1
|
Zhang YZ, Yao Y, Zhang KP, Liang JQ, Zhong JJ, Li ZF, Li HJ, Xu F. Toxin Profiling of Amanita citrina and A. sinocitrina: First Report of Buiotenine Detection. Toxins (Basel) 2025; 17:247. [PMID: 40423329 DOI: 10.3390/toxins17050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Amanita species are widely distributed worldwide. Many of these species are poisonous and can cause health problems, resulting in morbidity and mortality. The toxins responsible for poisoning are amatoxins, aminohexadienoic acid, ibotenic acid, muscimol and muscarines, which damage the liver, kidney, central nervous system and parasympathetic nervous system. In recent years, several toxins have been discovered from different poisonous mushrooms. In this study, multiwalled carbon nanotube purification and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for the sensitive detection and targeted quantitative screening of 12 mushroom toxins (muscarine, two isoxazole derivatives, three tryptamine alkaloids, three amatoxins and three phallotoxins) from Amanita citrina, A. citrina var. grisea and A. sinocitrina. This study found that buiotenine, one of the tryptamine alkaloids, was detected in A. citrina and A. sinocitrina with an average content of 2.90 and 1.19-6.70 g/kg (n = 3) in the dried mushrooms, respectively. None of the 12 common toxins were discovered in A. citrina var. grisea. These results provide reference data for future research on the role of toxins in the evolution of Amanita mushrooms. Future studies should explore the biosynthetic pathways and ecological roles of these toxins in Amanita species.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute of Occupational Health and Poison Control, Chinese Centre for Disease Control and Prevention, No. 29, Nanwei Road, Xicheng District, Beijing 100050, China
| | - Yi Yao
- School of Public Health, Ningxia Key Laboratory of Environmental Factors and Chronic Diseases Control, Ningxia Medical University, No. 1160, Shengli South Road, Xingqing District, Yinchuan 750004, China
| | - Kai-Ping Zhang
- Zichuan District National Forest Farm, Zibo 255100, China
| | - Jia-Qi Liang
- Center for Disease Control and Prevention of Yiyang, Yiyang 413000, China
| | - Jia-Ju Zhong
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute of Occupational Health and Poison Control, Chinese Centre for Disease Control and Prevention, No. 29, Nanwei Road, Xicheng District, Beijing 100050, China
| | - Zhong-Feng Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute of Occupational Health and Poison Control, Chinese Centre for Disease Control and Prevention, No. 29, Nanwei Road, Xicheng District, Beijing 100050, China
| | - Hai-Jiao Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute of Occupational Health and Poison Control, Chinese Centre for Disease Control and Prevention, No. 29, Nanwei Road, Xicheng District, Beijing 100050, China
| | - Fei Xu
- School of Public Health, Ningxia Key Laboratory of Environmental Factors and Chronic Diseases Control, Ningxia Medical University, No. 1160, Shengli South Road, Xingqing District, Yinchuan 750004, China
- Physical and Chemical Department, Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan 750004, China
| |
Collapse
|
2
|
Abstract
The vesicular glutamate transporter VGLUT1 loads synaptic vesicles with the neurotransmitter glutamate and thereby determines glutamate release at many synapses in the mammalian brain. Due to its function and selective localization, VGLUT1 is one of the most specific markers for glutamatergic synaptic vesicles. It has been used widely to identify glutamatergic synapses, and its expression levels are tightly correlated with changes in quantal size, modulations of synaptic plasticity, and corresponding behaviors. We generated a fluorescent VGLUT1(Venus) knock-in mouse for the analysis of VGLUT1 and glutamatergic synaptic vesicle trafficking. The mutation does not affect glutamatergic synapse function, and thus the new mouse model represents a universal tool for the analysis of glutamatergic transmitter systems in the forebrain. Previous studies demonstrated synaptic vesicle exchange between terminals in vitro. Using the VGLUT1(Venus) knock-in, we show that synaptic vesicles are dynamically shared among boutons in the cortex of mice in vivo. We provide a detailed analysis of synaptic vesicle sharing in vitro, and show that network homeostasis leads to dynamic scaling of synaptic VGLUT1 levels.
Collapse
|
3
|
Insulin granule biogenesis, trafficking and exocytosis. VITAMINS AND HORMONES 2009; 80:473-506. [PMID: 19251047 DOI: 10.1016/s0083-6729(08)00616-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is becoming increasingly apparent that beta cell dysfunction resulting in abnormal insulin secretion is the essential element in the progression of patients from a state of impaired glucose tolerance to frank type 2 diabetes (Del Prato, 2003; Del Prato and Tiengo, 2001). Although extensive studies have examined the molecular, cellular and physiologic mechanisms of insulin granule biogenesis, sorting, and exocytosis the precise mechanisms controlling these processes and their dysregulation in the developed of diabetes remains an area of important investigation. We now know that insulin biogenesis initiates with the synthesis of preproinsulin in rough endoplastic reticulum and conversion of preproinsulin to proinsulin. Proinsulin begins to be packaged in the Trans-Golgi Network and is sorting into immature secretory granules. These immature granules become acidic via ATP-dependent proton pump and proinsulin undergoes proteolytic cleavage resulting the formation of insulin and C-peptide. During the granule maturation process, insulin is crystallized with zinc and calcium in the form of dense-core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to either the constitutive trafficking pathway for secretion or to degradative pathways. The newly formed mature dense-core insulin granules populate two different intracellular pools, the readily releasable pools (RRP) and the reserved pool. These two distinct populations are thought to be responsible for the biphasic nature of insulin release in which the RRP granules are associated with the plasma membrane and undergo an acute calcium-dependent release accounting for first phase insulin secretion. In contrast, second phase insulin secretion requires the trafficking of the reserved granule pool to the plasma membrane. The initial trigger for insulin granule fusion with the plasma membrane is a rise in intracellular calcium and in the case of glucose stimulation results from increased production of ATP, closure of the ATP-sensitive potassium channel and cellular depolarization. In turn, this opens voltage-dependent calcium channels allowing increased influx of extracellular calcium. Calcium is thought to bind to members of the fusion regulatory proteins synaptogamin that functionally repressors the fusion inhibitory protein complexin. Both complexin and synaptogamin interact as well as several other regulatory proteins interact with the core fusion machinery composed of the Q- or t-SNARE proteins syntaxin 1 and SNAP25 in the plasma membrane that assembles with the R- or v-SNARE protein VAMP2 in insulin granules. In this chapter we will review the current progress of insulin granule biogenesis, sorting, trafficking, exocytosis and signaling pathways that comprise the molecular basis of glucose-dependent insulin secretion.
Collapse
|
4
|
Fulop T, Doreian B, Smith C. Dynamin I plays dual roles in the activity-dependent shift in exocytic mode in mouse adrenal chromaffin cells. Arch Biochem Biophys 2008; 477:146-54. [PMID: 18492483 PMCID: PMC2593866 DOI: 10.1016/j.abb.2008.04.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 11/21/2022]
Abstract
Under low stimulation, adrenal chromaffin cells release freely soluble catecholamines through a restricted granule fusion pore while retaining the large neuropeptide-containing proteinacious granule core. Elevated activity causes dilation of the pore and release of all granule contents. Thus, physiological differential transmitter release is achieved through regulation of fusion pore dilation. We examined the mechanism for pore dilation utilizing a combined approach of peptide transfection, electrophysiology, electrochemistry and quantitative imaging techniques. We report that disruption of dynamin I function alters both fusion modes. Under low stimulation, interference with dynamin I does not affect granule fusion but blocks its re-internalization. In full collapse mode, disruption of dynamin I limits fusion pore dilation, but does not block membrane re-internalization. These data suggest that dynamin I is involved in both modes of exocytosis by regulating contraction or dilation of the fusion pore and thus contributes to activity-dependent differential transmitter release from the adrenal medulla.
Collapse
Affiliation(s)
- Tiberiu Fulop
- Department of Physiology and Biophysics, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
5
|
TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proc Natl Acad Sci U S A 2008; 105:8304-8. [PMID: 18539771 DOI: 10.1073/pnas.0800881105] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
TRPM7, of the transient receptor potential (TRP) family, is both an ion channel and a kinase. Previously, we showed that TRPM7 is located in the membranes of acetylcholine (ACh)-secreting synaptic vesicles of sympathetic neurons, forms a molecular complex with proteins of the vesicular fusion machinery, and is critical for stimulated neurotransmitter release. Here, we targeted pHluorin to small synaptic-like vesicles (SSLV) in PC12 cells and demonstrate that it can serve as a single-vesicle plasma membrane fusion reporter. In PC12 cells, as in sympathetic neurons, TRPM7 is located in ACh-secreting SSLVs. TRPM7 knockdown by siRNA, or abolishing channel activity by expression of a dominant negative TRPM7 pore mutant, decreased the frequency of spontaneous and voltage-stimulated SSLV fusion events without affecting large dense core vesicle secretion. We conclude that the conductance of TRPM7 across the vesicle membrane is important in SSLV fusion.
Collapse
|
6
|
Pan PY, Cai Q, Lin L, Lu PH, Duan S, Sheng ZH. SNAP-29-mediated modulation of synaptic transmission in cultured hippocampal neurons. J Biol Chem 2005; 280:25769-79. [PMID: 15890653 PMCID: PMC1864940 DOI: 10.1074/jbc.m502356200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identifying the molecules that regulate both the recycling of synaptic vesicles and the SNARE components required for fusion is critical for elucidating the molecular mechanisms underlying synaptic plasticity. SNAP-29 was initially isolated as a syntaxin-binding and ubiquitously expressed protein. Previous studies have suggested that SNAP-29 inhibits SNARE complex disassembly, thereby reducing synaptic transmission in cultured superior cervical ganglion neurons in an activity-dependent manner. However, the role of SNAP-29 in regulating synaptic vesicle recycling and short-term plasticity in the central nervous system remains unclear. In the present study, we examined the effect of SNAP-29 on synaptic transmission in cultured hippocampal neurons by dual patch clamp whole-cell recording, FM dye imaging, and immunocytochemistry. Our results demonstrated that exogenous expression of SNAP-29 in presynaptic neurons significantly decreased the efficiency of synaptic transmission after repetitive firing within a few minutes under low and moderate frequency stimulations (0.1 and 1 Hz). In contrast, SNAP-29 did not affect the density of synapses and basal synaptic transmission. Whereas neurotransmitter release was unaffected during intensive stimulation, recovery after synaptic depression was impaired by SNAP-29. Furthermore, knockdown of SNAP-29 expression in neurons by small interfering RNA increased the efficiency of synaptic transmission during repetitive firing. These findings suggest that SNAP-29 acts as a negative modulator for neurotransmitter release, probably by slowing recycling of the SNARE-based fusion machinery and synaptic vesicle turnover.
Collapse
Affiliation(s)
- Ping-Yue Pan
- From the Department of Neurobiology, Shanghai Second Medical University, 280 Chong Qing Nan Road, 200025 Shanghai, China
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Synaptic Function Unit, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Qian Cai
- Synaptic Function Unit, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Lin Lin
- From the Department of Neurobiology, Shanghai Second Medical University, 280 Chong Qing Nan Road, 200025 Shanghai, China
| | - Pei-Hua Lu
- From the Department of Neurobiology, Shanghai Second Medical University, 280 Chong Qing Nan Road, 200025 Shanghai, China
| | - Shumin Duan
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zu-Hang Sheng
- Synaptic Function Unit, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
7
|
Abstract
Neurotransmitter release is mediated by exocytosis of synaptic vesicles at the presynaptic active zone of nerve terminals. To support rapid and repeated rounds of release, synaptic vesicles undergo a trafficking cycle. The focal point of the vesicle cycle is Ca2+-triggered exocytosis that is followed by different routes of endocytosis and recycling. Recycling then leads to the docking and priming of the vesicles for another round of exo- and endocytosis. Recent studies have led to a better definition than previously available of how Ca2+ triggers exocytosis and how vesicles recycle. In particular, insight into how Munc18-1 collaborates with SNARE proteins in fusion, how the vesicular Ca2+ sensor synaptotagmin 1 triggers fast release, and how the vesicular Rab3 protein regulates release by binding to the active zone proteins RIM1 alpha and RIM2 alpha has advanced our understanding of neurotransmitter release. The present review attempts to relate these molecular data with physiological results in an emerging view of nerve terminals as macromolecular machines.
Collapse
Affiliation(s)
- Thomas C Sudhof
- Center for Basic Neuroscience, Department of Molecular Genetics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.Thomas.
| |
Collapse
|
8
|
Deák F, Schoch S, Liu X, Südhof TC, Kavalali ET. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat Cell Biol 2004; 6:1102-8. [PMID: 15475946 DOI: 10.1038/ncb1185] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/06/2004] [Indexed: 01/26/2023]
Abstract
Synaptobrevin-2 (VAMP-2), the major SNARE protein of synaptic vesicles, is required for fast calcium-triggered synaptic-vesicle exocytosis. Here we show that synaptobrevin-2 is also essential for fast synaptic-vesicle endocytosis. We demonstrate that after depletion of the readily releasable vesicle pool, replenishment of the pool is delayed by knockout of synaptobrevin. This delay was not from a loss of vesicles, because the total number of pre-synaptic vesicles, docked vesicles and actively recycling vesicles was unaffected. However, altered shape and size of the vesicles in synaptobrevin-deficient synapses suggests a defect in endocytosis. Consistent with such a defect, the stimulus-dependent endocytosis of horseradish peroxidase and fluorescent FM1-43 were delayed, indicating that fast vesicle endocytosis may normally be nucleated by a SNARE-dependent coat. Thus, synaptobrevin is essential for two fast synapse-specific membrane trafficking reactions: fast exocytosis for neurotransmitter release and fast endocytosis that mediates rapid reuse of synaptic vesicles.
Collapse
Affiliation(s)
- Ferenc Deák
- Center for Basic Neuroscience, Howard Hughes Medical Institute, USA
| | | | | | | | | |
Collapse
|
9
|
Virmani T, Han W, Liu X, Südhof TC, Kavalali ET. Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling. EMBO J 2004; 22:5347-57. [PMID: 14532108 PMCID: PMC213769 DOI: 10.1093/emboj/cdg514] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The speed of synaptic vesicle recycling determines the efficacy of neurotransmission during repetitive stimulation. Synaptotagmins are synaptic C(2)-domain proteins that are involved in exocytosis, but have also been linked to endocytosis. We now demonstrate that upon expression in transfected neurons, a short splice variant of synaptotagmin 7 that lacks C(2)-domains accelerates endocytic recycling of synaptic vesicles, whereas a longer splice variant that contains C(2)-domains decelerates recycling. These results suggest that alternative splicing of synaptotagmin 7 acts as a molecular switch, which targets vesicles to fast and slow recycling pathways.
Collapse
Affiliation(s)
- Tuhin Virmani
- Center for Basic Neuroscience, Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | | | | | | | |
Collapse
|
10
|
Muzerelle A, Alberts P, Martinez-Arca S, Jeannequin O, Lafaye P, Mazié JC, Galli T, Gaspar P. Tetanus neurotoxin-insensitive vesicle-associated membrane protein localizes to a presynaptic membrane compartment in selected terminal subsets of the rat brain. Neuroscience 2003; 122:59-75. [PMID: 14596849 DOI: 10.1016/s0306-4522(03)00567-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicular soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE) that has been implicated in neurite outgrowth. It has previously been reported that TI-VAMP is localised in the somatodendritic compartment of neurons indicating a role in membrane fusion events within dendrites. Using a newly produced monoclonal antibody to TI-VAMP that improves signal/noise immunodetection, we report that TI-VAMP is also present in subsets of axon terminals of the adult rat brain. Four distinctive populations of labelled axon terminals were identified: 1) the hippocampal mossy fibres of the dentate gyrus and of CA3, 2) the striatal peridendritic terminal plexuses in the globus pallidus (GP), substantia nigra pars reticulata (SNr), 3) peridendritic plexuses in the central nucleus of the amygdala, and 4) the primary sensory afferents in the dorsal horn of the spinal cord. The presynaptic localisation of TI-VAMP in these locations was demonstrated by co-localisation with synaptophysin. Ultrastructural studies showed TI-VAMP labelling over synaptic vesicles in the mossy fibres, whereas it was localised in tubulo-vesicular structures and multivesicular bodies in the pyramidal cell dendrites. The presynaptic localisation of TI-VAMP occurred by P15, so relatively late during development. In contrast, dendritic labelling was most prominent during the early post-natal period. Co-localisation with markers of neurotransmitters showed that TI-VAMP-positive terminals are GABAergic in the GP and SNr and glutamatergic in the mossy fibre system and in the dorsal root afferents. Most of these terminals are known to co-localise with neuropeptides. We found met-enkephalin-immunoreactivity in a sizeable fraction of the TI-VAMP positive terminals in the GP, amygdala, and dorsal horn, as well as in a few mossy fibre terminals. The function of TI-VAMP in subsets of mature axon terminals remains to be elucidated; it could participate in the exocytotic molecular machinery and/or be implicated in particular growth properties of the mature axon terminals. Thus, the presence of TI-VAMP in the mossy fibres may correspond to the high degree of plasticity that characterises this pathway throughout adult life.
Collapse
Affiliation(s)
- A Muzerelle
- INSERM U106, Hôpital Salpêtrière, F-75651, Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rorsman P, Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003; 46:1029-45. [PMID: 12879249 DOI: 10.1007/s00125-003-1153-1] [Citation(s) in RCA: 585] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Revised: 05/12/2003] [Indexed: 01/11/2023]
Abstract
Glucose-induced insulin secretion in response to a step increase in blood glucose concentrations follows a biphasic time course consisting of a rapid and transient first phase followed by a slowly developing and sustained second phase. Because Type 2 diabetes involves defects of insulin secretion, manifested as a loss of first phase and a reduction of second phase, it is important to understand the cellular mechanisms underlying biphasic insulin secretion. Insulin release involves the packaging of insulin in small (diameter approximately 0.3 micro m) secretory granules, the trafficking of these granules to the plasma membrane, the exocytotic fusion of the granules with the plasma membrane and eventually the retrieval of the secreted membranes by endocytosis. Until recently, studies on insulin secretion have been confined to the appearance of insulin in the extracellular space and the cellular events preceding exocytosis have been inaccessible to more detailed analysis. Evidence from a variety of secretory tissues, including pancreatic islet cells suggests, however, that the secretory granules can be functionally divided into distinct pools that are distinguished by their release competence and/or proximity to the plasma membrane. The introduction of fluorescent proteins that can be targeted to the secretory granules, in combination with the advent of new techniques that allow real-time imaging of granule trafficking in living cells (granule dynamics), has led to an explosion of our knowledge of the pre-exocytotic and post-exocytotic processes in the beta cell. Here we discuss these observations in relation to previous functional and ultra-structural data as well as the secretory defects of Type 2 diabetes.
Collapse
Affiliation(s)
- P Rorsman
- The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford, UK.
| | | |
Collapse
|
12
|
Martinez-Arca S, Rudge R, Vacca M, Raposo G, Camonis J, Proux-Gillardeaux V, Daviet L, Formstecher E, Hamburger A, Filippini F, D'Esposito M, Galli T. A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc Natl Acad Sci U S A 2003; 100:9011-6. [PMID: 12853575 PMCID: PMC166429 DOI: 10.1073/pnas.1431910100] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SNARE [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor] proteins are essential for membrane fusion but their regulation is not yet fully understood. We have previously shown that the amino-terminal Longin domain of the v-SNARE TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated membrane protein)/VAMP7 plays an inhibitory role in neurite outgrowth. The goal of this study was to investigate the regulation of TI-VAMP as a model of v-SNARE regulation. We show here that the Longin domain (LD) plays a dual role. First, it negatively regulates the ability of TI-VAMP and of a Longin/Synaptobrevin chimera to participate in SNARE complexes. Second, it interacts with the adaptor complex AP-3 and this interaction targets TI-VAMP to late endosomes. Accordingly, in mocha cells lacking AP-3 delta, TI-VAMP is retained in an early endosomal compartment. Furthermore, TI-VAMPc, an isoform of TI-VAMP lacking part of the LD, does not interact with AP-3, and therefore is not targeted to late endosomes; however, this shorter LD still inhibits SNARE-complex formation. These findings support a mechanism controlling both localization and function of TI-VAMP through the LD and clathrin adaptors. Moreover, they point to the amino-terminal domains of SNARE proteins as multifunctional modules responsible for the fine tuning of SNARE function.
Collapse
Affiliation(s)
- Sonia Martinez-Arca
- Membrane Traffic and Neuronal Plasticity, Institut National de la Santé et de la Recherche Médicale U536, Institut du Fer-à-Moulin, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Martinez-Arca S, Proux-Gillardeaux V, Alberts P, Louvard D, Galli T. Ectopic expression of syntaxin 1 in the ER redirects TI-VAMP- and cellubrevin-containing vesicles. J Cell Sci 2003; 116:2805-16. [PMID: 12759369 DOI: 10.1242/jcs.00467] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
SNARE proteins are key mediators of membrane fusion. Their function in ensuring compartmental specificity of membrane fusion has been suggested by in vitro studies but not demonstrated in vivo. We show here that ectopic expression of the plasma membrane t-SNARE heavy chain syntaxin 1 in the endoplasmic reticulum induces the redistribution of its cognate vesicular SNAREs, TI-VAMP and cellubrevin, and its light chain t-SNARE SNAP-23. These effects were prevented by co-expressing nSec1. Expression of syntaxin 1 alone impaired the cell surface expression of TI-VAMP and cellubrevin but not the recycling of transferrin receptor. TI-VAMP, cellubrevin and SNAP-23 associated in vivo with exogenous syntaxin 1. Redistribution of TI-VAMP in the ER of syntaxin-1-expressing cells was microtubule dependent and impaired the trafficking of CD63, a cargo of TI-VAMP-containing vesicles. We conclude that the destination of v-SNAREs is driven by their specific interaction with cognate t-SNAREs. Our in vivo data provide strong support for the theory that highly specific v-SNARE-t-SNARE interactions control compartmental specificity of membrane fusion.
Collapse
Affiliation(s)
- Sonia Martinez-Arca
- Membrane Traffic and Neuronal Plasticity, INSERM U536, Institut du Fer-à-Moulin, 75005 Paris, France
| | | | | | | | | |
Collapse
|
14
|
Alberts P, Rudge R, Hinners I, Muzerelle A, Martinez-Arca S, Irinopoulou T, Marthiens V, Tooze S, Rathjen F, Gaspar P, Galli T. Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion. Mol Biol Cell 2003; 14:4207-20. [PMID: 14517330 PMCID: PMC207012 DOI: 10.1091/mbc.e03-03-0147] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The membrane-trafficking pathway mediated by tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) in neurons is still unknown. We show herein that TI-VAMP expression is necessary for neurite outgrowth in PC12 cells and hippocampal neurons in culture. TI-VAMP interacts with plasma membrane and endosomal target soluble N-ethylmaleimide-sensitive factor attachment protein receptors, suggesting that TI-VAMP mediates a recycling pathway. L1, a cell-cell adhesion molecule involved in axonal outgrowth, colocalized with TI-VAMP in the developing brain, neurons in culture, and PC12 cells. Plasma membrane L1 was internalized into the TI-VAMP-containing compartment. Silencing of TI-VAMP resulted in reduced expression of L1 at the plasma membrane. Finally, using the extracellular domain of L1 and N-cadherin immobilized on beads, we found that the silencing of TI-VAMP led to impaired L1- but not N-cadherin-mediated adhesion. Furthermore, TI-VAMP- but not synaptobrevin 2-containing vesicles accumulated at the site of the L1 bead-cell junction. We conclude that TI-VAMP mediates the intracellular transport of L1 and that L1-mediated adhesion controls this membrane trafficking, thereby suggesting an important cross talk between membrane trafficking and cell-cell adhesion.
Collapse
Affiliation(s)
- Philipp Alberts
- Membrane Traffic and Neuronal Plasticity, Institut National de la Santé et de la Recherche Médicale U536, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Luvisetto S, Rossetto O, Montecucco C, Pavone F. Toxicity of botulinum neurotoxins in central nervous system of mice. Toxicon 2003; 41:475-81. [PMID: 12657317 DOI: 10.1016/s0041-0101(02)00370-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Botulinum neurotoxins (BoNTs) act specifically on cholinergic nerve terminals, where they cause a sustained block of acetylcholine release, and therefore they are powerful tools to study the role of cholinergic neurons in neuronal processes. Peripheral effects of BoNTs are widely documented while central effects have not been studied. Here, we report for the first time on the central toxicity of BoNT serotypes A and B following their direct intracerebroventricular (icv) injection in CD1 mice. The LD50 values were found to be in the range 0.5-1.0 x 10(-6)mg/kg. We recorded the following signs preceding animal death: piloerection and weight decrease appear first, followed by temperature decrease, eyelid closure, loss of sensorimotor reflexes, dehydration, dyspnea. Mice died of heart or respiratory failure. The surviving mice recovered completely within 4-6 days and regained the initial healthy conditions. At sub-lethal doses, the same clinical signs appear in a lighter form and with a longer time course.
Collapse
Affiliation(s)
- Siro Luvisetto
- Istituto di Neuroscienze del CNR, Sez. di Psicobiologia e Psicofarmacologia, V.le Marx 15/43, 00137 Roma, Italy. s.luvisetto@
| | | | | | | |
Collapse
|
16
|
Kjaerulff O, Verstreken P, Bellen HJ. Synaptic vesicle retrieval: still time for a kiss. Nat Cell Biol 2002; 4:E245-8. [PMID: 12415277 DOI: 10.1038/ncb1102-e245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ole Kjaerulff
- Division of Neurophysiology, Department of Medical Physiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | | |
Collapse
|