1
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
2
|
Beavis BB, Liu J, Zumbrun EE, Bryan AV, Babka AM, Twenhafel NA, Alves DA, Pitt ML, Nalca A, Zeng X. Sudan Virus Persistence in Immune-Privileged Organs of Nonhuman Primate Survivors. Emerg Infect Dis 2025; 31:275-280. [PMID: 39983711 PMCID: PMC11845127 DOI: 10.3201/eid3102.240983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
After the 2022-2023 Sudan virus (SUDV) disease outbreak in Uganda, we studied SUDV persistence in nonhuman primates that had survived acute infection without therapeutic intervention. We identified SUDV persistence in the vitreous chamber and immediately adjacent tissue in the eyes as well as in the seminiferous tubules in the testes but not in common target organs typically infected during the acute phase of disease. Specifically, SUDV persists primarily in macrophages in the eyes and Sertoli cells in the testes. Ocular and testicular SUDV persistence in nonhuman primates is accompanied by tissue damage, including inflammatory cell invasion. Our study suggests that long-term follow-up efforts are needed to reduce possible recrudescent disease and reignition of outbreaks caused by virus persistence in human survivors of SUDV infection.
Collapse
|
3
|
Clancy CS. Gross and Histopathologic Evaluation of Tissues from Marburg Virus-Infected Nonhuman Primates. Methods Mol Biol 2025; 2877:329-342. [PMID: 39585631 DOI: 10.1007/978-1-0716-4256-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Nonhuman primates serve as a critical model for vaccine development and therapeutic intervention testing for filoviruses, including Marburg virus. Appropriate and thorough characterization of the nonhuman primate (NHP) model of Marburg virus is critical to evaluating the impact that interventional therapies have on tissue changes and the pathogenesis of disease. Gross and histopathologic evaluation of tissues is a critical component to understanding the pathogenesis of viral infection and the impact of interventional therapies on NHP models.
Collapse
Affiliation(s)
- Chad S Clancy
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
4
|
Mukadi-Bamuleka D, Edidi-Atani F, Morales-Betoulle ME, Legand A, Nkuba-Ndaye A, Bulabula-Penge J, Mbala-Kingebeni P, Crozier I, Mambu-Mbika F, Whitmer S, Tshiani Mbaya O, Hensley LE, Kitenge-Omasumbu R, Davey R, Mulangu S, Fonjungo PN, Wiley MR, Klena JD, Peeters M, Delaporte E, van Griensven J, Ariën KK, Pratt C, Montgomery JM, Formenty P, Muyembe-Tamfum JJ, Ahuka-Mundeke S. Fatal meningoencephalitis associated with Ebola virus persistence in two survivors of Ebola virus disease in the Democratic Republic of the Congo: a case report study. THE LANCET. MICROBE 2024; 5:100905. [PMID: 39236738 PMCID: PMC11464592 DOI: 10.1016/s2666-5247(24)00137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND During the 2018-20 Ebola virus disease outbreak in the Democratic Republic of the Congo, thousands of patients received unprecedented vaccination, monoclonal antibody (mAb) therapy, or both, leading to a large number of survivors. We aimed to report the clinical, virological, viral genomic, and immunological features of two previously vaccinated and mAb-treated survivors of Ebola virus disease in the Democratic Republic of the Congo who developed second episodes of disease months after initial discharge, ultimately complicated by fatal meningoencephalitis associated with viral persistence. METHODS In this case report study, we describe the presentation, management, and subsequent investigations of two patients who developed recrudescent Ebola virus disease and subsequent fatal meningoencephalitis. We obtained data from epidemiological databases, Ebola treatment units, survivor programme databases, laboratory datasets, and hospital records. Following national protocols established during the 2018-20 outbreak in the Democratic Republic of the Congo, blood, plasma, and cerebrospinal fluid (CSF) samples were collected during the first and second episodes of Ebola virus disease from both individuals and were analysed by molecular (quantitative RT-PCR and next-generation sequencing) and serological (IgG and IgM ELISA and Luminex assays) techniques. FINDINGS The total time between the end of the first Ebola virus episode and the onset of the second episode was 342 days for patient 1 and 137 days for patient 2. In both patients, Ebola virus RNA was detected in blood and CSF samples during the second episode of disease. Complete genomes from CSF samples from this relapse episode showed phylogenetic relatedness to the genome sequenced from blood samples collected from the initial infection, confirming in-host persistence of Ebola virus. Serological analysis showed an antigen-specific humoral response with typical IgM and IgG kinetics in patient 1, but an absence of an endogenous adaptive immune response in patient 2. INTERPRETATION We report the first two cases of fatal meningoencephalitis associated with Ebola virus persistence in two survivors of Ebola virus disease who had received vaccination and mAb-based treatment in the Democratic Republic of the Congo. Our findings highlight the importance of long-term monitoring of survivors, including continued clinical, virological, and immunological profiling, as well as the urgent need for novel therapeutic strategies to prevent and mitigate the individual and public health consequences of Ebola virus persistence. FUNDING Ministry of Health of the Democratic Republic of the Congo, Institut National de Recherche Biomédicale, Infectious Disease Rapid Response Reserve Fund, US Centers for Disease Control and Prevention, US National Cancer Institute (National Institutes of Health), French National Research Institute for Development, and WHO.
Collapse
Affiliation(s)
- Daniel Mukadi-Bamuleka
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Rodolphe Mérieux Institut National de Recherche Biomédicale-Goma Laboratory, Goma, Democratic Republic of the Congo.
| | - François Edidi-Atani
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Anaïs Legand
- Health Emergencies Programme, WHO, Geneva, Switzerland
| | - Antoine Nkuba-Ndaye
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Junior Bulabula-Penge
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Placide Mbala-Kingebeni
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Ian Crozier
- Clinical Monitoring Program Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Fabrice Mambu-Mbika
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Shannon Whitmer
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Olivier Tshiani Mbaya
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Lisa E Hensley
- Zoonotic and Emerging Disease Research Unit, US Department of Agriculture National Bio and Agro-Defense Facility, Manhattan, KS, USA; National Institute for Allergy and Infectious Diseases-National Institutes of Health, Rockville, MD, USA
| | - Richard Kitenge-Omasumbu
- Programme Nationale d'Urgences et Actions Humanitaires, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Richard Davey
- National Institute for Allergy and Infectious Diseases-National Institutes of Health, Rockville, MD, USA
| | - Sabue Mulangu
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Michael R Wiley
- University of Nebraska Medical Center, Omaha, NE, USA; PraesensBio, Omaha, NE, USA
| | - John D Klena
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martine Peeters
- TransVIHMI, Université de Montpellier-IRD-INSERM, Montpellier, France
| | - Eric Delaporte
- TransVIHMI, Université de Montpellier-IRD-INSERM, Montpellier, France
| | - Johan van Griensven
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Catherine Pratt
- University of Nebraska Medical Center, Omaha, NE, USA; Biosurv International, Salisbury, UK
| | | | | | - Jean-Jacques Muyembe-Tamfum
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Steve Ahuka-Mundeke
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service of Microbiology, Department of Medical Biology, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
5
|
Gellhorn Serra M, Meier L, Sauerhering L, Wilhelm J, Kupke A. Organotypic brain slices as a model to study the neurotropism of the highly pathogenic Nipah and Ebola viruses. J Gen Virol 2024; 105. [PMID: 39466030 DOI: 10.1099/jgv.0.002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Nipah virus (NiV) and Ebola virus (EBOV) are highly pathogenic zoonotic viruses with case fatality rates of up to 90%. While the brain is a known target organ following NiV infection, involvement of the central nervous system in EBOV-infected patients only became more evident after the West African epidemic in 2013-2016. To gain a deeper comprehension of the neurotropism of NiV and EBOV with respect to target cells, affected brain regions and local inflammatory responses, murine organotypic brain slices (BS) were established and infected. Both NiV and EBOV demonstrated the capacity to infect BS from adult wt mice and mice lacking the receptor for type I IFNs (IFNAR-/-) and targeted various cell types. NiV was observed to replicate in BS derived from both mouse strains, yet no release of infectious particles was detected. In contrast, EBOV replication was limited in both BS models. The release of several pro-inflammatory cytokines and chemokines, including eotaxin, IFN-γ, IL-1α, IL-9, IL-17a and keratinocyte-derived chemokine (KC), was observed in both virus-infected models, suggesting a potential role of the inflammatory response in NiV- or EBOV-induced neuropathology. It is noteworthy that the choroid plexus was identified as a highly susceptible target for EBOV and NiV infection, suggesting that the blood-cerebrospinal fluid barrier may serve as a potential entry point for these viruses.
Collapse
Affiliation(s)
- Michelle Gellhorn Serra
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| | - Lars Meier
- Philipps University Marburg, Institute of Virology, Marburg, Germany
| | - Lucie Sauerhering
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| | - Jochen Wilhelm
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Alexandra Kupke
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| |
Collapse
|
6
|
de La Vega MA, XIII A, Massey CS, Spengler JR, Kobinger GP, Woolsey C. An update on nonhuman primate usage for drug and vaccine evaluation against filoviruses. Expert Opin Drug Discov 2024; 19:1185-1211. [PMID: 39090822 PMCID: PMC11466704 DOI: 10.1080/17460441.2024.2386100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Due to their faithful recapitulation of human disease, nonhuman primates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPs with more ethical alternatives. In silico simulations and organoid models have the potential to revolutionize drug testing by providing accurate, human-based systems that mimic disease processes and drug responses without the ethical concerns associated with animal testing. However, as these emerging technologies are still in their developmental infancy, NHP models are presently needed for late-stage evaluation of filovirus vaccines and drugs, as they provide critical insights into the efficacy and safety of new medical countermeasures. AREAS COVERED In this review, the authors introduce available NHP models and examine the existing literature on drug discovery for all medically significant filoviruses in corresponding models. EXPERT OPINION A deliberate shift toward animal-free models is desired to align with the 3Rs of animal research. In the short term, the use of NHP models can be refined and reduced by enhancing replicability and publishing negative data. Replacement involves a gradual transition, beginning with the selection and optimization of better small animal models; advancing organoid systems, and using in silico models to accurately predict immunological outcomes.
Collapse
Affiliation(s)
- Marc-Antoine de La Vega
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Christopher S. Massey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch and Infectious Diseases
Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for
Disease Control and Prevention, Atlanta, GA
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, Department of Microbiology
and Immunology, Institute for Human Infections and Immunity, University of Texas
Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Hood G, Carroll M. Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses. Curr Opin Virol 2024; 68-69:101436. [PMID: 39537444 DOI: 10.1016/j.coviro.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
Collapse
Affiliation(s)
- Grace Hood
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Miles Carroll
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
8
|
Dembek Z, Hadeed S, Tigabu B, Schwartz-Watjen K, Glass M, Dressner M, Frankel D, Blaney D, Eccles Iii TG, Chekol T, Owens A, Wu A. Ebola Virus Disease Outbreaks: Lessons Learned From Past and Facing Future Challenges. Mil Med 2024; 189:e1470-e1478. [PMID: 38743575 DOI: 10.1093/milmed/usae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION The purpose of this review is to examine African Ebola outbreaks from their first discovery to the present, to determine how the medical and public health response has changed and identify the causes for those changes. We sought to describe what is now known about the epidemiology and spread of Ebola virus disease (EVD) from the significant outbreaks that have occurred and outbreak control methods applied under often challenging circumstances. Given the substantial role that the U.S. Government and the U.S. DoD have played in the 2014 to 2016 West African Ebola outbreak, the role of the DoD and the U.S. Africa Command in controlling EVD is described. MATERIALS AND METHODS A descriptive method design was used to collect and analyze all available Ebola outbreak literature using the PubMed database. An initial literature search was conducted by searching for, obtaining, and reading original source articles on all major global Ebola outbreaks. To conduct a focused search, we used initial search terms "Ebola outbreak," "Ebola virus disease," "Ebola response," "Ebola countermeasures," and also included each country's name where Ebola cases are known to have occurred. From the 4,673 unique articles obtained from this search and subsequent article title review, 307 articles were identified for potential inclusion. Following abstract and article review, 45 original source articles were used to compile the history of significant Ebola outbreaks. From this compilation, articles focused on each respective subsection of this review to delineate and describe the history of EVD and response, identifying fundamental changes, were obtained and incorporated. RESULTS We present known Ebola virus and disease attributes, including a general description, seasonality and location, transmission capacity, clinical symptoms, surveillance, virology, historical EVD outbreaks and response, international support for Ebola outbreak response, U.S. DoD support, medical countermeasures supporting outbreak response, remaining gaps to include policy limitations, regional instability, climate change, migration, and urbanization, public health education and infrastructure, and virus persistence and public awareness. CONCLUSIONS The health and societal impacts of EVD on Africa has been far-reaching, with about 35,000 cases and over 15,000 deaths, with small numbers of cases spreading globally. However, the history of combatting EVD reveals that there is considerable hope for African nations to quickly and successfully respond to Ebola outbreaks, through use of endemic resources including Africa CDC and African Partner Outbreak Response Alliance and the U.S. Africa Command with greater DoD reachback. Although there remains much to be learned about the Ebola virus and EVD including whether the potential for novel strains to become deadly emerging infections, invaluable vaccines, antivirals, and public health measures are now part of the resources that can be used to combat this disease.
Collapse
Affiliation(s)
- Zygmunt Dembek
- Support to DTRA Technical Reachback, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - Steven Hadeed
- Support to DTRA Technical Reachback, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - Bersabeh Tigabu
- Support to DTRA Technical Reachback, Global Systems Engineering (GSE), Alexandria, VA 22312, USA
| | - Kierstyn Schwartz-Watjen
- Support to DTRA Technical Reachback, Applied Research Associates (ARA), Albuquerque, NM 87110, USA
| | - Michael Glass
- SME Support to DTRA Technical Reachback, Manta Solutions, Charlottesville, VA 22901, USA
| | - Michelle Dressner
- Office of the Command Surgeon, U.S. Africa Command, APO, AE 09751, USA
| | - Dianne Frankel
- Office of the Command Surgeon, U.S. Africa Command, APO, AE 09751, USA
| | - David Blaney
- Office of the Command Surgeon, U.S. Africa Command, APO, AE 09751, USA
- Office of Readiness and Response, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Tesema Chekol
- Support to DTRA Technical Reachback, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - Akeisha Owens
- Technical Reachback, Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA
| | - Aiguo Wu
- Technical Reachback, Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA
| |
Collapse
|
9
|
Lee HN, Xu B, Lewkowicz AP, Engel K, Kelley-Baker L, McWilliams IL, Ireland DDC, Kielczewski JL, Li J, Fariss RN, Campos MM, Baum A, Kyratsous C, Pascal K, Chan CC, Caspi RR, Manangeeswaran M, Verthelyi D. Ebola virus-induced eye sequelae: a murine model for evaluating glycoprotein-targeting therapeutics. EBioMedicine 2024; 104:105170. [PMID: 38823088 PMCID: PMC11169960 DOI: 10.1016/j.ebiom.2024.105170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.
Collapse
MESH Headings
- Animals
- Mice
- Disease Models, Animal
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Hemorrhagic Fever, Ebola/virology
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Antibodies, Viral/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Humans
- Viral Load
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Viral Envelope Proteins/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Antibody-Dependent Cell Cytotoxicity
Collapse
Affiliation(s)
- Ha-Na Lee
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Biying Xu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Aaron P Lewkowicz
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kaliroi Engel
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Logan Kelley-Baker
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ian L McWilliams
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Derek D C Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Jinbo Li
- Biological Imaging Core, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Mercedes M Campos
- Biological Imaging Core, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Alina Baum
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - Kristen Pascal
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Mohanraj Manangeeswaran
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
10
|
Xia N, Zhang Y, Zhu W, Su J. GCRV-II invades monocytes/macrophages and induces macrophage polarization and apoptosis in tissues to facilitate viral replication and dissemination. J Virol 2024; 98:e0146923. [PMID: 38345385 PMCID: PMC10949474 DOI: 10.1128/jvi.01469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/21/2024] [Indexed: 03/20/2024] Open
Abstract
Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.
Collapse
Affiliation(s)
- Ning Xia
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yanqi Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wentao Zhu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
11
|
Cross RW, Woolsey C, Chu VC, Babusis D, Bannister R, Vermillion MS, Geleziunas R, Barrett KT, Bunyan E, Nguyen AQ, Cihlar T, Porter DP, Prasad AN, Deer DJ, Borisevich V, Agans KN, Martinez J, Harrison MB, Dobias NS, Fenton KA, Bilello JP, Geisbert TW. Oral administration of obeldesivir protects nonhuman primates against Sudan ebolavirus. Science 2024; 383:eadk6176. [PMID: 38484056 DOI: 10.1126/science.adk6176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jasmine Martinez
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
12
|
Durant O, Marzi A. Ebola virus disease sequelae and viral persistence in animal models: Implications for the future. PLoS Pathog 2024; 20:e1012065. [PMID: 38512815 PMCID: PMC10956775 DOI: 10.1371/journal.ppat.1012065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Ebola virus disease (EVD), caused by infection with Ebola virus, results in severe, acute illness with a high mortality rate. As the incidence of outbreaks of EVD increases and with the development and approval of medical countermeasures (MCMs) against the acute disease, late phases of EVD, including sequelae, recrudescence, and viral persistence, are occuring more frequently and are now a focus of ongoing research. Existing animal disease models recapitulate acute EVD but are not suitable to investigate the mechanisms of these late disease phenomena. Although there are challenges in establishing such a late disease model, the filovirus research community has begun to call for the development of an EBOV persistence model to address late disease concerns. Ultimately, this will aid the development of MCMs against late disease and benefit survivors of future EVD and filovirus outbreaks.
Collapse
Affiliation(s)
- Olivia Durant
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
13
|
Nkuba-Ndaye A, Dilu-Keti A, Tovar-Sanchez T, Diallo MSK, Mukadi-Bamuleka D, Kitenge R, Formenty P, Legand A, Edidi-Atani F, Thaurignac G, Pelloquin R, Mbala-Kingebeni P, Toure A, Ayouba A, Muyembe-Tamfum JJ, Delaporte E, Peeters M, Ahuka-Mundeke S. Effect of anti-Ebola virus monoclonal antibodies on endogenous antibody production in survivors of Ebola virus disease in the Democratic Republic of the Congo: an observational cohort study. THE LANCET. INFECTIOUS DISEASES 2024; 24:266-274. [PMID: 38043556 DOI: 10.1016/s1473-3099(23)00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The use of specific anti-Ebola virus therapy, especially monoclonal antibodies, has improved survival in patients with Ebola virus disease. We aimed to assess the effect of monoclonal antibodies on anti-Ebola virus antibody responses in survivors of the 2018-20 Ebola outbreak in the Democratic Republic of the Congo. METHODS In this observational prospective cohort study, participants were enrolled at three Ebola survivor clinics in Beni, Mangina, and Butembo (Democratic Republic of the Congo). Eligible children and adults notified as survivors of Ebola virus disease (ie, who had confirmed Ebola virus disease [RT-PCR positive in blood sample] and were subsequently declared recovered from the virus [RT-PCR negative in blood sample] with a certificate of recovery from Ebola virus disease issued by an Ebola treatment centre) during the 2018-20 Ebola virus disease outbreak were invited to participate in the study. Participants were recruited on discharge from Ebola treatment centres and followed up for 12-18 months depending on recruitment date. Routine follow-up assessments were done at 1, 3, 6, and 12-18 months after inclusion. We collected sociodemographic (age, sex, visit site), clinical (anti-Ebola virus drugs), and laboratory data (RT-PCR and Ct values). The primary outcome was the antibody concentrations against Ebola virus glycoprotein, nucleoprotein, and 40-kDa viral protein antigens over time assessed in all participants. Antibody concentrations were measured by the multiplex immunoassay, and the association between anti-Ebola virus antibody levels and the relevant exposures, such as anti-Ebola virus disease drugs (ansuvimab, REGN-EB3, ZMapp, or remdesivir), was assessed using both linear and logistic mixed regression models. This study is registered at ClinicalTrials.gov, NCT04409405. FINDINGS Between April 16, 2020, and Oct 18, 2021, 1168 survivors were invited to participate in the Les Vainqueurs d'Ebola cohort study. 787 survivors were included in the study, of whom 358 had data available for antibody responses. 85 (24%) of 358 were seronegative for at least two Ebola virus antigens on discharge from the Ebola treatment centre. The antibody response over time fluctuated but a continuous decrease in an overall linear evolution was observed. Quantitative modelling showed a decrease in nucleoprotein, glycoprotein, and VP-40 antibody concentrations over time (p<0·0001) with the fastest decrease observed for glycoprotein. The probability of being seropositive for at least two antigens after 36 months was 53·6% (95% CI 51·6-55·6) for participants who received ansuvimab, 73·5% (71·5-75·5) for participants who received REGN-EB3, 76·8% (74·8-78·8) for participants who received remdesivir, and 78·5% (76·5-80·5) for participants who received ZMapp. INTERPRETATION Almost a quarter of survivors were seronegative on discharge from the Ebola treatment centre and antibody concentrations decreased rapidly over time. These results indicate that monoclonal antibodies might negatively affect the production of anti-Ebola virus antibodies in survivors of Ebola virus disease which could increase the risk of reinfection or reactivation. FUNDING The French National Agency for AIDS Research-Emergent Infectious Diseases-The French National Institute of Health and Medical Research, the French National Research Institute for Development, and the European and Developing Countries Clinical Trials Partnership. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Antoine Nkuba-Ndaye
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo; TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France.
| | - Angele Dilu-Keti
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Tamara Tovar-Sanchez
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Mamadou Saliou Kalifa Diallo
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Centre de Recherche et de Formation en Infectiologie de Guinée, Université Gamal Abdel Nasser de Conakry, Conakry, Guinea; Department of Infectious Diseases, Donka National Hospital, Conakry, Guinea
| | - Daniel Mukadi-Bamuleka
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Richard Kitenge
- Programme National de Soins et de Suivi des Personnes Guéries, Ministère de Santé Publique, city, Democratic Republic of the Congo
| | | | - Anaïs Legand
- Health Emergencies Program, WHO, Geneva, Switzerland
| | - François Edidi-Atani
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Guillaume Thaurignac
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Raphael Pelloquin
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Placide Mbala-Kingebeni
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée, Université Gamal Abdel Nasser de Conakry, Conakry, Guinea; Department of Infectious Diseases, Donka National Hospital, Conakry, Guinea
| | - Ahidjo Ayouba
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Jean-Jacques Muyembe-Tamfum
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Eric Delaporte
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Montpellier University Hospital, Montpellier, France
| | - Martine Peeters
- TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Steve Ahuka-Mundeke
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
14
|
Bell TM, Facemire P, Bearss JJ, Raymond JL, Chapman J, Zeng X, Shamblin JD, Williams JA, Grosenbach DW, Hruby DE, Damon IK, Goff AJ, Mucker EM. Smallpox lesion characterization in placebo-treated and tecovirimat-treated macaques using traditional and novel methods. PLoS Pathog 2024; 20:e1012007. [PMID: 38386661 PMCID: PMC10883539 DOI: 10.1371/journal.ppat.1012007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Smallpox was the most rampant infectious disease killer of the 20th century, yet much remains unknown about the pathogenesis of the variola virus. Using archived tissue from a study conducted at the Centers for Disease Control and Prevention we characterized pathology in 18 cynomolgus macaques intravenously infected with the Harper strain of variola virus. Six macaques were placebo-treated controls, six were tecovirimat-treated beginning at 2 days post-infection, and six were tecovirimat-treated beginning at 4 days post-infection. All macaques were treated daily until day 17. Archived tissues were interrogated using immunohistochemistry, in situ hybridization, immunofluorescence, and electron microscopy. Gross lesions in three placebo-treated animals that succumbed to infection primarily consisted of cutaneous vesicles, pustules, or crusts with lymphadenopathy. The only gross lesions noted at the conclusion of the study in the three surviving placebo-treated and the Day 4 treated animals consisted of resolving cutaneous pox lesions. No gross lesions attributable to poxviral infection were present in the Day 2 treated macaques. Histologic lesions in three placebo-treated macaques that succumbed to infection consisted of proliferative and necrotizing dermatitis with intracytoplasmic inclusion bodies and lymphoid depletion. The only notable histologic lesion in the Day 4 treated macaques was resolving dermatitis; no notable lesions were seen in the Day 2 treated macaques. Variola virus was detected in all three placebo-treated animals that succumbed to infection prior to the study's conclusion by all utilized methods (IHC, ISH, IFA, EM). None of the three placebo-treated animals that survived to the end of the study nor the animals in the two tecovirimat treatment groups showed evidence of variola virus by these methods. Our findings further characterize variola lesions in the macaque model and describe new molecular methods for variola detection.
Collapse
Affiliation(s)
- Todd M. Bell
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Paul Facemire
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Jeremy J. Bearss
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Jo Lynne Raymond
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Jennifer Chapman
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Xiankun Zeng
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Joshua D. Shamblin
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Janice A. Williams
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | | | - Dennis E. Hruby
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Inger K. Damon
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC) Atlanta, Georgia, United States of America
| | - Arthur J. Goff
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| | - Eric M. Mucker
- U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland, United States of America
| |
Collapse
|
15
|
Mears MC, Ntiforo CA, Sauer LM, Mehta AK, Levine CB. Select Agent Regulatory Challenges in a Patient Care Setting: Review and Recommendations. Health Secur 2024; 22:58-64. [PMID: 38054936 DOI: 10.1089/hs.2023.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
The Federal Select Agent Program ensures the safe and secure possession, use, and transfer of biological select agents and toxins through the select agent regulations (42 CFR §73, 7 CFR §331, and 9 CFR §121). These regulations are primarily written for interpretation by diagnostic and research laboratories, with limited text pertaining to the care of individuals infected with a select agent. The regulations applicable to patient care settings are ambiguous, resulting in challenges with regulatory compliance. The COVID-19 pandemic called attention to these shortcomings and the need to clarify and modify the select agent regulations. In this article, we discuss 3 select agent regulation phrases regarding patient care that need clarification-specifically, the window of time to transfer, patient care setting, and conclusion of patient care-and provide recommendations for improvement. These recommendations include implementing minimum security standards to safeguard patient specimens against theft, loss, or release prior to the appropriate transfer or destruction of the material and increasing the time allowed for the transfer or destruction of specimens before entities are subject to the select agent regulations. We encourage the Federal Select Agent Program to release a policy statement clarifying the select agent regulations regarding patient care discussed herein and to lengthen the designated time to destroy or transfer agents to a registered entity. Addressing these challenges will aid in compliance with the select agent regulations in patient care settings.
Collapse
Affiliation(s)
- Megan C Mears
- Megan C. Mears, PhD, MPH, is a Graduate Student, School of Public and Population Health and Department of Pathology; University of Texas Medical Branch, Galveston, TX
| | - Corrie A Ntiforo
- Corrie A. Ntiforo, MSPH, RBP, is a Lead Biosafety Professional, Department of Biosafety, Office of the Provost; University of Texas Medical Branch, Galveston, TX
| | - Lauren M Sauer
- Lauren M. Sauer, MSc, is an Associate Professor, Department of Environmental Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Aneesh K Mehta
- Aneesh K. Mehta, MD, is a Professor, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Corri B Levine
- Corri B. Levine, PhD, MS, MPH, is Program Manager, Division of Infectious Diseases, Department of Internal Medicine; University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
16
|
Normandin E, Triana S, Raju SS, Lan TCT, Lagerborg K, Rudy M, Adams GC, DeRuff KC, Logue J, Liu D, Strebinger D, Rao A, Messer KS, Sacks M, Adams RD, Janosko K, Kotliar D, Shah R, Crozier I, Rinn JL, Melé M, Honko AN, Zhang F, Babadi M, Luban J, Bennett RS, Shalek AK, Barkas N, Lin AE, Hensley LE, Sabeti PC, Siddle KJ. Natural history of Ebola virus disease in rhesus monkeys shows viral variant emergence dynamics and tissue-specific host responses. CELL GENOMICS 2023; 3:100440. [PMID: 38169842 PMCID: PMC10759212 DOI: 10.1016/j.xgen.2023.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/27/2023] [Accepted: 10/15/2023] [Indexed: 01/05/2024]
Abstract
Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression with previously unknown tissue-specific changes, including downregulation of genes related to tissue connectivity. EBOV was widely disseminated throughout the body; using a new, broadly applicable deconvolution method, we found that viral load correlated with increased monocyte presence. Patterns of viral variation between tissues differentiated primary infections from compartmentalized infections, and several variants impacted viral fitness in a EBOV/Kikwit minigenome system, suggesting that functionally significant variants can emerge during early infection. This comprehensive portrait of host-pathogen dynamics in EVD illuminates new features of pathogenesis and establishes resources to study other emerging pathogens.
Collapse
Affiliation(s)
- Erica Normandin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sergio Triana
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.
| | - Siddharth S Raju
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy C T Lan
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Kim Lagerborg
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Melissa Rudy
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gordon C Adams
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Liu
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Daniel Strebinger
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arya Rao
- Columbia University, New York, NY, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | | | - Molly Sacks
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ricky D Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Krisztina Janosko
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Dylan Kotliar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rickey Shah
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Anna N Honko
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Feng Zhang
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehrtash Babadi
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jeremy Luban
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Alex K Shalek
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Nikolaos Barkas
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aaron E Lin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Katherine J Siddle
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
17
|
Marzi A, Hanley PW, Furuyama W, Haddock E, Martens CA, Scott DP, Feldmann H. Atypical Ebola Virus Disease in a Rhesus Macaque. J Infect Dis 2023; 228:S617-S625. [PMID: 37477943 PMCID: PMC10651074 DOI: 10.1093/infdis/jiad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Ebola virus (EBOV)-Makona infected more than 30 000 people from 2013 to 2016 in West Africa, among them many health care workers including foreign nationals. Most of the infected foreign nationals were evacuated and treated in their respective home countries, resulting in detailed reports of the acute disease following EBOV infection as well as descriptions of symptoms now known as post-Ebola syndrome, which occurred months after the infection. Symptoms associated with this syndrome include uveitis and neurological manifestations. In 1 of our EBOV-Makona nonhuman primate (NHP) studies, 1 NHP was euthanized on day 28 after infection having completely recovered from the acute disease. During convalescence, this NHP developed neurological signs and acute respiratory distress requiring euthanasia. The organ tropism had changed with high virus titers in lungs, brain, eye, and reproductive organs but no virus in the typical target organs for acute EBOV infection. This in part reflects sequelae described for EBOV survivors albeit developing quicker after recovery from acute disease.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Wakako Furuyama
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Elaine Haddock
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig A Martens
- Research Technology Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
18
|
Judson SD, Munster VJ. The Multiple Origins of Ebola Disease Outbreaks. J Infect Dis 2023; 228:S465-S473. [PMID: 37592878 PMCID: PMC10651193 DOI: 10.1093/infdis/jiad352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The origins of Ebola disease outbreaks remain enigmatic. Historically outbreaks have been attributed to spillover events from wildlife. However, recent data suggest that some outbreaks may originate from human-to-human transmission of prior outbreak strains instead of spillover. Clarifying the origins of Ebola disease outbreaks could improve detection and mitigation of future outbreaks. METHODS We reviewed the origins of all Ebola disease outbreaks from 1976 to 2022 to analyze the earliest cases and characteristics of each outbreak. The epidemiology and phylogenetic relationships of outbreak strains were used to further identify the likely source of each outbreak. RESULTS From 1976 to 2022 there were 35 Ebola disease outbreaks with 48 primary/index cases. While the majority of outbreaks were associated with wildlife spillover, resurgence of human-to-human transmission could account for roughly a quarter of outbreaks caused by Ebola virus. Larger outbreaks were more likely to lead to possible resurgence, and nosocomial transmission was associated with the majority of outbreaks. CONCLUSIONS While spillover from wildlife has been a source for many Ebola disease outbreaks, multiple outbreaks may have originated from flare-ups of prior outbreak strains. Improving access to diagnostics as well as identifying groups at risk for resurgence of ebolaviruses will be crucial to preventing future outbreaks.
Collapse
Affiliation(s)
- Seth D Judson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
19
|
Liew F, Efstathiou C, Openshaw PJM. Long COVID: clues about causes. Eur Respir J 2023; 61:2300409. [PMID: 36958743 PMCID: PMC10040855 DOI: 10.1183/13993003.00409-2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Many patients report persistent symptoms after resolution of acute COVID-19, regardless of SARS-CoV-2 variant and even if the initial illness is mild [1, 2]. A multitude of symptoms have been described under the umbrella term ‘Long COVID’, otherwise known as ‘post-COVID syndrome’ or ‘post-acute sequelae of SARS-CoV-2 (PASC)’; for simplicity we will use the term Long COVID. Symptoms are diverse but include breathlessness, fatigue and brain fog, reported to affect up to 69% of cases [3]. Long COVID can be debilitating, 45.2% of patients requiring a reduced work schedule [4]. The WHO estimates that 17 million people in Europe have experienced Long COVID during the first two years of the pandemic [5]. SARS-CoV-2 variants continue to circulate and the risk of post-acute complications remains; a recent study of 56 003 UK patients found that even after Omicron infection, 4.5% suffered persistent symptoms [6]. It is therefore likely that Long COVID will provide a substantial medical and economic burden for the foreseeable future. There is an urgent need to understand mechanisms of disease and develop effective treatments based on this understanding.
Collapse
Affiliation(s)
- Felicity Liew
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
20
|
Jiang R, Zhang J, Liao Z, Zhu W, Su H, Zhang Y, Su J. Temperature-regulated type II grass carp reovirus establishes latent infection in Ctenopharyngodon idella brain. Virol Sin 2023:S1995-820X(23)00044-5. [PMID: 37137379 DOI: 10.1016/j.virs.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Grass carp reovirus (GCRV) causes extensive infection and death in grass carp and black carp fingerlings, with a highly seasonal prevalence. Previous studies suggested that GCRV can become latent after primary infection. In this study, we investigated type II GCRV (GCRV-II) latency in asymptomatic grass carp with GCRV infection or exposure history. We found that during latent infection, GCRV-II was detectable only in the brain of grass carp, unlike the multi-tissue distribution observed in natural infection. GCRV-II only caused damage to the brain during latent infection, while in natural infection, brain, heart, and eye tissues had relatively higher viral loads. We also discovered viral inclusion bodies in infected fish brains. Additionally, GCRV-II distribution in grass carp was notably affected by ambient temperature, with the virus targeting the brain only during low temperatures and multi-tissue distribution during high temperatures. This study provides insights into the mechanisms of GCRV-II latent infection and reactivation and contributes to the prevention and control of GCRV pandemics.
Collapse
Affiliation(s)
- Rui Jiang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jie Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liao
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Zhu
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hang Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongan Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
21
|
Ye W, Ye C, Li J, Lei Y, Zhang F. Lessons from Pasteur may help prevent the deadly relapse of Ebola in patients: Using contingency vaccination to avoid Ebola relapse in immune-privileged organs. Front Immunol 2023; 14:1060481. [PMID: 37020563 PMCID: PMC10067591 DOI: 10.3389/fimmu.2023.1060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Affiliation(s)
- Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
22
|
Cross RW, Prasad AN, Woolsey CB, Agans KN, Borisevich V, Dobias NS, Comer JE, Deer DJ, Geisbert JB, Rasmussen AL, Lipkin WI, Fenton KA, Geisbert TW. Natural history of nonhuman primates after conjunctival exposure to Ebola virus. Sci Rep 2023; 13:4175. [PMID: 36914721 PMCID: PMC10011569 DOI: 10.1038/s41598-023-31027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Transmission of Ebola virus (EBOV) primarily occurs via contact exposure of mucosal surfaces with infected body fluids. Historically, nonhuman primate (NHP) challenge studies have employed intramuscular (i.m.) or small particle aerosol exposure, which are largely lethal routes of infection, but mimic worst-case scenarios such as a needlestick or intentional release, respectively. When exposed by more likely routes of natural infection, limited NHP studies have shown delayed onset of disease and reduced mortality. Here, we performed a series of systematic natural history studies in cynomolgus macaques with a range of conjunctival exposure doses. Challenge with 10,000 plaque forming units (PFU) of EBOV was uniformly lethal, whereas 5/6 subjects survived lower dose challenges (100 or 500 PFU). Conjunctival challenge resulted in a protracted time-to death compared to i.m. Asymptomatic infection was observed in survivors with limited detection of EBOV replication. Inconsistent seropositivity in survivors may suggest physical or natural immunological barriers are sufficient to prevent widespread viral dissemination.
Collapse
Affiliation(s)
- Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Courtney B Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Natalie S Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY, 10032, USA
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Walter Ian Lipkin
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77550, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77550, USA.
| |
Collapse
|
23
|
Dyal J, Kofman A, Kollie JZ, Fankhauser J, Orone R, Soka MJ, Glaybo U, Kiawu A, Freeman E, Giah G, Tony HD, Faikai M, Jawara M, Kamara K, Kamara S, Flowers B, Kromah ML, Desamu-Thorpe R, Graziano J, Brown S, Morales-Betoulle ME, Cannon DL, Su K, Linderman SL, Plucinski M, Rogier E, Bradbury RS, Secor WE, Bowden KE, Phillips C, Carrington MN, Park YH, Martin MP, Aguinaga MDP, Mushi R, Haberling DL, Ervin ED, Klena JD, Massaquoi M, Nyenswah T, Nichol ST, Chiriboga DE, Williams DE, Hinrichs SH, Ahmed R, Vonhm BT, Rollin PE, Purpura LJ, Choi MJ. Risk Factors for Ebola Virus Persistence in Semen of Survivors in Liberia. Clin Infect Dis 2023; 76:e849-e856. [PMID: 35639875 PMCID: PMC10169428 DOI: 10.1093/cid/ciac424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long-term persistence of Ebola virus (EBOV) in immunologically privileged sites has been implicated in recent outbreaks of Ebola virus disease (EVD) in Guinea and the Democratic Republic of Congo. This study was designed to understand how the acute course of EVD, convalescence, and host immune and genetic factors may play a role in prolonged viral persistence in semen. METHODS A cohort of 131 male EVD survivors in Liberia were enrolled in a case-case study. "Early clearers" were defined as those with 2 consecutive negative EBOV semen test results by real-time reverse-transcription polymerase chain reaction (rRT-PCR) ≥2 weeks apart within 1 year after discharge from the Ebola treatment unit or acute EVD. "Late clearers" had detectable EBOV RNA by rRT-PCR >1 year after discharge from the Ebola treatment unit or acute EVD. Retrospective histories of their EVD clinical course were collected by questionnaire, followed by complete physical examinations and blood work. RESULTS Compared with early clearers, late clearers were older (median, 42.5 years; P < .001) and experienced fewer severe clinical symptoms (median 2, P = .006). Late clearers had more lens opacifications (odds ratio, 3.9 [95% confidence interval, 1.1-13.3]; P = .03), after accounting for age, higher total serum immunoglobulin G3 (IgG3) titers (P = .005), and increased expression of the HLA-C*03:04 allele (0.14 [.02-.70]; P = .007). CONCLUSIONS Older age, decreased illness severity, elevated total serum IgG3 and HLA-C*03:04 allele expression may be risk factors for the persistence of EBOV in the semen of EVD survivors. EBOV persistence in semen may also be associated with its persistence in other immunologically protected sites, such as the eye.
Collapse
Affiliation(s)
- Jonathan Dyal
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Aaron Kofman
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Romeo Orone
- ELWA Hospital, Samaritan’s Purse, Monrovia, Liberia
| | - Moses J Soka
- ELWA Hospital, Samaritan’s Purse, Monrovia, Liberia
| | - Uriah Glaybo
- Men’s Health Screening Program, Monrovia, Liberia
| | - Armah Kiawu
- Men’s Health Screening Program, Monrovia, Liberia
| | - Edna Freeman
- Men’s Health Screening Program, Monrovia, Liberia
| | | | - Henry D Tony
- Men’s Health Screening Program, Monrovia, Liberia
| | | | - Mary Jawara
- Men’s Health Screening Program, Monrovia, Liberia
| | - Kuku Kamara
- Men’s Health Screening Program, Monrovia, Liberia
| | | | | | | | - Rodel Desamu-Thorpe
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James Graziano
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shelley Brown
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria E Morales-Betoulle
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Deborah L Cannon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Mateusz Plucinski
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard S Bradbury
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E Bowden
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christi Phillips
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary N Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Yeon-Hwa Park
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maria del Pilar Aguinaga
- Department of Internal Medicine, Meharry Sickle Cell Center, Meharry Medical College, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, Meharry Sickle Cell Center, Nashville, Tennessee, USA
| | - Robert Mushi
- Department of Internal Medicine, Meharry Sickle Cell Center, Meharry Medical College, Nashville, Tennessee, USA
| | - Dana L Haberling
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth D Ervin
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John D Klena
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Stuart T Nichol
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Chiriboga
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Desmond E Williams
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Steven H Hinrichs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Pierre E Rollin
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence J Purpura
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary J Choi
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Liu J, Mucker EM, Chapman JL, Babka AM, Gordon JM, Bryan AV, Raymond JLW, Bell TM, Facemire PR, Goff AJ, Nalca A, Zeng X. Retrospective detection of monkeypox virus in the testes of nonhuman primate survivors. Nat Microbiol 2022; 7:1980-1986. [PMID: 36253513 DOI: 10.1038/s41564-022-01259-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
Close contact through sexual activity has been associated with the spread of monkeypox virus (MPXV) in the ongoing, global 2022 epidemic. However, it remains unclear whether MPXV replicates in the testes or is transmitted via semen to produce an active infection. We carried out a retrospective analysis of MPXV-infected crab-eating macaque archival tissue samples from acute and convalescent phases of infection of clade I or clade II MPXV using immunostaining and RNA in situ hybridization. We detected MPXV in interstitial cells and seminiferous tubules of testes as well as epididymal lumina, which are the sites of sperm production and maturation. We also detected inflammation and necrosis during the acute phase of the disease by histological analysis. Finally, we found that MPXV was cleared from most organs during convalescence, including healed skin lesions, but could be detected for up to 37 d post-exposure in the testes of convalescent macaques. Our findings highlight the potential for sexual transmission of MPXV in humans.
Collapse
Affiliation(s)
- Jun Liu
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Eric M Mucker
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jennifer L Chapman
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.,Labcorp Early Development Laboratories Inc., Chantilly, VA, USA
| | - April M Babka
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jamal M Gordon
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Ashley V Bryan
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jo Lynne W Raymond
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Todd M Bell
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Paul R Facemire
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Arthur J Goff
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Aysegul Nalca
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
25
|
Crozier I, Britson KA, Wolfe DN, Klena JD, Hensley LE, Lee JS, Wolfraim LA, Taylor KL, Higgs ES, Montgomery JM, Martins KA. The Evolution of Medical Countermeasures for Ebola Virus Disease: Lessons Learned and Next Steps. Vaccines (Basel) 2022; 10:1213. [PMID: 36016101 PMCID: PMC9415766 DOI: 10.3390/vaccines10081213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
The Ebola virus disease outbreak that occurred in Western Africa from 2013-2016, and subsequent smaller but increasingly frequent outbreaks of Ebola virus disease in recent years, spurred an unprecedented effort to develop and deploy effective vaccines, therapeutics, and diagnostics. This effort led to the U.S. regulatory approval of a diagnostic test, two vaccines, and two therapeutics for Ebola virus disease indications. Moreover, the establishment of fieldable diagnostic tests improved the speed with which patients can be diagnosed and public health resources mobilized. The United States government has played and continues to play a key role in funding and coordinating these medical countermeasure efforts. Here, we describe the coordinated U.S. government response to develop medical countermeasures for Ebola virus disease and we identify lessons learned that may improve future efforts to develop and deploy effective countermeasures against other filoviruses, such as Sudan virus and Marburg virus.
Collapse
Affiliation(s)
- Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Kyla A. Britson
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN 37831, USA
| | - Daniel N. Wolfe
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| | - John D. Klena
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.D.K.); (J.M.M.)
| | - Lisa E. Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, MD 12116, USA;
| | - John S. Lee
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| | - Larry A. Wolfraim
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Kimberly L. Taylor
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Elizabeth S. Higgs
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.D.K.); (J.M.M.)
| | - Karen A. Martins
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| |
Collapse
|
26
|
Abstract
DNA viruses often persist in the body of their host, becoming latent and recurring many months or years later. By contrast, most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist. However, it is becoming clear that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This persistence can either be asymptomatic or associated with late progressive disease or nonspecific lingering symptoms, such as may be the case following infection with Ebola or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Why does viral RNA sometimes persist after recovery from an acute infection? Where does the RNA come from? And what are the consequences?
Collapse
|
27
|
Kompaníková P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci 2022; 79:304. [PMID: 35589983 PMCID: PMC9119385 DOI: 10.1007/s00018-022-04314-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
Collapse
Affiliation(s)
- Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic.
| |
Collapse
|
28
|
Fang J, Pietzsch C, Tsaprailis G, Crynen G, Cho KF, Ting AY, Bukreyev A, de la Torre JC, Saphire EO. Functional interactomes of the Ebola virus polymerase identified by proximity proteomics in the context of viral replication. Cell Rep 2022; 38:110544. [PMID: 35320713 PMCID: PMC10496643 DOI: 10.1016/j.celrep.2022.110544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/26/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral RNA genome in the cytoplasm of host cells, where cellular factors can antagonize or facilitate the virus life cycle. Here we leverage proximity proteomics and conduct a small interfering RNA (siRNA) screen to define the functional interactome of EBOV polymerase. As a proof of principle, we validate two cellular mRNA decay factors from 35 identified host factors: eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1) and up-frameshift protein 1 (UPF1). Our data suggest that EBOV can subvert restrictions of cellular mRNA decay and repurpose GSPT1 and UPF1 to promote viral replication. Treating EBOV-infected human hepatocytes with a drug candidate that targets GSPT1 for degradation significantly reduces viral RNA load and particle production. Our work demonstrates the utility of proximity proteomics to capture the functional host interactome of the EBOV polymerase and to illuminate host-dependent regulation of viral RNA synthesis.
Collapse
Affiliation(s)
- Jingru Fang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Colette Pietzsch
- Department of Pathology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, Scripps Research, Jupiter, FL 33458, USA
| | - Kelvin Frank Cho
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Department of Genetics, Department of Biology, and Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexander Bukreyev
- Department of Pathology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | |
Collapse
|