subset of cells within tumor tissues, characterized by self-renewal solid ability. This characteristic leads to resistance to radiotherapy, chemotherapy, and targeted therapies, driving tumor recurrence and metastasis. Another study revealed that cellular autophagy plays a pivotal role in maintaining the "stemness" of CSCs. Autophagy is a cellular mechanism that degrades proteins and organelles to generate nutrients and energy in response to stress. This process maintains cellular homeostasis and contributes to CSCs radioresistance. Furthermore, ionizing radiation (IR) facilitates epithelial-to-mesenchymal transition (EMT), vascular regeneration, and other tumor processes by influencing the infiltration of M2-type tumor-associated macrophages (TAMs). IR promotes the activation of the classical immunosuppressive "switch," PD-1/PD-L1, which diminishes T-cell secretion, leading to immune evasion and promoting radioresistance. Interestingly, recent studies have found that the immune pathway PD-1/PD-L1 is closely related to cellular autophagy. However, the interrelationships between immunity, autophagy, and radioresistance of CSCs and the regulatory mechanisms involved remain unclear. Consequently, this paper reviews recent research to summarize these potential connections, aiming to establish a theoretical foundation for future studies and propose a new model for the network regulation of immunity, autophagy, and radioresistance of tumor cells.
Collapse
Affiliation(s)
- Leyao Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Mei Jiang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Lei Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Di Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yajun Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
35
|
Montauti E, Oh DY, Fong L. CD4 + T cells in antitumor immunity. Trends Cancer 2024; 10:969-985. [PMID: 39242276 PMCID: PMC11464182 DOI: 10.1016/j.trecan.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Advances in cancer immunotherapy have transformed cancer care and realized unprecedented responses in many patients. The growing arsenal of novel therapeutics - including immune checkpoint inhibition (ICI), adoptive T cell therapies (ACTs), and cancer vaccines - reflects the success of cancer immunotherapy. The therapeutic benefits of these treatment modalities are generally attributed to the enhanced quantity and quality of antitumor CD8+ T cell responses. Nevertheless, CD4+ T cells are now recognized to play key roles in both the priming and effector phases of the antitumor immune response. In addition to providing T cell help through co-stimulation and cytokine production, CD4+ T cells can also possess cytotoxicity either directly on MHC class II-expressing tumor cells or to other cells within the tumor microenvironment (TME). The presence of specific populations of CD4+ T cells, and their intrinsic plasticity, within the TME can represent an important determinant of clinical response to immune checkpoint inhibitors, vaccines, and chimeric antigen receptor (CAR) T cell therapies. Understanding how the antitumor functions of specific CD4+ T cell types are induced while limiting their protumorigenic attributes will enable more successful immunotherapies.
Collapse
Affiliation(s)
- Elena Montauti
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
36
|
Liao TT, Chen YH, Li ZY, Hsiao AC, Huang YL, Hao RX, Tai SK, Chu PY, Shih JW, Kung HJ, Yang MH. Hypoxia-Induced Long Noncoding RNA HIF1A-AS2 Regulates Stability of MHC Class I Protein in Head and Neck Cancer. Cancer Immunol Res 2024; 12:1468-1484. [PMID: 38920249 PMCID: PMC11443317 DOI: 10.1158/2326-6066.cir-23-0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/14/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Intratumoral hypoxia not only promotes angiogenesis and invasiveness of cancer cells but also creates an immunosuppressive microenvironment that facilitates tumor progression. However, the mechanisms by which hypoxic tumor cells disseminate immunosuppressive signals remain unclear. In this study, we demonstrate that a hypoxia-induced long noncoding RNA HIF1A Antisense RNA 2 (HIF1A-AS2) is upregulated in hypoxic tumor cells and hypoxic tumor-derived exosomes in head and neck squamous cell carcinoma (HNSCC). Hypoxia-inducible factor 1 alpha (HIF1α) was found to directly bind to the regulatory region of HIF1A-AS2 to enhance its expression. HIF1A-AS2 reduced the protein stability of major histocompatibility complex class I (MHC-I) by promoting the interaction between the autophagy cargo receptor neighbor of BRCA1 gene 1 (NBR1) protein and MHC-I, thereby increasing the autophagic degradation of MHC-I. In HNSCC samples, the expression of HIF1A-AS2 was found to correlate with hypoxic signatures and advanced clinical stages. Patients with high HIF1α and low HLA-ABC expression showed reduced infiltration of CD8+ T cells. These findings define a mechanism of hypoxia-mediated immune evasion in HNSCC through downregulation of antigen-presenting machinery via intracellular or externalized hypoxia-induced long noncoding RNA.
Collapse
Affiliation(s)
- Tsai-Tsen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yu-Hsien Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Zih-Yu Li
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - An-Ching Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ya-Li Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ruo-Xin Hao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shyh-Kuan Tai
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Pen-Yuan Chu
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Jing-Wen Shih
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Hsing-Jien Kung
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan.
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, California.
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao University, Taipei, Taiwan.
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Research and Education, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
37
|
Bao X, Sun M, Meng L, Zhang H, Yi X, Zhang P. Applications of pyroptosis activators in tumor immunotherapy. Mater Today Bio 2024; 28:101191. [PMID: 39221221 PMCID: PMC11363858 DOI: 10.1016/j.mtbio.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Contemporary progress in tumor immunotherapy has solidified its role as an effective approach in combating cancer. Nonetheless, the prevalent "immune cold" state within the tumor microenvironment poses a substantial barrier to its efficacy. Addressing this, pyroptosis-a gasdermin-mediated programmed cell death characterized by its inflammatory profile-emerges as a crucial mechanism. It catalyzes the release of vast quantities of pro-inflammatory cytokines and immunogens, potentially transforming immunosuppressive "cold" tumors into reactive "hot" ones. Herein, we will initially present an overview of pyroptosis as a distinct form of cell death, along with its molecular mechanisms. Subsequently, we will focus on introducing how pyroptosis activators are utilized in the field of tumor immunotherapy. Insights gained from applications of pyroptosis activators in tumor immunotherapy could lead to the development of safe and efficient pyroptosis activators, significantly enriching the arsenal for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Bao
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Mengmeng Sun
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Lingfei Meng
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Hong Zhang
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130061, PR China
| | - Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| |
Collapse
|
38
|
Claeys A, Van den Eynden J. MHC class II genotypes are independent predictors of anti-PD1 immunotherapy response in melanoma. COMMUNICATIONS MEDICINE 2024; 4:184. [PMID: 39349759 PMCID: PMC11443121 DOI: 10.1038/s43856-024-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade is a highly successful anti-cancer immunotherapy. Both CTLA4 and PD1 checkpoint blockers are clinically available for melanoma treatment, with anti-PD1 therapy reaching response rates of 35-40%. These responses, which are mediated via neoantigen presentation by the polymorphic MHC complex, are hard to predict and the tumor mutation burden is currently one of the few available biomarkers. While MHC genotypes are expected to determine therapy responses, association studies have remained largely elusive. METHODS We developed an overall MHC genotype binding score (MGBS), indicative of a patient's MHC class I (MHC-I) and class II (MHC-II) neoantigen binding capacity and solely based on the germline MHC-I (MGBS-I) and MHC-II (MGBS-II) genotypes. These scores were then correlated to survival and clinical responses following anti-PD1 immunotherapy in a previously published dataset of 144 melanoma patients. RESULTS We demonstrate that MGBS scores are TMB-independent predictors of anti-PD1 immunotherapy responses in melanoma. Opposite outcomes were found for both MHC classes, with high MGBS-I and MGBS-II predicting good and bad outcomes, respectively. Interestingly, high MGBS-II is mainly associated with treatment response failure in a subgroup of anti-CTLA4 pretreated patients. CONCLUSIONS Our results suggest that MGBS, calculated solely from the MHC genotype, has clinical potential as a non-invasive and tumor-independent biomarker to guide anti-cancer immunotherapy in melanoma.
Collapse
Affiliation(s)
- Arne Claeys
- Department of Human Structure and Repair, Unit of Anatomy and Embryology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Unit of Anatomy and Embryology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
39
|
Taniguchi H, Chakraborty S, Takahashi N, Banerjee A, Caeser R, Zhan YA, Tischfield SE, Chow A, Nguyen EM, Villalonga ÁQ, Manoj P, Shah NS, Rosario S, Hayatt O, Qu R, de Stanchina E, Chan J, Mukae H, Thomas A, Rudin CM, Sen T. ATR inhibition activates cancer cell cGAS/STING-interferon signaling and promotes antitumor immunity in small-cell lung cancer. SCIENCE ADVANCES 2024; 10:eado4618. [PMID: 39331709 PMCID: PMC11430494 DOI: 10.1126/sciadv.ado4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Patients with small-cell lung cancer (SCLC) have poor prognosis and typically experience only transient benefits from combined immune checkpoint blockade (ICB) and chemotherapy. Here, we show that inhibition of ataxia telangiectasia and rad3 related (ATR), the primary replication stress response activator, induces DNA damage-mediated micronuclei formation in SCLC models. ATR inhibition in SCLC activates the stimulator of interferon genes (STING)-mediated interferon signaling, recruits T cells, and augments the antitumor immune response of programmed death-ligand 1 (PD-L1) blockade in mouse models. We demonstrate that combined ATR and PD-L1 inhibition causes improved antitumor response than PD-L1 alone as the second-line treatment in SCLC. This study shows that targeting ATR up-regulates major histocompatibility class I expression in preclinical models and SCLC clinical samples collected from a first-in-class clinical trial of ATR inhibitor, berzosertib, with topotecan in patients with relapsed SCLC. Targeting ATR represents a transformative vulnerability of SCLC and is a complementary strategy to induce STING-interferon signaling-mediated immunogenicity in SCLC.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Avisek Banerjee
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Caeser
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A. Zhan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sam E. Tischfield
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Evelyn M. Nguyen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Álvaro Quintanal Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Rosario
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Hayatt
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
41
|
Almeida-Nunes DL, Nunes M, Osório H, Ferreira V, Lobo C, Monteiro P, Abreu MH, Bartosch C, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Ovarian cancer ascites proteomic profile reflects metabolic changes during disease progression. Biochem Biophys Rep 2024; 39:101755. [PMID: 38974022 PMCID: PMC11225207 DOI: 10.1016/j.bbrep.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Hugo Osório
- Proteomics Scientific Platform, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine from University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Verónica Ferreira
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Cláudia Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Paula Monteiro
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto) / Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine from University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- FOREN – Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136, Lisbon, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| |
Collapse
|
42
|
Ye D, Zhou S, Dai X, Xu H, Tang Q, Huang H, Bi F. Targeting the MHC-I endosomal-lysosomal trafficking pathway in cancer: From mechanism to immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189161. [PMID: 39096977 DOI: 10.1016/j.bbcan.2024.189161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8+ cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Di Ye
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Shuang Zhou
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xinyu Dai
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
43
|
Huang M, Zhang F, Zhu Y, Zeng H, Li S. MEST promotes immune escape in gastric cancer by downregulating MHCI expression via SHP2. Int J Biochem Cell Biol 2024; 174:106621. [PMID: 39181599 DOI: 10.1016/j.biocel.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Immune escape is a major obstacle to T-cell-based immunotherapy for cancers such as gastric cancer (GC). Mesoderm-specific transcript (MEST) is a tumor-promoting factor that regulates multiple oncogenic signaling pathways. However, the role of MEST-mediated immune escape is unclear. METHODS Bioinformatics analysis of MEST expression and enrichment pathways were performed Quantitative reverse transcription PCR (qPCR) or western blot was used to detect the expression of MEST, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), Major histocompatibility class I (MHCI)-related genes. Cell function was assessed by Cell Counting Kit (CCK)-8, Transwell, Lactate dehydrogenase (LDH) kit, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC). Xenograft nude mice and immune-reconstructed mice were used to test the effects of different treatments on tumor growth and immune escape in vivo. RESULTS MEST was upregulated in GC and promoted tumor proliferation, migration, and invasion. Rescue experiments revealed that TNO155 treatment or knockdown of SHP2 promoted the killing ability of CD8+ T cells and the expression of granzyme B (GZMB) and interferon-gamma (IFN-γ), and MEST overexpression reversed the effect. In vivo experiments confirmed that MEST promoted tumor growth, knockdown of MEST inhibited immune escape in GC, and that combination treatment with anti-PD-1 improved anti-tumor activity. CONCLUSION In this study, we demonstrated that MEST inhibited IFN-γ secretion from CD8+ T cells by up-regulating SHP2, thereby downregulating MHCI expression in GC cells to promote immune escape and providing a new T cell-based therapeutic potential for GC.
Collapse
Affiliation(s)
- Min Huang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Fan Zhang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Yan Zhu
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Hai Zeng
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Shuang Li
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China.
| |
Collapse
|
44
|
Lei PJ, Fraser C, Jones D, Ubellacker JM, Padera TP. Lymphatic system regulation of anti-cancer immunity and metastasis. Front Immunol 2024; 15:1449291. [PMID: 39211044 PMCID: PMC11357954 DOI: 10.3389/fimmu.2024.1449291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer dissemination to lymph nodes (LN) is associated with a worse prognosis, increased incidence of distant metastases and reduced response to therapy. The LN microenvironment puts selective pressure on cancer cells, creating cells that can survive in LN as well as providing survival advantages for distant metastatic spread. Additionally, the presence of cancer cells leads to an immunosuppressive LN microenvironment, favoring the evasion of anti-cancer immune surveillance. However, recent studies have also characterized previously unrecognized roles for tumor-draining lymph nodes (TDLNs) in cancer immunotherapy response, including acting as a reservoir for pre-exhausted CD8+ T cells and stem-like CD8+ T cells. In this review, we will discuss the spread of cancer cells through the lymphatic system, the roles of TDLNs in metastasis and anti-cancer immune responses, and the therapeutic opportunities and challenges in targeting LN metastasis.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Cameron Fraser
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jessalyn M. Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Timothy P. Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Feng HR, Shen XN, Zhu XM, Zhong WT, Zhu DX, Zhao J, Chen YJ, Shen F, Liu K, Liang L. Unveiling major histocompatibility complex-mediated pan-cancer immune features by integrated single-cell and bulk RNA sequencing. Cancer Lett 2024; 597:217062. [PMID: 38878852 DOI: 10.1016/j.canlet.2024.217062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer therapy, yet persistent challenges such as low response rate and significant heterogeneity necessitate attention. The pivotal role of the major histocompatibility complex (MHC) in ICI efficacy, its intricate impacts and potentials as a prognostic marker, warrants comprehensive exploration. This study integrates single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, and spatial transcriptomic analyses to unveil pan-cancer immune characteristics governed by the MHC transcriptional feature (MHC.sig). Developed through scRNA-seq analysis of 663,760 cells across diverse cohorts and validated in 30 solid cancer types, the MHC.sig demonstrates a robust correlation between immune-related genes and infiltrating immune cells, highlighting its potential as a universal pan-cancer marker for anti-tumor immunity. Screening the MHC.sig for therapeutic targets using CRISPR data identifies potential genes for immune therapy synergy and validates its predictive efficacy for ICIs responsiveness across diverse datasets and cancer types. Finally, analysis of cellular communication patterns reveals interactions between C1QC+macrophages and malignant cells, providing insights into potential therapeutic agents and their sensitivity characteristics. This comprehensive analysis positions the MHC.sig as a promising marker for predicting immune therapy outcomes and guiding combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Hao-Ran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiao-Nan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiao-Ming Zhu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200082, People's Republic of China
| | - Wen-Tao Zhong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, People's Republic of China
| | - De-Xiang Zhu
- Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ji Zhao
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People's Republic of China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, People's Republic of China; Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, People's Republic of China.
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
46
|
Yan S, Zhang X, Lin Q, Du M, Li Y, He S, Chen J, Li X, Bei J, Chen S, Song M. Deciphering the interplay of HPV infection, MHC-II expression, and CXCL13 + CD4 + T cell activation in oropharyngeal cancer: implications for immunotherapy. Cancer Immunol Immunother 2024; 73:206. [PMID: 39105803 PMCID: PMC11303625 DOI: 10.1007/s00262-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Human papillomavirus (HPV) infection has become an important etiological driver of oropharyngeal squamous cell carcinoma (OPSCC), leading to unique tumor characteristics. However, the interplay between HPV-associated tumor cells and tumor microenvironment (TME) remains an enigma. METHODS We performed a single-cell RNA-sequencing (scRNA-seq) on HPV-positive (HPV+) and HPV-negative (HPV‒) OPSCC tumors, each for three samples, and one normal tonsil tissue. Ex vivo validation assays including immunofluorescence staining, cell line co-culture, and flow cytometry analysis were used to test specific subtypes of HPV+ tumor cells and their communications with T cells. RESULTS Through a comprehensive single-cell transcriptome analysis, we uncover the distinct transcriptional signatures between HPV+ and HPV‒ OPSCC. Specifically, HPV+ OPSCC tumor cells manifest an enhanced interferon response and elevated expression of the major histocompatibility complex II (MHC-II), potentially bolstering tumor recognition and immune response. Furthermore, we identify a CXCL13+CD4+ T cell subset that exhibits dual features of both follicular and pro-inflammatory helper T cells. Noteworthily, HPV+ OPSCC tumor cells embrace extensive intercellular communications with CXCL13+CD4+ T cells. Interaction with HPV+ OPSCC tumor cells amplifies CXCL13 and IFNγ release in CD4+T cells, fostering a pro-inflammatory TME. Additionally, HPV+ tumor cells expressing high MHC-II and CXCL13+CD4+ T cell prevalence are indicative of favorable overall survival rates in OPSCC patients. CONCLUSIONS Together, our study underscores a synergistic inflammatory immune response orchestrated by highly immunogenic tumor cells and CXCL13+CD4+ T cells in HPV+ OPSCC, offering useful insights into strategy development for patient stratification and effective immunotherapy in OPSCC.
Collapse
Affiliation(s)
- Shida Yan
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xing Zhang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiaohong Lin
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mingyuan Du
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yiqi Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jingtao Chen
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiyuan Li
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ming Song
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
47
|
Yamaguchi H, Hsu JM, Sun L, Wang SC, Hung MC. Advances and prospects of biomarkers for immune checkpoint inhibitors. Cell Rep Med 2024; 5:101621. [PMID: 38906149 PMCID: PMC11293349 DOI: 10.1016/j.xcrm.2024.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Immune checkpoint inhibitors (ICIs) activate anti-cancer immunity by blocking T cell checkpoint molecules such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Although ICIs induce some durable responses in various cancer patients, they also have disadvantages, including low response rates, the potential for severe side effects, and high treatment costs. Therefore, selection of patients who can benefit from ICI treatment is critical, and identification of biomarkers is essential to improve the efficiency of ICIs. In this review, we provide updated information on established predictive biomarkers (tumor programmed death-ligand 1 [PD-L1] expression, DNA mismatch repair deficiency, microsatellite instability high, and tumor mutational burden) and potential biomarkers currently under investigation such as tumor-infiltrated and peripheral lymphocytes, gut microbiome, and signaling pathways related to DNA damage and antigen presentation. In particular, this review aims to summarize the current knowledge of biomarkers, discuss issues, and further explore future biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Graduate Institute of Cell Biology, China Medical University, Taichung City 406040, Taiwan; Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Linlin Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan.
| |
Collapse
|
48
|
Yang X, Wu J, Fan L, Chen B, Zhang S, Zheng W. Single-Cell Analysis Identifies Distinct Populations of Cytotoxic CD4 + T Cells Linked to the Therapeutic Efficacy of Immune Checkpoint Inhibitors in Metastatic Renal Cell Carcinoma. J Inflamm Res 2024; 17:4505-4523. [PMID: 39006494 PMCID: PMC11246657 DOI: 10.2147/jir.s457570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Background The involvement of cytotoxic CD4+ T cells (CD4+ CTLs) and their potential role in dictating the response to immune checkpoint inhibitors (ICIs) in patients with metastatic renal cell carcinoma (mRCC) remains an unexplored area of research. Methods Utilizing single-cell RNA sequencing, we analyzed the immunophenotype and expression patterns of CD4+ T lymphocyte subtypes in mRCC patients, followed by preliminary validation via multi-immunofluorescent staining. In addition, we obtained a comprehensive immunotherapy dataset encompassing single-cell RNA sequencing datasets and bulk RNA-seq cohorts from the European Genome-Phenome Archive and ArrayExpress database. Utilizing the CIBERSORTx deconvolution algorithms, we derived a signature score for CD4+ CTLs from the bulk-RNA-seq datasets of the CheckMate 009/025 clinical trials. Results Single-cell analysis of CD4+ T lymphocytes in mRCC reveals several cancer-specific states, including diverse phenotypes of regulatory T cells. Remarkably, we observe that CD4+ CTLs cells constitute a substantial proportion of all CD4+ T lymphocyte sub-clusters in mRCC patients, highlighting their potential significance in the disease. Furthermore, within mRCC patients, we identify two distinct cytotoxic states of CD4+ T cells: CD4+GZMK+ T cells, which exhibit a weaker cytotoxic potential, and CD4+GZMB+ T cells, which demonstrate robust cytotoxic activity. Both regulatory T cells and CD4+ CTLs originate from proliferating CD4+ T cells within mRCC tissues. Intriguingly, our trajectory analysis indicates that the weakly cytotoxic CD4+GZMK+ T cells differentiate from their more cytotoxic CD4+GZMB+ counterparts. In comparing patients with lower CD4+ CTLs levels to those with higher CD4+ CTLs abundance in the CheckMate 009 and 25 immunotherapy cohorts, the latter group exhibited significantly improved OS and PFS probability. Conclusion Our study underscores the pivotal role that intratumoral CD4+ CTLs may play in bolstering anti-tumor immunity, suggesting their potential as a promising biomarker for predicting response to ICIs in patients with mRCC.
Collapse
Affiliation(s)
- Xu Yang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Jianwei Wu
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Longlong Fan
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Binghua Chen
- Department of Urology, Pingtan Branch of Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Wenzhong Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|
49
|
Mullen NJ, Shukla SK, Thakur R, Kollala SS, Wang D, Chaika N, Santana JF, Miklavcic WR, LaBreck DA, Mallareddy JR, Price DH, Natarajan A, Mehla K, Sykes DB, Hollingsworth MA, Singh PK. DHODH inhibition enhances the efficacy of immune checkpoint blockade by increasing cancer cell antigen presentation. eLife 2024; 12:RP87292. [PMID: 38973593 PMCID: PMC11230627 DOI: 10.7554/elife.87292] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.
Collapse
Affiliation(s)
- Nicholas J Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Surendra K Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, University of IowaIowa CityUnited States
| | - William R Miklavcic
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Drew A LaBreck
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - David H Price
- Department of Biochemistry and Molecular Biology, University of IowaIowa CityUnited States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
- Department of Oncology Science, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| |
Collapse
|
50
|
Tanegashima T, Shiota M, Fujiyama N, Narita S, Habuchi T, Fukuchi G, Takamatsu D, Oda Y, Miyake H, Takahashi M, Oya M, Tsuchiya N, Masumori N, Matsuyama H, Obara W, Shinohara N, Fujimoto K, Nozawa M, Ohba K, Ohyama C, Hashine K, Akamatsu S, Kamba T, Mita K, Gotoh M, Tatarano S, Fujisawa M, Tomita Y, Mukai S, Ito K, Tokunaga S, Eto M. Effect of HLA Genotype on Anti-PD-1 Antibody Treatment for Advanced Renal Cell Carcinoma in the SNiP-RCC Study. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:23-28. [PMID: 38758119 PMCID: PMC11212726 DOI: 10.4049/jimmunol.2300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Immune checkpoint blockade therapies are widely used for cancer treatment, including advanced renal cell carcinoma (RCC). This study aimed to investigate the impact of zygosity in HLA genes and individual HLA genotypes on the efficacy of an anti-PD-1 Ab, nivolumab, in treating advanced RCC. Patient enrollment was conducted across 23 institutions in Japan from August 19, 2019, to September 30, 2020, with follow-up concluding on March 31, 2021. HLA genotype imputation of HLA-A, B, and C, DQB1, and DRB1 loci was performed. Among 222 patients, the presence of at least one homozygosity of the HLA-II allele significantly improved the best objective response (hazard ratio, 0.34; 95% confidence interval, 0.21-0.96; p = 0.042). The HLA evolutionary divergence (HED) of the HLA-A and HLA-B loci was higher than the HLA-C (p < 0.0001 and p < 0.0001, respectively), with high HED of the HLA-B locus correlating to clinical benefits in nivolumab treatment (hazard ratio, 0.44; 95% confidence interval, 0.21-0.90; p = 0.024) and improving cancer-specific survival compared with the low group (p = 0.0202). Additionally, high HED of the HLA-B locus was correlated with the number of infiltrated CD8+ cells in the tumor microenvironment (correlation coefficient, 0.4042). These findings indicate that the diversity of the HLA-B locus plays a significant role in the anti-tumor effect of nivolumab treatment in advanced RCC, potentially offering insights for improved risk stratification in nivolumab treatment and leading to better medical management of advanced RCC.
Collapse
Affiliation(s)
- Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Fujiyama
- Center for Kidney Disease and Transplantation, Akita University Hospital, Akita, Japan
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Tomonori Habuchi
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Genshiro Fukuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dai Takamatsu
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Takahashi
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Masahiro Nozawa
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kojiro Ohba
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Katsuyoshi Hashine
- Department of Urology, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto Japan
| | - Koji Mita
- Department of Urology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiko Tomita
- Department of Urology and Molecular Oncology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Shoji Tokunaga
- Medical Information Center, Kyushu University Hospital, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|