1
|
Liu X, Qiu R, Gui P, Wei L, Lu Y, Deng Y, Xue Y, Su Y, Huang Q, Du Y. Osteoclast-derived arachidonic acid triggers dormant lung adenocarcinoma cell activation. iScience 2025; 28:112167. [PMID: 40271019 PMCID: PMC12018030 DOI: 10.1016/j.isci.2025.112167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 03/03/2025] [Indexed: 04/25/2025] Open
Abstract
Dormant lung adenocarcinoma (LUAD) cells in the bone microenvironment can re-emerge as metastatic disease through osteoclast interactions. Using a 3D dormancy model and a mouse bone metastasis model, this study reveals that arachidonic acid (AA) is the initiating molecule transferred from osteoclasts to dormant LUAD cells, triggering their activation. Dormant LUAD cells uptake AA through CD36, which activates the PPARγ-ANGPTL4 pathway and activates tumor cells. There is a dose-response relationship in the activation effect of AA, and inhibiting AA metabolism prevents this reactivation. The study also finds that the serum levels of AA and ANGPTL4 are significantly elevated in patients with clinical bone metastases compared to those without. This research confirms that osteoclasts transmit AA via the CD36-PPARγ-ANGPTL4 axis to activate dormant LUAD cells, suggesting that AA and ANGPTL4 may serve as valuable biomarkers and potential clinical applications in treatment and prediction of LUAD bone metastasis.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Qiu
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Gui
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lirong Wei
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Lu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yan Deng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yang Xue
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyang Su
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qin Huang
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhen Du
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
Ma C, Hu H, Liu H, Zhong C, Wu B, Lv C, Tian Y. Lipotoxicity, lipid peroxidation and ferroptosis: a dilemma in cancer therapy. Cell Biol Toxicol 2025; 41:75. [PMID: 40285867 PMCID: PMC12033115 DOI: 10.1007/s10565-025-10025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
The vulnerability of tumor cells to lipid peroxidation, driven by redox imbalance and lipid overabundance within the tumor microenvironment (TME), has become a focal point for novel antitumor strategies. Ferroptosis, a form of regulated cell death predicated on lipid peroxidation, is emerging as a promising approach. Beyond their role in directly eliminating tumor cells, lipid peroxidation and its products, such as 4-hydroxynonenal (HNE), exert an additional influence by damaging DNA and shaping an environment conducive to tumor growth and metastasis. This process polarizes macrophages towards a pro-inflammatory phenotype, dampens the antigen-presenting capacity of dendritic cells (DCs), and undermines the cytotoxic functions of T and NK cells. Furthermore, it transforms neutrophils into pro-tumorigenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). The lipid peroxidation of stroma cells also contributes to tumor progression. Although advanced nanotherapies have shown the ability to target tumor cells precisely, they often overlook the nuanced effects of lipid peroxidation products. In this review, we highlight a synergistic mechanism in which lipid peroxidation products and ferroptosis contribute to an immunosuppressive state that is temporally distinct from cell death. This insight broadens our understanding of ferroptosis-derived immunosuppression, encompassing all types of immune cells within the TME. This review aims to catalyze further research in this underexplored area, emphasizing the potential of lipid peroxidation products to hinder the clinical translation of ferroptosis-based therapies.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Huixin Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Hao Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Xiao G, Wang X, Xu Z, Liu Y, Jing J. Lung-specific metastasis: the coevolution of tumor cells and lung microenvironment. Mol Cancer 2025; 24:118. [PMID: 40241074 PMCID: PMC12001740 DOI: 10.1186/s12943-025-02318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The vast majority of cancer-related deaths are attributed to metastasis. The lung, being a common site for cancer metastasis, is highly prone to being a target for multiple cancer types and causes a heavy disease burden. Accumulating evidence has demonstrated that tumor metastasis necessitates continuous interactions between tumor cells and distant metastatic niches. Nevertheless, a comprehensive elucidation of the underlying mechanisms governing lung-specific metastasis still poses a formidable challenge. In this review, we depict the lung susceptibility and the molecular profiles of tumors with the potential for lung metastasis. Under the conceptual framework of "Reciprocal Tumor-Lung Metastatic Symbiosis" (RTLMS), we mechanistically delineate the bidirectional regulatory dynamics and coevolutionary adaptation between tumor cells and distal pulmonary niches during lung-specific metastasis, including the induction of pre-metastatic-niches, positive responses of the lung, tumor colonization, dormancy, and reawakening. An enhanced understanding of the latest mechanisms is essential for developing targeted strategies to counteract lung-specific metastasis.
Collapse
Affiliation(s)
- Guixiu Xiao
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinmin Wang
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jing Jing
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Drapela S, Garcia BM, Gomes AP, Correia AL. Metabolic landscape of disseminated cancer dormancy. Trends Cancer 2025; 11:321-333. [PMID: 39510896 PMCID: PMC11981868 DOI: 10.1016/j.trecan.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Cancer dormancy is a phenomenon defined by the entry of cancer cells into a reversible quiescent, nonproliferative state, and represents an essential part of the metastatic cascade responsible for cancer recurrence and mortality. Emerging evidence suggests that metabolic reprogramming plays a pivotal role in enabling entry, maintenance, and exit from dormancy in the face of the different environments of the metastatic cascade. Here, we review the current literature to understand the dynamics of metabolism during dormancy, highlighting its fine-tuning by the host micro- and macroenvironment, and put forward the importance of identifying metabolic vulnerabilities of the dormant state as therapeutic targets to eradicate recurrent disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bruna M Garcia
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | | |
Collapse
|
6
|
Gabashvili AN, Vasiukova AA, Rakitina AS, Garanina AS. The Issue on Dualistic Role of Neutrophils in Carcinogenesis and Their Possible Use for Treatment of Malignant Neoplasms. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:303-320. [PMID: 40367075 DOI: 10.1134/s000629792460368x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 05/16/2025]
Abstract
Neutrophils are phagocytic leukocytes of the myeloid series, which are the most common myeloid cells in human blood, normally accounting from 65 to 80% of all circulating leukocytes. Over the years of investigation of these cells, more and more evidence has emerged indicating functional plasticity of neutrophils and their ambiguous role in the tumor development. Similarly to the M1/M2 classification of macrophages, the N1/N2 paradigm could be applied to neutrophils, where N1-neutrophils exhibit tumor-suppressive properties, and N2-neutrophils contribute to tumor development and immune suppression. An important natural feature of neutrophils is their mobility and ability to overcome physical barriers, thus these cells, as well as their vesicles and membranes, could be used to deliver therapeutic drugs to tumor cells. In addition, neutrophils themselves could be activated and mobilized to fight the tumor. This review describes current state of research on the role of neutrophils in carcinogenesis, as well as possible approaches of using these cells and their derivatives as systems for targeted delivery of therapeutic drugs for treatment of malignant neoplasms.
Collapse
Affiliation(s)
- Anna N Gabashvili
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anastasiia A Vasiukova
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| | - Aleksandra S Rakitina
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | | |
Collapse
|
7
|
Adams SC, Rivera-Theurel F, Scott JM, Nadler MB, Foulkes S, Leong D, Nilsen T, Porter C, Haykowsky M, Abdel-Qadir H, Hull SC, Iyengar NM, Dieli-Conwright CM, Dent SF, Howden EJ. Cardio-oncology rehabilitation and exercise: evidence, priorities, and research standards from the ICOS-CORE working group. Eur Heart J 2025:ehaf100. [PMID: 40036781 DOI: 10.1093/eurheartj/ehaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
The aim of this whitepaper is to review the current state of the literature on the effects of cardio-oncology rehabilitation and exercise (CORE) programmes and provide a roadmap for improving the evidence-based to support the implementation of CORE. There is an urgent need to reinforce and extend the evidence informing the cardiovascular care of cancer survivors. CORE is an attractive model that is potentially scalable to improve the cardiovascular health of cancer survivors as it leverages many of the existing frameworks developed through decades of delivery of cardiac rehabilitation. However, there are several challenges within this burgeoning field, including limited evidence of the efficacy of this approach in patients with cancer. In this paper, a multidisciplinary team of international experts highlights priorities for future research in this field and recommends standards for the conduct of research.
Collapse
Affiliation(s)
| | - Fernando Rivera-Theurel
- Ted Rogers Cardiotoxicity Prevention Program, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Jessica M Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle B Nadler
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Stephen Foulkes
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Darryl Leong
- The Population Health Research Institute and Department of Medicine, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Tormod Nilsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Charles Porter
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark Haykowsky
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Husam Abdel-Qadir
- Ted Rogers Cardiotoxicity Prevention Program, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Women's College Hospital and Peter Munk Cardiac Centre, Toronto, ON, Canada
| | - Sarah C Hull
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
- Program for Biomedical Ethics, Yale School of Medicine, New Haven, CT, USA
| | - Neil M Iyengar
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Susan F Dent
- Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Erin J Howden
- Cardiometabolic Health and Exercise Physiology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
8
|
Xu W, Liu J, Liu Q, Xu J, Zhou L, Liang Z, Huang H, Huang B, Xiao GG, Guo J. NFE2-driven neutrophil polarization promotes pancreatic cancer liver metastasis progression. Cell Rep 2025; 44:115226. [PMID: 39827463 DOI: 10.1016/j.celrep.2024.115226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/12/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Pancreatic cancer liver metastasis is an important factor leading to dismal prognoses. The details of adaptive immune remodeling in liver metastasis, especially the role of neutrophils, remain elusive. Here, combined single-cell sequencing with spatial transcriptomics results revealed that liver metastases exhibit more aggressive transcriptional characteristics and higher levels of immunosuppression compared with the primary tumor. We identified neutrophils_S100A12 (S100 calcium binding protein A12) cells as the pivotal pro-metastatic cluster, specifically distributed at the invasive front of the metastatic lesions. Mechanistically, our findings indicated that nuclear factor erythroid 2 (NFE2) is a key transcription factor regulating neutrophil phenotypic polarization. Metastatic tumors produce transforming growth factor β to activate the SMAD3 pathway within neutrophils, inducing NFE2-driven polarization. NFE2 promotes the transcription of peptidylarginine deiminase 4 by binding to its promoter, leading to the generation of neutrophil extracellular traps at the invasive front. Collectively, our data demonstrate that NFE2-driven neutrophil polarization is a potential target for anti-metastatic therapy.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianzhou Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jia Xu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Haoran Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; School of Medicine, Tsinghua University, Beijing 100730, China
| | - Bowen Huang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
9
|
Yang S, Seo J, Choi J, Kim SH, Kuk Y, Park KC, Kang M, Byun S, Joo JY. Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies. Mol Cancer 2025; 24:47. [PMID: 39953555 PMCID: PMC11829473 DOI: 10.1186/s12943-025-02250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Delving into cancer dormancy has been an inherent task that may drive the lethal recurrence of cancer after primary tumor relief. Cells in quiescence can survive for a short or long term in silence, may undergo genetic or epigenetic changes, and can initiate relapse through certain contextual cues. The state of dormancy can be induced by multiple conditions including cancer drug treatment, in turn, undergoes a life cycle that generally occurs through dissemination, invasion, intravasation, circulation, immune evasion, extravasation, and colonization. Throughout this cascade, a cellular machinery governs the fate of individual cells, largely affected by gene regulation. Despite its significance, a precise view of cancer dormancy is yet hampered. Revolutionizing advanced single cell and long read sequencing through analysis methodologies and artificial intelligence, the most recent stage in the research tool progress, is expected to provide a holistic view of the diverse aspects of cancer dormancy.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jieun Seo
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Jeonghyeon Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yunmin Kuk
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Kyung Chan Park
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Sangwon Byun
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea.
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-ro, Sangnok-gu Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
10
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Melzer YF, Fergen NL, Mess C, Stadler JC, Geidel G, Schwietzer YA, Kött J, Pantel K, Schneider SW, Utikal J, Wladykowski E, Vidal-Y-Sy S, Bauer AT, Gebhardt C. Evaluation of S100A8/A9 and neutrophils as prognostic markers in metastatic melanoma patients under immune-checkpoint inhibition. Transl Oncol 2025; 52:102224. [PMID: 39700646 PMCID: PMC11718343 DOI: 10.1016/j.tranon.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Immune-checkpoint inhibitors (ICIs) have revolutionized melanoma treatment, yet approximately half of patients do not respond to these therapies. Identifying prognostic biomarkers is crucial for treatment decisions. Our retrospective study assessed liquid biopsies and tumor tissue analyses for two potential biomarkers: danger-associated molecular pattern (DAMP) S100A8/A9 and its source, neutrophils. In 43 metastatic unresected stage III/IV melanoma patients, elevated serum levels of S100A8/A9 and neutrophils before and during ICI treatment correlated with worse outcomes. Furthermore, in 113 melanoma patients, neutrophil expression in the tumor microenvironment (TME) was associated with relapse and reduced survival. Measuring S100A8/A9 and neutrophils could enhance immunotherapy monitoring by predicting impaired clinical outcomes and non-response to ICIs. Serum S100A8/A9 levels and neutrophil counts at baseline (T0) and during treatment (T3) correlated with reduced progression-free survival (PFS). Elevated S100A8/A9 levels at T0 and T3 negatively impacted overall survival (OS). Notably, neutrophil infiltration was more prevalent in primary melanomas than in nevi and metastases, and its presence in primary melanomas was linked to poorer survival. S100A8/A9 serum levels, neutrophil counts, and tumor-associated neutrophil infiltration represent promising biomarkers for predicting treatment response and clinical outcomes in melanoma patients receiving ICIs. SIGNIFICANCE: These findings underscore the critical need for reliable biomarkers in melanoma research, particularly for predicting responses to immune-checkpoint inhibitors (ICIs). Identifying S100A8/A9 levels and neutrophil infiltration as potential indicators of treatment outcomes offers valuable insights for personalized therapy decisions. By enhancing monitoring and prognosis assessment, these biomarkers contribute to refining treatment strategies, ultimately improving patient care and outcomes. This research bridges gaps in understanding melanoma response mechanisms and highlights avenues for further investigation into immune-related markers, fostering advancements in precision medicine for melanoma patients.
Collapse
Affiliation(s)
- Yasmin F Melzer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Nadine L Fergen
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Julia-Christina Stadler
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Glenn Geidel
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Ysabel A Schwietzer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Julian Kött
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Klaus Pantel
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Ewa Wladykowski
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Alexander T Bauer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
12
|
Marchand V, Laplane L, Valensi L, Plo I, Aglave M, Silvin A, Pasquier F, Porteu F, Vainchenker W, Selimoglu-Buet D, Droin N, Raslova H, Marcel V, Diaz JJ, Fontenay M, Solary E. Monocytes generated by interleukin-6-treated human hematopoietic stem and progenitor cells secrete calprotectin that inhibits erythropoiesis. iScience 2025; 28:111522. [PMID: 39811665 PMCID: PMC11732210 DOI: 10.1016/j.isci.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the S100A8 and S100A9 genes in hematopoietic progenitors and the generation of monocytes that release CAL. The main target of CAL is an erythroid-megakaryocyte progenitor (EMP) subset. CAL prevents both erythropoietin-driven differentiation of healthy progenitors and JAK2-V617F-driven erythropoiesis. In the context of JAK2-V617F, CAL also promotes the expression of S100A8 and S100A9 genes in monocytes. The signature of CAL effects is detected in the bone marrow progenitors of patients with myeloid malignancy or severe infection. These results position CAL as a mediator of IL6 effects on triggering anemia during inflammation, an effect that is amplified in the context of JAK2-V617F-driven hematopoiesis.
Collapse
Affiliation(s)
- Valentine Marchand
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- CNRS 8590, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Louis Valensi
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Isabelle Plo
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Marine Aglave
- AMMICa, INSERM US 23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Aymeric Silvin
- INSERM U1108, Gustave Roussy Cancer Center, Villejuif, France
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy Cancer Center, Villejuif, France
| | - Françoise Porteu
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - William Vainchenker
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Nathalie Droin
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- AMMICa, INSERM US 23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Hana Raslova
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Michaela Fontenay
- Université Paris Cité, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris, France
- Laboratory of Excellence for Red Blood Cells, GR-Ex, Paris, France
| | - Eric Solary
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Chen Y, Lan Q, Yu J, Godbole D, Byun J, Amos CI, Zhang H. Sensitivity to Environmental Stress and Adversity and Lung Cancer. JAMA Netw Open 2025; 8:e2457079. [PMID: 39878978 PMCID: PMC11780474 DOI: 10.1001/jamanetworkopen.2024.57079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 01/31/2025] Open
Abstract
Importance Sensitivity to environmental stress and adversity may influence lung cancer risk, highlighting a critical link between psychosocial factors and cancer etiology. Objective To evaluate whether genetically estimated sensitivity to environmental stress and adversity is associated with lung cancer risk. Design, Setting, and Participants Data were obtained from a genome-wide association study identifying 37 independent genetic variants strongly associated with sensitivity to environmental stress and adversity and a cross-ancestry genome-wide meta-analysis from the International Lung Cancer Consortium. Data were extracted between October 2023 and January 2024 and analyzed between February 2024 and June 2024. Exposures Genetically estimated sensitivity to environmental stress and adversity. Main Outcomes and Measures The main outcome was lung cancer risk, and odds ratios and 95% CIs were used to assess the association between sensitivity to environmental stress and adversity with lung cancer risk. This genetic association study used a 2-sample Mendelian randomization (MR) to estimate the association between genetically estimated sensitivity to environmental stress and adversity and lung cancer risk across different histologic types. Results Using data from 351 827 individuals from the UK Biobank and a cross-ancestry genome-wide analysis of 61 047 lung cancer cases and 947 237 controls from the International Lung Cancer Consortium, sensitivity to environmental stress and adversity was significantly associated with an increased risk of lung cancer among individuals of European ancestry (OR, 1.49; 95% CI, 1.13-1.98; P = .005) and in the cross-ancestry analysis (OR, 1.45; 95% CI, 1.13-1.85; P = .004). There were heterogeneities in the observed associations across histologic subtypes among different population ancestries. Among individuals of European ancestry, a significant association was noted among squamous cell carcinoma (OR, 1.69; 95% CI, 1.06-2.70; P = .03). Among individuals of East Asian ancestry, an increased risk was observed for adenocarcinoma (OR, 2.04; 95% CI, 1.00-4.18; P = .05). Associations were not observed across any of the 3 histologic subtypes among individuals of African ancestry. Conclusions and Relevance In this genetic association study, sensitivity to environmental stress and adversity was associated with lung cancer risk. These results underscore the necessity for further research into the nuanced association between psychosocial stress and cancer risk, with a particular focus on diverse populations.
Collapse
Affiliation(s)
- Yingxi Chen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jing Yu
- Division of Population Health Research, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Devika Godbole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
15
|
Feng J, Rouse CD, Taylor L, Garcia S, Nguyen E, Coogan I, Byrd O, Berchuck A, Murphy SK, Huang Z. Regulation of Age-Related Lipid Metabolism in Ovarian Cancer. Int J Mol Sci 2025; 26:320. [PMID: 39796176 PMCID: PMC11720209 DOI: 10.3390/ijms26010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The mortality rate of ovarian cancer (OC) remains the highest among female gynecological malignancies. Advanced age is the highest risk factor for OC development and progression, yet little is known about the role of the aged tumor microenvironment (TME). We conducted RNA sequencing and lipidomic analysis of young and aged gonadal adipose tissue from rat xenografts before and after OC formation. The rates of tumor formation (p = 0.047) and tumor volume (p = 0.002) were significantly higher in the aged rats than in their young counterparts. RNA sequencing data showed significant differences in gene expression profiles between the groups of young and aged rat adipose tissues (p < 0.05), including S100a8, S100a9, Il1rl1, Lcn2, C3, Hba-a1, Fcna, and Pnpla3. At the time of tumor generation, there were also changes in the lipid components within the gonadal adipose tissues of young and aged rats, with higher levels of free fatty acids (FFAs) and triglycerides (TGs) in aged rats. Furthermore, the aged TME showed changes in immune cell composition, especially inflammation-related cells, including neutrophils, myeloid dendritic cells, CD4+ T cells (non-regulatory), and mast cell activation (p < 0.05). The correlation between S100a8, S100a9, neutrophil, and omega-5, FFA 18:3 levels was also determined. Additionally, omega-5, which is downregulated in aged rats, inhibited OC cell proliferation in vitro (p < 0.001). Our study suggests that the aged TME promotes OC proliferation resulting from age-related changes in gene/pathway expression, lipid metabolism, and immune cell distribution. Targeting the aging adipose microenvironment, particularly lipid metabolism, is a promising therapeutic strategy for OC and warrants further investigation. Significance: The aging microenvironment contributes to OC development and progression because of changes in the immune response regulatory genes S100a8 and S100a9, secreted by adipocytes, preadipocytes, or neutrophils, and by altering omega-5 metabolism.
Collapse
Affiliation(s)
- Jihua Feng
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
- Department of Emergency, The Second Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Clay Douglas Rouse
- Division of Laboratory Animal Resources (DLAR), Duke University School of Medicine, Durham, NC 27701, USA;
| | - Lila Taylor
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
| | - Santiago Garcia
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
| | - Ethan Nguyen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
| | - Isabella Coogan
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
| | - Olivia Byrd
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC 27701, USA;
| | - Susan K. Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
| | - Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA; (J.F.); (L.T.); (S.G.); (E.N.); (I.C.); (O.B.); (S.K.M.)
| |
Collapse
|
16
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
17
|
Liu W, Kovacs AH, Hou J. Cancer Cells in Sleep Mode: Wake Them to Eliminate or Keep Them Asleep Forever? Cells 2024; 13:2022. [PMID: 39682769 PMCID: PMC11640528 DOI: 10.3390/cells13232022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer cell dormancy is a critical phase in cancer development, wherein cancer cells exist in a latent state marked by temporary but reversible growth arrest. This dormancy phase contributes to anticancer drug resistance, cancer recurrence, and metastasis. Treatment strategies aimed at cancer dormancy can be categorized into two contradictory approaches: inducing cancer cells into a dormant state or eliminating dormant cells. While the former seeks to establish permanent dormancy, the latter aims at eradicating this small population of dormant cells. In this review, we explore the current advancements in therapeutic methods targeting cancer cell dormancy and discuss future strategies. The concept of cancer cell dormancy has emerged as a promising avenue for novel cancer treatments, holding the potential for breakthroughs in the future.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada; (W.L.); (A.H.K.)
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Antal H. Kovacs
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada; (W.L.); (A.H.K.)
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada; (W.L.); (A.H.K.)
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
18
|
Rabas N, Ferreira RMM, Di Blasio S, Malanchi I. Cancer-induced systemic pre-conditioning of distant organs: building a niche for metastatic cells. Nat Rev Cancer 2024; 24:829-849. [PMID: 39390247 DOI: 10.1038/s41568-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
From their early genesis, tumour cells integrate with the surrounding normal cells to form an abnormal structure that is tightly integrated with the host organism via blood and lymphatic vessels and even neural associations. Using these connections, emerging cancers send a plethora of mediators that efficiently perturb the entire organism and induce changes in distant tissues. These perturbations serendipitously favour early metastatic establishment by promoting a more favourable tissue environment (niche) that supports the persistence of disseminated tumour cells within a foreign tissue. Because the establishment of early metastatic niches represents a key limiting step for metastasis, the creation of a more suitable pre-conditioned tissue strongly enhances metastatic success. In this Review, we provide an updated view of the mechanisms and mediators of primary tumours described so far that induce a pro-metastatic conditioning of distant organs, which favours early metastatic niche formation. We reflect on the nature of cancer-induced systemic conditioning, considering that non-cancer-dependent perturbations of tissue homeostasis are also able to trigger pro-metastatic conditioning. We argue that a more holistic view of the processes catalysing metastatic progression is needed to identify preventive or therapeutic opportunities.
Collapse
Affiliation(s)
- Nicolas Rabas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Rute M M Ferreira
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Di Blasio
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
19
|
Yang Y, Cui H, Li D, Chen L, Liu Y, Zhou C, Li L, Feng M, Chen X, Cao Y, Gao Y. S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:369-381. [PMID: 39735438 PMCID: PMC11674433 DOI: 10.1016/j.jncc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 12/31/2024] Open
Abstract
Background S100A8 is a member of the S100 protein family and plays a pivotal role in regulating inflammation and tumor progression. This study aimed to comprehensively assess the expression patterns and functional roles of S100A8 in glioma progression. Methods Glioma tissues were collected from 98 patients who underwent surgical treatment at Fudan University Shanghai Cancer Center. S100A8 expression in glioma tissues was analyzed using immunohistochemistry (IHC) to establish its correlation with clinicopathological features in patients. The expression and prognostic effect of S100A8 in glioma were analyzed using TCGA and CGGA public databases. Then, we investigated the role of S100A8 in glioma through a series of in vivo and in vitro experiments including Transwell, wound healing, CCK8, and intracranial tumor models. Subsequently, bioinformatics analysis, single-cell sequencing and coimmunoprecipitation (Co-IP) were used to explore the underlying mechanism. Results S100A8 was upregulated in gliomas compared to paracancerous tissues, and this phenotype was significantly correlated with poor prognosis. Subgroup analysis showed that S100A8 expression was higher in the high-grade glioma (HGG) group than that in the low-grade glioma (LGG) group. S100A8 overexpression in glioma cell lines promoted cell proliferation, migration and invasion, while silencing S100A8 reversed these effects. In vivo experiments showed that S100A8 knockdown can significantly reduce the tumor burden of glioma cells. Notably, S100A8 was observed to stimulate microglial M2 polarization by interacting with TLR4, which subsequently induced NF-κB signaling and IL-10 secretion within the tumor microenvironment. Conclusions S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. It might represent a therapeutic target for further basic research or clinical management of glioma.
Collapse
Affiliation(s)
- Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Nicolas E, Kosmider B, Cukierman E, Borghaei H, Golemis EA, Borriello L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev 2024; 43:1165-1183. [PMID: 38963567 PMCID: PMC11554904 DOI: 10.1007/s10555-024-10196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Hossein Borghaei
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Lucia Borriello
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA.
| |
Collapse
|
21
|
Du X, Tang Z, Yan L, Zhang L, Zheng Q, Zeng X, Hu Q, Tian Q, Liang L, Zhao X, Li J, Zhao M, Fu X. Norepinephrine may promote the progression of Fusobacterium nucleatum related colorectal cancer via quorum sensing signalling. Virulence 2024; 15:2350904. [PMID: 38725098 PMCID: PMC11085999 DOI: 10.1080/21505594.2024.2350904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is closely correlated with tumorigenesis in colorectal cancer (CRC). We aimed to investigate the effects of host norepinephrine on the carcinogenicity of F. nucleatum in CRC and reveal the underlying mechanism. The results revealed that both norepinephrine and bacterial quorum sensing (QS) molecule auto-inducer-2 (AI-2) were positively associated with the progression of F. nucleatum related CRC (p < 0.01). In vitro studies, norepinephrine induced upregulation of QS-associated genes and promoted the virulence and proliferation of F. nucleatum. Moreover, chronic stress significantly increased the colon tumour burden of ApcMin/+ mice infected with F. nucleatum (p < 0.01), which was decreased by a catecholamine inhibitor (p < 0.001). Our findings suggest that stress-induced norepinephrine may promote the progression of F. nucleatum related CRC via bacterial QS signalling. These preliminary data provide a novel strategy for the management of pathogenic bacteria by targeting host hormones-bacterial QS inter-kingdom signalling.
Collapse
Affiliation(s)
- Xinhao Du
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Zhenzhen Tang
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Li Yan
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Ling Zhang
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Qiao Zheng
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Xianghao Zeng
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Qing Hu
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Qian Tian
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Jun Li
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| |
Collapse
|
22
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
23
|
Pascual G, Benitah SA. Lipids in the tumor microenvironment: immune modulation and metastasis. Front Oncol 2024; 14:1435480. [PMID: 39391242 PMCID: PMC11464260 DOI: 10.3389/fonc.2024.1435480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Tumor cells can undergo metabolic adaptations that support their growth, invasion, and metastasis, such as reprogramming lipid metabolism to meet their energy demands and to promote survival in harsh microenvironmental conditions, including hypoxia and acidification. Metabolic rewiring, and especially alterations in lipid metabolism, not only fuel tumor progression but also influence immune cell behavior within the tumor microenvironment (TME), leading to immunosuppression and immune evasion. These processes, in turn, may contribute to the metastatic spread of cancer. The diverse metabolic profiles of immune cell subsets, driven by the TME and tumor-derived signals, contribute to the complex immune landscape in tumors, affecting immune cell activation, differentiation, and effector functions. Understanding and targeting metabolic heterogeneity among immune cell subsets will be crucial for developing effective cancer immunotherapies that can overcome immune evasion mechanisms and enhance antitumor immunity.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Jha RM, Rajasundaram D, Sneiderman C, Schlegel BT, O'Brien C, Xiong Z, Janesko-Feldman K, Trivedi R, Vagni V, Zusman BE, Catapano JS, Eberle A, Desai SM, Jadhav AP, Mihaljevic S, Miller M, Raikwar S, Rani A, Rulney J, Shahjouie S, Raphael I, Kumar A, Phuah CL, Winkler EA, Simon DW, Kochanek PM, Kohanbash G. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets. Neuron 2024; 112:3069-3088.e4. [PMID: 39019041 DOI: 10.1016/j.neuron.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ria Trivedi
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vincent Vagni
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Benjamin E Zusman
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Adam Eberle
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Margaux Miller
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jarrod Rulney
- University of Arizona School of Medicine, Tucson, AZ 85724, USA
| | - Shima Shahjouie
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditya Kumar
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Chia-Ling Phuah
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis W Simon
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Feng J, Rouse CD, Coogan I, Byrd O, Nguyen E, Taylor L, Garcia S, Lee H, Berchuck A, Murphy SK, Huang Z. Regulation of Age-Related Lipid Metabolism in Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611709. [PMID: 39314468 PMCID: PMC11418935 DOI: 10.1101/2024.09.06.611709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Although a lot of effort has been dedicated to ovarian cancer (OC) research, the mortality rate is still among the highest in female gynecologic malignancies. The effects of the aged tumor microenvironment are still being undermined despite age being the highest risk factor in ovarian cancer development and progression. In this study, we have conducted RNA sequencing and lipidomics analysis of gonadal adipose tissues from young and aged rat xenografts before and after ovarian cancer formation. We have found significantly higher tumor formation rates and volumes in aged OC xenograft rat models compared to their young counterparts (p<0.05), suggesting the aged adipose microenvironment (AME) is more susceptible to OC outgrowth. We have revealed significant shifts in the gene expression enrichment from groups of young vs. aged rats before tumor formation, groups of young vs. aged rats when the tumor formed, and groups of aged rats before and after tumor formation. We also observed shifts in the lipid components of the gonadal adipose tissues between young and aged rat xenografts when tumors were generated. Additionally, we found that the aged AME was associated with age-related changes in the immune cell composition, especially inflammation-related cells. The top hits showing the most differences between aged and young adipose tissues were eight genes including S100a8, S100a9, Il1rl1, Lcn2, C3, Hba-a1, Fcna, and Pnpla3, 22 lipids including multiple isoforms of free fatty acids (FFA) and triglyceride (TG), as well as four immune cells including neutrophil, myeloid dendritic cell, T cell CD4+ (non-regulatory), and mast cell activation. The functional correlation among S100a8, S100a9, neutrophil, and FFA (18:3) was also determined. Furthermore, FFA (18:3), which was shown to be downregulated in aged xenograft rats, was capable of inhibiting OC cell proliferation. In conclusion, our study suggested that aging promoted OC proliferation through changes in genes/pathways, lipid metabolism, and immune cells. Targeting the aging adipose microenvironment, particularly lipid metabolism reprogramming, holds promise as a therapeutic strategy for OC, which warrants further investigation. Significance Aging microenvironment of OC may be regulated by S100a8 and S100a9 secreted by adipocytes, preadipocytes, or neutrophils through affecting the lipid metabolism, such as FFA (18:3).
Collapse
|
26
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 PMCID: PMC7617515 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| |
Collapse
|
27
|
Almeida-Nunes DL, Nunes M, Osório H, Ferreira V, Lobo C, Monteiro P, Abreu MH, Bartosch C, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Ovarian cancer ascites proteomic profile reflects metabolic changes during disease progression. Biochem Biophys Rep 2024; 39:101755. [PMID: 38974022 PMCID: PMC11225207 DOI: 10.1016/j.bbrep.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Hugo Osório
- Proteomics Scientific Platform, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine from University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Verónica Ferreira
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Cláudia Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Paula Monteiro
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto) / Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine from University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- FOREN – Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136, Lisbon, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| |
Collapse
|
28
|
Giles C, Lee J. Inflammation drives tumor growth in an immunocompetent implantable metastasis model. RESEARCH SQUARE 2024:rs.3.rs-4719290. [PMID: 39149496 PMCID: PMC11326373 DOI: 10.21203/rs.3.rs-4719290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nearly 90% of cancer deaths are due to metastasis. Conventional cancer therapeutics including chemotherapy, surgery, and radiotherapy, are effective in treating primary tumors, but may aggravate disseminated tumor cells (DTCs) into regaining a proliferative state. Models isolating the post dissemination environment are needed to address the potential risks of these therapies, however modeling post dissemination environments is challenging. Often, host organisms become moribund due to primary tumor mass before native metastatic niches can evolve. Implantable tissue engineered niches have been used to attract circulating tumor cells independent of the primary tumor. Here, we serially transplant such tissue engineered niches with recruited DTCs in order to isolate the post dissemination environment. After transplantaion, 69% of scaffolds developed overt post-dissemination cancer growth, however 100% of scaffolds did not grow to a life-threatening critical size within twelve weeks. Adjuvant chemotherapy, while initially effective, did not prevent long-term DTC growth in scaffolds. Subjecting these transplanted niches to surgical resection via biopsy punch enhanced CD31, MMP9, Ly6G, and tumor burden compared to control scaffolds. Biopsy punching was able to rescue tumor incidence from prior chemotherapy. This model of serial transplantation of engineered DTC niches is a highly controllable and flexible method of establishing and systematically investigating the post-dissemination niche.
Collapse
|
29
|
Lu S, Mi Z, Liu P, Ding J, Ma Y, Yang J, Rong P, Zhou W. Repolarizing neutrophils via MnO 2 nanoparticle-activated STING pathway enhances Salmonella-mediated tumor immunotherapy. J Nanobiotechnology 2024; 22:443. [PMID: 39068474 PMCID: PMC11282601 DOI: 10.1186/s12951-024-02726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Engineered Salmonella has emerged as a promising microbial immunotherapy against tumors; however, its clinical effectiveness has encountered limitations. In our investigation, we unveil a non-dose-dependent type of behavior regarding Salmonella's therapeutic impact and reveal the regulatory role of neutrophils in diminishing the efficacy of this. While Salmonella colonization within tumors recruits a substantial neutrophil population, these neutrophils predominantly polarize into the pro-tumor N2 phenotype, elevating PD-L1 expression and fostering an immunosuppressive milieu within the tumor microenvironment. In order to bypass this challenge, we introduce MnO2 nanoparticles engineered to activate the STING pathway. Harnessing the STING pathway to stimulate IFN-β secretion prompts a shift in neutrophil polarization from the N2 to the N1 phenotype. This strategic repolarization remodels the tumor immune microenvironment, making the infiltration and activation of CD8+ T cells possible. Through these orchestrated mechanisms, the combined employment of Salmonella and MnO2 attains the synergistic enhancement of anti-tumor efficacy, achieving the complete inhibition of tumor growth within 20 days and an impressive 80% survival rate within 40 days, with no discernible signs of significant adverse effects. Our study not only unveils the crucial in vivo constraints obstructing microbial immune therapy but also sets out an innovative strategy to augment its efficacy. These findings pave the way for advancements in cell-based immunotherapy centered on leveraging the potential of neutrophils.
Collapse
Affiliation(s)
- Shan Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Peng Liu
- Key Laboratory of Biological Nanotechnology, NHC. No. 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yiran Ma
- Hunan Prize Life Science Research Institute Co., LTD, 229 Guyuan Road, Changsha, Hunan, 410008, China
| | - Jieru Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan, 410008, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan, 410008, China.
| |
Collapse
|
30
|
Shu LZ, Ding YD, Zhang JY, He RS, Xiao L, Pan BX, Deng H. Interactions between MDSCs and the Autonomic Nervous System: Opportunities and Challenges in Cancer Neuroscience. Cancer Immunol Res 2024; 12:652-662. [PMID: 38568775 DOI: 10.1158/2326-6066.cir-23-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Myeloid-derived suppressor cells (MDSC) are a population of heterogeneous immune cells that are involved in precancerous conditions and neoplasms. The autonomic nervous system (ANS), which is composed of the sympathetic nervous system and the parasympathetic nervous system, is an important component of the tumor microenvironment that responds to changes in the internal and external environment mainly through adrenergic and cholinergic signaling. An abnormal increase of autonomic nerve density has been associated with cancer progression. As we discuss in this review, growing evidence indicates that sympathetic and parasympathetic signals directly affect the expansion, mobilization, and redistribution of MDSCs. Dysregulated autonomic signaling recruits MDSCs to form an immunosuppressive microenvironment in chronically inflamed tissues, resulting in abnormal proliferation and differentiation of adult stem cells. The two components of the ANS may also be responsible for the seemingly contradictory behaviors of MDSCs. Elucidating the underlying mechanisms has the potential to provide more insights into the complex roles of MDSCs in tumor development and lay the foundation for the development of novel MDSC-targeted anticancer strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jin-Yao Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Rui-Shan He
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Xiao
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Chen X, Zhao Y, Wang Y, Ye Y, Xu S, Zhou L, Lin Y, Lu J, Yin W. Serum lipid ratios as novel prognostic biomarkers for patients with locally advanced breast cancer treated with neoadjuvant therapy. Postgrad Med 2024; 136:541-550. [PMID: 38912905 DOI: 10.1080/00325481.2024.2370235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVES To investigate the association between lipid ratios and survival outcomes in patients with locally advanced breast cancer (LABC) undergoing neoadjuvant chemotherapy. METHOD This retrospective study included patients with LABC receiving neoadjuvant chemotherapy. Serum lipid levels were prospectively measured at baseline. Associations of triglyceride to total cholesterol (TG/TC), triglyceride to high-density lipoprotein (TG/HDL) and triglyceride to low-density lipoprotein (TG/LDL) ratios with prognosis were evaluated. RESULTS Patients with high TG/TC (adjusted hazard ratio [aHR] = 2.47, 95% CI: 1.10, 5.56, p = 0.029), TG/HDL (aHR = 2.73, 95% CI: 1.16, 6.41, p = 0.021) and TG/LDL (aHR = 2.50, 95% CI: 1.11, 5.65, p = 0.027) ratios were more likely to experience disease-free survival (DFS) events. Subgroup analysis suggested that the prognostic impact of lipid ratios was more pronounced in patients with negative HER2 status or those at a high risk of recurrence (e.g. clinical stage III, Ki67 > 30%). Additionally, higher lipid ratios tended to indicate early DFS events (0 ~ 2 years) (TG/TC p = 0.021, TG/HDL p = 0.046, TG/LDL p < 0.001), and the TG/LDL ratio demonstrated the best predictive efficacy (TG/TC vs. TG/HDL vs. TG/LDL, 1-year AUC: 0.724 vs. 0.676 vs. 0.846, 2-year AUC: 0.653 vs. 0.638 vs. 0.708). CONCLUSION Baseline serum TG/TC, TG/HDL and TG/LDL ratios were independent prognostic factors in patients with LABC undergoing neoadjuvant therapy. However, their utility in predicting the early DFS events warrants further investigation. CLINICAL TRIAL REGISTRATION NCT05621564.
Collapse
Affiliation(s)
- Xinru Chen
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Zhao
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yumei Ye
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
33
|
Wang Y, Wang L, Wei Y, Wei C, Yang H, Chen Q, Zhang R, Shen H. Advances in the molecular regulation mechanism of tumor dormancy and its therapeutic strategy. Discov Oncol 2024; 15:184. [PMID: 38795254 PMCID: PMC11127899 DOI: 10.1007/s12672-024-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/20/2024] [Indexed: 05/27/2024] Open
Abstract
Tumor dormancy is a stage in the growth and development of malignant cells and is one of the biological characteristics of malignant cells. Complex transitions involving dormant tumor cells between quiescent and proliferative states pose challenges for tumor eradication. This paper explores the biological features and molecular mechanisms of tumor dormancy and highlights emerging therapies. The strategies discussed promise innovative clinical potential against malignant tumors. Understanding the mechanisms of dormancy can help provide valuable insights into the diagnosis and treatment of malignant tumors to advance the fight against this world problem.
Collapse
Affiliation(s)
- Yuan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Linlin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Yaojun Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Chuang Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Haohang Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Qiurui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| |
Collapse
|
34
|
Zuo Q, Wu Y, Hu Y, Shao C, Liang Y, Chen L, Guo Q, Huang P, Chen Q. Targeting lipid reprogramming in the tumor microenvironment by traditional Chinese medicines as a potential cancer treatment. Heliyon 2024; 10:e30807. [PMID: 38765144 PMCID: PMC11101863 DOI: 10.1016/j.heliyon.2024.e30807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
In the last ten years, there has been a notable rise in the study of metabolic abnormalities in cancer cells. However, compared to glucose or glutamine metabolism, less attention has been paid to the importance of lipid metabolism in tumorigenesis. Recent developments in lipidomics technologies have allowed for detailed analysis of lipid profiles within cancer cells and other cellular players present within the tumor microenvironment (TME). Traditional Chinese medicine (TCM) and its bioactive components have a long history of use in cancer treatments and are also being studied for their potential role in regulating metabolic reprogramming within TME. This review focuses on four core abnormalities altered by lipid reprogramming in cancer cells: de novo synthesis and exogenous uptake of fatty acids (FAs), upregulated fatty acid oxidation (FAO), cholesterol accumulation, which offer benefits for tumor growth and metastasis. The review also discusses how altered lipid metabolism impacts infiltrating immune cell function and phenotype as these interactions between cancer-stromal become more pronounced during tumor progression. Finally, recent literature is highlighted regarding how cancer cells can be metabolically reprogrammed by specific Chinese herbal components with potential therapeutic benefits related to lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Qian Zuo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yingchao Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyu Hu
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Cui Shao
- The First Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Qianqian Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ping Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
36
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
37
|
Yang F, Hua Q, Zhu X, Xu P. Surgical stress induced tumor immune suppressive environment. Carcinogenesis 2024; 45:185-198. [PMID: 38366618 DOI: 10.1093/carcin/bgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing Hua
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Pingbo Xu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
38
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Diazzi S, Ablain J. Nonepithelial cancer dissemination: specificities and challenges. Trends Cancer 2024; 10:356-368. [PMID: 38135572 DOI: 10.1016/j.trecan.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Epithelial cancers have served as a paradigm to study tumor dissemination but recent data have highlighted significant differences with nonepithelial cancers. Here, we review the current knowledge on nonepithelial tumor dissemination, drawing examples from the latest developments in melanoma, glioma, and sarcoma research. We underscore the importance of the reactivation of developmental processes during cancer progression and describe the nongenetic mechanisms driving nonepithelial tumor spread. We also outline therapeutic opportunities and ongoing clinical approaches to fight disseminating cancers. Finally, we discuss remaining challenges and emerging questions in the field. Defining the core principles underlying nonepithelial cancer dissemination may uncover actionable vulnerabilities of metastatic tumors and help improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Serena Diazzi
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Ablain
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
40
|
Chen G, Liu L, Tan C, Tan Q, Chen Y, An X, Liu X, Wang X. Prognostic significance of systemic immune-inflammation index in patients with nonfunction pancreatic neuroendocrine tumor undergoing surgical resection. Cancer Med 2024; 13:e7114. [PMID: 38553949 PMCID: PMC10980930 DOI: 10.1002/cam4.7114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/12/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE The purpose of our study was to investigate the clinical significance and prognostic role of the systemic immune-inflammation index (SII) in patients who underwent surgical resection for nonfunctioning pancreatic neuroendocrine tumors (pNETs). METHODS We conducted a retrospective analysis of 364 patients with nonfunctioning pNETs. The association between the SII level and clinical parameters was investigated. The receiver operating characteristic (ROC) curve was used to calculate the optimal SII value. Cox proportional hazard analysis was performed to evaluate the prognostic factors. RESULTS Our study included 364 patients with nonfunctioning pNETs who underwent surgery. The median age was 51.0 (43.0, 59.3), and 164 (45.1%) were male. The optimal threshold of SII determined by ROC analysis was 523.95. Higher SII levels were significantly associated with older age (p = 0.001), sex (p = 0.011), tumor size (p = 0.032), and tumor grade (p = 0.002). Recurrence was observed in 70 (19.2%) patients following a median follow-up of 98 months. Univariate analysis showed that higher SII (p < 0.0001), tumor size >4 cm (p = 0.015), and G2/G3 grade (p = 0.002) were significantly associated with disease-free survival (DFS). Multivariate analysis revealed that higher SII (HR: 7.35; 95% CI: 3.44, 15.70; p < 0.0001) and G2/G3 grade (HR: 3.11; 95% CI: 1.42, 6.82; p = 0.005) remained significantly associated with tumor recurrence. Furthermore, 46 (12.6%) patients died during the follow-up. Higher SII (HR: 8.43; 95% CI: 3.19, 22.72; p < 0.0001) and G2/G3 grade (HR: 3.16; 95% CI: 1.01, 9.86; p = 0.048) were independent predictors of overall survival (OS) by multivariate analysis. CONCLUSION In conclusion, our study revealed that a higher SII level was associated with tumor-related features (larger tumor size and advanced grade) and subsequent shorter DFS and OS in patients with nonfunctioning pNETs. These results indicated that the SII could serve as an efficient prognostic biomarker for nonfunctioning pNETs.
Collapse
Affiliation(s)
- Guanhua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Li Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chunlu Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qingquan Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yonghua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangrong An
- Department of PediatricsSouthwest Medical UniversityLuzhouSichuanChina
| | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xing Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
41
|
Ren JY, Wang D, Zhu LH, Liu S, Yu M, Cai H. Combining systemic inflammatory response index and albumin fibrinogen ratio to predict early serious complications and prognosis after resectable gastric cancer. World J Gastrointest Oncol 2024; 16:732-749. [PMID: 38577468 PMCID: PMC10989372 DOI: 10.4251/wjgo.v16.i3.732] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Gastric cancer has a high incidence and fatality rate, and surgery is the preferred course of treatment. Nonetheless, patient survival rates are still low, and the incidence of major postoperative complications cannot be disregarded. The systemic inflammatory response, nutritional level, and coagulation status are key factors affecting the postoperative recovery and prognosis of gastric cancer patients. The systemic inflammatory response index (SIRI) and the albumin fibrinogen ratio (AFR) are two valuable comprehensive indicators of the severity and prognosis of systemic inflammation in various medical conditions. AIM To assess the clinical importance and prognostic significance of the SIRI scores and the AFR on early postoperative outcomes in patients undergoing radical gastric cancer surgery. METHODS We conducted a retrospective analysis of the clinicopathological characteristics and relevant laboratory indices of 568 gastric cancer patients from January 2018 to December 2019. We calculated and compared two indicators of inflammation and then examined the diagnostic ability of combined SIRI and AFR values for serious early postoperative complications. We scored the patients and categorized them into three groups based on their SIRI and AFR levels. COX analysis was used to compare the three groups of patients the prognostic value of various preoperative SIRI-AFR scores for 5-year overall survival (OS) and disease-free survival (DFS). RESULTS SIRI-AFR scores were an independent risk factor for prognosis [OS: P = 0.004; hazards ratio (HR) = 3.134; DFS: P < 0.001; HR = 3.543] and had the highest diagnostic power (area under the curve: 0.779; 95% confidence interval: 0.737-0.820) for early serious complications in patients with gastric cancer. The tumor-node-metastasis stage (P = 0.001), perioperative transfusion (P = 0.044), positive carcinoembryonic antigen (P = 0.014) findings, and major postoperative complications (P = 0.011) were factors associated with prognosis. CONCLUSION Preoperative SIRI and AFR values were significantly associated with early postoperative survival and the occurrence of severe complications in gastric cancer patients.
Collapse
Affiliation(s)
- Jing-Yao Ren
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia Hui Autonomous Region, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Da Wang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Medical College of Jiangsu University, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Li-Hui Zhu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia Hui Autonomous Region, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Shuo Liu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Miao Yu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia Hui Autonomous Region, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
42
|
He XY, Gao Y, Ng D, Michalopoulou E, George S, Adrover JM, Sun L, Albrengues J, Daßler-Plenker J, Han X, Wan L, Wu XS, Shui LS, Huang YH, Liu B, Su C, Spector DL, Vakoc CR, Van Aelst L, Egeblad M. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024; 42:474-486.e12. [PMID: 38402610 PMCID: PMC11300849 DOI: 10.1016/j.ccell.2024.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Chronic stress is associated with increased risk of metastasis and poor survival in cancer patients, yet the reasons are unclear. We show that chronic stress increases lung metastasis from disseminated cancer cells 2- to 4-fold in mice. Chronic stress significantly alters the lung microenvironment, with fibronectin accumulation, reduced T cell infiltration, and increased neutrophil infiltration. Depleting neutrophils abolishes stress-induced metastasis. Chronic stress shifts normal circadian rhythm of neutrophils and causes increased neutrophil extracellular trap (NET) formation via glucocorticoid release. In mice with neutrophil-specific glucocorticoid receptor deletion, chronic stress fails to increase NETs and metastasis. Furthermore, digesting NETs with DNase I prevents chronic stress-induced metastasis. Together, our data show that glucocorticoids released during chronic stress cause NET formation and establish a metastasis-promoting microenvironment. Therefore, NETs could be targets for preventing metastatic recurrence in cancer patients, many of whom will experience chronic stress due to their disease.
Collapse
Affiliation(s)
- Xue-Yan He
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | | | - Shanu George
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jose M Adrover
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Lijuan Sun
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jean Albrengues
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Université Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | | | - Xiao Han
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ledong Wan
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Xiaoli Sky Wu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Longling S Shui
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
43
|
Hu J. Stress-induced metastasis: The NET effect. Cancer Cell 2024; 42:335-337. [PMID: 38471456 DOI: 10.1016/j.ccell.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Chronic stress correlates with cancer progression and metastasis, yet the underlying mechanisms remain to be explored. In this issue of Cancer Cell, He et al. reveal that glucocorticoids released during chronic stress promote metastasis by inducing the formation of neutrophil extracellular traps (NETs) and remodeling the microenvironment.
Collapse
Affiliation(s)
- Jing Hu
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
44
|
Richbourg NR, Irakoze N, Kim H, Peyton SR. Outlook and opportunities for engineered environments of breast cancer dormancy. SCIENCE ADVANCES 2024; 10:eadl0165. [PMID: 38457510 PMCID: PMC10923521 DOI: 10.1126/sciadv.adl0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Dormant, disseminated breast cancer cells resist treatment and may relapse into malignant metastases after decades of quiescence. Identifying how and why these dormant breast cancer cells are triggered into outgrowth is a key unsolved step in treating latent, metastatic breast cancer. However, our understanding of breast cancer dormancy in vivo is limited by technical challenges and ethical concerns with triggering the activation of dormant breast cancer. In vitro models avoid many of these challenges by simulating breast cancer dormancy and activation in well-controlled, bench-top conditions, creating opportunities for fundamental insights into breast cancer biology that complement what can be achieved through animal and clinical studies. In this review, we address clinical and preclinical approaches to treating breast cancer dormancy, how precisely controlled artificial environments reveal key interactions that regulate breast cancer dormancy, and how future generations of biomaterials could answer further questions about breast cancer dormancy.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst Amherst, MA 01003, USA
| |
Collapse
|
45
|
Snarski P, Ghimire J, Savkovic SD. FOXO3: at the crossroads of metabolic, inflammatory, and tumorigenic remodeling in the colon. Am J Physiol Gastrointest Liver Physiol 2024; 326:G247-G251. [PMID: 38193202 PMCID: PMC11211034 DOI: 10.1152/ajpgi.00201.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
The Forkhead box O3 (FOXO3) transcription factor regulates the expression of genes critical for diverse cellular functions in homeostasis. Diminished FOXO3 activity is associated with human diseases such as obesity, metabolic diseases, inflammatory diseases, and cancer. In the mouse colon, FOXO3 deficiency leads to an inflammatory immune landscape and dysregulated molecular pathways, which, under various insults, exacerbates inflammation and tumor burden, mimicking characteristics of human diseases. This deficiency also results in dysregulated lipid metabolism, and consequently, the accumulation of intracellular lipid droplets (LDs) in colonic epithelial cells and infiltrated immune cells. FOXO3 and LDs form a self-reinforcing negative regulatory loop in colonic epithelial cells, neutrophils, and macrophages, which is associated with inflammatory bowel disease and colon cancer, particularly in the context of obesity.
Collapse
Affiliation(s)
- Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
46
|
Singvogel K, Schittek B. Dormancy of cutaneous melanoma. Cancer Cell Int 2024; 24:88. [PMID: 38419052 PMCID: PMC10903048 DOI: 10.1186/s12935-024-03278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Many cancer-related deaths including melanoma result from metastases that develop months or years after the initial cancer therapy. Even the most effective drugs and immune therapies rarely eradicate all tumor cells. Instead, they strongly reduce cancer burden, permitting dormant cancer cells to persist in niches, where they establish a cellular homeostasis with their host without causing clinical symptoms. Dormant cancers respond poorly to most drugs and therapies since they do not proliferate and hide in niches. It therefore remains a major challenge to develop novel therapies for dormant cancers. In this review we focus on the mechanisms regulating the initiation of cutaneous melanoma dormancy as well as those which are involved in reawakening of dormant cutaneous melanoma cells. In recent years the role of neutrophils and niche components in reawakening of melanoma cells came into focus and indicate possible future therapeutic applications. Sophisticated in vitro and in vivo melanoma dormancy models are needed to make progress in this field and are discussed.
Collapse
Affiliation(s)
- Kathrin Singvogel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
48
|
Quail DF, Park M, Welm AL, Ekiz HA. Breast Cancer Immunity: It is TIME for the Next Chapter. Cold Spring Harb Perspect Med 2024; 14:a041324. [PMID: 37188526 PMCID: PMC10835621 DOI: 10.1101/cshperspect.a041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our ability to interrogate the tumor immune microenvironment (TIME) at an ever-increasing granularity has uncovered critical determinants of disease progression. Not only do we now have a better understanding of the immune response in breast cancer, but it is becoming possible to leverage key mechanisms to effectively combat this disease. Almost every component of the immune system plays a role in enabling or inhibiting breast tumor growth. Building on early seminal work showing the involvement of T cells and macrophages in controlling breast cancer progression and metastasis, single-cell genomics and spatial proteomics approaches have recently expanded our view of the TIME. In this article, we provide a detailed description of the immune response against breast cancer and examine its heterogeneity in disease subtypes. We discuss preclinical models that enable dissecting the mechanisms responsible for tumor clearance or immune evasion and draw parallels and distinctions between human disease and murine counterparts. Last, as the cancer immunology field is moving toward the analysis of the TIME at the cellular and spatial levels, we highlight key studies that revealed previously unappreciated complexity in breast cancer using these technologies. Taken together, this article summarizes what is known in breast cancer immunology through the lens of translational research and identifies future directions to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Departments of Biochemistry, Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, 35430 Urla, Izmir, Turkey
| |
Collapse
|
49
|
Yu D, Zhang J, Wang M, Ji R, Qian H, Xu W, Zhang H, Gu J, Zhang X. Exosomal miRNAs from neutrophils act as accurate biomarkers for gastric cancer diagnosis. Clin Chim Acta 2024; 554:117773. [PMID: 38199579 DOI: 10.1016/j.cca.2024.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/10/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Sensitive and accurate biomarkers can greatly aid in early diagnosis and favorable prognosis. Neutrophils are the most abundant immune cells in human circulation and play a critical role in tumor progression. Neutrophil-derived exosomes (Neu-Exo) contain abundant bioactive molecules and are critically involved in disease progression. METHODS We proposed a Dynabeads-based (CD66b antibody-coupled) separation and detection system for Neu-Exo analysis. Dual antibody-assisted fluorescent Dynabeads was established to detect Neu-Exo abundance. MiRNA signature of Neu-Exo was identified by RNA sequencing. QRT-PCR and droplet digital PCR (ddPCR) were used for candidate miRNA detection and the potential of Neu-Exo miRNAs in the diagnosis of gastric cancer was evaluated. RESULTS Dual antibody-assisted fluorescent Dynabeads obtained a detection limit of 7.8 × 105 particles/mL of Neu-Exo and a recovery rate of 81 % under optimized conditions. ROC curve indicated that the abundance of CD66b+ Neu-Exo could well distinguish GC patients from healthy controls (HC) (AUC > 0.8). Additionally, miR-223-3p was found among the top differentially expressed miRNAs in Neu-Exo and presented superior diagnostic value in gastric cancer. Droplet digital PCR (ddPCR) significantly improved the diagnostic efficiency to differentiate GC patients from HC and benign gastric diseases (BGD) patients (AUC > 0.9). CONCLUSION The Dynabeads-based separation and detection system, assisted with ddPCR analysis, provides a promising platform to enrich Neu-Exo and analyze miRNA profile for gastric cancer liquid biopsy.
Collapse
Affiliation(s)
- Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520 Turku, Finland.
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Cancer Hospital of Nantong University, 226300 Nantong, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
50
|
Zhang Y, Huang Y, Wang B, Shi W, Hu X, Wang Y, Guo Y, Xie H, Xiao W, Li J. Integrated Omics Reveal the Molecular Characterization and Pathogenic Mechanism of Rosacea. J Invest Dermatol 2024; 144:33-42.e2. [PMID: 37437773 DOI: 10.1016/j.jid.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 07/14/2023]
Abstract
Recent efforts have described the transcriptomic landscape of rosacea. However, little is known about its proteomic characteristics. In this study, the proteome and phosphoproteome of lesional skin, paired nonlesional skin, and healthy skin were analyzed by liquid chromatography coupled with tandem mass spectrometry. The molecular characteristics and potential pathogenic mechanism of rosacea were demonstrated by integrating the proteome, phosphoproteome, and previous transcriptome. The proteomic data revealed a significant upregulation of inflammation- and axon extension-related proteins in lesional skin and nonlesional skin versus in healthy skin, implying an inflammatory and nerve-hypersensitive microenvironment in rosacea skin. Of these, axon-related proteins (DPYSL2 and DBNL) were correlated with the Clinician's Erythema Assessment score, and neutrophil-related proteins (ELANE and S100A family) were correlated with the Investigator's Global Assessment score. Moreover, comorbidity-related proteins were differentially expressed in rosacea; of these, SNCA was positively correlated with Clinician's Erythema Assessment score, implying a potential correlation between rosacea and comorbidities. Subsequently, the integrated proteome and transcriptome demonstrated consistent immune disturbances at both the transcriptional and protein levels. The integrative analysis of the proteome and phosphoproteome revealed the key transcription factor network and kinase network that drive the dysregulation of immunity and vasculature in rosacea. In conclusion, our multiomics analysis enables more comprehensive insight into rosacea and offers an opportunity for, to our knowledge, previously unreported treatment strategies.
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ximin Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Dermatology, The First Hospital of Changsha, Changsha, China; Changsha Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|