1
|
Brockhurst JK, Salciccioli BE, Griffin DE. Sphingosine-1-phosphate signaling mediates shedding of measles virus-infected respiratory epithelial cells. J Virol 2025; 99:e0188024. [PMID: 40145737 PMCID: PMC11998495 DOI: 10.1128/jvi.01880-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Measles virus (MeV) is an extremely infectious respiratory virus and a major cause of childhood morbidity and mortality worldwide. MeV infection of the respiratory epithelium induces shedding of multinucleate epithelial cells from the apical surface of the epithelium without compromising epithelial barrier integrity. To study the mechanisms driving the apical extrusion of MeV-infected respiratory epithelial cells, we used primary differentiated tracheal epithelial cell cultures (rhTECs) and respiratory samples from rhesus macaques infected with wild-type MeV (WT MeV) or live-attenuated MeV (LAMV). We show that sphingosine-1-phosphate (S1P) signaling, rather than cell death or inflammasome activation, plays a key role in WT MeV and LAMV-induced cell shedding. Inhibiting S1P signaling resulted in delayed shedding of clusters of infected cells and higher viral titers within the epithelium, suggesting that cell extrusion impacts viral dynamics within the respiratory tract. We also found that shedding of individual infected cells began early after apical infection, prior to the formation of infected cell clusters within the epithelium. These findings offer new insights into MeV biology and pathogenesis within the respiratory tract. IMPORTANCE Despite the availability of a safe and effective vaccine, measles virus (MeV) still has a significant global impact, and in 2022 alone led to over 136,000 deaths. MeV is one of the most contagious known viruses and spreads via the respiratory route. When respiratory epithelial cells are infected, they are shed into the lumen of the respiratory tract, but this process is poorly understood. Here, we use primary differentiated respiratory epithelial cells from rhesus macaques to show that sphingosine-1-phosphate (S1P) signaling, and not cell death or inflammasome activation, plays a role in cell shedding during both wild-type and live-attenuated MeV infection. Through this mechanism, MeV-infected cells are extruded without disrupting the integrity of the respiratory epithelium. Inhibiting S1P signaling resulted in delayed shedding of infected cells and higher viral titers in the epithelium. These findings indicate that host cellular responses play an important role in MeV infectivity.
Collapse
Affiliation(s)
- Jacqueline K. Brockhurst
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brittany E. Salciccioli
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Diane E. Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Watkins TA, Brockhurst JK, Germain G, Griffin DE, Foxman EF. Detection of Live Attenuated Measles Virus in the Respiratory Tract Following Subcutaneous Measles-Mumps-Rubella Vaccination. J Infect Dis 2025; 231:1089-1093. [PMID: 39504437 PMCID: PMC11998556 DOI: 10.1093/infdis/jiae537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The live attenuated measles vaccine is extremely effective in preventing measles and induces mucosal immunity in the respiratory tract; however, the mechanism is not known. We show that live attenuated measles virus (LAMV) RNA is frequently detected in the respiratory tract 7-21 days after subcutaneous measles-mumps-rubella (MMR) vaccination in healthy children (n = 5/20) and macaques (n = 6/8). Replicating LAMV was isolated from the lungs of 2 macaques, with no evidence of transmission to unvaccinated individuals. These observations suggest that LAMV in the respiratory tract may play a role in the development of robust mucosal immunity following MMR vaccination.
Collapse
Affiliation(s)
- Timothy A Watkins
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacqueline K Brockhurst
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MarylandUSA
| | - Gregory Germain
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Diane E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MarylandUSA
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Huang Y, Wang W, Liu Y, Wang Z, Cao B. COVID-19 vaccine updates for people under different conditions. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2323-2343. [PMID: 39083202 DOI: 10.1007/s11427-024-2643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 10/22/2024]
Abstract
SARS-CoV-2 has caused global waves of infection since December 2019 and continues to persist today. The emergence of SARS-CoV-2 variants with strong immune evasion capabilities has compromised the effectiveness of existing vaccines against breakthrough infections. Therefore, it is important to determine the best utilization strategies for different demographic groups given the variety of vaccine options available. In this review, we will discuss the protective efficacy of vaccines during different stages of the epidemic and emphasize the importance of timely updates to target prevalent variants, which can significantly improve immune protection. While it is recognized that vaccine effectiveness may be lower in certain populations such as the elderly, individuals with chronic comorbidities (e.g., diabetes with poor blood glucose control, those on maintenance dialysis), or those who are immunocompromised compared to the general population, administering multiple doses can result in a strong protective immune response that outweighs potential risks. However, caution should be exercised when considering vaccines that might trigger an intense immune response in populations prone to inflammatory flare or other complications. In conclusion, individuals with special conditions require enhanced and more effective immunization strategies to prevent infection or reinfection, as well as to avoid the potential development of long COVID.
Collapse
Affiliation(s)
- Yijiao Huang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiyang Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Changping Laboratory, Beijing, 102200, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
4
|
Moss WJ, Griffin DE. What's going on with measles? J Virol 2024; 98:e0075824. [PMID: 39041786 PMCID: PMC11334507 DOI: 10.1128/jvi.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Measles is a highly transmissible systemic viral infection associated with substantial mortality primarily due to secondary infections. Measles induces lifelong immunity to reinfection but loss of immunity to other pathogens. An attenuated live virus vaccine is highly effective, but lapses in delivery have resulted in increasing cases worldwide. Although the primary cause of failure to control measles is failure to vaccinate, waning vaccine-induced immunity and the possible emergence of more virulent virus strains may also contribute.
Collapse
Affiliation(s)
- William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Szinger D, Berki T, Drenjančević I, Samardzic S, Zelić M, Sikora M, Požgain A, Markovics Á, Farkas N, Németh P, Böröcz K. Raising Epidemiological Awareness: Assessment of Measles/MMR Susceptibility in Highly Vaccinated Clusters within the Hungarian and Croatian Population-A Sero-Surveillance Analysis. Vaccines (Basel) 2024; 12:486. [PMID: 38793737 PMCID: PMC11125914 DOI: 10.3390/vaccines12050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Perceptions of the complete eradication of vaccine-preventable diseases such as measles, mumps, and rubella (MMR) may foster complacency and compromise vaccination efforts. Decreased measles vaccination rates during the COVID-19 pandemic have heightened the risk of outbreaks, even in adequately vaccinated populations. To address this, we have aligned with ECDC recommendations, leveraging previous cross-border sero-epidemiological assessments between Pécs, Hungary, and Osijek, Croatia, to identify latent risk groups and uncover potential parallels between our nations. Testing 2680 Hungarian and 1764 Croatian serum samples for anti-MMR IgG via ELISAs revealed anti-measles seropositivity ratios below expectations in Croatian cohorts aged ~20-30 (75.7%), ~30-40 (77.5%) and ~40-50 years (73.3%). Similarly, Hungarian samples also showed suboptimal seropositivity ratios in the ~30-40 (80.9%) and ~40-50 (87.3%) age groups. Considering mumps- and rubella-associated seropositivity trends, in both examined populations, individuals aged ~30-50 years exhibited the highest vulnerability. Additionally, we noted congruent seropositivity trends across both countries, despite distinct immunization and epidemiological contexts. Therefore, we propose expanding research to encompass the intricate dynamics of vaccination, including waning long-term immunity. This understanding could facilitate targeted interventions and bolster public awareness. Our findings underscore persistent challenges in attaining robust immunity against measles despite vaccination endeavors.
Collapse
Affiliation(s)
- Dávid Szinger
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.); (T.B.); (P.N.)
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.); (T.B.); (P.N.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Scientific Centre for Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Samardzic
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia; (S.S.); (M.Z.); (M.S.); (A.P.)
| | - Marija Zelić
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia; (S.S.); (M.Z.); (M.S.); (A.P.)
| | - Magdalena Sikora
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia; (S.S.); (M.Z.); (M.S.); (A.P.)
| | - Arlen Požgain
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia; (S.S.); (M.Z.); (M.S.); (A.P.)
- Department of Microbiology, Parasitology and Clinical Laboratory Diagnostics, Medical Faculty of Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ákos Markovics
- Department of General and Physical Chemistry, Faculty of Natural Sciences, University of Pécs, 7622 Pécs, Hungary;
| | - Nelli Farkas
- Department of Bioanalysis, Medical School, University of Pécs, Szigeti u. 12, 7643 Pécs, Hungary;
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.); (T.B.); (P.N.)
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.); (T.B.); (P.N.)
| |
Collapse
|
6
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
7
|
Simons BD, Karin O. Tuning of plasma cell lifespan by competition explains the longevity and heterogeneity of antibody persistence. Immunity 2024; 57:600-611.e6. [PMID: 38447570 DOI: 10.1016/j.immuni.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Plasma cells that emerge after infection or vaccination exhibit heterogeneous lifespans; most survive for days to months, whereas others persist for decades, providing antigen-specific long-term protection. We developed a mathematical framework to explore the dynamics of plasma cell removal and its regulation by survival factors. Analyses of antibody persistence following hepatitis A and B and HPV vaccination revealed specific patterns of longevity and heterogeneity within and between responses, implying that this process is fine-tuned near a critical "flat" state between two dynamic regimes. This critical state reflects the tuning of rates of the underlying regulatory network and is highly sensitive to variation in parameters, which amplifies lifespan differences between cells. We propose that fine-tuning is the generic outcome of competition over shared survival signals, with a competition-based mechanism providing a unifying explanation for a wide range of experimental observations, including the dynamics of plasma cell accumulation and the effects of survival factor deletion. Our theory is testable, and we provide specific predictions.
Collapse
Affiliation(s)
- Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
8
|
Zemella A, Beer K, Ramm F, Wenzel D, Düx A, Merkel K, Calvignac-Spencer S, Stern D, Dorner MB, Dorner BG, Widulin N, Schnalke T, Walter C, Wolbert A, Schmid BG, Mankertz A, Santibanez S. Vaccine-induced neutralizing antibodies bind to the H protein of a historical measles virus. Int J Med Microbiol 2024; 314:151607. [PMID: 38367508 DOI: 10.1016/j.ijmm.2024.151607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Kerstin Beer
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Ariane Düx
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany
| | - Kevin Merkel
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sebastien Calvignac-Spencer
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany; Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Daniel Stern
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | | | | | - Cornelia Walter
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Anne Wolbert
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Bernhard G Schmid
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Annette Mankertz
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany.
| |
Collapse
|
9
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Xu J, Zhang Y, Qu P, Shamseldin MM, Yoo SJ, Misny J, Thongpan I, KC M, Hall JM, Evans JP, Eltobgy M, Lu M, Ye C, Chamblee M, Liang X, Martinez-Sobrido L, Amer AO, Yount JS, Boyaka PN, Peeples ME, Liu SL, Dubey P, Li J. A next-generation intranasal trivalent MMS vaccine induces durable and broad protection against SARS-CoV-2 variants of concern. Proc Natl Acad Sci U S A 2023; 120:e2220403120. [PMID: 37796985 PMCID: PMC10576135 DOI: 10.1073/pnas.2220403120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.
Collapse
Affiliation(s)
- Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Panke Qu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Helwan11795, Egypt
| | - Sung J. Yoo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jack Misny
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Mahesh KC
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - John P. Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Chengjin Ye
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH43210
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
11
|
Peart Akindele NA, Katamoni LD, Brockhurst J, Ghimire S, Suwanmanee S, Pieterse L, Metcalf Pate KA, Bunyan E, Bannister R, Cihlar T, Porter DP, Griffin DE. Effect of remdesivir post-exposure prophylaxis and treatment on pathogenesis of measles in rhesus macaques. Sci Rep 2023; 13:6463. [PMID: 37081035 PMCID: PMC10116456 DOI: 10.1038/s41598-023-33572-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Measles is a systemic disease initiated in the respiratory tract with widespread measles virus (MeV) infection of lymphoid tissue. Mortality can be substantial, but no licensed antiviral therapy is available. We evaluated both post-exposure prophylaxis and treatment with remdesivir, a broad-spectrum antiviral, using a well-characterized rhesus macaque model of measles. Animals were treated with intravenous remdesivir for 12 days beginning either 3 days after intratracheal infection (post-exposure prophylaxis, PEP) or 11 days after infection at the onset of disease (late treatment, LT). As PEP, remdesivir lowered levels of viral RNA in peripheral blood mononuclear cells, but RNA rebounded at the end of the treatment period and infectious virus was continuously recoverable. MeV RNA was cleared more rapidly from lymphoid tissue, was variably detected in the respiratory tract, and not detected in urine. PEP did not improve clinical disease nor lymphopenia and reduced the antibody response to infection. In contrast, LT had little effect on levels of viral RNA or the antibody response but also did not decrease clinical disease. Therefore, remdesivir transiently suppressed expression of viral RNA and limited dissemination when provided as PEP, but virus was not cleared and resumed replication without improvement in the clinical disease parameters evaluated.
Collapse
Affiliation(s)
- Nadine A Peart Akindele
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- United States Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Laharika Dasharath Katamoni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
- BioCheck, Inc., South San Francisco, CA, 94080, USA
| | - Jacqueline Brockhurst
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Shristi Ghimire
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
| | - San Suwanmanee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
- Department of Epidemiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Tomas Cihlar
- Gilead Sciences Inc., Foster City, CA, 94404, USA
| | | | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5636, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
13
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
14
|
Suwanmanee S, Ghimire S, Edwards J, Griffin DE. Infection of Pro- and Anti-Inflammatory Macrophages by Wild Type and Vaccine Strains of Measles Virus: NLRP3 Inflammasome Activation Independent of Virus Production. Viruses 2023; 15:260. [PMID: 36851476 PMCID: PMC9961283 DOI: 10.3390/v15020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In humans and non-human primates, wild type (WT) measles virus (MeV) replicates extensively in lymphoid tissue and induces an innate response characteristic of NF-κB and inflammasome activation without type I interferon. In contrast, the live attenuated MeV vaccine (LAMV) replicates poorly in lymphoid tissue with little detectable in vivo cytokine production. To characterize the innate responses of macrophages to WT MeV and LAMV infection, we analyzed primary human monocyte-derived macrophages and phorbol myristic acid-matured monocytic THP-1 cells (M0) polarized to inflammatory (M1) and anti-inflammatory (M2) phenotypes 24 h after MeV infection. LAMV infected macrophages more efficiently than WT MeV but produced less virus than WT MeV-infected macrophages. Both strains induced production of NF-κB-responsive cytokines IL-6 and TNFα and inflammasome products IL-1β and IL-18 without evidence of pyroptosis. Analysis of THP-1 cells deficient in inflammasome sensors NOD-like receptor pyrin (NLRP)3, IFN-γ-inducible protein 16 (IFI16) or absent in melanoma (AIM)2; adaptor apoptosis-associated speck-like protein containing a CARD (ASC) or effector caspase 1 showed that IL-18 production was dependent on NLRP3, ASC, and caspase 1. However, M1 cells produced IL-1β in the absence of ASC or caspase 1 indicating alternate pathways for MeV-induced pro-IL-1β processing. Therefore, the innate response to in vitro infection of macrophages with both LAMV and WT MeV includes production of IL-6 and TNFα and activation of the NLRP3 inflammasome to release IL-1β and IL-18. LAMV attenuation impairs production of infectious virus but does not reduce ability to infect macrophages or innate responses to infection.
Collapse
Affiliation(s)
| | | | | | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Advances in Next-Generation Coronavirus Vaccines in Response to Future Virus Evolution. Vaccines (Basel) 2022; 10:vaccines10122035. [PMID: 36560445 PMCID: PMC9785936 DOI: 10.3390/vaccines10122035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread to more than 230 countries and territories worldwide since its outbreak in late 2019. In less than three years, infection by SARS-CoV-2 has resulted in over 600 million cases of COVID-19 and over 6.4 million deaths. Vaccines have been developed with unimaginable speed, and 11 have already been approved by the World Health Organization and given Emergency Use Listing. The administration of several first-generation SARS-CoV-2 vaccines has successfully decelerated the spread of COVID-19 but not stopped it completely. In the ongoing fight against viruses, genetic mutations frequently occur in the viral genome, resulting in a decrease in vaccine-induced antibody neutralization and widespread breakthrough infection. Facing the evolution and uncertainty of SARS-CoV-2 in the future, and the possibility of the spillover of other coronaviruses to humans, the need for vaccines with a broad spectrum of antiviral variants against multiple coronaviruses is recognized. It is imperative to develop a universal coronavirus or pan-coronavirus vaccine or drug to combat the ongoing COVID-19 pandemic as well as to prevent the next coronavirus pandemic. In this review, in addition to summarizing the protective effect of approved vaccines, we systematically summarize current work on the development of vaccines aimed at suppressing multiple SARS-CoV-2 variants of concern as well as multiple coronaviruses.
Collapse
|
17
|
Zhang Y, Lu M, Mahesh KC, Kim E, Shamseldin MM, Ye C, Dravid P, Chamblee M, Park JG, Hall JM, Trivedi S, Chaiwatpongsakorn S, Kenny AD, Murthy SS, Sharma H, Liang X, Yount JS, Kapoor A, Martinez-Sobrido L, Dubey P, Boyaka PN, Peeples ME, Li J. A highly efficacious live attenuated mumps virus-based SARS-CoV-2 vaccine candidate expressing a six-proline stabilized prefusion spike. Proc Natl Acad Sci U S A 2022; 119:e2201616119. [PMID: 35895717 PMCID: PMC9388148 DOI: 10.1073/pnas.2201616119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - K C Mahesh
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Chengjin Ye
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jun-Gyu Park
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Supranee Chaiwatpongsakorn
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Adam D. Kenny
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Satyapramod Srinivasa Murthy
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
18
|
Abstract
DNA viruses often persist in the body of their host, becoming latent and recurring many months or years later. By contrast, most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist. However, it is becoming clear that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This persistence can either be asymptomatic or associated with late progressive disease or nonspecific lingering symptoms, such as may be the case following infection with Ebola or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Why does viral RNA sometimes persist after recovery from an acute infection? Where does the RNA come from? And what are the consequences?
Collapse
|
19
|
Dynamic Features of Herd Immunity: Similarities in Age-Specific Anti-Measles Seroprevalence Data between Two Countries of Different Epidemiological History. J Clin Med 2022; 11:jcm11041145. [PMID: 35207418 PMCID: PMC8879765 DOI: 10.3390/jcm11041145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Measles immunization gap(s) raise the concern of potential outbreaks. Both Croatia and Hungary are situated in the vicinity of measles-endemic countries. Potentially compromised immunization activities due to the COVID-19 surge is a ground for concern. Our aim was to compare age-stratified seroprevalence results in the cross-border region. (2) Methods: Anti-MMR specific antibody levels (IgG) of 950 anonymous Croatian samples were compared with previous Hungarian results (n > 3500 samples), and former Croatian seroprevalence data (n = 1205). Seropositivity ratios were determined using our self-developed anti-MMR indirect ELISA (Euroimmun IgG ELISA kits were used as control). (3) Results: Measured seropositivity ratios of the Croatian samples were largely overlapping with our earlier published Hungarian data (the lowest seropositivity ratios were measured among individuals of 34–43 years of age with 78% of seropositivity) and are in accordance with earlier published data of Croatian researchers. (4) Conclusion: Although the epidemiological histories of the two countries are different, analogies in age-specific measles susceptibility have been discovered. We suggest that besides the potential coincidence in vaccination ineffectiveness, the inherent biological dynamics of vaccination-based humoral protection might have also contributed to the experienced similarities. Our findings may also serve as a lesson regarding the current anti-COVID-19 vaccination strategy.
Collapse
|
20
|
Yu J, Li S, Wang L, Dong Z, Si L, Bao L, Wu L. Pathogenesis of Brucella epididymoorchitis-game of Brucella death. Crit Rev Microbiol 2021; 48:96-120. [PMID: 34214000 DOI: 10.1080/1040841x.2021.1944055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. Human infection often results from direct contact with tissues from infected animals or by consumption of undercooked meat and unpasteurised dairy products, causing serious economic losses and public health problems. The male genitourinary system is a common involved system in patients with brucellosis. Among them, unilateral orchitis and epididymitis are the most common. Although the clinical and imaging aspect of orchi-epididymitis caused by brucellosis have been widely described, the cellular and molecular mechanisms involved in the damage and the immune response in testis and epididymis have not been fully elucidated. In this review, we first summarised the clinical characteristics of Brucella epididymo-orchitis and the composition of testicular and epididymal immune system. Secondly, with regard to the mechanism of Brucella epididymoorchitis, we mainly discussed the process of Brucella invading testis and epididymis in temporal and spatial order, including i) Brucella evades innate immune recognition of testicular PRRs;ii) Brucella overcomes the immune storm triggered by the invasion of testis through bacterial lipoproteins and virulence factors, and changes the secretion mode of cytokines; iii) Brucella breaks through the blood-testis barrier with the help of macrophages, and inflammatory cytokines promote the oxidative stress of Sertoli cells, damaging the integrity of BTB; iv) Brucella inhibits apoptosis of testicular phagocytes. Finally, we revealed the structure and sequence of testis invaded by Brucella at the tissue level. This review will enable us to better understand the pathogenesis of orchi-epididymitis caused by brucellosis and shed light on the development of new treatment strategies for the treatment of brucellosis and the prevention of transition to chronic form. Facing the testicle with immunity privilege, Brucella is like Bruce Lee in the movie Game of Death, winning is survival while losing is death.HIGHLIGHTSWe summarized the clinical features and pathological changes of Brucellaepididymoorchitis.Our research reveals the pathogenesis of Brucella epididymoorchitis, which mainly includes the subversion of testicular immune privilege by Brucella and a series of destructive reactions derived from it.As a basic framework and valuable resource, this study can promote the exploration of the pathogenesis of Brucella and provide reference for determining new therapeutic targets for brucellosis in the future.
Collapse
Affiliation(s)
- Jiuwang Yu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Sha Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lu Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lan Wu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
21
|
A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A 2021; 118:2026153118. [PMID: 33688034 PMCID: PMC8000430 DOI: 10.1073/pnas.2026153118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Measles virus (MeV) vaccine is one of the safest and most efficient vaccines with a track record in children. Here, we generated a panel of rMeV-based vaccines with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S antigens inserted near 3′ of the MeV genome. The rMeV expressing a soluble stabilized, prefusion spike (preS) is much more potent in triggering SARS-CoV-2–specific neutralizing antibody than rMeV-based full-length S vaccine candidate. A single dose of rMeV-preS is sufficient to induce high levels of SARS-CoV-2 antibody in animals. Furthermore, rMeV-preS induces high levels of Th1-biased immunity. Hamsters immunized with rMeV-preS were completely protected against SARS-CoV-2 challenge. Our results demonstrate rMeV-preS is a safe and highly efficacious bivalent vaccine candidate for SARS-CoV-2 and MeV. The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR−/−mice, IFNAR−/−-hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2–specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.
Collapse
|
22
|
Primary differentiated respiratory epithelial cells respond to apical measles virus infection by shedding multinucleated giant cells. Proc Natl Acad Sci U S A 2021; 118:2013264118. [PMID: 33836570 DOI: 10.1073/pnas.2013264118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Measles virus (MeV) is highly infectious by the respiratory route and remains an important cause of childhood mortality. However, the process by which MeV infection is efficiently established in the respiratory tract is controversial with suggestions that respiratory epithelial cells are not susceptible to infection from the apical mucosal surface. Therefore, it has been hypothesized that infection is initiated in lung macrophages or dendritic cells and that epithelial infection is subsequently established through the basolateral surface by infected lymphocytes. To better understand the process of respiratory tract initiation of MeV infection, primary differentiated respiratory epithelial cell cultures were established from rhesus macaque tracheal and nasal tissues. Infection of these cultures with MeV from the apical surface was more efficient than from the basolateral surface with shedding of viable MeV-producing multinucleated giant cell (MGC) syncytia from the surface. Despite presence of MGCs and infectious virus in supernatant fluids after apical infection, infected cells were not detected in the adherent epithelial sheet and transepithelial electrical resistance was maintained. After infection from the basolateral surface, epithelial damage and large clusters of MeV-positive cells were observed. Treatment with fusion inhibitory peptides showed that MeV production after apical infection was not dependent on infection of the basolateral surface. These results are consistent with the hypothesis that MeV infection is initiated by apical infection of respiratory epithelial cells with subsequent infection of lymphoid tissue and systemic spread.
Collapse
|
23
|
Griffin DE. Measles immunity and immunosuppression. Curr Opin Virol 2021; 46:9-14. [PMID: 32891958 PMCID: PMC7994291 DOI: 10.1016/j.coviro.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Effects of measles on the immune system are only partially understood. Lymphoid tissue is a primary site of measles virus (MeV) replication where CD150 is the receptor for infection of both B and T cells. Lymphocyte depletion occurs during the acute phase of infection, but initiation of the adaptive immune response leads to extensive lymphocyte proliferation, production of MeV-specific antibody and T cells, the rash and clearance of infectious virus. Viral RNA persists in lymphoid tissue accompanied by ongoing germinal center proliferation, production of antibody-secreting cells, functionally distinct populations of T cells and antibody avidity maturation to establish life-long immunity. However, at the same time diversity of pre-existing antibodies and numbers of memory and naive B cells are reduced and susceptibility to other infections is increased.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Palacio N, Dangi T, Chung YR, Wang Y, Loredo-Varela JL, Zhang Z, Penaloza-MacMaster P. Early type I IFN blockade improves the efficacy of viral vaccines. J Exp Med 2020; 217:152035. [PMID: 32820330 PMCID: PMC7953731 DOI: 10.1084/jem.20191220] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFN-I) are a major antiviral defense and are critical for the activation of the adaptive immune system. However, early viral clearance by IFN-I could limit antigen availability, which could in turn impinge upon the priming of the adaptive immune system. In this study, we hypothesized that transient IFN-I blockade could increase antigen presentation after acute viral infection. To test this hypothesis, we infected mice with viruses coadministered with a single dose of IFN-I receptor–blocking antibody to induce a short-term blockade of the IFN-I pathway. This resulted in a transient “spike” in antigen levels, followed by rapid antigen clearance. Interestingly, short-term IFN-I blockade after coronavirus, flavivirus, rhabdovirus, or arenavirus infection induced a long-lasting enhancement of immunological memory that conferred improved protection upon subsequent reinfections. Short-term IFN-I blockade also improved the efficacy of viral vaccines. These findings demonstrate a novel mechanism by which IFN-I regulate immunological memory and provide insights for rational vaccine design.
Collapse
Affiliation(s)
- Nicole Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Young Rock Chung
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yidan Wang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Juan Luis Loredo-Varela
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Zhongyao Zhang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
25
|
Robinson MJ, Webster RH, Tarlinton DM. How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunol Rev 2020; 296:87-103. [DOI: 10.1111/imr.12895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marcus J. Robinson
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| | - Rosela H. Webster
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| | - David M. Tarlinton
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| |
Collapse
|
26
|
Griffin DE. Measles virus persistence and its consequences. Curr Opin Virol 2020; 41:46-51. [PMID: 32387998 PMCID: PMC7492426 DOI: 10.1016/j.coviro.2020.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022]
Abstract
Clearance of measles virus is complex. Infectious virus is cleared by the adaptive immune response manifested by the characteristic maculopapular rash. CD8+ T cells are major effectors of infectious virus clearance, a process that may fail in individuals with compromised cellular immune responses leading to progressive giant cell pneumonia and/or measles inclusion body encephalitis. In contrast to the usual rapid clearance of infectious virus, clearance of viral RNA is slow with persistence in lymphoid tissue for many months. Persistence of MeV RNA may contribute to the late development of the slowly progressive disease subacute sclerosing panencephalitis in children infected at a young age and to measles-associated immune suppression but also to maturation of the immune response and development of life-long immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|