1
|
Sierra J, de León UAP, Padilla-Longoria P. Tumor microenvironment noise-induced polarization: the main challenge in macrophages' immunotherapy for cancer. Mol Cell Biochem 2025; 480:3735-3747. [PMID: 39827422 PMCID: PMC12095459 DOI: 10.1007/s11010-025-05205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Disturbance of epigenetic processes can lead to altered gene function and malignant cellular transformation. In particular, changes in the epigenetic landscape are a central topic in cancer biology. The initiation and progression of cancer are now recognized to involve both epigenetic and genetic alterations. In this paper, we study the epigenetic mechanism (related to the tumor microenvironment) responsible for increasing tumor-associated macrophages that promote the occurrence and metastasis of tumor cells, support tumor angiogenesis, inhibit T-cell-mediated anti-tumor immune response, and lead to tumor progression. We show that the tumor benefits from the macrophages' high degree of plasticity and larger epigenetic basins corresponding to phenotypes that favor cancer development through a process that we call noise-induced polarization. Moreover, we propose a mechanism to promote the appropriate epigenetic stability for immunotherapies involving macrophages, which includes p53 and APR-246 (eprenetapopt). Our results show that a combination therapy may be necessary to ensure the proper epigenetic stability of macrophages, which otherwise will contribute to cancer progression. On the other hand, we conclude that macrophages may remain in the anti-tumoral state in types of cancer that exhibit less TP53 mutation, like colorectal cancer; in these cases, macrophages' immunotherapy may be more suitable. We finally mention the relevance of the epigenetic potential (Waddington's landscape) as the backbone for our study, which encapsulates the biological information of the system.
Collapse
Affiliation(s)
- Jesus Sierra
- CIMAT, De Jalisco s/n, Gto., 36023, Guanajuato, Mexico
| | - Ugo Avila-Ponce de León
- Schiffer Group, Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pablo Padilla-Longoria
- IIMAS, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria, 04510, Mexico City, Mexico.
| |
Collapse
|
2
|
Russell SN, Demetriou C, Valenzano G, Evans A, Go S, Stanly T, Hazini A, Willenbrock F, Gordon-Weeks AN, Mukherjee S, Tesson M, Morton JP, O'Neill E, Jones KI. Induction of macrophage efferocytosis in pancreatic cancer via PI3Kγ inhibition and radiotherapy promotes tumour control. Gut 2025; 74:825-839. [PMID: 39788719 PMCID: PMC12013568 DOI: 10.1136/gutjnl-2024-333492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells. OBJECTIVE We hypothesised that the immune stimulatory effects of radiation, and its ability to boost tumour antigen availability could synergise with PI3Kγ inhibition to augment antitumour immunity. DESIGN We used orthoptic and genetically engineered mouse models of pancreatic cancer (LSL-KrasG12D/+;Trp53R172H/+;Pdx1-Cre). Stereotactic radiotherapy was delivered using contrast CT imaging, and PI3Kγ inhibitors by oral administration. Changes in the tumour microenvironment were quantified by flow cytometry, multiplex immunohistochemistry and RNA sequencing. Tumour-educated macrophages were used to investigate efferocytosis, antigen presentation and CD8+ T cell activation. Single-cell RNA sequencing data and fresh tumour samples with autologous macrophages to validate our findings. RESULTS Tumour-associated macrophages that employ efferocytosis to eradicate apoptotic cells can be redirected to present tumour antigens, stimulate CD8+ T cell responses and increase local tumour control. Specifically, we demonstrate how PI3Kγ signalling restricts inflammatory macrophages and that inhibition supports MERTK-dependent efferocytosis. We further find that the combination of PI3Kγ inhibition with targeted radiotherapy stimulates inflammatory macrophages to invoke a pathogen-induced like efferocytosis that switches from immune tolerant to antigen presenting. CONCLUSIONS Our data supports a new immunotherapeutic approach and a translational rationale to improve survival in PDAC.
Collapse
Affiliation(s)
| | | | | | - Alice Evans
- Department of Oncology, University of Oxford, Oxford, UK
| | - Simei Go
- Department of Oncology, University of Oxford, Oxford, UK
| | - Tess Stanly
- Department of Oncology, University of Oxford, Oxford, UK
| | - Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | - Matthias Tesson
- Institute of Cancer Sciences, CRUK Scotland Institute, Glasgow, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton Ian Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Singh A, Raja D, Kaushal S, Seth A, Singh P, Sharma A. Phenotypic characterization of tumor associated macrophages and circulating monocytes in patients with Urothelial carcinoma of bladder. Immunol Res 2025; 73:66. [PMID: 40195201 DOI: 10.1007/s12026-025-09624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
OBJECTIVES Targeting immune checkpoints has shown clinical efficacy in Urothelial carcinoma of bladder (UBC); however, a substantial percentage of patients remains unresponsive, which warrants the elucidation of novel therapeutic targets to circumvent immune suppression. Tumor associated macrophages (TAMs) are known for their indispensable role in cancer immunosuppression however, their phenotype and functionality in UBC is not yet clear. MATERIALS AND METHODS Phenotypic composition and functional markers of TAMs, and circulating monocytes were assessed in surgically resected bladder tumors and PBMC of UBC patients (n = 40). Besides, 40 healthy volunteers were recruited to draw comparisons for peripheral monocytes. Monocytes from patients were treated with autologous bladder tumor conditioned media (TCM) to assess its effects on macrophage-based markers. RESULTS The infiltration of TAMs was significantly increased in bladder tumor tissue by 21.2% and which displayed both M1 and M2 phenotypic markers, wherein M2 phenotype exhibited positive correlation with disease severity. Circulating monocytes exhibited an increase in frequency of non-classical monocytes by 17.42% and elevated M2-macrophage markers by 20%. Further, TAMs and circulating monocytes exhibits an elevated expression of IL- 10 and inhibitory immune checkpoints (PD-1, PD-L1, and B7-H4). Stimulation of patient-derived monocytes with TCM further augmented the expression of immune checkpoints, and immunosuppressive markers like IL-10, TGF-β and CX3CR- 1. Lastly, M2 phenotype of TAMs and PD-L1+ and B7-H4 + TAMs displayed positive correlation with clinico-pathological parameters in UBC patients. CONCLUSION This study presents TAMs with an immunosuppressive phenotype that correlates positively with disease severity and suggests TAMs as a potential therapeutic candidate to restore the anti-tumor immunity in UBC.
Collapse
Affiliation(s)
- Aishwarya Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - David Raja
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Prabhjot Singh
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
4
|
Liu X, Wang P, Liu G. NRI and SIRI are the optimal combinations for prognostic risk stratification in patients with non-small cell lung cancer after EGFR-TKI therapy. Clin Transl Oncol 2025; 27:1529-1538. [PMID: 39304598 PMCID: PMC12000150 DOI: 10.1007/s12094-024-03735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutations. However, NSCLC heterogeneity leads to differences in efficacy; thus, potential biomarkers need to be explored to predict the prognosis of patients. Recently, the prognostic importance of pre-treatment malnutrition and systemic inflammatory response in cancer patients has received increasing attention. METHODS In this study, clinical information from 363 NSCLC patients receiving EGFR-TKI treatment at our clinical center was used for analysis. RESULTS High nutritional risk index (NRI) and systemic inflammation response index (SIRI) were significantly associated with poor overall survival (OS) and progression-free survival (PFS) in NSCLC patients (P < 0.05). Importantly, NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients and independent OS and PFS predictors. Moreover, a nomogram model was constructed by combining NRI/SIRI, sex, smoking history, EGFR mutation, TNM stage, and surgery treatment to visually and personally predict the 1-, 2-, 3-, 4-, and 5-year OS of patients with NSCLC. Notably, risk stratification based on the nomogram model was better than that based on the TNM stage. CONCLUSION NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients receiving EGFR-TKI treatment, which may be a novel biomarker for supplement risk stratification in NSCLC patients.
Collapse
Affiliation(s)
- Xia Liu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Peipei Wang
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China.
| | - Guolong Liu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Davila M, Lee SB, Kang YP, Boucher J, Mandula J, Roselli E, Chang D, Jimenez R, Kotani H, Reid K, Vazquez-Martinez J, Beatty N, Goala P, Sierra-Mondragon R, Liu M, Koomen J, Nguyen J, Hussaini M, Shaw T, Wang X, Faramand R, Jain M, Locke F, Rodriguez P, Sailer C, McSain S, Hamid S, Tariq M, Wang J, Abraham-Miranda J. CAR T cell-driven induction of iNOS in tumor-associated macrophages promotes CAR T cell resistance in B cell lymphoma. RESEARCH SQUARE 2025:rs.3.rs-3481746. [PMID: 40235478 PMCID: PMC11998770 DOI: 10.21203/rs.3.rs-3481746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapies have revolutionized B cell malignancy treatment, but subsets of patients with large B cell lymphoma (LBCL) experience primary resistance or relapse after CAR T cell treatment. To uncover tumor microenvironment (TME)-induced resistance mechanisms, we examined patients' intratumoral immune infiltrates and observed that elevated levels of immunoregulatory macrophages in pre-infusion tumor biopsies are correlated with poor clinical responses. CAR T cell-produced interferon-gamma (IFN-γ) promotes the expression of inducible nitric oxide synthase (iNOS, NOS2) in immunoregulatory macrophages, impairing CAR T cell function. Mechanistically, iNOS-expressing macrophages upregulated the p53 pathway, mediating apoptosis and cell cycle arrest in CAR T cells, while downregulating the MYC pathway involved in ribosome biogenesis and protein synthesis. Furthermore, CAR T cell metabolism is compromised by depletion of glycolytic intermediates and rewiring of the TCA cycle. Pharmacological inhibition of iNOS enhances the CAR T cell treatment efficacy in B cell tumor-bearing mice. Notably, elevated levels of iNOS+CD14+ monocytes were observed in leukaphereses of patients with non-durable response to CAR T cell therapy. These findings suggest that mitigating iNOS in tumor-associated macrophages (TAMs) by blocking IFN-γ secretion from CAR T cells will improve outcomes for LBCL patients.
Collapse
|
6
|
Zhang C, Yuan Y, Xia Q, Wang J, Xu K, Gong Z, Lou J, Li G, Wang L, Zhou L, Liu Z, Luo K, Zhou X. Machine Learning-Driven Prediction, Preparation, and Evaluation of Functional Nanomedicines Via Drug-Drug Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415902. [PMID: 39792782 PMCID: PMC11884566 DOI: 10.1002/advs.202415902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are identified as effective carriers for antineoplastic drugs, with high drug loading. Nanomedicines, PEG-coated indomethacin/paclitaxel nanomedicine (PiPTX), and laminarin-modified indomethacin/paclitaxel nanomedicine (LiDOX), are developed with extended circulation and active targeting functions. Indomethacin/paclitaxel nanomedicine iDOX exhibits pH-responsive drug release in the tumor microenvironment. These nanomedicines enhance anti-tumor effects and reduce side effects, offering a rapid approach to clinical nanomedicine development.
Collapse
Affiliation(s)
- Chengyuan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative MedicineKunming Medical UniversityKunming650500China
| | - Yuchuan Yuan
- School of MedicineNorthwest UniversityXi'an710068China
| | - Qiong Xia
- Department of PharmacySchool of Pharmacy and BioengineeringChongqing University of TechnologyChongqing400054China
| | - Junjie Wang
- Department of PharmacySchool of Pharmacy and BioengineeringChongqing University of TechnologyChongqing400054China
| | - Kangkang Xu
- Department of PharmacySchool of Pharmacy and BioengineeringChongqing University of TechnologyChongqing400054China
| | - Zhiwei Gong
- Department of PharmacySchool of Pharmacy and BioengineeringChongqing University of TechnologyChongqing400054China
| | - Jie Lou
- Department of PharmacySchool of Pharmacy and BioengineeringChongqing University of TechnologyChongqing400054China
| | - Gen Li
- Department of PharmacySchool of Pharmacy and BioengineeringChongqing University of TechnologyChongqing400054China
| | - Lu Wang
- Department of PharmacySchool of Pharmacy and BioengineeringChongqing University of TechnologyChongqing400054China
| | - Li Zhou
- Department of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNanjing210009China
| | - Zhirui Liu
- Department of PharmacyXinan HospitalArmy Medical UniversityChongqing400038China
| | - Kui Luo
- Department of Radiologyand Department of GeriatricsHuaxi MR Research Center (HMRRC)National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityNo. 37 Guoxue AlleyChengdu610041China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative MedicineKunming Medical UniversityKunming650500China
| |
Collapse
|
7
|
Tan H, Cai M, Wang J, Yu T, Xia H, Zhao H, Zhang X. Harnessing Macrophages in Cancer Therapy: from Immune Modulators to Therapeutic Targets. Int J Biol Sci 2025; 21:2235-2257. [PMID: 40083710 PMCID: PMC11900799 DOI: 10.7150/ijbs.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Macrophages, as the predominant phagocytes, play an essential role in pathogens defense and tissue homeostasis maintenance. In the context of cancer, tumor-associated macrophages (TAMs) have evolved into cunning actors involved in angiogenesis, cancer cell proliferation and metastasis, as well as the construction of immunosuppressive microenvironment. Once properly activated, macrophages can kill tumor cells directly through phagocytosis or attack tumor cells indirectly by stimulating innate and adaptive immunity. Thus, the prospect of targeting TAMs has sparked significant interest and emerged as a promising strategy in immunotherapy. In this review, we summarize the diverse roles and underlying mechanisms of TAMs in cancer development and immunity and highlight the TAM-based therapeutic strategies such as inhibiting macrophage recruitment, inhibiting the differentiation reprogramming of TAMs, blocking phagocytotic checkpoints, inducing trained macrophages, as well as the potential of engineered CAR-armed macrophages in cancer therapy.
Collapse
Affiliation(s)
- Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province, China
- General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meihe Cai
- Department of Traditional Chinese Medicine, Zhushan Renmin Hospital, Zhushan, 442200, China
| | | | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanbin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Present: Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoyu Zhang
- Department of Gastrointestinal Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
8
|
Nelson BE, O'Brien S, Sheth RA, Hong DS, Naing A, Zhang X, Xu A, Hamuro L, Suryawanshi R, McKinley D, Novosiadly RD, Piha-Paul SA. Phase I study of BMS-986299, an NLRP3 agonist, as monotherapy and in combination with nivolumab and ipilimumab in patients with advanced solid tumors. J Immunother Cancer 2025; 13:e010013. [PMID: 39824531 PMCID: PMC11749293 DOI: 10.1136/jitc-2024-010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
PURPOSE BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses. MATERIALS AND METHODS This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results. RESULTS 36 patients were enrolled, with breast (31%), colorectal (17%), and head and neck (14%) being the more commonly enrolled cancers. Most patients (58%) had received prior immunotherapy. Therapy was well-tolerated, with G1-G2 fever (70%), neutrophilia (36%), and leukocytosis (33%) being the most common treatment-related adverse events with one case of G4 interstitial nephritis and one case of G3 hepatotoxicity and G3 colitis. Intratumoral BMS-986299 monotherapy resulted in dose-dependent increases in systemic exposure with increase in tumor CTLs (67%), CD4+ TILs (63%), along with notable above twofold increases in serum IL-1B, G-CSF and IL-6 at doses above 2000 µg. Systemic BMS-986299 exposure was positively associated with systemic cytokine elevation for G-CSF and IL-6. No antitumor activity was noted in BMS-986299 monotherapy cohort. However, in the combination therapy cohort (BMS-986299+nivolumab+ipilimumab), overall objective response rate was 10%, with confirmed PRs observed in TNBC, hormone receptor-positive, human epidermal growth factor receptor 2 negative breast cancer, and cutaneous squamous cell carcinoma. CONCLUSION BMS-986299 in combination with immune checkpoint inhibitors demonstrated manageable toxicities, good tolerability, and promising antitumor activity in certain cancer types. TRIAL REGISTRATION NUMBER NCT03444753.
Collapse
Affiliation(s)
- Blessie E Nelson
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shaun O'Brien
- Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Rahul A Sheth
- Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Hong
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoping Zhang
- Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Amy Xu
- Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Lora Hamuro
- Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Rasika Suryawanshi
- Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Derrick McKinley
- Early Clinical Development, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | - Sarina A Piha-Paul
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Lau VWC, Mead GJ, Varyova Z, Mazet JM, Krishnan A, Roberts EW, Prota G, Gileadi U, Midwood KS, Cerundolo V, Gérard A. Remodelling of the immune landscape by IFNγ counteracts IFNγ-dependent tumour escape in mouse tumour models. Nat Commun 2025; 16:2. [PMID: 39746898 PMCID: PMC11696141 DOI: 10.1038/s41467-024-54791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Loss of IFNγ-sensitivity by tumours is thought to be a mechanism enabling evasion, but recent studies suggest that IFNγ-resistant tumours can be sensitised for immunotherapy, yet the underlying mechanism remains unclear. Here, we show that IFNγ receptor-deficient B16-F10 mouse melanoma tumours are controlled as efficiently as WT tumours despite their lower MHC class I expression. Mechanistically, IFNγ receptor deletion in B16-F10 tumours increases IFNγ availability, triggering a remodelling of the immune landscape characterised by inflammatory monocyte infiltration and the generation of 'mono-macs'. This altered myeloid compartment synergises with an increase in antigen-specific CD8+ T cells to promote anti-tumour immunity against IFNγ receptor-deficient tumours, with such an immune crosstalk observed around blood vessels. Importantly, analysis of transcriptomic datasets suggests that similar immune remodelling occurs in human tumours carrying mutations in the IFNγ pathway. Our work thus serves mechanistic insight for the crosstalk between tumour IFNγ resistance and anti-tumour immunity, and implicates this regulation for future cancer therapy.
Collapse
Affiliation(s)
- Vivian W C Lau
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Gracie J Mead
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zofia Varyova
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anagha Krishnan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Immunodynamics Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Gennaro Prota
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Xu S, Meng L, Hu Q, Li F, Zhang J, Kong N, Xing Z, Hong G, Zhu X. Closed-Loop Control of Macrophage Engineering Enabled by Focused-Ultrasound Responsive Mechanoluminescence Nanoplatform for Precise Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401398. [PMID: 39101277 DOI: 10.1002/smll.202401398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Macrophage engineering has emerged as a promising approach for modulating the anti-tumor immune response in cancer therapy. However, the spatiotemporal control and real-time feedback of macrophage regulatory process is still challenging, leading to off-targeting effect and delayed efficacy monitoring therefore raising risk of immune overactivation and serious side effects. Herein, a focused ultrasound responsive immunomodulator-loaded optical nanoplatform (FUSION) is designed to achieve spatiotemporal control and status reporting of macrophage engineering in vivo. Under the stimulation of focused ultrasound (FUS), the immune agonist encapsulated in FUSION can be released to induce selective macrophage M1 phenotype differentiation at tumor site and the near-infrared mechanoluminescence of FUSION is generated simultaneously to indicate the initiation of immune activation. Meanwhile, the persistent luminescence of FUSION is enhanced due to hydroxyl radical generation in the pro-inflammatory M1 macrophages, which can report the effectiveness of macrophage regulation. Then, macrophages labeled with FUSION as a living immunotherapeutic agent (FUSION-M) are utilized for tumor targeting and focused ultrasound activated, immune cell-based cancer therapy. By combining the on-demand activation and feedback to form a closed loop, the nanoplatform in this work holds promise in advancing the controllability of macrophage engineering and cancer immunotherapy for precision medicine.
Collapse
Affiliation(s)
- Sixin Xu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Lingkai Meng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Fang Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jieying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
11
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
12
|
Lozzi I, Arnold A, Barone M, Johnson JC, Sinn BV, Eschrich J, Gebert P, Wang R, Hu M, Feldbrügge L, Schirmeier A, Reutzel-Selke A, Malinka T, Krenzien F, Schöning W, Modest DP, Pratschke J, Sauer IM, Felsenstein M. Clinical prognosticators and targets in the immune microenvironment of intrahepatic cholangiocarcinoma. Oncoimmunology 2024; 13:2406052. [PMID: 39359389 PMCID: PMC11445892 DOI: 10.1080/2162402x.2024.2406052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/06/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation. Methods Liver tissue samples were collected during 2008-2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53). Results CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells ("hot" cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression. Conclusions These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with "hot" TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn "cold" into "hot" TIME in ICC.
Collapse
Affiliation(s)
- Isis Lozzi
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Arnold
- Department of Pathology, CCM, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Barone
- Translational Immunology, Berlin Institute of Health & Charité University Medicine, Berlin, Germany
| | - Juliette Claire Johnson
- Translational Immunology, Berlin Institute of Health & Charité University Medicine, Berlin, Germany
| | - Bruno V Sinn
- Department of Pathology, CCM, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Pimrapat Gebert
- Institute of Biometry and Clinical Epidemiology, CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruonan Wang
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mengwen Hu
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Linda Feldbrügge
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Anja Schirmeier
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Malinka
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik P Modest
- Department of Hematology, Oncology, and Cancer Immunology, CCM, CVK, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- DKFZ, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthäus Felsenstein
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| |
Collapse
|
13
|
Bo Y, Wang H. Biomaterial-Based In Situ Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210452. [PMID: 36649567 PMCID: PMC10408245 DOI: 10.1002/adma.202210452] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen-presenting cells and subsequent T cell priming processes are among the first FDA-approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen-specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor-specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials-based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials-based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
15
|
Li J, Bai M, Jia W, Zhai X, Wang M, Yu J, Zhu H. Irradiated tumor cell-released microparticles enhance the therapeutic efficacy of PD-1 inhibitors by promoting M1-TAMs polarization in NSCLC brain metastases. Cancer Lett 2024; 598:217133. [PMID: 39079563 DOI: 10.1016/j.canlet.2024.217133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Brain metastases (BMs) are the most common sites of metastasis in patients with non-small cell lung cancer (NSCLC). However, BMs are not responsive to immunotherapy because of the blood-brain barrier. This is because intracranial immune cells such as M2 tumor-associated macrophages (TAMs) accumulate, creating an immunosuppressive tumor microenvironment. In this study, we focused on irradiated tumor cell-released microparticles (RT-MPs) that can cross the blood-brain barrier and influence the intracranial immune microenvironment. Using animal models of BMs, we observed that RT-MPs could penetrate the blood-brain barrier and be swallowed by TAMs. Then the microenvironment of TAMs is shifted from the M2 phenotype to the M1 phenotype, thereby modulating the interactions between TAMs and tumor cells. Single-cell sequencing analysis demonstrated that TAMs, after internalizing RT-MPs, active chemokine signaling pathways and secrete more chemokines, such as CCL5, CXCL2, CXCL1, CCL3, CCL4, and CCL22, attracting more CD4+ T cells and CD8+ T cells, improving immune-mediated killing, and enhancing subsequent combination anti-PD-1 therapy. These findings provide a preclinical foundation for exploring alternative treatments for patients with immunoresistant NSCLC BMs.
Collapse
Affiliation(s)
- Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Menglin Bai
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenxiao Jia
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
16
|
Li W, Yuan Q, Li M, He X, Shen C, Luo Y, Tai Y, Li Y, Deng Z, Luo Y. Research advances on signaling pathways regulating the polarization of tumor-associated macrophages in lung cancer microenvironment. Front Immunol 2024; 15:1452078. [PMID: 39144141 PMCID: PMC11321980 DOI: 10.3389/fimmu.2024.1452078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer (LC) is one of the most common cancer worldwide. Tumor-associated macrophages (TAMs) are important component of the tumor microenvironment (TME) and are closely related to the stages of tumor occurrence, development, and metastasis. Macrophages are plastic and can differentiate into different phenotypes and functions under the influence of different signaling pathways in TME. The classically activated (M1-like) and alternatively activated (M2-like) represent the two polarization states of macrophages. M1 macrophages exhibit anti-tumor functions, while M2 macrophages are considered to support tumor cell survival and metastasis. Macrophage polarization involves complex signaling pathways, and blocking or regulating these signaling pathways to enhance macrophages' anti-tumor effects has become a research hotspot in recent years. At the same time, there have been new discoveries regarding the modulation of TAMs towards an anti-tumor phenotype by synthetic and natural drug components. Nanotechnology can better achieve combination therapy and targeted delivery of drugs, maximizing the efficacy of the drugs while minimizing side effects. Up to now, nanomedicines targeting the delivery of various active substances for reprogramming TAMs have made significant progress. In this review, we primarily provided a comprehensive overview of the signaling crosstalk between TAMs and various cells in the LC microenvironment. Additionally, the latest advancements in novel drugs and nano-based drug delivery systems (NDDSs) that target macrophages were also reviewed. Finally, we discussed the prospects of macrophages as therapeutic targets and the barriers to clinical translation.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Quan Yuan
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu He
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yurui Luo
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunze Tai
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer 2024; 23:150. [PMID: 39068459 PMCID: PMC11282869 DOI: 10.1186/s12943-024-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.
Collapse
Affiliation(s)
- Xiangyuan Chu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| |
Collapse
|
18
|
Sun J, Du J, Liu X, An J, Hu Y, Wang J, Zhu F, Feng H, Cheng S, Tian H, Mei X, Wu C. Chondroitin sulfate-modified tragacanth gum-gelatin composite nanocapsules loaded with curcumin nanocrystals for the treatment of arthritis. J Nanobiotechnology 2024; 22:270. [PMID: 38769551 PMCID: PMC11104008 DOI: 10.1186/s12951-024-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses, and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1β, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.
Collapse
Affiliation(s)
- Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yu Hu
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jing Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Fu Zhu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Huicong Feng
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Shuai Cheng
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
19
|
Tie CW, Zhu JQ, Yu Z, Dou LZ, Wang ML, Wang GQ, Ni XG. Revealing molecular and cellular heterogeneity in hypopharyngeal carcinogenesis through single-cell RNA and TCR/BCR sequencing. Front Immunol 2024; 15:1310376. [PMID: 38720887 PMCID: PMC11076829 DOI: 10.3389/fimmu.2024.1310376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Hypopharyngeal squamous cell carcinoma (HSCC) is one of the malignant tumors with the worst prognosis in head and neck cancers. The transformation from normal tissue through low-grade and high-grade intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a progressive pathological sequence typical of tumorigenesis. Nonetheless, the alterations in diverse cell clusters within the tissue microenvironment (TME) throughout tumorigenesis and their impact on the development of HSCC are yet to be fully understood. Methods We employed single-cell RNA sequencing and TCR/BCR sequencing to sequence 60,854 cells from nine tissue samples representing different stages during the progression of HSCC. This allowed us to construct dynamic transcriptomic maps of cells in diverse TME across various disease stages, and experimentally validated the key molecules within it. Results We delineated the heterogeneity among tumor cells, immune cells (including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts and endothelial cells) during the tumorigenesis of HSCC. We uncovered the alterations in function and state of distinct cell clusters at different stages of tumor development and identified specific clusters closely associated with the tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3 and MMP3, pivotal for the diagnosis and treatment of HSCC. Discussion Our research sheds light on the dynamic alterations within the TME during the tumorigenesis of HSCC, which will help to understand its mechanism of canceration, identify early diagnostic markers, and discover new therapeutic targets.
Collapse
MESH Headings
- Humans
- Hypopharyngeal Neoplasms/genetics
- Hypopharyngeal Neoplasms/pathology
- Hypopharyngeal Neoplasms/immunology
- Single-Cell Analysis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Carcinogenesis/genetics
- Sequence Analysis, RNA
- Transcriptome
- Biomarkers, Tumor/genetics
- Squamous Cell Carcinoma of Head and Neck/genetics
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/pathology
- Gene Expression Regulation, Neoplastic
- Male
Collapse
Affiliation(s)
- Cheng-Wei Tie
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Qing Zhu
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhan Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li-Zhou Dou
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Ling Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Gui-Qi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Guang Ni
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, Moon EK, Georgiou G, Valerius T, Albelda SM, Eruslanov EB. Human Tumor-Associated Macrophages and Neutrophils Regulate Antitumor Antibody Efficacy through Lethal and Sublethal Trogocytosis. Cancer Res 2024; 84:1029-1047. [PMID: 38270915 PMCID: PMC10982649 DOI: 10.1158/0008-5472.can-23-2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.
Collapse
Affiliation(s)
- Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhishek S. Rao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Stadanlick
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bruns
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres Bermudez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Honig-Frand
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Krouse
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sachinthani Arambepola
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Guo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund K. Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Thomas Valerius
- Department of Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B. Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Wang J, Cui SP, Zhao Q, Gao Y, Ji Y, Liu Y, Miao JB, Fu YL, Hu B. Preoperative systemic immune-inflammation index-based nomogram for lung carcinoma following microwave ablation -a real world single center study. Front Oncol 2024; 14:1305262. [PMID: 38571504 PMCID: PMC10987766 DOI: 10.3389/fonc.2024.1305262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Background The preoperative inflammatory condition significantly influences the prognosis of malignancies. We aimed to investigate the potential significance of preoperative inflammatory biomarkers in forecasting the long-term results of lung carcinoma after microwave ablation (MWA). Method This study included patients who received MWA treatment for lung carcinoma from Jan. 2012 to Dec. 2020. We collected demographic, clinical, laboratory, and outcome information. To assess the predictive capacity of inflammatory biomarkers, we utilized the area under the receiver operating characteristic curve (AUC-ROC) and assessed the predictive potential of inflammatory biomarkers in forecasting outcomes through both univariate and multivariate Cox proportional hazard analyses. Results A total of 354 individuals underwent MWA treatment, of which 265 cases were included in this study, whose average age was 69.1 ± 9.7 years. The AUC values for the Systemic Inflammatory Response Index (SIRI) to overall survival (OS) and disease-free survival (DFS) were 0.796 and 0.716, respectively. The Cox proportional hazards model demonstrated a significant independent association between a high SIRI and a decreased overall survival (hazard ratio [HR]=2.583, P<0.001). Furthermore, a high SIRI independently correlated with a lower DFS (HR=2.391, P<0.001). We developed nomograms utilizing various independent factors to forecast the extended prognosis of patients. These nomograms exhibited AUC of 0.900, 0.849, and 0.862 for predicting 1-year, 3-year, and 5-year OS, respectively. Additionally, the AUC values for predicting 1-year, 3-year, and 5-year DFS were 0.851, 0.873, and 0.883, respectively. Conclusion SIRI has shown promise as a valuable long-term prognostic indicator for forecasting the outcomes of lung carcinoma patients following MWA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi-li Fu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Yang S, Wang M, Hua Y, Li J, Zheng H, Cui M, Huang N, Liu Q, Liao Q. Advanced insights on tumor-associated macrophages revealed by single-cell RNA sequencing: The intratumor heterogeneity, functional phenotypes, and cellular interactions. Cancer Lett 2024; 584:216610. [PMID: 38244910 DOI: 10.1016/j.canlet.2024.216610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an emerging technology used for cellular transcriptome analysis. The application of scRNA-seq has led to profoundly advanced oncology research, continuously optimizing novel therapeutic strategies. Intratumor heterogeneity extensively consists of all tumor components, contributing to different tumor behaviors and treatment responses. Tumor-associated macrophages (TAMs), the core immune cells linking innate and adaptive immunity, play significant roles in tumor progression and resistance to therapies. Moreover, dynamic changes occur in TAM phenotypes and functions subject to the regulation of the tumor microenvironment. The heterogeneity of TAMs corresponding to the state of the tumor microenvironment has been comprehensively recognized using scRNA-seq. Herein, we reviewed recent research and summarized variations in TAM phenotypes and functions from a developmental perspective to better understand the significance of TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
23
|
Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resist Updat 2024; 73:101041. [PMID: 38198845 DOI: 10.1016/j.drup.2023.101041] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Macrophages are important components of the immune system. Mature macrophages can be recruited to tumor microenvironment that affect tumor cell proliferation, invasion and metastasis, extracellular matrix remodeling, immune suppression, as well as chemotherapy resistance. Classically activated type I macrophages (M1) exhibited marked tumor killing and phagocytosis. Therefore, using macrophages for adoptive cell therapy has attracted attention and become one of the most effective strategies for cancer treatment. Through cytokines and/or chemokines, macrophage can inhibit myeloid cells recruitment, and activate anti-tumor and immune killing functions. Applying macrophages for anti-tumor delivery is one of the most promising approaches for cancer therapy. This review article introduces the role of macrophages in tumor development and drug resistance, and the possible clinical application of targeting macrophages for overcoming drug resistance and enhancing cancer therapeutics, as well as its challenges.
Collapse
Affiliation(s)
- Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Surgical Oncology, Harbin Medical University Cancer Hospital, PR China.
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Urology, Harbin Medical University Cancer Hospital, PR China.
| |
Collapse
|
24
|
Wang L, Guo W, Guo Z, Yu J, Tan J, Simons DL, Hu K, Liu X, Zhou Q, Zheng Y, Colt EA, Yim J, Waisman J, Lee PP. PD-L1-expressing tumor-associated macrophages are immunostimulatory and associate with good clinical outcome in human breast cancer. Cell Rep Med 2024; 5:101420. [PMID: 38382468 PMCID: PMC10897617 DOI: 10.1016/j.xcrm.2024.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/09/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Tumor-associated macrophages (TAMs) are the predominant cells that express programmed cell death ligand 1 (PD-L1) within human tumors in addition to cancer cells, and PD-L1+ TAMs are generally thought to be immunosuppressive within the tumor immune microenvironment (TIME). Using single-cell transcriptomic and spatial multiplex immunofluorescence analyses, we show that PD-L1+ TAMs are mature and immunostimulatory with spatial preference to T cells. In contrast, PD-L1- TAMs are immunosuppressive and spatially co-localize with cancer cells. Either higher density of PD-L1+ TAMs alone or ratio of PD-L1+/PD-L1- TAMs correlate with favorable clinical outcome in two independent cohorts of patients with breast cancer. Mechanistically, we show that PD-L1 is upregulated during the monocyte-to-macrophage maturation and differentiation process and does not require external IFN-γ stimulus. Functionally, PD-L1+ TAMs are more mature/activated and promote CD8+ T cells proliferation and cytotoxic capacity. Together, our findings reveal insights into the immunological significance of PD-L1 within the TIME.
Collapse
Affiliation(s)
- Lei Wang
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong 518055, China.
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhikun Guo
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong 518055, China
| | - Jiangnan Yu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong 518055, China
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ke Hu
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, Guangdong 518055, China
| | - Xinyu Liu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong 518055, China
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong 518055, China
| | - Yizi Zheng
- Department of Thyroid and Breast Surgery, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518035, China
| | - Egelston A Colt
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - John Yim
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - James Waisman
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
25
|
Liu Y, He J, Li M, Ren K, Zhao Z. Inflammation-Driven Nanohitchhiker Enhances Postoperative Immunotherapy by Alleviating Prostaglandin E2-Mediated Immunosuppression. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6879-6893. [PMID: 38300288 DOI: 10.1021/acsami.3c17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Inflammation contributes to the immunosuppressive microenvironment and leads to the recurrence of surgically resected tumors. The COX-2/PGE2 axis is considered a key player in shaping the immunosuppression microenvironment. However, targeted modulation of the postoperative tumor microenvironment is challenging. To specifically curb the inflammation and alleviate immunosuppression, here, we developed a PGE2 inhibitor celecoxib (CXB)-loaded bionic nanoparticle (CP@CM) coated with activated murine vascular endothelial cell (C166 cells) membrane to target postoperative melanoma and inhibit its recurrence. CP@CM adhered to inflammatory white blood cells (WBCs) through the adhesion molecules, including ICAM-1, VCAM-1, E-selectin, and P-selection, expressed on the surface of C166 cells. Leveraging the natural tropism of the WBC to the inflammatory postoperative tumor site, CP@CM efficiently targeted postoperative tumors. In melanoma postoperative recurrence models, CXB significantly reduced PGE2 secretion and the recruitment of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) by inhibiting the activity of COX-2. This was followed by an increase in the infiltration of CD8+ T cells and CD4+ T cells in tumor tissues. Additionally, the immune responses were further enhanced by combining a PD-L1 monoclonal antibody. Ultimately, this immunotherapeutic strategy reversed the tumor immunosuppressive microenvironment and inhibited tumor recurrence, demonstrating a promising potential for postoperative immunotherapy for melanoma.
Collapse
Affiliation(s)
- Yingke Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| |
Collapse
|
26
|
Kaviani E, Hajibabaie F, Abedpoor N, Safavi K, Ahmadi Z, Karimy A. System biology analysis to develop diagnostic biomarkers, monitoring pathological indexes, and novel therapeutic approaches for immune targeting based on maggot bioactive compounds and polyphenolic cocktails in mice with gastric cancer. ENVIRONMENTAL RESEARCH 2023; 238:117168. [PMID: 37742751 DOI: 10.1016/j.envres.2023.117168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Early diagnosis and prognosis are prerequisites for mitigating mortality in gastric cancer (GaCa). Identifying some causative or sensitive elements (coding RNA (cRNA)-non-cRNAs (ncRNAs)) can be very helpful in the early diagnosis of GaCa. Notably, despite significant development in the GaCa treatment, the outcome of patients does not remain satisfactory due to limitations such as multi-drug resistance and tumor relapse. Therefore, more attention has been drawn to complementary therapies and the use of supplements. In this regard, Polyphenol natural compounds (PNC) and maggot larvae (MaLa) alone or in combination were administered along with chemotherapy (paclitaxel) to N-methyl-N-nitrosourea (MNU)- induced murine tumor model. In addition, in order to identify potential diagnostic or prognostic biomarkers, transcriptomics analysis was performed through a bioinformatics approach. Then transcription profile of ncRNAs with their target hub genes was assessed through qPCR Real-Time, Western blot, and ELISA. According to the bioinformatics results, 17 hub genes (e.g., IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1β, SPP1, LOX, COL1A1, and IFN-γ) were explored that contribute towards inflammation and oxidative stress and ultimately GaCa development. Upstream of the mentioned hub genes, regulatory factors (lncRNA XIST and NEAT1) were also identified and introduced as prognosis and diagnosis biomarkers for GaCa. Our results showed that PNC alone and in combination with MaLa was able to reduce the size and number of tumors, which is related to the reduction of genes expression levels (including IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1β, SPP1, LOX, COL1A1, IFN-γ, NEAT1, and XIST). In conclusion, PNC and MaLa have the potential to be considered as complementary and improving chemotherapy due to their effective compounds. Also, the introduced hub gene and lncRNA in addition to diagnostic and prognostic biomarkers can be used as druggable proteins for novel therapeutic targeting of GaCa.
Collapse
Affiliation(s)
- Elina Kaviani
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Zahra Ahmadi
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Azadeh Karimy
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
27
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
28
|
Frank ASJ, Larripa K, Ryu H, Röblitz S. Macrophage phenotype transitions in a stochastic gene-regulatory network model. J Theor Biol 2023; 575:111634. [PMID: 37839584 DOI: 10.1016/j.jtbi.2023.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Polarization is the process by which a macrophage cell commits to a phenotype based on external signal stimulation. To know how this process is affected by random fluctuations and events within a cell is of utmost importance to better understand the underlying dynamics and predict possible phenotype transitions. For this purpose, we develop a stochastic modeling approach for the macrophage polarization process. We classify phenotype states using the Robust Perron Cluster Analysis and quantify transition pathways and probabilities by applying Transition Path Theory. Depending on the model parameters, we identify four bistable and one tristable phenotype configuration. We find that bistable transitions are fast but their states less robust. In contrast, phenotype transitions in the tristable situation have a comparatively long time duration, which reflects the robustness of the states. The results indicate parallels in the overall transition behavior of macrophage cells with other heterogeneous and plastic cell types, such as cancer cells. Our approach allows for a probabilistic interpretation of macrophage phenotype transitions and biological inference on phenotype robustness. In general, the methodology can easily be adapted to other systems where random state switches are known to occur.
Collapse
Affiliation(s)
| | - Kamila Larripa
- Department of Mathematics, California State Polytechnic University Humboldt, Arcata, CA, USA.
| | - Hwayeon Ryu
- Department of Mathematics and Statistics, Elon University, Elon, NC, USA.
| | - Susanna Röblitz
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
29
|
Li LG, Yang XX, Xu HZ, Yu TT, Li QR, Hu J, Peng XC, Han N, Xu X, Chen NN, Chen X, Tang JM, Li TF. A Dihydroartemisinin-Loaded Nanoreactor Motivates Anti-Cancer Immunotherapy by Synergy-Induced Ferroptosis to Activate Cgas/STING for Reprogramming of Macrophage. Adv Healthc Mater 2023; 12:e2301561. [PMID: 37567571 DOI: 10.1002/adhm.202301561] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.
Collapse
Affiliation(s)
- Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao-Xin Yang
- School Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ting-Ting Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Jun Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
- Department of Pathology, Sinopharm DongFeng General Hospital, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ning Han
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Nan-Nan Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| |
Collapse
|
30
|
Vogel A, Weichhart T. Tissue-resident macrophages - early passengers or drivers in the tumor niche? Curr Opin Biotechnol 2023; 83:102984. [PMID: 37572419 DOI: 10.1016/j.copbio.2023.102984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Macrophages within the tumor microenvironment of solid tumors and metastasis are heterogeneous populations, which contribute to diverse steps of tumorigenesis. Tumor-associated macrophages (TAMs) can either derive from circulation-derived monocytes or tissue-resident macrophages (TRMs). In health, TRMs populate the majority of tissues, orchestrating critical homeostatic and reparative functions. While TRM-specific functions in tumor initiation and progression remain unclear, recent studies have revealed that TRMs are a significant source of TAMs in both mouse and human cancers, where they closely resemble gene signatures of their normal, organ-specific TRM counterparts. In this review, we highlight recent advances toward systematically understanding the role of TRMs as an important TAM subset and opportunities how this macrophage population could be exploited for therapeutical targeting strategies.
Collapse
Affiliation(s)
- Andrea Vogel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University Vienna, Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Khalaji A, Yancheshmeh FB, Farham F, Khorram A, Sheshbolouki S, Zokaei M, Vatankhah F, Soleymani-Goloujeh M. Don't eat me/eat me signals as a novel strategy in cancer immunotherapy. Heliyon 2023; 9:e20507. [PMID: 37822610 PMCID: PMC10562801 DOI: 10.1016/j.heliyon.2023.e20507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer stands as one of the prominent global causes of death, with its incidence burden continuously increasing, leading to a substantial rise in mortality rates. Cancer treatment has seen the development of various strategies, each carrying its drawbacks that can negatively impact the quality of life for cancer patients. The challenge remains significant within the medical field to establish a definitive cancer treatment that minimizes complications and limitations. In the forthcoming years, exploring new strategies to surmount the failures in cancer treatment appears to be an unavoidable pursuit. Among these strategies, immunology-based ones hold substantial promise in combatting cancer and immune-related disorders. A particular subset of this approach identifies "eat me" and "Don't eat me" signals in cancer cells, contrasting them with their counterparts in non-cancerous cells. This distinction could potentially mark a significant breakthrough in treating diverse cancers. By delving into signal transduction and engineering novel technologies that utilize distinct "eat me" and "Don't eat me" signals, a valuable avenue may emerge for advancing cancer treatment methodologies. Macrophages, functioning as vital components of the immune system, regulate metabolic equilibrium, manage inflammatory disorders, oversee fibrosis, and aid in the repair of injuries. However, in the context of tumor cells, the overexpression of "Don't eat me" signals like CD47, PD-L1, and beta-2 microglobulin (B2M), an anti-phagocytic subunit of the primary histocompatibility complex class I, enables these cells to evade macrophages and proliferate uncontrollably. Conversely, the presentation of an "eat me" signal, such as Phosphatidylserine (PS), along with alterations in charge and glycosylation patterns on the cellular surface, modifications in intercellular adhesion molecule-1 (ICAM-1) epitopes, and the exposure of Calreticulin and PS on the outer layer of the plasma membrane represent universally observed changes on the surface of apoptotic cells, preventing phagocytosis from causing harm to adjacent non-tumoral cells. The current review provides insight into how signaling pathways and immune cells either stimulate or obstruct these signals, aiming to address challenges that may arise in future immunotherapy research. A potential solution lies in combination therapies targeting the "eat me" and "Don't eat me" signals in conjunction with other targeted therapeutic approaches. This innovative strategy holds promise as a novel avenue for the future treatment of cancer.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatereh Baharlouei Yancheshmeh
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Farham
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Khorram
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Shiva Sheshbolouki
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Veterinary Medicine, Beyza Branch, Islamic Azad University, Beyza, Iran
| | - Fatemeh Vatankhah
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
32
|
Jian J, Yuan C, Ji C, Hao H, Lu F. DNA methylation-based subtypes of acute myeloid leukemia with distinct prognosis and clinical features. Clin Exp Med 2023; 23:2639-2649. [PMID: 36645547 PMCID: PMC10543573 DOI: 10.1007/s10238-022-00980-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/12/2022] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) is a malignancy of the stem cell precursors of the myeloid lineage. DNA methylation is an important DNA modification that regulates gene expression. Investigating AML heterogeneity based on DNA methylation could be clinically informative for improving clinical diagnosis and prognosis. The AML subtypes based on DNA methylation were identified by unsupervised consensus clustering. The association of these subtypes with gene mutation, copy number variations, immune infiltration and clinical features were further explored. Finally, univariate, LASSO and multivariate cox regression analyses were used to identify prognosis-associated genes and construct risk model for AML patients. In addition, we validated this model by using other datasets and explored the involved biological functions and pathways of its related genes. Three CpG island methylator phenotypes (CIMP-H, CIMP-M and CIMP-L) were identified using the 91 differential CpG sites. Overall survival, morphology, macrophages M0 and monocytes were distinct from each other. The most frequently mutated gene in CIMP-L was DNMT3A while which in CIMP-M that was RUNX1. In addition, the TIDE scores, used to predict the response to immune checkpoint inhibitors, were significantly different among CIMPs. The CIMP-associated prognosis risk model (CPM) using 32 key genes had convinced accuracy of prediction to forecast 0.5-year, 1-year, 3-year and 5-year survival rates. Moreover, the risk score-related genes were significantly enriched in pattern specification process, regionalization, embryonic organ morphogenesis and other critical cancer-related biological functions. We systematically and comprehensively analyzed the DNA methylation in AML. The risk model we constructed is an independent predictor of overall survival in AML and could be used as prognostic factor for AML treatment.
Collapse
Affiliation(s)
- Jimo Jian
- Department of Hematology, Qilu Hospital of Shandong University, Qingdao, 266035, Shandong, People's Republic of China
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Chenglu Yuan
- Department of Hematology, Qilu Hospital of Shandong University, Qingdao, 266035, Shandong, People's Republic of China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Hongyuan Hao
- Department of Hematology, Qilu Hospital of Shandong University, Qingdao, 266035, Shandong, People's Republic of China.
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
33
|
Chang CY, Armstrong D, Corry DB, Kheradmand F. Alveolar macrophages in lung cancer: opportunities challenges. Front Immunol 2023; 14:1268939. [PMID: 37822933 PMCID: PMC10562548 DOI: 10.3389/fimmu.2023.1268939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Alveolar macrophages (AMs) are critical components of the innate defense mechanism in the lung. Nestled tightly within the alveoli, AMs, derived from the yolk-sac or bone marrow, can phagocytose foreign particles, defend the host against pathogens, recycle surfactant, and promptly respond to inhaled noxious stimuli. The behavior of AMs is tightly dependent on the environmental cues whereby infection, chronic inflammation, and associated metabolic changes can repolarize their effector functions in the lungs. Several factors within the tumor microenvironment can re-educate AMs, resulting in tumor growth, and reducing immune checkpoint inhibitors (ICIs) efficacy in patients treated for non-small cell lung cancer (NSCLC). The plasticity of AMs and their critical function in altering tumor responses to ICIs make them a desirable target in lung cancer treatment. New strategies have been developed to target AMs in solid tumors reprograming their suppressive function and boosting the efficacy of ICIs. Here, we review the phenotypic and functional changes in AMs in response to sterile inflammation and in NSCLC that could be critical in tumor growth and metastasis. Opportunities in altering AMs' function include harnessing their potential function in trained immunity, a concept borrowed from memory response to infections, which could be explored therapeutically in managing lung cancer treatment.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Dominique Armstrong
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
34
|
Zhang X, Wei Z, Yong T, Li S, Bie N, Li J, Li X, Liu H, Xu H, Yan Y, Zhang B, Chen X, Yang X, Gan L. Cell microparticles loaded with tumor antigen and resiquimod reprogram tumor-associated macrophages and promote stem-like CD8 + T cells to boost anti-PD-1 therapy. Nat Commun 2023; 14:5653. [PMID: 37704614 PMCID: PMC10499806 DOI: 10.1038/s41467-023-41438-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
The durable response rate to immune checkpoint blockade such as anti-programmed cell death-1 (PD-1) antibody remains relatively low in hepatocellular carcinoma (HCC), mainly depending on an immunosuppressive microenvironment with limited number of CD8+ T cells, especially stem-like CD8+ T cells, in tumor tissues. Here we develop engineered microparticles (MPs) derived from alpha-fetoprotein (AFP)-overexpressing macrophages to load resiquimod (R848@M2pep-MPsAFP) for enhanced anti-PD-1 therapy in HCC. R848@M2pep-MPsAFP target and reprogram immunosuppressive M2-like tumor-associated macrophages (TAMs) into M1-like phenotype. Meanwhile, R848@M2pep-MPsAFP-reprogrammed TAMs act as antigen-presenting cells, not only presenting AFP antigen to activate CD8+ T cell-mediated antitumor immunity, but also providing an intra-tumoral niche to maintain and differentiate stem-like CD8+ T cells. Combination immunotherapy with anti-PD-1 antibody generates strong antitumor immune memory and induces abundant stem-like CD8+ T cell proliferation and differentiation to terminally exhausted CD8+ T cells for long-term immune surveillance in orthotopic and autochthonous HCC preclinical models in male mice. We also show that the R848-loaded engineered MPs derived from macrophages overexpressing a model antigen ovalbumin (OVA) can improve anti-PD-1 therapy in melanoma B16-OVA tumor-bearing mice. Our work presents a facile and generic strategy for personalized cancer immunotherapy to boost anti-PD-1 therapy.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haojie Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Yan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Shukla S, Saha T, Rama N, Acharya A, Le T, Bian F, Donovan J, Tan LA, Vatner R, Kalinichenko V, Mascia A, Perentesis JP, Kalin TV. Ultra-high dose-rate proton FLASH improves tumor control. Radiother Oncol 2023; 186:109741. [PMID: 37315577 PMCID: PMC10527231 DOI: 10.1016/j.radonc.2023.109741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONVpr) to ultrahigh dose-rate proton therapy, FLASHpr, in a mouse model of non-small cell lung cancers (NSCLC). MATERIALS AND METHODS Mice bearing orthotopic lung tumors received thoracic radiation therapy using CONVpr (<0.05 Gy/s) and FLASHpr (>60 Gy/s) dose rates. RESULTS Compared to CONVpr, FLASHpr was more effective in reducing tumor burden and decreasing tumor cell proliferation. Furthermore, FLASHpr was more efficient in increasing the infiltration of cytotoxic CD8+ T-lymphocytes inside the tumor while simultaneously reducing the percentage of immunosuppressive regulatory T-cells (Tregs) among T-lymphocytes. Also, compared to CONVpr, FLASHpr was more effective in decreasing pro-tumorigenic M2-like macrophages in lung tumors, while increasing infiltration of anti-tumor M1-like macrophages. Finally, FLASHpr treatment reduced expression of checkpoint inhibitors in lung tumors, indicating reduced immune tolerance. CONCLUSIONS Our results suggest that FLASH dose-rate proton delivery modulates the immune system to improve tumor control and might thus be a promising new alternative to conventional dose rates for NSCLC treatment.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Taniya Saha
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Nihar Rama
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Lin Abigail Tan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Ralph Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John P Perentesis
- Cincinnati Children's Hospital Medical Center, Division of Oncology, Division of Experimental Hematology, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States.
| |
Collapse
|
36
|
Cieniewicz B, Bhatta A, Torabi D, Baichoo P, Saxton M, Arballo A, Nguyen L, Thomas S, Kethar H, Kukutla P, Shoaga O, Yu B, Yang Z, Fate M, Oliveira E, Ning H, Corey L, Corey D. Chimeric TIM-4 receptor-modified T cells targeting phosphatidylserine mediates both cytotoxic anti-tumor responses and phagocytic uptake of tumor-associated antigen for T cell cross-presentation. Mol Ther 2023; 31:2132-2153. [PMID: 37194236 PMCID: PMC10362418 DOI: 10.1016/j.ymthe.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
To leverage complementary mechanisms for cancer cell removal, we developed a novel cell engineering and therapeutic strategy co-opting phagocytic clearance and antigen presentation activity into T cells. We engineered a chimeric engulfment receptor (CER)-1236, which combines the extracellular domain of TIM-4, a phagocytic receptor recognizing the "eat me" signal phosphatidylserine, with intracellular signaling domains (TLR2/TIR, CD28, and CD3ζ) to enhance both TIM-4-mediated phagocytosis and T cell cytotoxic function. CER-1236 T cells demonstrate target-dependent phagocytic function and induce transcriptional signatures of key regulators responsible for phagocytic recognition and uptake, along with cytotoxic mediators. Pre-clinical models of mantle cell lymphoma (MCL) and EGFR mutation-positive non-small cell lung cancer (NSCLC) demonstrate collaborative innate-adaptive anti-tumor immune responses both in vitro and in vivo. Treatment with BTK (MCL) and EGFR (NSCLC) inhibitors increased target ligand, conditionally driving CER-1236 function to augment anti-tumor responses. We also show that activated CER-1236 T cells exhibit superior cross-presentation ability compared with conventional T cells, triggering E7-specific TCR T responses in an HLA class I- and TLR-2-dependent manner, thereby overcoming the limited antigen presentation capacity of conventional T cells. Therefore, CER-1236 T cells have the potential to achieve tumor control by eliciting both direct cytotoxic effects and indirect-mediated cross-priming.
Collapse
Affiliation(s)
| | - Ankit Bhatta
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Damoun Torabi
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Priya Baichoo
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Mike Saxton
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | - Linh Nguyen
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Sunil Thomas
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Harini Kethar
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | - Omolola Shoaga
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Bi Yu
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Zhuo Yang
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Maria Fate
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Edson Oliveira
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Hongxiu Ning
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel Corey
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA.
| |
Collapse
|
37
|
Rodriguez BL, Chen L, Li Y, Miao S, Peng DH, Fradette JJ, Diao L, Konen JM, Alvarez FRR, Solis LM, Yi X, Padhye A, Gibson LA, Ochieng JK, Zhou X, Wang J, Gibbons DL. Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance. Front Immunol 2023; 14:1161869. [PMID: 37449205 PMCID: PMC10336223 DOI: 10.3389/fimmu.2023.1161869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB. Recent studies indicate that myeloid cells are drivers of ICB resistance. In this study we sought to understand which immune cells were contributing to resistance and if we could modify them in a way to improve response to ICB therapy. Results Our results show that combination anti-PD-1/CTLA-4 produces an initial antitumor effect with evidence of an activated immune response. Upon extended treatment with anti-PD-1/CTLA-4 acquired resistance developed with an increase of the immunosuppressive populations, including T-regulatory cells, neutrophils and monocytes. Addition of anti-Ly6C blocking antibody to anti-PD-1/CTLA-4 was capable of completely reversing treatment resistance and restoring CD8 T cell activity in multiple KP lung cancer models and in the autochthonous lung cancer KrasLSL-G12D/p53fl/fl model. We found that there were higher classical Ly6C+ monocytes in anti-PD-1/CTLA-4 combination resistant tumors. B7 blockade illustrated the importance of dendritic cells for treatment efficacy of anti-Ly6C/PD-1/CTLA-4. We further determined that classical Ly6C+ monocytes in anti-PD-1/CTLA-4 resistant tumors are trafficked into the tumor via IFN-γ and the CCL2-CCR2 axis. Mechanistically we found that classical monocytes from ICB resistant tumors were unable to differentiate into antigen presenting cells and instead differentiated into immunosuppressive M2 macrophages or myeloid-derived suppressor cells (MDSC). Classical Ly6C+ monocytes from ICB resistant tumors had a decrease in both Flt3 and PU.1 expression that prevented differentiation into dendritic cells/macrophages. Conclusions Therapeutically we found that addition of anti-Ly6C to the combination of anti-PD-1/CTLA-4 was capable of complete tumor eradication. Classical Ly6C+ monocytes differentiate into immunosuppressive cells, while blockade of classical monocytes drives dendritic cell differentiation/maturation to reinvigorate the anti-tumor T cell response. These findings support that immunotherapy resistance is associated with infiltrating monocytes and that controlling the differentiation process of monocytes can enhance the therapeutic potential of ICB.
Collapse
Affiliation(s)
- B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yanli Li
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shucheng Miao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - David H. Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lixia Diao
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica M. Konen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frank R. Rojas Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaohui Yi
- Bellicum Pharmaceuticals, Inc., Houston, TX, United States
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aparna Padhye
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Laura A. Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua K. Ochieng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
38
|
Chen X, Li Y, Xia H, Chen YH. Monocytes in Tumorigenesis and Tumor Immunotherapy. Cells 2023; 12:1673. [PMID: 37443711 PMCID: PMC10340267 DOI: 10.3390/cells12131673] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Monocytes are highly plastic innate immune cells that display significant heterogeneity during homeostasis, inflammation, and tumorigenesis. Tumor-induced systemic and local microenvironmental changes influence the phenotype, differentiation, and distribution of monocytes. Meanwhile, monocytes and their related cell subsets perform an important regulatory role in the development of many cancers by affecting tumor growth or metastasis. Thanks to recent advances in single-cell technologies, the nature of monocyte heterogeneity and subset-specific functions have become increasingly clear, making it possible to systematically analyze subset-specific roles of monocytes in tumorigenesis. In this review, we discuss recent discoveries related to monocytes and tumorigenesis, and new strategies for tumor biomarker identification and anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | - Houjun Xia
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| | - Youhai H. Chen
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| |
Collapse
|
39
|
Zhang Y, Yang J, Zhang T, Gu H. Emerging advances in nanobiomaterials-assisted chimeric antigen receptor (CAR)-macrophages for tumor immunotherapy. Front Bioeng Biotechnol 2023; 11:1211687. [PMID: 37388769 PMCID: PMC10301827 DOI: 10.3389/fbioe.2023.1211687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Adoptive cell immunotherapy, especially chimeric antigen receptor (CAR)-T-cells therapy, has made great progress in the clinical treatment of hematological malignancies. However, restricted by the complex tumor microenvironment, the potential efficiency of T-cell infiltration and activated immune cells are limited, thus failure prevented the progression of the solid tumor. Alternatively, tumor-associated macrophages (TAMs), one sustentacular and heterogeneous cellular population within the tumor microenvironment, are regarded as potential therapeutic targets. Recently, CARs have shown tremendous promise in treating malignancies by equipping macrophages. This novel therapeutic strategy circumvents the tumor microenvironment's limitations and provides a safer therapeutic approach. Meanwhile, nanobiomaterials as gene delivery carriers not only substantially reduce the treatment cost of this novel therapeutic strategy, but also set the foundation for in vivo CAR-M therapy. Here, we highlight the major strategies prepared for CAR-M, emphasizing the challenges and opportunities of these approaches. First, the common therapeutic strategies for macrophages are summarized in clinical and preclinical trials. Namely, TAM-targeted therapeutic strategies: 1) Inhibit monocyte or macrophage recruitment into tumors, 2) deplete TAMs, and 3) reprogramme TAMs to antitumor M1 phenotype. Second, the current development and progress of CAR-M therapy are reviewed, including the researchers' attempts in CAR structure design, cell origin, and gene delivery vectors, especially nanobiomaterials as an alternative to viral vectors, as well as some challenges faced by current CAR-M therapy are also summarized and discussed. Finally, the field of genetically engineered macrophages integration with nanotechnology for the future in oncology has been prospected.
Collapse
Affiliation(s)
- Yanan Zhang
- Nano Biomedical Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jingxing Yang
- Nano Biomedical Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | | | - Hongchen Gu
- Nano Biomedical Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Pundkar C, Antony F, Kang X, Mishra A, Babu RJ, Chen P, Li F, Suryawanshi A. Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity. Heliyon 2023; 9:e16688. [PMID: 37313143 PMCID: PMC10258387 DOI: 10.1016/j.heliyon.2023.e16688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
The aberrant activation of Wnt/β-catenin signaling in tumor cells and immune cells in the tumor microenvironment (TME) promotes malignant transformation, metastasis, immune evasion, and resistance to cancer treatments. The increased Wnt ligand expression in TME activates β-catenin signaling in antigen (Ag)-presenting cells (APCs) and regulates anti-tumor immunity. Previously, we showed that activation of Wnt/β-catenin signaling in dendritic cells (DCs) promotes induction of regulatory T cell responses over anti-tumor CD4+ and CD8+ effector T cell responses and promotes tumor progression. In addition to DCs, tumor-associated macrophages (TAMs) also serve as APCs and regulate anti-tumor immunity. However, the role of β-catenin activation and its effect on TAM immunogenicity in TME is largely undefined. In this study, we investigated whether inhibiting β-catenin in TME-conditioned macrophages promotes immunogenicity. Using nanoparticle formulation of XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we performed in vitro macrophage co-culture assays with melanoma cells (MC) or melanoma cell supernatants (MCS) to investigate the effect on macrophage immunogenicity. We show that XAV-Np-treatment of macrophages conditioned with MC or MCS significantly upregulates the cell surface expression of CD80 and CD86 and suppresses the expression of PD-L1 and CD206 compared to MC or MCS-conditioned macrophages treated with control nanoparticle (Con-Np). Further, XAV-Np-treated macrophages conditioned with MC or MCS significantly increased IL-6 and TNF-α production, with reduced IL-10 production compared to Con-Np-treated macrophages. Moreover, the co-culture of MC and XAV-Np-treated macrophages with T cells resulted in increased CD8+ T cell proliferation compared to Con-Np-treated macrophages. These data suggest that targeted β-catenin inhibition in TAMs represents a promising therapeutic approach to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
41
|
Xu S, Wang C, Yang L, Wu J, Li M, Xiao P, Xu Z, Xu Y, Wang K. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy. Front Immunol 2023; 14:1199631. [PMID: 37313405 PMCID: PMC10258331 DOI: 10.3389/fimmu.2023.1199631] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Unprecedented breakthroughs have been made in cancer immunotherapy in recent years. Particularly immune checkpoint inhibitors have fostered hope for patients with cancer. However, immunotherapy still exhibits certain limitations, such as a low response rate, limited efficacy in certain populations, and adverse events in certain tumors. Therefore, exploring strategies that can improve clinical response rates in patients is crucial. Tumor-associated macrophages (TAMs) are the predominant immune cells that infiltrate the tumor microenvironment and express a variety of immune checkpoints that impact immune functions. Mounting evidence indicates that immune checkpoints in TAMs are closely associated with the prognosis of patients with tumors receiving immunotherapy. This review centers on the regulatory mechanisms governing immune checkpoint expression in macrophages and strategies aimed at improving immune checkpoint therapies. Our review provides insights into potential therapeutic targets to improve the efficacy of immune checkpoint blockade and key clues to developing novel tumor immunotherapies.
Collapse
Affiliation(s)
- Shumin Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenyang Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lingge Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jiaji Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengshu Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Peng Xiao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
42
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
43
|
Khlebus E, Vuttaradhi VK, Welte T, Khurana N, Celestino J, Beird HC, Gumbs C, Little L, Legarreta AF, Fellman BM, Nguyen T, Lawson B, Ferri-Borgogno S, Mok SC, Broaddus RR, Gershenson DM, Futreal PA, Hillman RT. Comparative Tumor Microenvironment Analysis of Primary and Recurrent Ovarian Granulosa Cell Tumors. Mol Cancer Res 2023; 21:483-494. [PMID: 37068116 PMCID: PMC10150241 DOI: 10.1158/1541-7786.mcr-22-0623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 02/02/2023] [Indexed: 04/18/2023]
Abstract
Adult-type granulosa cell tumors (aGCT) are rare ovarian sex cord tumors with few effective treatments for recurrent disease. The objective of this study was to characterize the tumor microenvironment (TME) of primary and recurrent aGCTs and to identify correlates of disease recurrence. Total RNA sequencing (RNA-seq) was performed on 24 pathologically confirmed, cryopreserved aGCT samples, including 8 primary and 16 recurrent tumors. After read alignment and quality-control filtering, DESeq2 was used to identify differentially expressed genes (DEG) between primary and recurrent tumors. Functional enrichment pathway analysis and gene set enrichment analysis was performed using "clusterProfiler" and "GSVA" R packages. TME composition was investigated through the analysis and integration of multiple published RNA-seq deconvolution algorithms. TME analysis results were externally validated using data from independent previously published RNA-seq datasets. A total of 31 DEGs were identified between primary and recurrent aGCTs. These included genes with known function in hormone signaling such as LHCGR and INSL3 (more abundant in primary tumors) and CYP19A1 (more abundant in recurrent tumors). Gene set enrichment analysis revealed that primarily immune-related and hormone-regulated gene sets expression was increased in recurrent tumors. Integrative TME analysis demonstrated statistically significant depletion of cancer-associated fibroblasts in recurrent tumors. This finding was confirmed in multiple independent datasets. IMPLICATIONS Recurrent aGCTs exhibit alterations in hormone pathway gene expression as well as decreased infiltration of cancer-associated fibroblasts, suggesting dual roles for hormonal signaling and TME remodeling underpinning disease relapse.
Collapse
Affiliation(s)
- Eleonora Khlebus
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veena K. Vuttaradhi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thomas Welte
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Namrata Khurana
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hannah C. Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alejandra Flores Legarreta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryan M. Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tri Nguyen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barrett Lawson
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samuel C. Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, North Carolina
| | - David M. Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - R. Tyler Hillman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- CPRIT Scholar in Cancer Research, Houston, Texas
| |
Collapse
|
44
|
Li ZZ, He JY, Wu Q, Liu B, Bu LL. Recent advances in targeting myeloid-derived suppressor cells and their applications to radiotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:233-264. [PMID: 37438019 DOI: 10.1016/bs.ircmb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogenous immature myeloid cells with potent immune suppressive properties that not only constrain anti-tumor immune activation and functions, promote tumor progression, but also contribute to treatment resistance and tumor relapse. Targeting MDSCs may be a promising new cancer treatment method, but there is still a problem of low treatment efficiency. Combined application with radiotherapy may be a potential method to solve this problem. Drug delivery systems (DDSs) provide more efficient targeted drug delivery capability and can reduce the toxicity and side effects of drugs. Recent advance in DDSs targeting development, recruitment, differentiation, and elimination of MDSCs have shown promising effect in reversing immune inhibition and in overcoming radiotherapy resistance. In this review, we systematically summarized DDSs applied to target MDSCs for the first time, and classified and discussed it according to its different mechanisms of action. In addition, this paper also reviewed the biological characteristics of MDSCs and their role in the initiation, progression, and metastasis of cancer. Moreover, this review also summarizes the role of DDSs targeting MDSCs in radiosensitization. Finally, the future development of DDSs targeting MDSCs is also prospected.
Collapse
Affiliation(s)
- Zi-Zhan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jing-Yu He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Chen X, Yang Y, Ye G, Liu S, Liu J. Chiral Ruthenium Nanozymes with Self-Cascade Reaction Driven the NO Generation Induced Macrophage M1 Polarization Realizing the Lung Cancer "Cocktail Therapy". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207823. [PMID: 37029560 DOI: 10.1002/smll.202207823] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Macrophages as the main cause of cancer immunosuppression, how to effectively induce macrophage M1 polarization remain the major challenge in lung cancer therapy. Herein, inspired by endogenous reactions, a strategy is proposed to coactivate macrophage M1 polarization by reactive oxygen species (ROS) and nitric oxide (NO) with self-autocatalytic cascade reaction. To enhance the generation of NO and ROS, NO Precursor-Arginine as capping agents for inducing synthesis two kinds of chiral ruthenium nanozyme (D/L-Arginine@Ru). Under the properties of Ru nanozymes through synchronously mimicking the activity of oxidase and nitric oxide synthase (NOS), chiral Ru nanozyme can rapidly generate 1 O2 and O2 at first stage, and then catalyze Arginine to produce sufficient NO, thus enhance macrophage M1 polarization to reverse tumor immunosuppression. Moreover, combination the antitumor activity of 1 O2 , NO, the chiral Ru nanozymes realize the "cocktail therapy" by inducing tumor cell apoptosis as well as ferroptosis. In addition, the chirality influences the bioactivity of Ru nanozymes that L-Arginine@Ru shows the better therapeutic effect with stronger catalytic activity and natural homology. It is hoped the high performance of chiral Ru nanozyme with "cocktail therapy" is an effective therapeutic reagent and can provide a feasible treatment strategy for tumor catalytic therapy.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, P. R. China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, P. R. China
| | - Yonglan Yang
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, P. R. China
| | - Gang Ye
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, P. R. China
| | - Shengming Liu
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, P. R. China
| | - Jie Liu
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
46
|
Lin CY, Huang KY, Kao SH, Lin MS, Lin CC, Yang SC, Chung WC, Chang YH, Chein RJ, Yang PC. Small-molecule PIK-93 modulates the tumor microenvironment to improve immune checkpoint blockade response. SCIENCE ADVANCES 2023; 9:eade9944. [PMID: 37027467 PMCID: PMC10081850 DOI: 10.1126/sciadv.ade9944] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-L1 immunotherapy are state-of-the-art treatments for advanced non-small cell lung cancer (NSCLC). However, the treatment response of certain patients with NSCLC is unsatisfactory because of an unfavorable tumor microenvironment (TME) and poor permeability of antibody-based ICIs. In this study, we aimed to discover small-molecule drugs that can modulate the TME to enhance ICI treatment efficacy in NSCLC in vitro and in vivo. We identified a PD-L1 protein-modulating small molecule, PIK-93, using a cell-based global protein stability (GPS) screening system. PIK-93 mediated PD-L1 ubiquitination by enhancing the PD-L1-Cullin-4A interaction. PIK-93 reduced PD-L1 levels on M1 macrophages and enhanced M1 antitumor cytotoxicity. Combined PIK-93 and anti-PD-L1 antibody treatment enhanced T cell activation, inhibited tumor growth, and increased tumor-infiltrating lymphocyte (TIL) recruitment in syngeneic and human peripheral blood mononuclear cell (PBMC) line-derived xenograft mouse models. PIK-93 facilitates a treatment-favorable TME when combined with anti-PD-L1 antibodies, thereby enhancing PD-1/PD-L1 blockade cancer immunotherapy.
Collapse
Affiliation(s)
- Chia-Yi Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kuo-Yen Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Han Kao
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ming-Shiu Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chih-Chien Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wei-Chia Chung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
47
|
Han N, Yang ZY, Xie ZX, Xu HZ, Yu TT, Li QR, Li LG, Peng XC, Yang XX, Hu J, Xu X, Chen X, Wang MF, Li TF. Dihydroartemisinin elicits immunogenic death through ferroptosis-triggered ER stress and DNA damage for lung cancer immunotherapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154682. [PMID: 36739636 DOI: 10.1016/j.phymed.2023.154682] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.
Collapse
Affiliation(s)
- Ning Han
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Department of hand Microsurgery, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Zi-Yi Yang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Zhong-Xiong Xie
- Department of hand Microsurgery, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Ting-Ting Yu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Department of hand Microsurgery, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiao-Xin Yang
- School Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jun Hu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Tong-Fei Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
48
|
Noe JT, Ding C, Geller AE, Rendon BE, Yan J, Mitchell RA. A Tumor-admixture Model to Interrogate Immune Cell-dependent Tumorigenesis. Bio Protoc 2023; 13:e4630. [PMID: 36908637 PMCID: PMC9993080 DOI: 10.21769/bioprotoc.4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
A rigorous determination of effector contributions of tumor-infiltrating immune cells is critical for identifying targetable molecular mechanisms for the development of novel cancer immunotherapies. A tumor/immune cell-admixture model is an advantageous strategy to study tumor immunology as the fundamental methodology is relatively straightforward, while also being adaptable to scale to address increasingly complex research queries. Ultimately, this method can provide robust experimental information to complement more traditional murine models of tumor immunology. Here, we describe a tumor/macrophage-admixture model using bone marrow-derived macrophages to investigate macrophage-dependent tumorigenesis. Additionally, we provide commentary on potential branch points for optimization with other immune cells, experimental techniques, and cancer types.
Collapse
Affiliation(s)
- Jordan T Noe
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA.,J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Chuanlin Ding
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA.,J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY 40202, USA
| | - Anne E Geller
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA.,J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Beatriz E Rendon
- J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA.,J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY 40202, USA
| | - Robert A Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA.,J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
49
|
Huynh D, Winter P, Märkl F, Endres S, Kobold S. Beyond direct killing-novel cellular immunotherapeutic strategies to reshape the tumor microenvironment. Semin Immunopathol 2023; 45:215-227. [PMID: 36167831 PMCID: PMC10121530 DOI: 10.1007/s00281-022-00962-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
The clinical use of cellular immunotherapies is gaining momentum and the number of approved indications is steadily increasing. One class of cellular therapies-chimeric antigen receptor (CAR)-modified T cells-has achieved impressive results in distinct blood cancer indications. These existing cellular therapies treating blood cancers face significant relapse rates, and their application beyond hematology has been underwhelming, especially in solid oncology. Major reasons for resistance source largely in the tumor microenvironment (TME). The TME in fact functionally suppresses, restricts, and excludes adoptive immune cells, which limits the efficacy of cellular immunotherapies from the onset. Many promising efforts are ongoing to adapt cellular immunotherapies to address these obstacles, with the aim of reshaping the tumor microenvironment to ameliorate function and to achieve superior efficacy against both hematological and solid malignancies.
Collapse
Affiliation(s)
- Duc Huynh
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Pia Winter
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Florian Märkl
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Stefan Endres
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
- Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany
- German Center for Translational Cancer Research (DKTK), partner site Munich, Heidelberg, Germany
| | - Sebastian Kobold
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany.
- Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
- German Center for Translational Cancer Research (DKTK), partner site Munich, Heidelberg, Germany.
| |
Collapse
|
50
|
Bruno G, Nastasi N, Subbiani A, Boaretto A, Ciullini Mannurita S, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M. β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 2023:10.1038/s41417-023-00599-x. [PMID: 36854895 DOI: 10.1038/s41417-023-00599-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via β-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of β3-adrenergic receptor (β3-AR) on NB tumor cells affected tumor growth and progression. Here, in a murine syngeneic model of NB, we aimed to investigate whether the β3-AR modulation influenced the host immune system response against tumor. Results demonstrated that β3-AR antagonism lead to an immune response reactivation, partially dependent on the PD-1/PD-L1 signaling axis involvement. Indeed, β3-AR blockade on tumor-infiltrating lymphocytes (TILs) dampened their ability to secrete IFN-γ, which in turn reduced the PD-L1 expression, caused by TILs infiltration, on NB tumor cells. Further investigations, through a genomic analysis on NB patients, showed that high ADRB3 gene expression correlates with worse clinical outcome compared to the low expression group, and that ADRB3 gene expression affects different immune-related pathways. Overall, results indicate that β3-AR in NB TME is able to modulate the interaction between tumor and host immune system, and that its antagonism hits multiple pro-tumoral signaling pathways.
Collapse
Affiliation(s)
- Gennaro Bruno
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy. .,Department of Health Sciences, University of Florence, Florence, Italy.
| | - Nicoletta Nastasi
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Subbiani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alessia Boaretto
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela De Marco
- Pediatric Hematology and Oncology, University Hospital of Pisa, Pisa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maura Calvani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|