1
|
Hu C. Prevention of cardiovascular disease for healthy aging and longevity: A new scoring system and related "mechanisms-hallmarks-biomarkers". Ageing Res Rev 2025; 107:102727. [PMID: 40096912 DOI: 10.1016/j.arr.2025.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Healthy "environment-sleep-emotion-exercise-diet" intervention [E(e)SEEDi] lifestyle can improve the quality of life, prolong aging and promote longevity due to improvement of human immunity and prevention of cardiovascular diseases (CVD). Here, the author reviewed the associations between these core elements with CVD and cardiovascular aging, and developed a new scoring system based on the healthy E(e)SEEDi lifestyle for prediction and evaluation of life expectancy. These core factors are assigned 20 points each (120 points in total), and a higher score predicts healthier aging and longevity. The E(e)SEEDi represents "a tree of life" bearing the fruits of longevity as well as "a rocket of anti-ageing" carrying people around the world on a journey of longevity. In conclusion, the E(e)SEEDi can delay aging and increase the life expectancy due to the role of a series of cellular and molecular "mechanisms-hallmarks-biomarkers". It's believed that the novel scoring system has a huge potential and beautiful prospects.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Nanchang University, Hospital of Nanchang University, Jiangxi Academy of Medical Science, No. 461 Bayi Ave, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Tang LL, Xu XY, Zhang M, Qin Q, Xue R, Jiang S, Yang X, Liang C, Wang QS, Yu CJ, Zhang ZR. KAT7 contributes to ponatinib-induced hypertension by promoting endothelial senescence and inflammatory responses through activating NF-κB signaling pathway. J Hypertens 2025; 43:827-840. [PMID: 40084466 PMCID: PMC11970613 DOI: 10.1097/hjh.0000000000003979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND PURPOSE Ponatinib, a tyrosine kinase inhibitor (TKI) leads to hypertension; however, the mechanisms remain elusive. We aimed to investigate whether lysine acetyltransferase 7 (KAT7), a key regulator of cellular senescence that is closely associated with cardiovascular diseases, involves in ponatinib-induced hypertension. METHODS AND RESULTS After administering ponatinib to Sprague-Dawley (SD) rats for 8 days, we measured blood pressure, vasodilation, and endothelial function using tail-cuff plethysmography, isometric myography, and the Total NO Assay kit, respectively. The results indicated that ponatinib increased blood pressure, impaired endothelium-dependent relaxation (EDR), and caused injury to endothelial cells in SD rats. Furthermore, PCR and Western blot experiments demonstrated an upregulation of KAT7 expression in rat mesenteric artery endothelial cells (MAECs) following ponatinib treatment. To further study the role of KAT7 in ponatinib-induced hypertension, we divided the SD rats into four groups: control, ponatinib, WM-3835 (a KAT7 inhibitor), and ponatinib plus WM-3835. Notably, WM-3835 administration significantly improved ponatinib-induced hypertension and EDR dysfunction in SD rats. Mechanistically, over-expression of KAT7 (OE-KAT7) in MAECs led to cellular senescence and inflammation, phenomena that were also observed in the mesenteric arteries of ponatinib-treated rats and in MAECs exposed to ponatinib. However, WM-3835 mitigated these detrimental effects in both in vivo and in vitro experiments. Additionally, both OE-KAT7 and ponatinib treatment induced H3K14 acetylation (H3K14ac), with OE-KAT7 also elevating the recruitment of the H3K14ac to the p21 promoter. Moreover, BAY 11-7085, a nuclear factor (NF)-κB inhibitor, potently alleviated the accumulation of IL-6 and IL-8, as well as endothelial cell senescence induced by ponatinib and KAT7 overexpression. CONCLUSION Our data indicate that ponatinib-induced elevation of KAT7 led to endothelial cells senescence and inflammatory responses through H3K14 acetylation and NF-κB signaling pathway, subsequently caused vasotoxicity and hypertension.
Collapse
Affiliation(s)
- Liang-Liang Tang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Xin-Yu Xu
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Mei Zhang
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| | - Qi Qin
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Rong Xue
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Shuai Jiang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Xu Yang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Chen Liang
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| | - Qiu-Shi Wang
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| | - Chang-Jiang Yu
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
| | - Zhi-Ren Zhang
- Department of Pharmacy and Cardiology, Harbin Medical University (HMU) Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer related Cardiovascular Diseases
- Department of Cardiology and Critical Care Medicine, the First Affiliated Hospital of HMU, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin 150081, China
| |
Collapse
|
3
|
Jing Y, Zheng W, Zhou Z, Yao H, Zhang W, Wu Y, Guo Z, Huang C, Wang X. Recent research advances of c-fos in regulating cell senescence. Arch Biochem Biophys 2025; 769:110423. [PMID: 40246221 DOI: 10.1016/j.abb.2025.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/25/2024] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
c-fos is an immediate early gene (IEG) that forms a heterodimeric activator protein-1 (AP-1) complex with c-Jun. Following stimulation by a variety of factors, it changes the expression of genes and participates in cellular growth, proliferation, differentiation, and apoptosis. Previous studies have reported that c-fos is linked to cellular senescence and is involved in aging-related signaling pathways or damage repair processes. However, there are limited studies related to this topic. This review summarizes the findings of the connection between c-fos and cellular senescence, including the regulatory role of c-fos in the senescence of stem cells and various kinds of somatic cells. In addition, we discussed the involvement of c-fos in the cellular senescence process and related signaling pathways, as well as the importance of regulating DNA damage repair. The current studies have demonstrated that c-fos has important roles in inhibiting stem cell senescence. They can pave the way for a more thorough examination of the aging process and the regeneration of stem cells and provide new therapeutic strategies for aging-related diseases.
Collapse
Affiliation(s)
- Yuxin Jing
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Zheng
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhou Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenchuan Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Mikulski P, Tehrani SSH, Kogan A, Abdul-Zani I, Shell E, James L, Ryan BJ, Jansen LET. Heritable maintenance of chromatin modifications confers transcriptional memory of interferon-γ signaling. Nat Struct Mol Biol 2025:10.1038/s41594-025-01522-8. [PMID: 40186025 DOI: 10.1038/s41594-025-01522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Interferon-γ (IFNγ) transiently activates genes related to inflammation and innate immunity. A subset of targets retain a mitotically heritable memory of prior IFNγ exposure, resulting in hyperactivation upon re-exposure through poorly understood mechanisms. Here, we discover that the transcriptionally permissive chromatin marks H3K4me1, H3K14ac and H4K16ac are established during IFNγ priming and are selectively maintained on a cluster of guanylate-binding protein (GBP) genes in dividing human cells in the absence of transcription. The histone acetyltransferase KAT7 is required for H3K14ac deposition at GBP genes and for accelerated GBP reactivation upon re-exposure to IFNγ. In naive cells, the GBP cluster is maintained in a low-level repressive chromatin state, marked by H3K27me3, limiting priming through a PRC2-dependent mechanism. Unexpectedly, IFNγ priming results in transient accumulation of this repressive mark despite active gene expression. However, during the memory phase, H3K27 methylation is selectively depleted from primed GBP genes, facilitating hyperactivation. Furthermore, we identified a cis-regulatory element that forms transient, long-range contacts across the GBP cluster and acts as a repressor, curbing hyperactivation of previously IFNγ-primed cells. Our results provide insight into the chromatin basis for the long-term transcriptional memory of IFNγ signaling, which might contribute to enhanced innate immunity.
Collapse
Affiliation(s)
- Pawel Mikulski
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The International Institute of Molecular Mechanisms and Machines PAS, Warsaw, Poland.
| | - Sahar S H Tehrani
- Department of Biochemistry, University of Oxford, Oxford, UK
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Anna Kogan
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Izma Abdul-Zani
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emer Shell
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Louise James
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Brent J Ryan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Zhang H, Sun S, Izpisua Belmonte JC, Liu GH, Wang S, Zhang W, Qu J. Protocols for the application of human embryonic stem cell-derived neurons for aging modeling and gene manipulation. STAR Protoc 2025; 6:103633. [PMID: 39932849 PMCID: PMC11867521 DOI: 10.1016/j.xpro.2025.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/02/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
In vitro models of neuronal aging and gene manipulation in human neurons (hNeurons) are valuable tools for investigating human brain aging and diseases. Here, we present a protocol for applying human embryonic stem cell (hESC)-derived neurons to model aging and the further application of small interfering RNA (siRNA)-mediated gene silencing for functional investigations. We describe steps for neuronal differentiation and culture, siRNA transfection, and technical considerations to ensure reproducibility. Our protocol enables investigations of the molecular mechanism underlying neuronal aging and facilitates drug evaluation. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.
Collapse
Affiliation(s)
- Hui Zhang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Shuhui Sun
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | | | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Jing Qu
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
6
|
Huang Y, Zhu S, Yao S, Zhai H, Liu C, Han JDJ. Unraveling aging from transcriptomics. Trends Genet 2025; 41:218-235. [PMID: 39424502 DOI: 10.1016/j.tig.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Research into aging constitutes a pivotal endeavor aimed at elucidating the underlying biological mechanisms governing aging and age-associated diseases, as well as promoting healthy longevity. Recent advances in transcriptomic technologies, such as bulk RNA sequencing (RNA-seq), single-cell transcriptomics, and spatial transcriptomics, have revolutionized our ability to study aging at unprecedented resolution and scale. These technologies present novel opportunities for the discovery of biomarkers, elucidation of molecular pathways, and development of targeted therapeutic strategies for age-related disorders. This review surveys recent breakthroughs in different types of transcripts on aging, such as mRNA, long noncoding (lnc)RNA, tRNA, and miRNA, highlighting key findings and discussing their potential implications for future studies in this field.
Collapse
Affiliation(s)
- Yuanfang Huang
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shouxuan Zhu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuai Yao
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Haotian Zhai
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenyang Liu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
7
|
Liu Z, Qiu L, Zhang Y, Zhao G, Sun X, Luo W. Kat7 accelerates osteoarthritis disease progression through the TLR4/NF-κB signaling pathway. J Mol Med (Berl) 2025; 103:273-284. [PMID: 39873724 DOI: 10.1007/s00109-025-02519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2024] [Accepted: 01/18/2025] [Indexed: 01/30/2025]
Abstract
Osteoarthritis (OA) is a common degenerative bone and joint disease with an unclear pathogenesis. Our study identified that the histone acetyltransferase encoded by Kat7 is upregulated in the affected articular cartilage of OA patients and in a mice model of medial meniscal instability-induced OA. Chondrocyte-specific knockdown of Kat7 expression exhibited a protective effect on articular cartilage integrity. In vitro experiments demonstrated that KAT7 promotes cartilage catabolism, inhibits cartilage anabolism, and induces chondrocyte senescence and apoptosis. Conversely, knocking down Kat7 was shown to protect chondrocyte function. Corresponding in vivo results indicated that silencing Kat7 effectively enhances cartilage anabolism, prevents articular cartilage damage, and significantly slows OA progression. Mechanistically, KAT7 activates the TLR4/NF-κB signaling pathway, and inhibition of this pathway reverses the catabolic effects and restores anabolic activity in the presence of Kat7 overexpression. Collectively, these findings confirm the critical role of KAT7 in the pathogenesis of OA and suggest that Kat7 represents a potential therapeutic target for OA treatment. KEY MESSAGES: There is a lack of clinically effective drugs for the treatment of osteoarthritis (OA). Kat7 plays a key role in the development of OA. Knocking down Kat7 expression can alleviate the progression of OA. Kat7 accelerates the progression of OA by activating the TLR4/NF-KB signaling pathway.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Lijie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Yongqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Gang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Xuecheng Sun
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Wenming Luo
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China.
| |
Collapse
|
8
|
Xu Y, Liu S, Zhou Z, Qin H, Zhang Y, Zhang G, Ma H, Han X, Liu H, Liu Z. Integrated multi-omics analysis revealed the molecular networks and potential targets of cellular senescence in Alzheimer's disease. Hum Mol Genet 2025; 34:381-391. [PMID: 39690817 DOI: 10.1093/hmg/ddae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Cellular senescence (CS) is a hallmark of Alzheimer's disease (AD). However, the mechanisms through which CS contributes to AD pathogenesis remain poorly understood. We found that CS level in AD was higher compared with the healthy control group. Transcriptome-based differential expression analysis identified 113 CS-related genes in blood and 410 in brain tissue as potential candidate genes involved in AD. To further explore the causal role of these genes, an integrative mendelian randomization analysis was conducted, combining AD genome-wide association study summary statistics with expression quantitative trait loci (eQTL) and DNA methylation quantitative trait loci (mQTL) data from blood samples, which identified five putative AD-causal genes (CENPW, EXOSC9, HSPB11, SLC44A2, and SLFN12) and 18 corresponding DNA methylation probes. Additionally, integrative analysis between eQTLs and mQTLs from blood uncovered two genes and 12 corresponding regulatory elements involved in AD. Furthermore, two genes (CDKN2B and ITGAV) were prioritized as putative causal genes in brain tissue and were validated through in vitro experiments. The multi-omics integration study revealed the potential role and underlying biological mechanisms of CS driven by genetic predisposition in AD. This study contributed to fundamental understanding of CS in AD pathogenesis and facilitated the identification of potential therapeutic targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Hongzhuo Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Hongxuan Ma
- Department of Kidney Transportation, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Huimin Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| |
Collapse
|
9
|
Lee CW, Wang BYH, Wong SH, Chen YF, Cao Q, Hsiao AWT, Fung SH, Chen YF, Wu HH, Cheng PY, Chou ZH, Lee WYW, Tsui SKW, Lee OKS. Ginkgolide B increases healthspan and lifespan of female mice. NATURE AGING 2025; 5:237-258. [PMID: 39890935 DOI: 10.1038/s43587-024-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Various anti-aging interventions show promise in extending lifespan, but many are ineffective or even harmful to healthspan. Ginkgolide B (GB), derived from Ginkgo biloba, reduces aging-related morbidities such as osteoporosis, yet its effects on healthspan and longevity have not been fully understood. In this study, we found that continuous oral administration of GB to female mice beginning at 20 months of age extended median survival and median lifespan by 30% and 8.5%, respectively. GB treatment also decreased tumor incidence; enhanced muscle quality, physical performance and metabolism; and reduced systemic inflammation and senescence. Single-nucleus RNA sequencing of skeletal muscle tissue showed that GB ameliorated aging-associated changes in cell type composition, signaling pathways and intercellular communication. GB reduced aging-induced Runx1+ type 2B myonuclei through the upregulation of miR-27b-3p, which suppresses Runx1 expression. Using functional analyses, we found that Runx1 promoted senescence and cell death in muscle cells. Collectively, these findings suggest the translational potential of GB to extend healthspan and lifespan and to promote healthy aging.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Fan Chen
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Allen Wei-Ting Hsiao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Cheng
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Zong-Han Chou
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
10
|
Russo L, Babboni S, Andreassi MG, Daher J, Canale P, Del Turco S, Basta G. Treating Metabolic Dysregulation and Senescence by Caloric Restriction: Killing Two Birds with One Stone? Antioxidants (Basel) 2025; 14:99. [PMID: 39857433 PMCID: PMC11763027 DOI: 10.3390/antiox14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase. The dysregulation of these pathways contributes to insulin resistance, impaired autophagy, exacerbated oxidative stress, and mitochondrial dysfunction, further enhancing cellular senescence and systemic metabolic derangements. On the other hand, dysfunctional endothelial cells and adipocytes contribute to systemic inflammation, reduced nitric oxide production, and altered lipid metabolism. Numerous factors, including extracellular vesicles, mediate pathological communication between the vascular system and adipose tissue, amplifying metabolic imbalances. Meanwhile, caloric restriction (CR) emerges as a potent intervention to counteract overnutrition effects, improve mitochondrial function, reduce oxidative stress, and restore metabolic balance. CR modulates pathways such as IIS, mTOR, and sirtuins, enhancing glucose and lipid metabolism, reducing inflammation, and promoting autophagy. CR can extend the health span and mitigate age-related diseases by delaying cellular senescence and improving healthy endothelial-adipocyte interactions. This review highlights the crosstalk between endothelial cells and adipocytes, emphasizing CR potential in counteracting overnutrition-induced senescence and restoring vascular homeostasis.
Collapse
Affiliation(s)
- Lara Russo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura 100, Lebanon;
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| |
Collapse
|
11
|
Keller MA, Nakamura M. Acetyltransferase in cardiovascular disease and aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:10.20517/jca.2024.21. [PMID: 39958699 PMCID: PMC11827898 DOI: 10.20517/jca.2024.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Acetyltransferases are enzymes that catalyze the transfer of an acetyl group to a substrate, a modification referred to as acetylation. Loss-of-function variants in genes encoding acetyltransferases can lead to congenital disorders, often characterized by intellectual disability and heart and muscle defects. Their activity is influenced by dietary nutrients that alter acetyl coenzyme A levels, a key cofactor. Cardiovascular diseases, including ischemic, hypertensive, and diabetic heart diseases - leading causes of mortality in the elderly - are largely attributed to prolonged lifespan and the growing prevalence of metabolic syndrome. Acetyltransferases thus serve as a crucial link between lifestyle modifications, cardiometabolic disease, and aging through both epigenomic and non-epigenomic mechanisms. In this review, we discuss the roles and relevance of acetyltransferases. While the sirtuin family of deacetylases has been extensively studied in longevity, particularly through fasting-mediated NAD+ metabolism, recent research has brought attention to the essential roles of acetyltransferases in health and aging-related pathways, including cell proliferation, DNA damage response, mitochondrial function, inflammation, and senescence. We begin with an overview of acetyltransferases, classifying them by domain structure, including canonical and non-canonical lysine acetyltransferases, N-terminal acetyltransferases, and sialic acid O-acetyltransferases. We then discuss recent advances in understanding acetyltransferase-related pathologies, particularly focusing on cardiovascular disease and aging, and explore their potential therapeutic applications for promoting health in older individuals.
Collapse
Affiliation(s)
- Mariko Aoyagi Keller
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Su P, Miao YL. A Genome-Wide CRISPR/Cas9 Screen Identifies Regulatory Genes for Stem Cell Aging. Methods Mol Biol 2024. [PMID: 39702861 DOI: 10.1007/7651_2024_566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Aging is a ubiquitous biological phenomenon, characterized by a gradual decline in physiological functions and an increased risk of various diseases. Although it is known that aging involves extensive changes in gene expression and disruptions in cellular metabolism, the molecular mechanisms underlying these processes remain incompletely understood. The CRISPR/Cas9 technology provides an efficient method for gene editing. In recent years, this technique has been successfully applied in various cellular and animal models to identify key genes involved in biological processes such as cancer and genetic diseases, which makes it possible to screen genes that affect cell senescence in the whole genome. Here, we describe a method that involves differentiating embryonic stem cells into mesenchymal progenitor cells and employing CRISPR/Cas9 for genome-wide functional screening to identify genes that regulate aging. Further analysis of the functions and regulatory mechanisms of these genes may provide new targets and strategies for anti-aging research and stem cell therapy.
Collapse
Affiliation(s)
- Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Li Y, Wu A, Jin X, Shen H, Zhao C, Yi X, Nie H, Wang M, Yin S, Zuo H, Ju Z, Jiang Z, Wang H. DDO1002, an NRF2-KEAP1 inhibitor, improves hematopoietic stem cell aging and stress response. LIFE MEDICINE 2024; 3:lnae043. [PMID: 39872153 PMCID: PMC11748272 DOI: 10.1093/lifemedi/lnae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025]
Abstract
Oxidative stress diminishes the functionality of hematopoietic stem cells (HSCs) as age advances, with heightened reactive oxygen species (ROS) levels exacerbating DNA damage, cellular senescence, and hematopoietic impairment. DDO1002, a potent inhibitor of the NRF2-KEAP1 pathway, modulates the expression of antioxidant genes. Yet, the extent to which it mitigates hematopoietic decline post-total body irradiation (TBI) or in the context of aging remains to be elucidated. Our study has elucidated the role of DDO1002 in modulating NRF2 activity, which, in turn, activates the NRF2-driven antioxidant response element (ARE) signaling cascade. This activation can diminish intracellular levels of ROS, thereby attenuating cellular senescence. In addition, DDO1002 has been demonstrated to ameliorate DNA damage and avert HSC apoptosis, underscoring its potential to mitigate hematopoietic injury precipitated by TBI. Competitive transplantation assay revealed that the administration of DDO1002 can improve the reconstitution and self-renewal capacity of HSCs in aged mice. Single-cell sequencing analysis elucidated that DDO1002 treatment attenuated intracellular inflammatory signaling pathways and mitigated ROS pathway in aged HSCs, suggesting its potential to restore the viability of these cells. Consequently, DDO1002 effectively activated the NRF2-ARE pathway, delaying cellular senescence and ameliorating impaired hematopoiesis, thereby demonstrating its potential as a therapeutic agent for age-related hematopoietic disorders.
Collapse
Affiliation(s)
- Yuwen Li
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Haiping Shen
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyan Zhao
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao Yi
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Nie
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingwei Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongna Zuo
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenyu Ju
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Zhenyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Zhu Z, Li L, Ye Y, Zhong Q. Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue. Cell Oncol (Dordr) 2024; 47:2183-2199. [PMID: 39414741 DOI: 10.1007/s13402-024-00996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
PURPOSE Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment. METHODS Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches. RESULTS Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging. CONCLUSION This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Jin W, Jiang S, Liu X, He Y, Li T, Ma J, Chen Z, Lu X, Liu X, Shou W, Jin G, Ding J, Zhou Z. Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A. Nat Commun 2024; 15:10046. [PMID: 39567511 PMCID: PMC11579472 DOI: 10.1038/s41467-024-54338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Studies of laminopathy-based progeria offer insights into aging-associated diseases and highlight the role of LMNA in chromatin organization. Mandibuloacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria that lacks lamin A post-translational processing defects. Using iPSCs derived from a male MAD patient carrying homozygous LMNA p.R527C, premature aging phenotypes are recapitulated in multiple mesenchymal lineages, including mesenchymal stem cells (MSCs). Comparison with 26 human aging MSC expression datasets reveals that MAD-MSCs exhibit the highest similarity to senescent primary human MSCs. Lamina-chromatin interaction analysis reveals reorganization of lamina-associating domains (LADs) and repositioning of non-LAD binding peaks may contribute to the observed accelerated senescence. Additionally, 3D genome organization further supports hierarchical chromatin disorganization in MAD stem cells, alongside dysregulation of genes involved in epigenetic modification, stem cell fate maintenance, senescence, and geroprotection. Together, these findings suggest LMNA missense mutation is linked to chromatin alterations in an atypical progeroid syndrome.
Collapse
Affiliation(s)
- Wei Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Jingchun Ma
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhihong Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China
| | - Weinian Shou
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
17
|
Yang Y, Lu X, Liu N, Ma S, Zhang H, Zhang Z, Yang K, Jiang M, Zheng Z, Qiao Y, Hu Q, Huang Y, Zhang Y, Xiong M, Liu L, Jiang X, Reddy P, Dong X, Xu F, Wang Q, Zhao Q, Lei J, Sun S, Jing Y, Li J, Cai Y, Fan Y, Yan K, Jing Y, Haghani A, Xing M, Zhang X, Zhu G, Song W, Horvath S, Rodriguez Esteban C, Song M, Wang S, Zhao G, Li W, Izpisua Belmonte JC, Qu J, Zhang W, Liu GH. Metformin decelerates aging clock in male monkeys. Cell 2024; 187:6358-6378.e29. [PMID: 39270656 DOI: 10.1016/j.cell.2024.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomolgus monkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of physiological, imaging, histological, and molecular evaluations, substantiating metformin's influence on delaying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics, DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and applied these to gauge metformin's effects on aging. The results highlighted a significant slowing of aging indicators, notably a roughly 6-year regression in brain aging. Metformin exerts a substantial neuroprotective effect, preserving brain structure and enhancing cognitive ability. The geroprotective effects on primate neurons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities. Our research pioneers the systemic reduction of multi-dimensional biological age in primates through metformin, paving the way for advancing pharmaceutical strategies against human aging.
Collapse
Affiliation(s)
- Yuanhan Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Lu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhiyi Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kuan Yang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zikai Zheng
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yicheng Qiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinchao Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510060, China
| | - Ying Huang
- Chongqing Fifth People's Hospital, Chongqing 400060, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Muzhao Xiong
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pradeep Reddy
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Xueda Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanshu Xu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jinghui Lei
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Shuhui Sun
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Jing
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaowen Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yaobin Jing
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Amin Haghani
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Mengen Xing
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Steve Horvath
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | | | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; National Medical Center for Neurological Diseases, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
18
|
Li HY, Wang M, Jiang X, Jing Y, Wu Z, He Y, Yan K, Sun S, Ma S, Ji Z, Wang S, Belmonte JC, Qu J, Zhang W, Wei T, Liu GH. CRISPR screening uncovers nucleolar RPL22 as a heterochromatin destabilizer and senescence driver. Nucleic Acids Res 2024; 52:11481-11499. [PMID: 39258545 PMCID: PMC11514463 DOI: 10.1093/nar/gkae740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Dysfunction of the ribosome manifests during cellular senescence and contributes to tissue aging, functional decline, and development of aging-related disorders in ways that have remained enigmatic. Here, we conducted a comprehensive CRISPR-based loss-of-function (LOF) screen of ribosome-associated genes (RAGs) in human mesenchymal progenitor cells (hMPCs). Through this approach, we identified ribosomal protein L22 (RPL22) as the foremost RAG whose deficiency mitigates the effects of cellular senescence. Consequently, absence of RPL22 delays hMPCs from becoming senescent, while an excess of RPL22 accelerates the senescence process. Mechanistically, we found in senescent hMPCs, RPL22 accumulates within the nucleolus. This accumulation triggers a cascade of events, including heterochromatin decompaction with concomitant degradation of key heterochromatin proteins, specifically heterochromatin protein 1γ (HP1γ) and heterochromatin protein KRAB-associated protein 1 (KAP1). Subsequently, RPL22-dependent breakdown of heterochromatin stimulates the transcription of ribosomal RNAs (rRNAs), triggering cellular senescence. In summary, our findings unveil a novel role for nucleolar RPL22 as a destabilizer of heterochromatin and a driver of cellular senescence, shedding new light on the intricate mechanisms underlying the aging process.
Collapse
Affiliation(s)
- Hong-Yu Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaobin Jing
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Taotao Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
19
|
Qi H, Wu Y, Zhang W, Yu N, Lu X, Liu J. The syntaxin-binding protein STXBP5 regulates progerin expression. Sci Rep 2024; 14:23376. [PMID: 39379476 PMCID: PMC11461833 DOI: 10.1038/s41598-024-74621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hutchinson-Gilfor progeria syndrome (HGPS) is caused by a mutation in Lamin A resulting in the production of a protein called progerin. The accumulation of progerin induces inflammation, cellular senescence and activation of the P53 pathway. In this study, through public dataset analysis, we identified Syntaxin Binding Protein 5 (STXBP5) as an influencing factor of progerin expression. STXBP5 overexpression accelerated the onset of senescence, while STXBP5 deletion suppressed progerin expression, delayed senility, and decreased the expression of senescence-related factors. STXBP5 and progerin have synergistic effects and a protein-protein interaction. Through bioinformatics analysis, we found that STXBP5 affects ageing-related signalling pathways such as the mitogen-activated protein kinase (MAPK) pathway, the hippo pathway and the interleukin 17 (IL17) signalling pathway in progerin-expressing cells. In addition, STXBP5 overexpression induced changes in transposable elements (TEs), such as the human endogenous retrovirus H internal coding sequence (HERVH-int) changes. Our protein coimmunoprecipitation (Co-IP) results indicated that STXBP5 bound directly to progerin. Therefore, decreasing STXBP5 expression is a potential new therapeutic strategy for treating ageing-related phenotypes in patients with HGPS.
Collapse
Affiliation(s)
- Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Wu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Weiyu Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Jinchao Liu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Ruetz TJ, Pogson AN, Kashiwagi CM, Gagnon SD, Morton B, Sun ED, Na J, Yeo RW, Leeman DS, Morgens DW, Tsui CK, Li A, Bassik MC, Brunet A. CRISPR-Cas9 screens reveal regulators of ageing in neural stem cells. Nature 2024; 634:1150-1159. [PMID: 39358505 PMCID: PMC11525198 DOI: 10.1038/s41586-024-07972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.
Collapse
Affiliation(s)
- Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | | | - Bhek Morton
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Jeeyoon Na
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stem Cell Biology & Regenerative Medicine Graduate Program, Stanford University, Stanford, CA, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Dena S Leeman
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
22
|
Yokoyama A, Niida H, Kutateladze TG, Côté J. HBO1, a MYSTerious KAT and its links to cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195045. [PMID: 38851533 PMCID: PMC11330361 DOI: 10.1016/j.bbagrm.2024.195045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The histone acetyltransferase HBO1, also known as KAT7, is a major chromatin modifying enzyme responsible for H3 and H4 acetylation. It is found within two distinct tetrameric complexes, the JADE subunit-containing complex and BRPF subunit-containing complex. The HBO1-JADE complex acetylates lysine 5, 8 and 12 of histone H4, and the HBO1-BRPF complex acetylates lysine 14 of histone H3. HBO1 regulates gene transcription, DNA replication, DNA damage repair, and centromere function. It is involved in diverse signaling pathways and plays crucial roles in development and stem cell biology. Recent work has established a strong relationship of HBO1 with the histone methyltransferase MLL/KMT2A in acute myeloid leukemia. Here, we discuss functional and pathological links of HBO1 to cancer, highlighting the underlying mechanisms that may pave the way to the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division-CHU de Québec-UL Research Center, Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
23
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
24
|
Zhou H, Ye P, Xiong W, Duan X, Jing S, He Y, Zeng Z, Wei Y, Ye Q. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges. Stem Cell Res Ther 2024; 15:218. [PMID: 39026343 PMCID: PMC11264826 DOI: 10.1186/s13287-024-03831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the rapid development of stem cell technology, there have been tremendous advances in molecular biological and pathological research, cell therapy as well as organoid technologies over the past decades. Advances in genome editing technology, particularly the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related protein 9 (Cas9), have further facilitated the rapid development of stem cell researches. The CRISPR-Cas9 technology now goes beyond creating single gene editing to enable the inhibition or activation of endogenous gene loci by fusing inhibitory (CRISPRi) or activating (CRISPRa) domains with deactivated Cas9 proteins (dCas9). These tools have been utilized in genome-scale CRISPRi/a screen to recognize hereditary modifiers that are synergistic or opposing to malady mutations in an orderly and fair manner, thereby identifying illness mechanisms and discovering novel restorative targets to accelerate medicinal discovery investigation. However, the application of this technique is still relatively rare in stem cell research. There are numerous specialized challenges in applying large-scale useful genomics approaches to differentiated stem cell populations. Here, we present the first comprehensive review on CRISPR-based functional genomics screening in the field of stem cells, as well as practical considerations implemented in a range of scenarios, and exploration of the insights of CRISPR-based screen into cell fates, disease mechanisms and cell treatments in stem cell models. This review will broadly benefit scientists, engineers and medical practitioners in the areas of stem cell research.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Xiong
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Shuili Jing
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, Hubei, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
25
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
26
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
27
|
Bi S, Jiang X, Ji Q, Wang Z, Ren J, Wang S, Yu Y, Wang R, Liu Z, Liu J, Hu J, Sun G, Wu Z, Diao Z, Li J, Sun L, Izpisua Belmonte JC, Zhang W, Liu GH, Qu J. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev Cell 2024; 59:991-1009.e12. [PMID: 38484732 DOI: 10.1016/j.devcel.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Sirtuins are pro-longevity genes with chromatin modulation potential, but how these properties are connected is not well understood. Here, we generated a panel of isogeneic human stem cell lines with SIRT1-SIRT7 knockouts and found that any sirtuin deficiency leads to accelerated cellular senescence. Through large-scale epigenomic analyses, we show how sirtuin deficiency alters genome organization and that genomic regions sensitive to sirtuin deficiency are preferentially enriched in active enhancers, thereby promoting interactions within topologically associated domains and the formation of de novo enhancer-promoter loops. In all sirtuin-deficient human stem cell lines, we found that chromatin contacts are rewired to promote aberrant activation of the placenta-specific gene PAPPA, which controls the pro-senescence effects associated with sirtuin deficiency and serves as a potential aging biomarker. Based on our survey of the 3D chromatin architecture, we established connections between sirtuins and potential target genes, thereby informing the development of strategies for aging interventions.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ruoqi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhang Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| |
Collapse
|
28
|
Lv L, Chen Q, Lu J, Zhao Q, Wang H, Li J, Yuan K, Dong Z. Potential regulatory role of epigenetic modifications in aging-related heart failure. Int J Cardiol 2024; 401:131858. [PMID: 38360101 DOI: 10.1016/j.ijcard.2024.131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Heart failure (HF) is a serious clinical syndrome and a serious development or advanced stage of various heart diseases. Aging is an independent factor that causes pathological damage in cardiomyopathy and participates in the occurrence of HF at the molecular level by affecting mechanisms such as telomere shortening and mitochondrial dysfunction. Epigenetic changes have a significant impact on the aging process, and there is increasing evidence that genetic and epigenetic changes are key features of aging and aging-related diseases. Epigenetic modifications can affect genetic information by changing the chromatin state without changing the DNA sequence. Most of the genetic loci that are highly associated with cardiovascular diseases (CVD) are located in non-coding regions of the genome; therefore, the epigenetic mechanism of CVD has attracted much attention. In this review, we focus on the molecular mechanisms of HF during aging and epigenetic modifications mediating aging-related HF, emphasizing that epigenetic mechanisms play an important role in the pathogenesis of aging-related CVD and can be used as potential diagnostic and prognostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiuYu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HongYan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JiaHao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - KeYing Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ZengXiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
29
|
He H, Wang Y, Tang B, Dong Q, Wu C, Sun W, Wang J. Aging-induced MCPH1 translocation activates necroptosis and impairs hematopoietic stem cell function. NATURE AGING 2024; 4:510-526. [PMID: 38632351 DOI: 10.1038/s43587-024-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
DNA damage contributes to the aging of hematopoietic stem cells (HSCs), yet the underlying molecular mechanisms are not fully understood. In this study, we identified a heterogeneous functional role of microcephalin (MCPH1) in the nucleus and cytoplasm of mouse HSCs. In the nucleus, MCPH1 maintains genomic stability, whereas in the cytoplasm, it prevents necroptosis by binding with p-RIPK3. Aging triggers MCPH1 translocation from cytosol to nucleus, reducing its cytoplasmic retention and leading to the activation of necroptosis and deterioration of HSC function. Mechanistically, we found that KAT7-mediated lysine acetylation within the NLS motif of MCPH1 in response to DNA damage facilitates its nuclear translocation. Targeted mutation of these lysines inhibits MCPH1 translocation and, consequently, compromises necroptosis. The dysfunction of necroptosis signaling, in turn, improves the function of aged HSCs. In summary, our findings demonstrate that DNA damage-induced redistribution of MCPH1 promotes HSC aging and could have broader implications for aging and aging-related diseases.
Collapse
Affiliation(s)
- Hanqing He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yuqian Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qiongye Dong
- Institute of Precision of Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
Palikyras S, Sofiadis K, Stavropoulou A, Danieli‐Mackay A, Varamogianni‐Mamatsi V, Hörl D, Nasiscionyte S, Zhu Y, Papadionysiou I, Papadakis A, Josipovic N, Zirkel A, O'Connell A, Loughran G, Keane J, Michel A, Wagner W, Beyer A, Harz H, Leonhardt H, Lukinavicius G, Nikolaou C, Papantonis A. Rapid and synchronous chemical induction of replicative-like senescence via a small molecule inhibitor. Aging Cell 2024; 23:e14083. [PMID: 38196311 PMCID: PMC11019153 DOI: 10.1111/acel.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Cellular senescence is acknowledged as a key contributor to organismal ageing and late-life disease. Though popular, the study of senescence in vitro can be complicated by the prolonged and asynchronous timing of cells committing to it and by its paracrine effects. To address these issues, we repurposed a small molecule inhibitor, inflachromene (ICM), to induce senescence to human primary cells. Within 6 days of treatment with ICM, senescence hallmarks, including the nuclear eviction of HMGB1 and -B2, are uniformly induced across IMR90 cell populations. By generating and comparing various high throughput datasets from ICM-induced and replicative senescence, we uncovered a high similarity of the two states. Notably though, ICM suppresses the pro-inflammatory secretome associated with senescence, thus alleviating most paracrine effects. In summary, ICM rapidly and synchronously induces a senescent-like phenotype thereby allowing the study of its core regulatory program without confounding heterogeneity.
Collapse
Affiliation(s)
- Spiros Palikyras
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Konstantinos Sofiadis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Present address:
Oncode InstituteHubrecht Institute‐KNAW and University Medical Center UtrechtUtrechtThe Netherlands
| | - Athanasia Stavropoulou
- Institute for BioinnovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
| | - Adi Danieli‐Mackay
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Clinical Research Unit 5002University Medical Center GöttingenGöttingenGermany
| | | | - David Hörl
- Faculty of BiologyLudwig Maximilians University MunichMunichGermany
| | | | - Yajie Zhu
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | | | - Antonis Papadakis
- Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Natasa Josipovic
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Present address:
Single Cell DiscoveriesUtrechtThe Netherlands
| | - Anne Zirkel
- Center for Molecular Medicine CologneUniversity and University Hospital of CologneCologneGermany
| | | | | | | | | | - Wolfgang Wagner
- Helmholtz‐Institute for Biomedical EngineeringRWTH Aachen University Medical SchoolAachenGermany
- Institute for Stem Cell BiologyRWTH Aachen University Medical SchoolAachenGermany
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Hartmann Harz
- Faculty of BiologyLudwig Maximilians University MunichMunichGermany
| | | | - Grazvydas Lukinavicius
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Christoforos Nikolaou
- Institute for BioinnovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
| | - Argyris Papantonis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Clinical Research Unit 5002University Medical Center GöttingenGöttingenGermany
| |
Collapse
|
31
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
32
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
33
|
Yang S, Zhang L, Huang H, Wang J, Wu L, Bao Z. Inflection Point Age in the Middle and Older Women - Jiangxi Province, China, 2020-2022. China CDC Wkly 2024; 6:162-167. [PMID: 38495590 PMCID: PMC10937185 DOI: 10.46234/ccdcw2024.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
What is already known about this topic? Previous studies have predominantly examined the micro-level aspects of women aging inflection points, while macro-level research using big data on the inflection points of aging among middle-aged and elderly women in China is currently limited. What is added by this report? This study determined the inflection ages for physiological, psychological, social, and total dimensions in middle-aged, young elderly, and elderly women [(48.0-53.2) vs. (66.3-70.0) vs. (78.4-81.2) years old]. What are the implications for public health practice? This study is important for gaining a deeper understanding of aging, identifying patterns of aging, and implementing targeted interventions to promote the overall health of Chinese women.
Collapse
Affiliation(s)
- Shanlan Yang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Langlang Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Helang Huang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jiaofeng Wang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Lei Wu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhijun Bao
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Ji Q, Jiang X, Wang M, Xin Z, Zhang W, Qu J, Liu GH. Multimodal Omics Approaches to Aging and Age-Related Diseases. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:56-71. [PMID: 38605908 PMCID: PMC11003952 DOI: 10.1007/s43657-023-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 04/13/2024]
Abstract
Aging is associated with a progressive decline in physiological capacities and an increased risk of aging-associated disorders. An increasing body of experimental evidence shows that aging is a complex biological process coordinately regulated by multiple factors at different molecular layers. Thus, it is difficult to delineate the overall systematic aging changes based on single-layer data. Instead, multimodal omics approaches, in which data are acquired and analyzed using complementary omics technologies, such as genomics, transcriptomics, and epigenomics, are needed for gaining insights into the precise molecular regulatory mechanisms that trigger aging. In recent years, multimodal omics sequencing technologies that can reveal complex regulatory networks and specific phenotypic changes have been developed and widely applied to decode aging and age-related diseases. This review summarizes the classification and progress of multimodal omics approaches, as well as the rapidly growing number of articles reporting on their application in the field of aging research, and outlines new developments in the clinical treatment of age-related diseases based on omics technologies.
Collapse
Affiliation(s)
- Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Minxian Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zijuan Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053 China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| |
Collapse
|
35
|
Wu Z, Zhang W, Qu J, Liu GH. Emerging epigenetic insights into aging mechanisms and interventions. Trends Pharmacol Sci 2024; 45:157-172. [PMID: 38216430 DOI: 10.1016/j.tips.2023.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Epigenetic dysregulation emerges as a critical hallmark and driving force of aging. Although still an evolving field with much to explore, it has rapidly gained significance by providing valuable insights into the mechanisms of aging and potential therapeutic opportunities for age-related diseases. Recent years have witnessed remarkable strides in our understanding of the epigenetic landscape of aging, encompassing pivotal elements, such as DNA methylation, histone modifications, RNA modifications, and noncoding (nc) RNAs. Here, we review the latest discoveries that shed light on new epigenetic mechanisms and critical targets for predicting and intervening in aging and related disorders. Furthermore, we explore burgeoning interventions and exemplary clinical trials explicitly designed to foster healthy aging, while contemplating the potential ramifications of epigenetic influences.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
36
|
Yang S, Liu C, Jiang M, Liu X, Geng L, Zhang Y, Sun S, Wang K, Yin J, Ma S, Wang S, Belmonte JCI, Zhang W, Qu J, Liu GH. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell 2024; 15:98-120. [PMID: 37378670 PMCID: PMC10833472 DOI: 10.1093/procel/pwad039] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
37
|
Tartiere AG, Freije JMP, López-Otín C. The hallmarks of aging as a conceptual framework for health and longevity research. FRONTIERS IN AGING 2024; 5:1334261. [PMID: 38292053 PMCID: PMC10824251 DOI: 10.3389/fragi.2024.1334261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
The inexorability of the aging process has sparked the curiosity of human beings since ancient times. However, despite this interest and the extraordinary scientific advances in the field, the complexity of the process has hampered its comprehension. In this context, The Hallmarks of Aging were defined in 2013 with the aim of establishing an organized, systematic and integrative view of this topic, which would serve as a conceptual framework for aging research. Ten years later and promoted by the progress in the area, an updated version included three new hallmarks while maintaining the original scope. The aim of this review is to determine to what extent The Hallmarks of Aging achieved the purpose that gave rise to them. For this aim, we have reviewed the literature citing any of the two versions of The Hallmarks of Aging and conclude that they have served as a conceptual framework not only for aging research but also for related areas of knowledge. Finally, this review discusses the new candidates to become part of the Hallmarks list, analyzing the evidence that supports whether they should or should not be incorporated.
Collapse
Affiliation(s)
- Antonio G. Tartiere
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - José M. P. Freije
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Centre de Recherche des Cordeliers, Universite de Paris Cite, Sorbonne Universite, INSERM, Paris, France
| |
Collapse
|
38
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
39
|
Jiang M, Ren J, Belmonte JCI, Liu GH. Hepatocyte reprogramming in liver regeneration: Biological mechanisms and applications. FEBS J 2023; 290:5674-5688. [PMID: 37556833 DOI: 10.1111/febs.16930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
The liver is one of the few organs that retain the capability to regenerate in adult mammals. This regeneration process is mainly facilitated by the dynamic behavior of hepatocytes, which are the major functional constituents in the liver. In response to liver injury, hepatocytes undergo remarkable alterations, such as reprogramming, wherein they lose their original identity and acquire properties from other cells. This phenomenon of hepatocyte reprogramming, coupled with hepatocyte expansion, plays a central role in liver regeneration, and its underlying mechanisms are complex and multifaceted. Understanding the fate of reprogrammed hepatocytes and the mechanisms of their conversion has significant implications for the development of innovative therapeutics for liver diseases. Herein, we review the plasticity of hepatocytes in response to various forms of liver injury, with a focus on injury-induced hepatocyte reprogramming. We provide a comprehensive summary of current knowledge on the molecular and cellular mechanisms governing hepatocyte reprogramming, specifically in the context of liver regeneration, providing insight into potential applications of this process in the treatment of liver disorders, including chronic liver diseases and liver cancer.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Ding S, Liu J, Han X, Tang M. CRISPR/Cas9-Mediated Genome Editing in Cancer Therapy. Int J Mol Sci 2023; 24:16325. [PMID: 38003514 PMCID: PMC10671490 DOI: 10.3390/ijms242216325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, an RNA-based adaptive immune system found in bacteria and archaea, has catalyzed the development and application of a new generation of gene editing tools. Numerous studies have shown that this system can precisely target a wide range of human genes, including those associated with diseases such as cancer. In cancer research, the intricate genetic mutations in tumors have promoted extensive utilization of the CRISPR/Cas9 system due to its efficient and accurate gene editing capabilities. This includes improvements in Chimeric Antigen Receptor (CAR)-T-cell therapy, the establishment of tumor models, and gene and drug target screening. Such progress has propelled the investigation of cancer molecular mechanisms and the advancement of precision medicine. However, the therapeutic potential of genome editing remains underexplored, and lingering challenges could elevate the risk of additional genetic mutations. Here, we elucidate the fundamental principles of CRISPR/Cas9 gene editing and its practical applications in tumor research. We also briefly discuss the primary challenges faced by CRISPR technology and existing solutions, intending to enhance the efficacy of this gene editing therapy and shed light on the underlying mechanisms of tumors.
Collapse
Affiliation(s)
- Shuai Ding
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Jinfeng Liu
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Mengfan Tang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| |
Collapse
|
41
|
Jing Y, Jiang X, Ji Q, Wu Z, Wang W, Liu Z, Guillen-Garcia P, Esteban CR, Reddy P, Horvath S, Li J, Geng L, Hu Q, Wang S, Belmonte JCI, Ren J, Zhang W, Qu J, Liu GH. Genome-wide CRISPR activation screening in senescent cells reveals SOX5 as a driver and therapeutic target of rejuvenation. Cell Stem Cell 2023; 30:1452-1471.e10. [PMID: 37832549 DOI: 10.1016/j.stem.2023.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Our understanding of the molecular basis for cellular senescence remains incomplete, limiting the development of strategies to ameliorate age-related pathologies by preventing stem cell senescence. Here, we performed a genome-wide CRISPR activation (CRISPRa) screening using a human mesenchymal precursor cell (hMPC) model of the progeroid syndrome. We evaluated targets whose activation antagonizes cellular senescence, among which SOX5 outperformed as a top hit. Through decoding the epigenomic landscapes remodeled by overexpressing SOX5, we uncovered its role in resetting the transcription network for geroprotective genes, including HMGB2. Mechanistically, SOX5 binding elevated the enhancer activity of HMGB2 with increased levels of H3K27ac and H3K4me1, raising HMGB2 expression so as to promote rejuvenation. Furthermore, gene therapy with lentiviruses carrying SOX5 or HMGB2 rejuvenated cartilage and alleviated osteoarthritis in aged mice. Our study generated a comprehensive list of rejuvenators, pinpointing SOX5 as a potent driver for rejuvenation both in vitro and in vivo.
Collapse
Affiliation(s)
- Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Pedro Guillen-Garcia
- Department of Traumatology and Research Unit, Clinica CEMTRO, 28035 Madrid, Spain
| | - Concepcion Rodriguez Esteban
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pradeep Reddy
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Steve Horvath
- Altos Labs, Inc., San Diego, CA 94022, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 10833, USA
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Juan Carlos Izpisua Belmonte
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jie Ren
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Weiqi Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
42
|
Wang Y, Jin S, Luo D, He D, Yu M, Zhu L, Li Z, Chen L, Ding C, Wu X, Wu T, Huang W, Zhao X, Xu M, Xie Z, Liu Y. Prim-O-glucosylcimifugin ameliorates aging-impaired endogenous tendon regeneration by rejuvenating senescent tendon stem/progenitor cells. Bone Res 2023; 11:54. [PMID: 37872152 PMCID: PMC10593834 DOI: 10.1038/s41413-023-00288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/25/2023] Open
Abstract
Adult tendon stem/progenitor cells (TSPCs) are essential for tendon maintenance, regeneration, and repair, yet they become susceptible to senescence with age, impairing the self-healing capacity of tendons. In this study, we employ a recently developed deep-learning-based efficacy prediction system to screen potential stemness-promoting and senescence-inhibiting drugs from natural products using the transcriptional signatures of stemness. The top-ranked candidate, prim-O-glucosylcimifugin (POG), a saposhnikovia root extract, could ameliorate TPSC senescent phenotypes caused by long-term passage and natural aging in rats and humans, as well as restore the self-renewal and proliferative capacities and tenogenic potential of aged TSPCs. In vivo, the systematic administration of POG or the local delivery of POG nanoparticles functionally rescued endogenous tendon regeneration and repair in aged rats to levels similar to those of normal animals. Mechanistically, POG protects TSPCs against functional impairment during both passage-induced and natural aging by simultaneously suppressing nuclear factor-κB and decreasing mTOR signaling with the induction of autophagy. Thus, the strategy of pharmacological intervention with the deep learning-predicted compound POG could rejuvenate aged TSPCs and improve the regenerative capacity of aged tendons.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Xiaolan Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Tianhao Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Weiran Huang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100083, China
| | - Xuelin Zhao
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Meng Xu
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100083, China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China.
| |
Collapse
|
43
|
Venkatasubramani AV, Ichinose T, Kanno M, Forne I, Tanimoto H, Peleg S, Imhof A. The fruit fly acetyltransferase chameau promotes starvation resilience at the expense of longevity. EMBO Rep 2023; 24:e57023. [PMID: 37724628 PMCID: PMC10561354 DOI: 10.15252/embr.202357023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Proteins involved in cellular metabolism and molecular regulation can extend lifespan of various organisms in the laboratory. However, any improvement in aging would only provide an evolutionary benefit if the organisms were able to survive under non-ideal conditions. We have previously shown that Drosophila melanogaster carrying a loss-of-function allele of the acetyltransferase chameau (chm) has an increased healthy lifespan when fed ad libitum. Here, we show that loss of chm and reduction in its activity results in a substantial reduction in weight and a decrease in starvation resistance. This phenotype is caused by failure to properly regulate the genes and proteins required for energy storage and expenditure. The previously observed increase in survival time thus comes with the inability to prepare for and cope with nutrient stress. As the ability to survive in environments with restricted food availability is likely a stronger evolutionary driver than the ability to live a long life, chm is still present in the organism's genome despite its apparent negative effect on lifespan.
Collapse
Affiliation(s)
- Anuroop Venkateswaran Venkatasubramani
- Department of Molecular Biology, Biomedical Center Munich, Faculty of MedicineLMU MunichMartinsriedGermany
- Graduate School of Quantitative Biosciences (QBM)LMU MunichMunichGermany
| | - Toshiharu Ichinose
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
| | - Mai Kanno
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ignasi Forne
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center MunichLMU MunichMartinsriedGermany
| | - Hiromu Tanimoto
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and LongevityInstitute for Farm Animal BiologyDummerstorfGermany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Faculty of MedicineLMU MunichMartinsriedGermany
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center MunichLMU MunichMartinsriedGermany
| |
Collapse
|
44
|
Zhang FF, Zhang L, Zhao L, Lu Y, Dong X, Liu YQ, Li Y, Guo S, Zheng SY, Xiao Y, Jiang YZ. The circular RNA Rap1b promotes Hoxa5 transcription by recruiting Kat7 and leading to increased Fam3a expression, which inhibits neuronal apoptosis in acute ischemic stroke. Neural Regen Res 2023; 18:2237-2245. [PMID: 37056143 PMCID: PMC10328278 DOI: 10.4103/1673-5374.369115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 12/30/2022] [Indexed: 02/17/2023] Open
Abstract
Circular RNAs can regulate the development and progression of ischemic cerebral disease. However, it remains unclear whether they play a role in acute ischemic stroke. To investigate the role of the circular RNA Rap1b (circRap1b) in acute ischemic stroke, in this study we established an in vitro model of acute ischemia and hypoxia by subjecting HT22 cells to oxygen and glucose deprivation and a mouse model of acute ischemia and hypoxia by occluding the right carotid artery. We found that circRap1b expression was remarkably down-regulated in the hippocampal tissue of the mouse model and in the HT22 cell model. In addition, Hoxa5 expression was strongly up-regulated in response to circRap1b overexpression. Hoxa5 expression was low in the hippocampus of a mouse model of acute ischemia and in HT22-AIS cells, and inhibited HT22-AIS cell apoptosis. Importantly, we found that circRap1b promoted Hoxa5 transcription by recruiting the acetyltransferase Kat7 to induce H3K14ac modification in the Hoxa5 promoter region. Hoxa5 regulated neuronal apoptosis by activating transcription of Fam3a, a neuronal apoptosis-related protein. These results suggest that circRap1b regulates Hoxa5 transcription and expression, and subsequently Fam3a expression, ultimately inhibiting cell apoptosis. Lastly, we explored the potential clinical relevance of circRap1b and Hoxa5 in vivo. Taken together, these findings demonstrate the mechanism by which circRap1b inhibits neuronal apoptosis in acute ischemic stroke.
Collapse
Affiliation(s)
- Fang-Fang Zhang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Liang Zhang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu Lu
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Xin Dong
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yan-Qi Liu
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu Li
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Shuang Guo
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Si-Yuan Zheng
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Ying Xiao
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu-Zhu Jiang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| |
Collapse
|
45
|
Ye Y, Yang K, Liu H, Yu Y, Song M, Huang D, Lei J, Zhang Y, Liu Z, Chu Q, Fan Y, Zhang S, Jing Y, Esteban CR, Wang S, Belmonte JCI, Qu J, Zhang W, Liu GH. SIRT2 counteracts primate cardiac aging via deacetylation of STAT3 that silences CDKN2B. NATURE AGING 2023; 3:1269-1287. [PMID: 37783815 DOI: 10.1038/s43587-023-00486-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
Aging is a major risk factor contributing to pathophysiological changes in the heart, yet its intrinsic mechanisms have been largely unexplored in primates. In this study, we investigated the hypertrophic and senescence phenotypes in the hearts of aged cynomolgus monkeys as well as the transcriptomic and proteomic landscapes of young and aged primate hearts. SIRT2 was identified as a key protein decreased in aged monkey hearts, and engineered SIRT2 deficiency in human pluripotent stem cell-derived cardiomyocytes recapitulated key senescence features of primate heart aging. Further investigations revealed that loss of SIRT2 in human cardiomyocytes led to the hyperacetylation of STAT3, which transcriptionally activated CDKN2B and, in turn, triggered cardiomyocyte degeneration. Intra-myocardial injection of lentiviruses expressing SIRT2 ameliorated age-related cardiac dysfunction in mice. Taken together, our study provides valuable resources for decoding primate cardiac aging and identifies the SIRT2-STAT3-CDKN2B regulatory axis as a potential therapeutic target against human cardiac aging and aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yanxia Ye
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Haisong Liu
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Moshi Song
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yiyuan Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Sheng Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaobin Jing
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V, López‐Otín C, Kroemer G. Acyl coenzyme A binding protein (ACBP): An aging- and disease-relevant "autophagy checkpoint". Aging Cell 2023; 22:e13910. [PMID: 37357988 PMCID: PMC10497816 DOI: 10.1111/acel.13910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Faculté de MédecineUniversité de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Department of CardiologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
- Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Carlos López‐Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
47
|
Ye G, Li J, Yu W, Xie Z, Zheng G, Liu W, Wang S, Cao Q, Lin J, Su Z, Li D, Che Y, Fan S, Wang P, Wu Y, Shen H. ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Exp Mol Med 2023; 55:1743-1756. [PMID: 37524872 PMCID: PMC10474288 DOI: 10.1038/s12276-023-01059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 08/02/2023] Open
Abstract
Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H2O2 stimulation or UV irradiation. Downregulation of ALKBH5 expression facilitated MSC senescence by enhancing the stability of CYP1B1 mRNA and inducing mitochondrial dysfunction. In addition, IGF2BP1 was identified as the m6A reader restraining the degradation of m6A-modified CYP1B1 mRNA. Furthermore, Alkbh5 knockout in MSCs aggravated spontaneous OA in mice, and overexpression of Alkbh5 improved the efficacy of MSCs in OA. Overall, this study revealed a novel mechanism of m6A in MSC senescence and identified promising targets to protect against aging and OA.
Collapse
Affiliation(s)
- Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Shan Wang
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Qian Cao
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Dateng Li
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.
| |
Collapse
|
48
|
Liang F, Li X, Shen X, Yang R, Chen C. Expression profiles and functional prediction of histone acetyltransferases of the MYST family in kidney renal clear cell carcinoma. BMC Cancer 2023; 23:586. [PMID: 37365518 DOI: 10.1186/s12885-023-11076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) of the MYST family are associated with a variety of human cancers. However, the relationship between MYST HATs and their clinical significance in kidney renal clear cell carcinoma (KIRC) has not yet been evaluated. METHODS The bioinformatics method was used to investigate the expression patterns and prognostic value of MYST HATs. Western blot was used to detect the expression of MYST HATs in KIRC. RESULTS The expression levels of MYST HATs except KAT8 (KAT5, KAT6A, KAT6B, and KAT7) were significantly reduced in KIRC tissues compared to normal renal tissues, and the western blot results of the KIRC samples also confirmed the result. Reduced expression levels of MYST HATs except KAT8 were significantly associated with high tumor grade and advanced TNM stage in KIRC, and showed a significant association with an unfavorable prognosis in patients with KIRC. We also found that the expression levels of MYST HATs were closely related to each other. Subsequently, gene set enrichment analysis showed that the function of KAT5 was different from that of KAT6A, KAT6B and KAT7. The expression levels of KAT6A, KAT6B and KAT7 had significant positive correlations with cancer immune infiltrates such as B cells, CD4+ T cells and CD8+ T cells. CONCLUSIONS Our results indicated that MYST HATs, except KAT8, play a beneficial role in KIRC.
Collapse
Affiliation(s)
- Fan Liang
- School of Basic Medicine, Weifang Medical University, Weifang, 261000, Shandong, P.R. China
| | - Xiangke Li
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Xiaoman Shen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Runlei Yang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| | - Chuan Chen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| |
Collapse
|
49
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
50
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|