1
|
Naderi J, Johnson AK, Thakkar H, Chandravanshi B, Ksiazek A, Anand A, Vincent V, Tran A, Kalimireddy A, Singh P, Sood A, Das A, Talbot CL, Distefano IA, Maschek JA, Cox J, Li Y, Summers SA, Atkinson DJ, Turapov T, Ratcliff JA, Fung J, Shabbir A, Shabeer Yassin M, Shiow SATE, Holland WL, Pitt GS, Chaurasia B. Ceramide-induced FGF13 impairs systemic metabolic health. Cell Metab 2025; 37:1206-1222.e8. [PMID: 40169001 PMCID: PMC12058412 DOI: 10.1016/j.cmet.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Ceramide accumulation impairs adipocytes' ability to efficiently store and utilize nutrients, leading to energy and glucose homeostasis deterioration. Using a comparative transcriptomic screen, we identified the non-canonical, non-secreted fibroblast growth factor FGF13 as a ceramide-regulated factor that impairs adipocyte function. Obesity robustly induces FGF13 expression in adipose tissue in mice and humans and is positively associated with glycemic indices of type 2 diabetes. Pharmacological or genetic inhibition of ceramide biosynthesis reduces FGF13 expression. Using mice with loss and gain of function of FGF13, we demonstrate that FGF13 is both necessary and sufficient to impair energy and glucose homeostasis independent of ceramides. Mechanistically, FGF13 exerts these effects by inhibiting mitochondrial content and function, metabolic elasticity, and caveolae formation, which cumulatively impairs glucose utilization and thermogenesis. These studies suggest the therapeutic potential of targeting FGF13 to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
- Jamal Naderi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Kelsey Johnson
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Himani Thakkar
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Bhawna Chandravanshi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Alec Ksiazek
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ajay Anand
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Vinnyfred Vincent
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron Tran
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Anish Kalimireddy
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Pratibha Singh
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ayushi Sood
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aasthika Das
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Isabella A Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Donald J Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Tursun Turapov
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason A Ratcliff
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Javis Fung
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sue-Anne Toh Ee Shiow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - William L Holland
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Mao Z, Mu J, Gao Z, Huang S, Chen L. Biological Functions and Potential Therapeutic Significance of O-GlcNAcylation in Hepatic Cellular Stress and Liver Diseases. Cells 2024; 13:805. [PMID: 38786029 PMCID: PMC11119800 DOI: 10.3390/cells13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
O-linked-β-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Junpeng Mu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China;
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| |
Collapse
|
3
|
Krishna A, Renu K. Elucidating the Role of Pelargonidin-3-O-Glucoside on C1QL3, CYBB, and CYTIP Involved in Glucose Metabolism: An In Silico Approach. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1299-S1303. [PMID: 38882825 PMCID: PMC11174306 DOI: 10.4103/jpbs.jpbs_590_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 06/18/2024] Open
Abstract
Aim The metabolism of glucose is carefully regulated by several chemical elements and plays a critical part in preserving cellular energy balance. Our study investigates possible connections between the essential proteins CYTIP, C1QL3, and CYBB, which are involved in the metabolism of glucose, and pelargonidin, a naturally occurring plant chemical. The underlying mechanisms of pelargonidin's anti-diabetic effects are still unknown. Materials and Methods We examine the binding affinities and possible binding sites between pelargonidin and C1QL3/CYBB AND CYTIP using molecular docking simulations. The results demonstrate favorable docking scores and potential binding sites, suggesting the formation of stable complexes between pelargonidin and the target proteins. Results This finding means that pelargonidin may modulate the function of C1QL3 and CYBB, CYTIP consequently influencing glucose metabolism. Conclusion This study provides a foundation for future experimental investigations to validate the predicted interactions and explore the mechanisms through which pelargonidin affects glucose metabolism. Understanding these molecular interactions could lead to the development of new therapeutic strategies for glucose metabolism and its related disorders.
Collapse
Affiliation(s)
- Aravind Krishna
- Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Cormier RJ, Doiron JA, Touaibia M, Surette ME, Pichaud N. Time-dependent metabolome and fatty acid profile changes following a high-fat diet exposure in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103892. [PMID: 36493963 DOI: 10.1016/j.ibmb.2022.103892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
High-fat diets (HFDs) are often used to study metabolic disorders using different animal models. However, the underlying cellular mechanisms pertaining to the concurrent loss of metabolic homeostasis characteristics of these disorders are still unclear mainly because the effects of such diets are also dependent on the time frame of the experiments. Here, we used the fruit fly, Drosophila melanogaster, to investigate the metabolic dynamic effects following 0, 2, 4, 7 and 9 days of an exposure to a HFD (standard diet supplemented with 20% w/v coconut oil, rich in 12:0 and 14:0) by combining NMR metabolomics and GC-FID fatty acid profiling. Our results show that after 2 days, the ingested 12:0 and 14:0 fatty acids are used for both lipogenesis and fatty acid oxidation. After 4 days, metabolites from several different pathways are highly modulated in response to the HFD, and an accumulation of 12:0 is also observed, suggesting that the balance of lipid, amino acid and carbohydrate metabolism is profoundly perturbed at this specific time point. Following a longer exposure to the HFD (and notably after 9 days), an accumulation of many metabolites is observed indicating a clear dysfunction of the metabolic system. Overall, our study highlights the relevance of the Drosophila model to study metabolic disorders and the importance of the duration of the exposure to a HFD to study the dynamics of the fundamental mechanisms that control metabolism following exposure to dietary fats. This knowledge is crucial to understand the development and progression of metabolic diseases.
Collapse
Affiliation(s)
- Robert J Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Jeremie A Doiron
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Marc E Surette
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, E1A 3E9, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada.
| |
Collapse
|
5
|
Chen Y, Qin Q, Luo J, Dong Y, Lin C, Chen H, Cao Y, Chen Y, Su Z. Litchi flower essential oil balanced lipid metabolism through the regulation of DAF-2/IIS, MDT-15/SBP-1, and MDT-15/NHR-49 pathway. Front Nutr 2022; 9:934518. [PMID: 36337637 PMCID: PMC9627157 DOI: 10.3389/fnut.2022.934518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Many litchi flowers are discarded in China every year. The litchi flower is rich in volatile compounds and exhibits strong anti-obesity activity. Litchi flower essential oil (LFEO) was extracted by the continuous phase transformation device (CPTD) independently developed by our research group to recycle the precious material resources in litchi flowers. However, its fat-reducing effect and mechanism remain unclear. Employing Caenorhabditis elegans as a model, we found that LFEO significantly reduced fat storage and triglyceride (TG) content in normal, glucose-feeding, and high-fat conditions. LFEO significantly reduced body width in worms and significantly decreased both the size and number of lipid droplets in ZXW618. LFEO treatment did not affect energy intake but increased energy consumption by enhancing the average speed of worms. Further, LFEO might balance the fat metabolism in worms by regulating the DAF-2/IIS, sbp-1/mdt-15, and nhr-49/mdt-15 pathways. Moreover, LFEO might inhibit the expression of the acs-2 gene through nhr-49 and reduce β-oxidation activity. Our study presents new insights into the role of LFEO in alleviating fat accumulation and provides references for the large-scale production of LFEO to promote the development of the litchi circular economy.
Collapse
Affiliation(s)
- Yun Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiao Qin
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingrui Luo
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yusi Dong
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chunxiu Lin
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Houbin Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yunjiao Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zuanxian Su
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Zhao WB, An JX, Hu YM, Li AP, Zhang SY, Zhang BQ, Zhang ZJ, Luo XF, Bian Q, Ma Y, Ding YY, Wang R, Liu YQ. Tavaborole-Induced Inhibition of the Aminoacyl-tRNA Biosynthesis Pathway against Botrytis cinerea Contributes to Disease Control and Fruit Quality Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12297-12309. [PMID: 36149871 DOI: 10.1021/acs.jafc.2c03441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The inhibitory effect of tavaborole on the invasion of Botrytis cinerea in grapes and tomatoes, as well as the potential mechanism involved, was discovered in this study. Our findings showed that tavaborole inhibited Botrytis cinerea spore germination and mycelial expansion in vitro and that the control efficiency in vivo on fruit decay was dose-dependent, which was effective in reducing disease severity and maintaining the organoleptic quality of the fruit, such as reducing weight loss and retaining fruit hardness and titratable acid contents during storage. Furthermore, the precise mechanism of action was investigated further. Propidium iodide staining revealed that Botrytis cinerea treated with tavaborole lost membrane integrity. For further validation, cytoplasmic malondialdehyde accumulation and leakage of cytoplasmic constituents were determined. Notably, the inhibitory effect was also dependent on inhibiting the activities of aminoacyl-tRNA synthetases involved in the aminoacyl-tRNA biosynthesis pathway in Botrytis cinerea. The above findings concluded that tavaborole was effective against Botrytis cinerea infection in postharvest fruit, and a related mechanism was also discussed, which may provide references for the drug repurposing of tavaborole as a postharvest fungicide.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - An-Ping Li
- Gansu Institute for Drug Control, Lanzhou 730000, P. R. China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Wang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong Province, Weifang University, Weifang 261061, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Yun JM, Jung J, Park SH, Seo YH, Lee JK, Bae MH, Eun S, Kim OK, Lee J. Sunflower (Helianthus annuus) seed extract suppresses the lipogenesis pathway and stimulates the lipolysis pathway in high-fat diet-induced obese mice. Food Nutr Res 2022. [DOI: 10.29219/fnr.v66.8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Lee K, Lee J, Lee P, Jeon BC, Song MY, Kwak S, Lee J, Kim J, Kim D, Kim JH, Tesh VL, Lee M, Park S. Inhibition of O-GlcNAcylation protects from Shiga toxin-mediated cell injury and lethality in host. EMBO Mol Med 2022; 14:e14678. [PMID: 34842355 PMCID: PMC8749473 DOI: 10.15252/emmm.202114678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli (EHEC) are the major virulence factors responsible for hemorrhagic colitis, which can lead to life-threatening systemic complications including acute renal failure (hemolytic uremic syndrome) and neuropathy. Here, we report that O-GlcNAcylation, a type of post-translational modification, was acutely increased upon induction of endoplasmic reticulum (ER) stress in host cells by Stxs. Suppression of the abnormal Stx-mediated increase in O-GlcNAcylation effectively inhibited apoptotic and inflammatory responses in Stx-susceptible cells. The protective effect of O-GlcNAc inhibition for Stx-mediated pathogenic responses was also verified using three-dimensional (3D)-cultured spheroids or organoids mimicking the human kidney. Treatment with an O-GlcNAcylation inhibitor remarkably improved the major disease symptoms and survival rate for mice intraperitoneally injected with a lethal dose of Stx. In conclusion, this study elucidates O-GlcNAcylation-dependent pathogenic mechanisms of Stxs and demonstrates that inhibition of aberrant O-GlcNAcylation is a potential approach to treat Stx-mediated diseases.
Collapse
Affiliation(s)
- Kyung‐Soo Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Jieun Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Pureum Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Bong Chan Jeon
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Min Yeong Song
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Sojung Kwak
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Jungwoon Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Jun‐Seob Kim
- Department of Nano‐BioengineeringIncheon National UniversityIncheonKorea
| | - Doo‐Jin Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Ji Hyung Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M UniversityBryanTXUSA
| | - Moo‐Seung Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Sung‐Kyun Park
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| |
Collapse
|
9
|
Gutierrez-Aguilar R, Grayson BE, Kim DH, Yalamanchili S, Calcagno ML, Woods SC, Seeley RJ. CNS GNPDA2 Does Not Control Appetite, but Regulates Glucose Homeostasis. Front Nutr 2021; 8:787470. [PMID: 34912841 PMCID: PMC8666973 DOI: 10.3389/fnut.2021.787470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
GNPDA2 has been associated with human obesity and type-2 diabetes by using a GWAS approach. GNPDA2 is an enzyme involved in the hexosamine biosynthesis pathway, which is known to be important for nutrient sensing in various organism. Its counter enzyme, GFAT, has previously been shown to be important to the development of insulin resistance in diabetes. The implication of GNPDA2 and GFAT in metabolism is scarce and the effect of both enzymes over appetite and glucose homeostasis is unknown. Aim: Identify the role of GNPDA2 and GFAT in nutrient sensing circuits of the CNS that are important for the regulation of both appetite and glucose homeostasis. Methods: Using Long Evans rats, we administered either a GNPDA2 or GFAT antagonist or vehicle in i3vt. Key Findings: GNPDA2 is highly expressed in hypothalamus and adipose tissue, followed by muscle and liver. GNPDA2 is expressed in different hypothalamic nuclei (ARC, DMH, LHA, PVN). GNPDA2 is downregulated in hypothalamus under diet-induced obesity (as previously described), but GFAT expression does not change. Moreover, i3vt infusion of GNPDA2 or GFAT inhibitor resulted in increased c-Fos in areas related to appetite and glucose homeostasis control as PVN and DMH and to a lesser extent in the LHA and ARC. Central inhibition of GNPDA2 does not alter either acute food intake or body weight; however, GFAT inhibition diminished appetite and body weight due to visceral illness. In addition, central administration of the GNPDA2 antagonist, prior to an intraperitoneal glucose tolerance test, resulted in glucose intolerance in comparison to vehicle without altering insulin levels. Significance: These results suggest that central GNPDA2 does not control appetite, but regulates glucose homeostasis.
Collapse
Affiliation(s)
- Ruth Gutierrez-Aguilar
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Bernadette E. Grayson
- Department of Neurobiology and Anatomical Science, University of Mississippi Medical Center, Jackson, MS, United States
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Suma Yalamanchili
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mario L. Calcagno
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Stephen C. Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Randy J. Seeley
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Kim HK, Park Y, Shin M, Kim JM, Go GW. Betulinic Acid Suppresses de novo Lipogenesis by Inhibiting Insulin and IGF1 Signaling as Upstream Effectors of the Nutrient-Sensing mTOR Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12465-12473. [PMID: 34645271 DOI: 10.1021/acs.jafc.1c04797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite its beneficial properties, effects of betulinic acid on the nutrient-sensing mTOR pathway via insulin or IGF1 signaling remain unclear. Here, we investigated whether betulinic acid reduces intracellular lipid accumulation via the nutrient-sensing pathway in HepG2 cells. Results showed that betulinic acid reduced intracellular lipid accumulation in a dose-dependent manner and inhibited the expression of de novo lipogenesis-related genes and proteins. RNA sequencing analysis revealed the transcriptional modulation of plasma membrane proteins by betulinic acid, and an in silico binding assay indicated an interaction between betulinic acid and IR or IGF1R. Furthermore, betulinic acid downregulated the post-translational modification of the canonical IRS1/PI3K/AKT-pT308 and IGF1/mTORC2/AKT-pS473 pathways, thereby reducing the activity of the mTOR/S6K/S6 pathway. These findings imply that betulinic acid suppresses hepatic lipid synthesis by inhibiting insulin and IGF1 signaling as upstream effectors of the nutrient-sensing mTOR pathway and could be a potent nutraceutical agent for the treatment of metabolic syndromes.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Yejee Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
11
|
Lee Y, Kim AH, Kim E, Lee S, Yu KS, Jang IJ, Chung JY, Cho JY. Changes in the gut microbiome influence the hypoglycemic effect of metformin through the altered metabolism of branched-chain and nonessential amino acids. Diabetes Res Clin Pract 2021; 178:108985. [PMID: 34329692 DOI: 10.1016/j.diabres.2021.108985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
AIMS Although metformin has been reported to affect the gut microbiome, the mechanism has not been fully determined. We explained the potential underlying mechanisms of metformin through a multiomics approach. METHODS An open-label and single-arm clinical trial involving 20 healthy Korean was conducted. Serum glucose and insulin concentrations were measured, and stool samples were collected to analyze the microbiome. Untargeted metabolomic profiling of plasma, urine, and stool samples was performed by GC-TOF-MS. Network analysis was applied to infer the mechanism of the hypoglycemic effect of metformin. RESULTS The relative abundances of Escherichia, Romboutsia, Intestinibacter, and Clostridium were changed by metformin treatment. Additionally, the relative abundances of metabolites, including carbohydrates, amino acids, and fatty acids, were changed. These changes were correlated with energy metabolism, gluconeogenesis, and branched-chain amino acid metabolism, which are major metabolic pathways related to the hypoglycemic effect. CONCLUSIONS We observed that specific changes in metabolites may affect hypoglycemic effects through both pathways related to AMPK activation and microbial changes. Energy metabolism was mainly related to hypoglycemic effects. In particular, branched-chain amino acid metabolism and gluconeogenesis were related to microbial metabolites. Our results will help uncover the potential underlying mechanisms of metformin through AMPK and the microbiome.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - Andrew HyoungJin Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Eunwoo Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
12
|
Glucose regulates expression of pro-inflammatory genes, IL-1β and IL-12, through a mechanism involving hexosamine biosynthesis pathway-dependent regulation of α-E catenin. Biosci Rep 2021; 41:229052. [PMID: 34139004 PMCID: PMC8243339 DOI: 10.1042/bsr20211066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
High glucose levels are associated with changes in macrophage polarisation and evidence indicates that the sustained or even short-term high glucose levels modulate inflammatory responses in macrophages. However, the mechanism by which macrophages can sense the changes in glucose levels are not clearly understood. We find that high glucose levels rapidly increase the α-E catenin protein level in RAW264.7 macrophages. We also find an attenuation of glucose-induced increase in α-E catenin when hexosamine biosynthesis (HB) pathway is inhibited either with glutamine depletion or with the drugs azaserine and tunicamycin. This indicates the involvement of HB pathway in this process. Then, we investigated the potential role of α-E catenin in glucose-induced macrophage polarisation. We find that the reduction in α-E catenin level using siRNA attenuates the glucose-induced changes of both IL-1β and IL-12 mRNA levels under LPS-stimulated condition but does not affect TNF-α expression. Together this indicates that α-E catenin can sense the changes in glucose levels in macrophages via HB pathway and also can modulate the glucose-induced gene expression of inflammatory markers such as IL-1β and IL-12. This identifies a new part of the mechanism by which macrophages are able to respond to changes in glucose levels.
Collapse
|
13
|
de Barros Sene L, Lamana GL, Schwambach Vieira A, Scarano WR, Gontijo JAR, Boer PA. Gestational Low Protein Diet Modulation on miRNA Transcriptome and Its Target During Fetal and Breastfeeding Nephrogenesis. Front Physiol 2021; 12:648056. [PMID: 34239447 PMCID: PMC8258388 DOI: 10.3389/fphys.2021.648056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The kidney ontogenesis is the most structurally affected by gestational protein restriction, reducing 28% of their functional units. The reduced nephron number is predictive of hypertension and cardiovascular dysfunctions that are generally observed in the adult age of most fetal programming models. We demonstrate miRNAs and predict molecular pathway changes associated with reduced reciprocal interaction between metanephros cap (CM) and ureter bud (UB) and a 28% decreased nephron stem cells in the 17 gestational days (17GD) low protein (LP) intake male fetal kidney. Here, we evaluated the same miRNAs and predicted targets in the kidneys of 21GD and at 7 days of life (7DL) LP offspring to elucidate the molecular modulations during nephrogenesis. METHODS Pregnant Wistar rats were allocated into two groups: NP (regular protein diet- 17%) or LP (diet-6%). miRNA transcriptome sequencing (miRNA-Seq) was performed on the MiSeq platform from 21GD and 7DL male offspring kidneys using previously described methods. Among the top 10 dysfunctional regulated miRNAs, we validated 7 related to proliferation, differentiation, and apoptosis processes and investigated predicted target genes and proteins by RT-qPCR and immunohistochemistry. RESULTS In 21GD, LP fetuses were identified alongside 21 differently expressed miRNAs, of which 12 were upregulated and 9 downregulated compared to age-matched NP offspring. In 7-DL LP offspring, the differentially expressed miRNAs were counted to be 74, of which 46 were upregulated and 28 downregulated. The curve from 17-GD to 7-DL shows that mTOR was fundamental in reducing the number of nephrons in fetal kidneys where the mothers were subjected to a protein restriction. IGF1 and TGFβ curves also seemed to present the same mTOR pattern and were modulated by miRNAs 181a-5p, 181a-3p, and 199a-5p. The miRNA 181c-3p modulated SIX2 and Notch1 reduction in 7-DL but not in terms of the enhanced expression of both in the 21-GD, suggesting the participation of an additional regulator. We found enhanced Bax in 21-GD; it was regulated by miRNA 298-5p, and Bcl2 and Caspase-3 were controlled by miRNA (by 7a-5p and not by the predicted 181a-5p). The miRNA 144-3p regulated BCL6, which was enhanced, as well as Zeb 1 and 2 induced by BCL6. These results revealed that in 21GD, the compensatory mechanisms in LP kidneys led to the activation of UB ramification. Besides, an increase of 32% in the CM stem cells and a possible cell cycle halt of renal progenitor cells, which remaining undifferentiated, were observed. In the 7DL, much more altered miRNA expression was found in LP kidneys, and this was probably due to an increased maternal diet content. Additionally, we verified the activation of pathways related to differentiation and consumption of progenitor cells.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriela Leme Lamana
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Andre Schwambach Vieira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| |
Collapse
|
14
|
Pereira SC, Martins AD, Monteiro MP, Pinto S, Barros A, Oliveira PF, Alves MG. Expression of obesity-related genes in human spermatozoa affects the outcomes of reproductive treatments. F&S SCIENCE 2021; 2:164-175. [PMID: 35559751 DOI: 10.1016/j.xfss.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To study the abundance of obesity-related gene (ORG) mRNA in human spermatozoa and its association with sperm quality parameters, embryonic development, and pregnancy rates after assisted reproduction treatment (ART). DESIGN Cross-sectional study of spermatozoa ORG mRNA expression, and sperm and embryonic development parameters of infertile couples attending a single ART center. SETTING University, in collaboration with a medically assisted reproduction center. PATIENT(S) One hundred six couples seeking fertility treatment and receiving ART. INTERVENTION(S) Expression of spermatozoa ORG mRNA was assessed by quantitative reverse transcription-polymerase chain reaction. Sperm and embryonic development parameters were measured by board-certified embryologists. Serum β-human chorionic gonadotropin levels and fetal heartbeat detection on ultrasound were used to document biochemical and clinical pregnancy, respectively. MAIN OUTCOME MEASURE(S) Correlations between the abundance of ORG transcripts in spermatozoa and sperm quality, embryonic development, and achievement of pregnancy. RESULTS The abundance of spermatozoa FTO mRNA was positively correlated with total sperm count (r = 0.5030), fertilization rate (r = 0.4854), embryo cleavage rate (r = 0.5705), and high-quality embryo rate (r = 0.6982). The abundance of spermatozoa MC4R transcript was negatively correlated with sperm viability (r = -0.3111) and positively correlated with biochemical pregnancy (r = 0.4420). The abundance of MC4R and GNPDA2 transcripts was higher in spermatozoa of men with asthenozoospermia and teratozoospermia than in those with normozoospermia. CONCLUSION To our knowledge, this is the first report showing that the abundance of MC4R and FTO transcripts in spermatozoa is associated with sperm and embryo quality parameters, as well as pregnancy rates. Overall, these results further support the view that male factors beyond classic sperm quality parameters, namely the abundance of ORG transcripts, also affect the outcome of ART.
Collapse
Affiliation(s)
- Sara C Pereira
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Ana D Martins
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal; Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA) and Laboratório Associado para a Química Verde (LAQV), Department of Chemistry, University of Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Soraia Pinto
- Center for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Center for Reproductive Genetics Professor Alberto Barros, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA) and Laboratório Associado para a Química Verde (LAQV), Department of Chemistry, University of Aveiro, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Pancancer Analysis of Neurovascular-Related NRP Family Genes as Potential Prognostic Biomarkers of Bladder Urothelial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5546612. [PMID: 33937395 PMCID: PMC8062179 DOI: 10.1155/2021/5546612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Background Neurovascular-related genes have been implicated in the development of cancer. Studies have shown that a high expression of neuropilins (NRPs) promotes tumourigenesis and tumour malignancy. Method A multidimensional bioinformatics analysis was performed to examine the relationship between NRP genes and prognostic and pathological features, tumour mutational burden (TMB), microsatellite instability (MSI), and immunological features based on public databases and find the potential prognostic value of NRPs in pancancer. Results Survival analysis revealed that a low NRP1 expression in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), low-grade glioma (LGG), and stomach adenocarcinoma (STAD) was associated with poor prognosis. A high NRP2 expression in bladder urothelial carcinoma (BLCA), kidney renal papillary cell carcinoma (KIRP), and mesothelioma (MESO) was associated with poor prognosis. Moreover, NRP1 and NRP2 were associated with TMB and MSI. Subsequent analyses showed that NRP1 and NRP2 were correlated with immune infiltration and immune checkpoints. Genome-wide association analysis revealed that the NRP1 expression was strongly associated with kidney renal clear cell carcinoma (KIRC), whereas the NRP2 expression was closely associated with BLCA. Ultimately, NRP2 was found to be involved in the development of BLCA. Conclusions Neurovascular-related NRP family genes are significantly correlated with cancer prognosis, TME, and immune infiltration, particularly in BLCA.
Collapse
|
16
|
Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers (Basel) 2021; 13:cancers13030399. [PMID: 33499022 PMCID: PMC7865797 DOI: 10.3390/cancers13030399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumors are a complex ecosystem including not only cancer cells, but also many distinct cell types of the tumor micro-environment. While the Warburg effect assessing high glucose uptake in tumors was recognized a long time ago, metabolic heterogeneity within tumors has only recently been demonstrated. Indeed, several recent studies have highlighted other sources of carbon than glucose, including amino acids, fatty acids and lactate. These newly identified metabolic trajectories modulate key cancer cell features, such as invasion capacities. In addition, cancer metabolic heterogeneity is not restricted to cancer cells. Here, we also describe heterogeneity of Cancer-Associated Fibroblast (CAF) subpopulations and their complex metabolic crosstalk with cancer cells. Abstract During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particular, a high diversity of carbon sources used by tumor cells has now been shown to contribute to this metabolic heterogeneity in cancer. Moreover, the molecular mechanisms newly highlighted are multiple and shed light on novel actors. Furthermore, the impact of this metabolic heterogeneity on tumor microenvironment has also been an intense subject of research recently. Here, we will describe the new metabolic pathways newly uncovered in tumor cells. We will also have a particular focus on Cancer-Associated Fibroblasts (CAF), whose identity, function and metabolism have been recently under profound investigation. In that sense, we will discuss about the metabolic crosstalk between tumor cells and CAF.
Collapse
|
17
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
18
|
Zhang Y, Liang Y, Liu H, Huang Y, Li H, Chen B. Paeoniflorin attenuates gestational diabetes via Akt/mTOR pathway in a rat model. Food Nutr Res 2020; 64:4362. [PMID: 33240030 PMCID: PMC7672451 DOI: 10.29219/fnr.v64.4362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is a type of diabetes associated with pregnancy and may impose risks on both mother and fetus. Akt paeoniflorin was shown to have anti-inflammatory and anti-hyperglycemia properties and has a potential ability to suppress mammalian target of rapamycin (mTOR) signaling. The current study aimed to study the effect of paeoniflorin on GDM maternal, fetal, and placental characteristics in vivo. Methods Streptozotocin (STZ)-induced gestational diabetes rat model was used in our study. The expression levels of phosphorylation (p-) and total protein expression levels of protein kinase B (Akt), mTOR, serum/glucocorticoid regulated kinase 1 (SGK1), and eIF4E-binding protein 1 (4E-BP1) in the placenta were determined by Western blot assay. The blood glucose, insulin, and leptin levels were assessed using enzyme-linked immunosorbent assay (ELISA). Results We found that placental Akt/mTOR signaling was substantially upregulated in GDM patients compared with healthy donors. Paeoniflorin administration alleviates the dysregulation of blood glucose, leptin, and insulin levels in both maternal and fetal GDM rats. Paeoniflorin treatment suppressed the overactivation of Akt/mTOR signaling in placental tissues. More importantly, administration of paeoniflorin was beneficial for normalization of fetal size and body weight in the GDM rats. Conclusion Our study suggested that application of paeoniflorin may serve as a potential therapeutical strategy for patients with GDM.
Collapse
Affiliation(s)
- Yonghua Zhang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Yulin Liang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Huiqiao Liu
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Ying Huang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Hongmei Li
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Bo Chen
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| |
Collapse
|
19
|
Chu Y, Jiang M, Wu N, Xu B, Li W, Liu H, Su S, Shi Y, Liu H, Gao X, Fu X, Chen D, Li X, Wang W, Liang J, Nie Y, Fan D. O-GlcNAcylation of SIX1 enhances its stability and promotes Hepatocellular Carcinoma Proliferation. Am J Cancer Res 2020; 10:9830-9842. [PMID: 32863962 PMCID: PMC7449927 DOI: 10.7150/thno.45161] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
It is universally accepted that aberrant metabolism facilitates tumor growth. However, how cancer cells coordinate glucose metabolism and tumor proliferation is largely unknown. Sine oculis homeobox homolog 1 (SIX1) is a transcription factor that belongs to the SIX family and is believed to play an important role in the regulation of the Warburg effect in tumors. However, whether the role of SIX1 and the molecular mechanisms that regulate its activity are similar in hepatocellular carcinoma (HCC) still needs further investigation. Methods: Western blotting was performed to determine the levels of SIX1 and O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) in HCC tissues. Cell Counting Kit 8 (CCK8), colony formation and mouse tumor model assays were used to establish the role of SIX1 and O-GlcNAcylation in HCC processes. Mass spectrometry, immunoprecipitation and site-directed mutagenesis were performed to confirm the O-GlcNAcylation of SIX1. Results: Here, we demonstrated that SIX1, the key transcription factor regulating the Warburg effect in cancer, promotes HCC growth in vitro and in vivo. Furthermore, we revealed that SIX1 could also enhance the levels of a posttranslational modification called O-GlcNAcylation. Importantly, we found that SIX1 was also highly modified by O-GlcNAcylation and that O-GlcNAcylation inhibited the ubiquitination degradation of SIX1. In addition, site-directed mutagenesis at position 276 (T276A) decreased the O-GlcNAcylation level and reversed the protumor effect of SIX1. Conclusions: We conclude that O-GlcNAcylation of SIX1 enhances its stability and promotes HCC proliferation. Our findings illustrate a novel feedback loop of SIX1 and O-GlcNAcylation and show that O-GlcNAcylation of SIX1 is an important way to coordinate glucose metabolism and tumor progression.
Collapse
|
20
|
Comparison between Tibetan and Small-tailed Han sheep in adipocyte phenotype, lipid metabolism and energy homoeostasis regulation of adipose tissues when consuming diets of different energy levels. Br J Nutr 2020; 124:668-680. [PMID: 32406340 DOI: 10.1017/s0007114520001701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aimed to gain insight into how adipose tissue of Tibetan sheep regulates energy homoeostasis to cope with low energy intake under the harsh environment of the Qinghai-Tibetan Plateau (QTP). We compared Tibetan and Small-tailed Han sheep (n 24 of each breed), all wethers and 1·5 years of age, which were each divided randomly into four groups and offered diets of different digestible energy (DE) densities: 8·21, 9·33, 10·45 and 11·57 MJ DE/kg DM. When the sheep lost body mass and were assumed to be in negative energy balance: (1) adipocyte diameter in subcutaneous adipose tissue was smaller and decreased to a greater extent in Tibetan than in Small-tailed Han sheep, but the opposite occurred in the visceral adipose tissue; (2) Tibetan sheep showed higher insulin receptor mRNA expression and lower concentrations of catabolic hormones than Small-tailed Han sheep and (3) Tibetan sheep had lower capacity for glucose and fatty acid uptake than Small-tailed Han sheep. Moreover, Tibetan sheep had lower AMPKα mRNA expression but higher mammalian target of rapamycin mRNA expression in the adipocytes than Small-tailed Han sheep. We concluded that Tibetan sheep had lower catabolism but higher anabolism in adipose tissue and reduced the capacity for glucose and fatty acid uptake to a greater extent than Small-tailed Han sheep to maintain energy homoeostasis when in negative energy balance. These responses provide Tibetan sheep with a high ability to cope with low energy intake and with the harsh environment of the QTP.
Collapse
|
21
|
Wang J, Wang Z, Yuan J, Wang J, Shen X. The positive feedback between ACSL4 expression and O-GlcNAcylation contributes to the growth and survival of hepatocellular carcinoma. Aging (Albany NY) 2020; 12:7786-7800. [PMID: 32357142 PMCID: PMC7244051 DOI: 10.18632/aging.103092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/13/2020] [Indexed: 06/01/2023]
Abstract
Acyl-CoA ligase 4 (ACSL4) has been reported to be overexpressed in hepatocellular carcinoma (HCC) and to enhance cell proliferation. However, the molecular mechanisms underlying the role of ACSL4 in HCC progression remain largely unclear. Here, we aimed to investigate whether and how O-GlcNAcylation and ACSL4 regulate each other and HCC progression. The clinical significance of ACSL4, O-GlcNAc and GLUT1 in HCC was determined by Pearson chi-squared test and Kaplan-Meier analysis. CCK-8, flow cytometry and in vivo tumour formation assays were performed to detect cell proliferation, apoptosis and tumorigenesis. IP technology was used to evaluate the relationship between ACSL4 and O-GlcNAc. ACSL4, GLUT1 and O-GlcNAc levels were elevated in HCC tissues and predicted poor prognosis in HCC patients. ACSL4 overexpression significantly promoted cell proliferation and tumorigenesis and inhibited cell apoptosis, whereas these effects were all obviously impaired when mTOR signalling was repressed or GLUT1 was downregulated. ACSL4 could be O-GlcNAcylated, and silencing of ACSL4 abolished the effects of O-GlcNAcylation on cell growth promotion and apoptosis inhibition. Collectively, this study demonstrates that ACSL4 contributes to the growth and survival of HCC by enhancing GLUT1-mediated O-GlcNAcylation. In turn, O-GlcNAcylation promotes HCC growth partially by increasing ACSL4 expression.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhao Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Yuan
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinsheng Shen
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
22
|
The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2004-2013. [PMID: 31932432 PMCID: PMC6994980 DOI: 10.1073/pnas.1912894117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.
Collapse
|
23
|
Increased O-GlcNAcylation of c-Myc Promotes Pre-B Cell Proliferation. Cells 2020; 9:cells9010158. [PMID: 31936366 PMCID: PMC7016991 DOI: 10.3390/cells9010158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification regulates the activity of hundreds of nucleocytoplasmic proteins involved in a wide variety of cellular processes, such as gene expression, signaling, and cell growth; however, the mechanism underlying the regulation of B cell development and function by O-GlcNAcylation remains largely unknown. Here, we demonstrate that changes in cellular O-GlcNAc levels significantly affected the growth of pre-B cells, which rapidly proliferate to allow expansion of functional clones that express successfully rearranged heavy chains at the pro-B stage during early B cell development. In our study, the overall O-GlcNAc levels in these proliferative pre-B cells, which are linked to the glucose uptake rate, were highly induced when compared with those in pro-B cells. Thus, pharmacologically, genetically, or nutritionally, inhibition of O-GlcNAcylation in pre-B cells markedly downregulated c-Myc expression, resulting in cell cycle arrest via blockade of cyclin expression. Importantly, the population of B cells after the pro-B cell stage in mouse bone marrow was severely impaired by the administration of an O-GlcNAc inhibitor. These results strongly suggest that O-GlcNAcylation-dependent expression of c-Myc represents a new regulatory component of pre-B cell proliferation, as well as a potential therapeutic target for the treatment of pre-B cell-derived leukemia.
Collapse
|
24
|
Wu L, Ma F, Zhao X, Zhang MX, Wu J, Mi J. GNPDA2 Gene Affects Adipogenesis and Alters the Transcriptome Profile of Human Adipose-Derived Mesenchymal Stem Cells. Int J Endocrinol 2019; 2019:9145452. [PMID: 31467530 PMCID: PMC6701328 DOI: 10.1155/2019/9145452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Genome-wide association studies have found an obesity-related single-nucleotide polymorphism rs10938397 near the glucosamine-6-phosphate deaminase 2 gene (GNPDA2) encoding, an enzyme that catalyzes the deamination of the glucosamine-6-phosphate involved in the hexosamine signaling pathway, but the molecular mechanisms underlying the missing link between GNPDA2 and obesity remain elusive. METHODS As obesity is accompanied by an increase in the size and the number of adipocytes, the present study investigates the possible mechanism of the GNPDA2 in adipogenesis using GeneChip® Human Transcriptome Array 2.0 in human adipose-derived mesenchymal stem cells. RESULTS We found that overexpression of GNPDA2 enhanced accumulation of lipid droplets, and knocking down the gene decreased accumulation of lipid droplets. GO term enrichment analysis indicated that most differentially expressed genes (DEGs) affected by deficiency of GNPDA2 have functions to lipid and glucose metabolism. Further KEGG enrichment analysis showed that the greatest proportion of DEGs are involved in thermogenesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, carbon metabolism, and fatty acid metabolism including fatty acid degradation, elongation, and biosynthesis. CONCLUSION These findings suggest that GNPDA2 may be a critical gene for lipid and glucose metabolism, and the expression level of GNPDA2 alters the transcriptome profile of human adipose-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Lijun Wu
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Feifei Ma
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyuan Zhao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Mei-Xian Zhang
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Jie Mi
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
25
|
Regulation of energy metabolism in the growth plate and osteoarthritic chondrocytes. Rheumatol Int 2018; 38:1963-1974. [DOI: 10.1007/s00296-018-4103-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
|
26
|
Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med 2018; 7:20. [PMID: 29961900 PMCID: PMC6026585 DOI: 10.1186/s40169-018-0193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effective immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vaccines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2-3 generations are sicker than previous generations at same age. American health status ranks last among other developed nations while America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccination with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick society. Outcome failure rates of claimed 'targeted' drugs, 'precision' or 'personalized' medicine are 90% (± 5) for solid tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific vaccines and ingredients are 'antigen overload' for immune system, skewing the Yin and Yang response profiles and leading to induction of 'mild', 'moderate' or 'severe' immune disorders. Induction of decoy or pattern recognition receptors (e.g., PRRs), such as IRAK-M or IL-1dRs ('designer' molecules) and associated genomic instability and over-expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells through epithelial-mesenchymal-transition and create "dual negative feedback loop" that influence tissue metabolism under hypoxic conditions. It is further hypothesized that induction of tolerance creates 'dark energy' and increased entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of complex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity (biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independent professionals and policy makers to take a closer look at cancer dilemma and stop the 'scientific/medical ponzi schemes' of a powerful group that control a drug-dependent sick society before all hopes for promoting public health evaporate.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
27
|
Han SY, Jeong YJ, Choi Y, Hwang SK, Bae YS, Chang YC. Mitochondrial dysfunction induces the invasive phenotype, and cell migration and invasion, through the induction of AKT and AMPK pathways in lung cancer cells. Int J Mol Med 2018; 42:1644-1652. [PMID: 29916527 DOI: 10.3892/ijmm.2018.3733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/08/2018] [Indexed: 11/05/2022] Open
Abstract
Mitochondria are well known for their important roles in oxidative phosphorylation, amino acid metabolism, fatty acid oxidation and ion homeostasis. Although the effects of mitochondrial dysfunction on tumorigenesis in various cancer cells have been reported, the correlation between mitochondrial dysfunction and epithelial‑to‑mesenchymal transition (EMT) in lung cancer development and metastasis has not been well elucidated. In the present study, the effects of mitochondrial dysfunction on EMT and migration in lung cancer cells were investigated using inhibitors of mitochondrial respiration, oligomycin A and antimycin A. Oligomycin A and antimycin A induced distinct mesenchymal‑like morphological features in H23, H1793 and A549 lung cancer cells. In addition, they decreased the expression levels of the epithelial marker protein E‑cadherin, but increased the expression levels of the mesenchymal marker proteins Vimentin, Snail and Slug. The results of immunofluorescence staining indicated that oligomycin A and antimycin A downregulated cortical E‑cadherin expression and upregulated the expression of Vimentin. In addition, oligomycin A and antimycin A increased the migration and invasion of A549 lung cancer cells, and promoted the expression levels of phosphorylated (p)‑protein kinase B (AKT) and p‑AMP‑activated protein kinase (AMPK). Notably, the production of reactive oxygen species by oligomycin A and antimycin A did not affect the expression of EMT protein markers. Conversely, treatment with the AKT inhibitor wortmannin and the AMPK inhibitor Compound C upregulated E‑cadherin and downregulated Vimentin expression. These results suggested that oligomycin A and antimycin A may induce migration and invasion of lung cancer cells by inducing EMT via the upregulation of p‑AKT and p‑AMPK expression.
Collapse
Affiliation(s)
- Si-Yoon Han
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Yongsoo Choi
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Soon-Kyung Hwang
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Young-Seuk Bae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group,College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Chae Chang
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
28
|
Park SK, Zhou X, Pendleton KE, Hunter OV, Kohler JJ, O'Donnell KA, Conrad NK. A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis. Cell Rep 2018; 20:1088-1099. [PMID: 28768194 PMCID: PMC5588854 DOI: 10.1016/j.celrep.2017.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/11/2017] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc levels. We further define a conserved intronic splicing silencer (ISS) that is necessary for OGT intron retention. Deletion of the ISS in colon cancer cells leads to increases in OGT, but O-GlcNAc homeostasis is maintained by concomitant increases in OGA protein. However, the ISS-deleted cells are hypersensitive to OGA inhibition in culture and in soft agar. Moreover, growth of xenograft tumors from ISS-deleted cells is compromised in mice treated with an OGA inhibitor. Thus, ISS-mediated regulation of OGT intron retention is a key component in OGT expression and maintaining O-GlcNAc homeostasis.
Collapse
Affiliation(s)
- Sung-Kyun Park
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn E Pendleton
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga V Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
van Breda SGJ, de Kok TMCM. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol Nutr Food Res 2017; 62. [PMID: 29108107 DOI: 10.1002/mnfr.201700597] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/19/2017] [Indexed: 12/24/2022]
Abstract
There is ample scientific evidence suggesting that the health benefits of eating the right amounts of a variety of vegetables and fruit are the consequence of the combined action of different phytochemicals. The present review provides an update of the scientific literature on additive and synergistic effects of mixtures of phytochemicals. Most research has been carried out in in vitro systems in which synergistic or additive effects have been established on the level of cell proliferation, apoptosis, antioxidant capacity, and tumor incidence, accompanied by changes in gene and protein expression in relevant pathways underlying molecular mechanisms of disease prevention. The number of human dietary intervention studies investigating complex mixtures of phytochemicals is relatively small, but showing promising results. These studies have demonstrated that combining transcriptomic data with phenotypic markers provide insight into the relevant cellular processes which contribute to the antioxidant response of complex mixtures of phytochemicals. Future studies should be designed as short-term studies testing different combinations of vegetables and fruit, in which markers for disease outcome as well as molecular ('omics)-markers and genetic variability between subjects are included. This will create new opportunities for food innovation and the development of more personalized strategies for prevention of chronic diseases.
Collapse
Affiliation(s)
- Simone G J van Breda
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Theo M C M de Kok
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
30
|
Frigolet ME, Thomas G, Beard K, Lu H, Liu L, Fantus IG. The bradykinin-cGMP-PKG pathway augments insulin sensitivity via upregulation of MAPK phosphatase-5 and inhibition of JNK. Am J Physiol Endocrinol Metab 2017; 313:E321-E334. [PMID: 28679626 DOI: 10.1152/ajpendo.00298.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
Bradykinin (BK) promotes insulin sensitivity and glucose uptake in adipocytes and other cell types. We demonstrated that in rat adipocytes BK enhances insulin-stimulated glucose transport via endothelial nitric oxide synthase, nitric oxide (NO) generation, and decreased activity of the mitogen-activated protein kinase (MAPK) JNK (c-Jun NH2-terminal kinase). In endothelial cells, NO increases soluble guanylate cyclase (sGC) activity, which, in turn, activates protein kinase G (PKG) by increasing cGMP levels. In this study, we investigated whether BK acts via the sGC-cGMP-PKG pathway to inhibit the negative effects of JNK on insulin signaling and glucose uptake in rat adipocytes. BK augmented cGMP concentrations. The BK-induced enhancement of insulin-stimulated glucose uptake was mimicked by the sGC activator YC-1 and a cell-permeable cGMP analog, CPT-cGMP, and inhibited by the sGC inhibitor ODQ and the PKG inhibitor KT 5823. Transfection of dominant-negative PKG reduced the BK augmentation of insulin-induced Akt phosphorylation. The activation of JNK and ERK1/2 by insulin was attenuated by BK, which was mediated by the sGC-cGMP-PKG pathway. Whereas insulin-stimulated phosphorylation of upstream activators of JNK and ERK, i.e., MKK4 and MEK1/2, was unaffected, BK augmented insulin-mediated induction of MKP-5 mRNA and protein levels. Furthermore, zaprinast, a phosphodiesterase inhibitor, enhanced cGMP and MKP-5 and prolonged the action of BK. These data indicate that BK enhances insulin action by inhibition of negative feedback by JNK and ERK via upregulation of MKP-5, mediated by the sGC-cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- María E Frigolet
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
| | - Garry Thomas
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kristin Beard
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Huogen Lu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lijiang Liu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - I George Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada;
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Miyamoto T, Lo PHY, Saichi N, Ueda K, Hirata M, Tanikawa C, Matsuda K. Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. SCIENCE ADVANCES 2017; 3:e1603204. [PMID: 28560349 PMCID: PMC5438217 DOI: 10.1126/sciadv.1603204] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The transcription factor p53 is at the core of a built-in tumor suppression system that responds to varying degrees of stress input and is deregulated in most human cancers. Befitting its role in maintaining cellular fitness and fidelity, p53 regulates an appropriate set of target genes in response to cellular stresses. However, a comprehensive understanding of this scheme has not been accomplished. We show that argininosuccinate synthase 1 (ASS1), a citrulline-aspartate ligase in de novo arginine synthesis pathway, was directly transactivated by p53 in response to genotoxic stress, resulting in the rearrangement of arginine metabolism. Furthermore, we found that x-ray irradiation promoted the systemic induction of Ass1 and concomitantly increased plasma arginine levels in p53+/+ mice but not in p53-/- mice. Notably, Ass1+/- mice exhibited hypersensitivity to whole-body irradiation owing to increased apoptosis in the small intestinal crypts. Analyses of ASS1-deficient cells generated using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) system revealed that ASS1 plays a pivotal role in limiting Akt phosphorylation. In addition, aberrant activation of Akt resulting from ASS1 loss disrupted Akt-mediated cell survival signaling activity under genotoxic stress. Building on these results, we demonstrated that p53 induced an intrinsic Akt repressor, ASS1, and the perturbation of ASS1 expression rendered cells susceptible to genotoxic stress. Our findings uncover a new function of p53 in the regulation of Akt signaling and reveal how p53, ASS1, and Akt are interrelated to each other.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paulisally Hau Yi Lo
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Naomi Saichi
- Cancer Proteomics Group, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Savir Y, Martynov A, Springer M. Achieving global perfect homeostasis through transporter regulation. PLoS Comput Biol 2017; 13:e1005458. [PMID: 28414718 PMCID: PMC5411106 DOI: 10.1371/journal.pcbi.1005458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/01/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023] Open
Abstract
Nutrient homeostasis-the maintenance of relatively constant internal nutrient concentrations in fluctuating external environments-is essential to the survival of most organisms. Transcriptional regulation of plasma membrane transporters by internal nutrient concentrations is typically assumed to be the main mechanism by which homeostasis is achieved. While this mechanism is homeostatic we show that it does not achieve global perfect homeostasis-a condition where internal nutrient concentrations are completely independent of external nutrient concentrations for all external nutrient concentrations. We show that the criterion for global perfect homeostasis is that transporter levels must be inversely proportional to net nutrient flux into the cell and that downregulation of active transporters (activity-dependent regulation) is a simple and biologically plausible mechanism that meets this criterion. Activity-dependent transporter regulation creates a trade-off between robustness and efficiency, i.e., the system's ability to withstand perturbation in external nutrients and the transporter production rate needed to maintain homeostasis. Additionally, we show that a system that utilizes both activity-dependent transporter downregulation and regulation of transporter synthesis by internal nutrient levels can create a system that mitigates the shortcomings of each of the individual mechanisms. This analysis highlights the utility of activity-dependent regulation in achieving homeostasis and calls for a re-examination of the mechanisms of regulation of other homeostatic systems.
Collapse
Affiliation(s)
- Yonatan Savir
- Department of Physiology, Biophysics and Systems Biology, Faculty of Medicine, Technion, Haifa, Israel
| | - Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Bian F, Jiang H, Man M, Mai K, Zhou H, Xu W, He G. Dietary gossypol suppressed postprandial TOR signaling and elevated ER stress pathways in turbot (Scophthalmus maximus L.). Am J Physiol Endocrinol Metab 2017; 312:E37-E47. [PMID: 27894064 DOI: 10.1152/ajpendo.00285.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023]
Abstract
Gossypol is known to be a polyphenolic compound toxic to animals. However, its molecular targets are far from fully characterized. To evaluate the physiological and molecular effects of gossypol, we chose turbot (Scophthalmus maximus L.), a carnivorous fish, as our model species. Juvenile turbots (7.83 ± 0.02 g) were fed diets containing gradient levels of gossypol at 0 (G0), 600 (G1), and 1,200 (G2) mg/kg diets for 11 wk. After the feeding trial, fish growth, body protein, and fat contents were significantly reduced in the G2 group compared with those of the G0 group (P < 0.05). Gossypol had little impact on digestive enzyme activities and intestine morphology. However, gossypol caused liver fibrosis and stimulated chemokine and proinflammatory cytokine secretions. More importantly, gossypol suppressed target of rapamycin (TOR) signaling and induced endoplasmic reticulum (ER) stress pathway in both the feeding experiment and cell cultures. Our results demonstrated that gossypol inhibited TOR signaling and elevated ER stress pathways both in vivo and in vitro, thus providing new mechanism of action of gossypol in nutritional physiology.
Collapse
Affiliation(s)
- Fuyun Bian
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Haowen Jiang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Mingsan Man
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| |
Collapse
|
34
|
Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage. Int J Rheumatol 2016; 2016:6432867. [PMID: 28042296 PMCID: PMC5155111 DOI: 10.1155/2016/6432867] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.
Collapse
|
35
|
High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4018157. [PMID: 27579152 PMCID: PMC4992541 DOI: 10.1155/2016/4018157] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022]
Abstract
The consumption of a high-fat diet (HFD) causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and antioxidant enzymes SOD and CAT activity, and mRNA expression of antioxidant enzymes HSP83 and MPK2 were analyzed. To confirm the damage effect of diet on flies, survival and lifespan were investigated. The results revealed that the HFD augmented the rate of lipid peroxidation and SOD and CAT activity and induced a higher expression of HSP83 and MPK2 mRNA. In parallel, levels of enzymes involved in lipid metabolism (ACSL1 and ACeCS1) were increased. Our data demonstrate that association among metabolic changes, oxidative stress, and protein signalization might be involved in shortening the lifespan of flies fed with a HFD.
Collapse
|
36
|
Zhang W, Wu M, Kim T, Jariwala RH, Garvey WJ, Luo N, Kang M, Ma E, Tian L, Steverson D, Yang Q, Fu Y, Garvey WT. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes 2016; 65:2380-91. [PMID: 27207527 PMCID: PMC4955990 DOI: 10.2337/db16-0154] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
Abstract
In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Mengrui Wu
- Department of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Teayoun Kim
- Department of Medicine-Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Ravi H Jariwala
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - W John Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Nanlan Luo
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Minsung Kang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth Ma
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Ling Tian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Dennis Steverson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
37
|
Ouyang H, Zhang H, Li W, Liang S, Jebessa E, Abdalla BA, Nie Q. Identification, expression and variation of the GNPDA2 gene, and its association with body weight and fatness traits in chicken. PeerJ 2016; 4:e2129. [PMID: 27326383 PMCID: PMC4911950 DOI: 10.7717/peerj.2129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Background. The GNPDA2 (glucosamine-6-phosphate deaminase 2) gene is a member of Glucosamine-6-phosphate (GlcN6P) deaminase subfamily, which encoded an allosteric enzyme of GlcN6P. Genome-wide association studies (GWAS) have shown that variations of human GNPDA2 are associated with body mass index and obesity risk, but its function and metabolic implications remain to be elucidated.The object of this study was to characterize the gene structure, expression, and biological functions of GNPDA2 in chickens. Methods. Variant transcripts of chicken GNPDA2 and their expression were investigated using rapid amplification of cDNA ends (RACE) system and real-time quantitative PCR technology. We detected the GNPDA2 expression in hypothalamic, adipose, and liver tissue of Xinghua chickens with fasting and high-glucose-fat diet treatments, and performed association analysis of variations of GNPDA2 with productive traits in chicken. The function of GNPDA2 was further studied by overexpression and small interfering RNA (siRNA) methods in chicken preadipocytes. Results.Four chicken GNPDA2 transcripts (cGNPDA2-a∼cGNPDA2-d) were identified in this study. The complete transcript GNPDA2-a was predominantly expressed in adipose tissue (subcutaneous fat and abdominal fat), hypothalamus, and duodenum. In fasting chickens, the mRNA level of GNPDA2 was decreased by 58.8% (P < 0.05) in hypothalamus, and returned to normal level after refeeding. Chicken fed a high-glucose-fat diet increased GNPDA2 gene expression about 2-fold higher in adipose tissue (P < 0.05) than that in the control (fed a basal diet), but decreased its expression in hypothalamus. Two single-nucleotide polymorphisms of the GNPDA2 gene were significantly associated with body weight and a number of fatness traits in chicken (P < 0.05). Conclusion. Our findings indicated that the GNPDA2 gene has a potential role in the regulation of body weight, fat and energy metabolism in chickens.
Collapse
Affiliation(s)
- Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Huan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Weimin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Sisi Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Bahareldin A Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University,Guangzhou,China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding,Guangzhou,China
| |
Collapse
|
38
|
miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity. Sci Rep 2016; 6:22862. [PMID: 26953132 PMCID: PMC4782173 DOI: 10.1038/srep22862] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/22/2016] [Indexed: 12/28/2022] Open
Abstract
Obesity is a growing epidemic in developed countries. Obese individuals are susceptible to comorbidities, including cardiovascular disease and metabolic disorder. Increasing the ability of adipose tissue to expend excess energy could improve protection from obesity. One promising target is microRNA (miR)-155-5p. We demonstrate that deletion of miR-155 (-5p and -3p) in female mice prevents diet-induced obesity. Body weight gain did not differ between wild-type (WT) and miR-155 knockout (KO) mice fed control diet (CD); however, miR-155 KO mice fed high-fat diet (HFD) gained 56% less body weight and 74% less gonadal white adipose tissue (WAT) than WT mice. Enhanced WAT thermogenic potential, brown adipose tissue differentiation, and/or insulin sensitivity might underlie this obesity resistance. Indeed, miR-155 KO mice on HFD had 21% higher heat release than WT HFD mice. Compared to WT adipocytes, miR-155 KO adipocytes upregulated brown (Ucp1, Cidea, Pparg) and white (Fabp4, Pnpla2, AdipoQ, Fasn) adipogenic genes, and glucose metabolism genes (Glut4, Irs1). miR-155 deletion abrogated HFD-induced adipocyte hypertrophy and WAT inflammation. Therefore, miR-155 deletion increases adipogenic, insulin sensitivity, and energy uncoupling machinery, while limiting inflammation in WAT, which together could restrict HFD-induced fat accumulation. Our results identify miR-155 as a novel candidate target for improving obesity resistance.
Collapse
|
39
|
Mettu NB, Abbruzzese JL. Clinical Insights Into the Biology and Treatment of Pancreatic Cancer. J Oncol Pract 2016; 12:17-23. [DOI: 10.1200/jop.2015.009092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer is a devastating disease with a universally poor prognosis. In 2015, it is estimated that there will be 48,960 new cases of pancreatic cancer and that 40,560 people will die of the disease. The 5-year survival rate is 7.2% for all patients with pancreatic cancer; however, survival depends greatly on the stage at diagnosis. Unfortunately, 53% of patients already have metastatic disease at diagnosis, which corresponds to a 5-year survival rate of 2.4%. Even for the 9% of patients with localized disease confined to the pancreas, the 5-year survival is still modest at only 27.1%. These grim statistics highlight the need for ways to identify cohorts of individuals at highest risk, methods to screen those at highest risk to identify preinvasive pathologic precursors, and development of effective systemic therapies. Recent clinical and translational progress has emphasized the relationship with diabetes, the role of the stroma, and the interplay of each of these with inflammation in the pathobiology of pancreatic cancer. In this article, we will discuss these relationships and how they might translate into novel management strategies for the treatment of this disease.
Collapse
|
40
|
Kokubo T, Maeda S, Tazumi K, Nozawa H, Miura Y, Kirisako T. The Effect of L-Ornithine on the Phosphorylation of mTORC1 Downstream Targets in Rat Liver. Prev Nutr Food Sci 2015; 20:238-45. [PMID: 26770910 DOI: 10.3746/pnf.2015.20.4.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
A non-protein amino acid, L-ornithine (Orn), has been shown to stimulate the urea cycle and tissue protein synthesis in the liver. The purpose of the current study was to assess whether Orn affects the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway, which is involved in protein synthesis. Primary cultured cells isolated from Wistar rat liver were incubated in an amino acid-free medium, followed by addition of Orn for 3 h. The cell lysate was subjected to immunoblotting to evaluate the phosphorylation of downstream targets of mTORC1, including p70S6K, S6, and 4EBP1. To assess the involvement of mTORC1 for the effect of Orn, the cells were pretreated with the mTOR inhibitor rapamycin before the addition of Orn and the cell lysate was subjected to immunoblotting. We next examined whether the effects of Orn were exerted in vivo. Orn was orally administered to 18 h food-deprived rats, the blood and the livers were collected at 1 and 3 h after administration for immunoblotting. Orn treatment for primary cultured cells for 3 h enhanced the phosphorylation of p70S6K, S6, and 4EBP1. In addition, rapamycin blocked the effects of Orn completely (p70S6K and S6) or partially (4EBP1). The oral administration of Orn to the rat also augmented the phosphorylation of mTORC1 downstream targets notably in S6 at 1 h. Our findings demonstrate that Orn has the potential to induce the phosphorylation of downstream targets of mTORC1 in the rat liver. This may be mediated by the augmentation of mTORC1 activity.
Collapse
Affiliation(s)
- Takeshi Kokubo
- Research and Development Division, Kirin Company, Limited, Tokyo 164-0001, Japan
| | - Shyuichi Maeda
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama 236-0004, Japan
| | - Kyoko Tazumi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama 236-0004, Japan
| | - Hajime Nozawa
- Research Laboratories for Key Technologies, Kirin Company, Limited, Yokohama 236-0004, Japan
| | - Yutaka Miura
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama 236-0004, Japan
| | - Takayoshi Kirisako
- Research Laboratories for Key Technologies, Kirin Company, Limited, Yokohama 236-0004, Japan
| |
Collapse
|
41
|
Abstract
Nearly 35% of adults and 20% of children in the United States are obese, defined as having a body mass index (BMI) ≥ 30 kg/m2. Obesity is an established risk factor for many cancers, and obesity-associated metabolic perturbations often manifest in Type 2 diabetes mellitus and/or the metabolic syndrome. As part of the growth-promoting, proinflammatory microenvironment of the obese and/or diabetic state, crosstalk between macrophages, adipocytes, and epithelial cells occurs via metabolically-regulated hormones, cytokines, and other mediators to enhance cancer risk and/or progression. This review synthesizes the evidence on key biological mechanisms underlying the associations between obesity, diabetes and cancer, with particular emphasis on enhancements in growth factor signaling, inflammation, and vascular integrity processes. These interrelated pathways represent mechanistic targets for disrupting the obesity-diabetes-cancer link, and several diabetes drugs, such as metformin and rosiglitazone, are being intensely studied for repurposing as cancer chemopreventive agents.
Collapse
Affiliation(s)
- V Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - S D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Wen T, Hou K, Li Z, Li L, Yu H, Liu Y, Li Y, Yin Z. Silencing β-linked N-acetylglucosamine transferase induces apoptosis in human gastric cancer cells through PUMA and caspase-3 pathways. Oncol Rep 2015; 34:3140-6. [PMID: 26397041 DOI: 10.3892/or.2015.4276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
β-linked N-acetylglucosamine (GlcNAc) is a monosaccharide that is catalyzed by O-GlcNAcylation transferase (OGT) to bind serine or threonine hydroxyl moieties of numerous nuclear and cytoplasmic proteins. Recent studies have shown that O-GlcNAcylation is elevated in various cancer types, which is associated with oncogenesis and tumor progression. However, whether OGT is expressed and/or plays a role in gastric cancer is unknown. In the present study, we used qPCR to determine that OGT mRNA levels are significantly elevated in gastric cancer tissues compared with that in corresponding adjacent tissues. In addition, in vivo silencing of OGT in nude mice suppressed tumor proliferation and decreased tumor burden. Furthermore, in vitro OGT knockdown induced more cell apoptosis through increasing PUMA and caspase-3 expression. We used a glycan-binding protein gene microarray to identify potential downstream target genes of OGT, and found that apoptosis-related genes such as galectin and HBEGF were decreased after OGT suppression, suggesting that OGT silencing induces apoptosis in gastric cancer tissues. We concluded that OGT plays a key role in gastric cancer proliferation and survival, and could be a potential target for therapy.
Collapse
Affiliation(s)
- Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Lu Li
- Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Beilin, Xi'an, Shaanxi 710069, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Yangguang Li
- Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
43
|
Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:185. [PMID: 26077338 PMCID: PMC4490649 DOI: 10.1186/s12906-015-0709-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 06/04/2015] [Indexed: 01/12/2023]
Abstract
Background Oligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits. Several studies suggest that Oligonol has an anti-obesity effect. Since obesity is tightly associated with insulin resistance, we investigated a possible remission effect of Oligonol on lipid accumulation and insulin resistance in human hepatic HepG2 cells. Methods HepG2 cells were treated with palmitate for 24 h to induce cellular hepatic steatosis and insulin resistance. The cells were then treated with Oligonol at subtoxic concentrations and examined for lipid metabolism, cytokine production, and insulin signaling using quantitative RT-PCR and western blot analysis. Results Oligonol treatment reversed the palmitate-induced intracellular lipid accumulation, down regulated the expression of lipogenic genes, and up-regulated genes for fatty acid degradation. Oligonol restored insulin sensitivity, as was determined by the phosphorylation states of IRS-1. Oligonol also inhibited STAT3-SOCS3 signaling and increased AMPK phosphorylation in HepG2 cells. Conclusion Oligonol treatment improved palmitate-induced cellular steatosis and insulin resistance in HepG2 cells with concomitant reduction of inflammatory cytokines and decrease in STAT3-SOCS3 and AMPK-mTOR pathways. Oligonol may have beneficial effects in lipid metabolism and insulin resistance in the liver.
Collapse
|
44
|
Grams J, Garvey WT. Weight Loss and the Prevention and Treatment of Type 2 Diabetes Using Lifestyle Therapy, Pharmacotherapy, and Bariatric Surgery: Mechanisms of Action. Curr Obes Rep 2015; 4:287-302. [PMID: 26627223 DOI: 10.1007/s13679-015-0155-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Weight loss, whether achieved by lifestyle intervention, pharmacotherapy, or bariatric surgery, is highly effective as a primary interventional strategy in both the prevention and treatment of type 2 diabetes. In high-risk patients with prediabetes and/or metabolic syndrome, weight loss effectively prevents progression to type 2 diabetes mellitus (T2DM) and improves cardiovascular risk factors. These benefits are the result of improvements in insulin resistance, which is central to the pathophysiology of cardiometabolic disease. In patients with T2DM, weight loss improves glycemia, while reducing the need for conventional glucose-lowering medicines, by affecting all three processes that produce and sustain the hyperglycemic state, namely via increments in peripheral insulin sensitivity with improvements in insulin signal transduction at the cellular level, more robust insulin secretory responses, and reduced rates of hepatic glucose production. In both nondiabetic and diabetic subjects, hypocaloric feeding (e.g., treatment with very low-calorie diet or bariatric surgery) produces a rapid improvement in insulin sensitivity due to mobilization of fat from the intramyocellular, intrahepatocellular, and intra-abdominal compartments, and via a more long-term mechanism that correlates with the loss of total body fat. In diabetes, by improving glycemia, weight loss also enhances glucose homeostasis by reversing the defects in insulin action and secretion attributable to glucose toxicity. Regardless of the therapeutic approach, weight loss of ∼ 10 % maximally prevents future diabetes in patients with prediabetes or metabolic syndrome. In T2DM, greater degrees of weight loss lead to progressive improvements in glucose homeostasis. Therefore, when accompanied by greater weight loss, the metabolic benefits following bariatric surgery are generally more pronounced than those achieved following lifestyle and medical treatment. In addition, the mechanisms by which bariatric operations improve diabetes may include both weight-dependent and weight-independent mechanisms, and the latter may involve changes in gut hormones, bile acids, or gut microflora.
Collapse
Affiliation(s)
- J Grams
- Department of Surgery, University of Alabama at Birmingham and the Birmingham VA Medical Center, KB401, 1720 2nd Ave S, Birmingham, AL, 35294-0016, USA.
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham and the Birmingham VA Medical Center, 1675 University Boulevard, Birmingham, AL, 35294-3360, USA.
| |
Collapse
|
45
|
Awazu M, Hida M. Maternal nutrient restriction inhibits ureteric bud branching but does not affect the duration of nephrogenesis in rats. Pediatr Res 2015; 77:633-9. [PMID: 25675424 DOI: 10.1038/pr.2015.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/29/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maternal nutrient restriction produces offspring with fewer nephrons. We studied whether the reduced nephron number is due to the inhibition of ureteric branching or early cessation of nephrogenesis in rats. Signaling pathways involved in kidney development were also examined. METHODS The offspring of dams given food ad libitum (control (CON)) and those subjected to 50% food restriction (nutrient restriceted (NR)) were examined. RESULTS At embryonic day 13 (E13), there was no difference between NR and CON in body weight or kidney size. Ureteric buds branched once in both NR and CON. At E14 and E15, body and kidney size were significantly reduced in NR. Ureteric bud tip numbers were also reduced to 50% of CON. On the other hand, the disappearance of nephrogenic zone and a nephron progenitor marker Cited1 was not different between CON and NR. The final glomerular number of NR was 80% of CON. Activated extracellular signal-regulated kinase (ERK), p38, PI3K, Akt, and mammallian target of rapamycin (mTOR), and protein expression of β-catenin were downregulated at E15. CONCLUSION Ureteric branching is inhibited and developmentally regulated signaling pathways are downregulated at an early stage by maternal nutrient restriction. These changes, not early cessation of nephrogenesis, may be a mechanism for the inhibited kidney growth and nephrogenesis.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Hida
- 1] Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan [2] Perinatal Center and Department of Neonatology, Yokohama Rosai Hospital, Kanagawa, Japan
| |
Collapse
|
46
|
Miyamoto T, Rho E, Sample V, Akano H, Magari M, Ueno T, Gorshkov K, Chen M, Tokumitsu H, Zhang J, Inoue T. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Cell Rep 2015; 11:657-70. [PMID: 25892241 DOI: 10.1016/j.celrep.2015.03.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/20/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK), whose activity is a critical determinant of cell health, serves a fundamental role in integrating extracellular and intracellular nutrient information into signals that regulate various metabolic processes. Despite the importance of AMPK, its specific roles within the different intracellular spaces remain unresolved, largely due to the lack of real-time, organelle-specific AMPK activity probes. Here, we present a series of molecular tools that allows for the measurement of AMPK activity at the different subcellular localizations and that allows for the rapid induction of AMPK inhibition. We discovered that AMPKα1, not AMPKα2, was the subunit that preferentially conferred spatial specificity to AMPK, and that inhibition of AMPK activity at the mitochondria was sufficient for triggering cytosolic ATP increase. These findings suggest that genetically encoded molecular probes represent a powerful approach for revealing the basic principles of the spatiotemporal nature of AMPK regulation.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Elmer Rho
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vedangi Sample
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hiroki Akano
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Masaki Magari
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Melinda Chen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hiroshi Tokumitsu
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Precursory Research for Embryonic Science and Technology (PRESTO) Investigator, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| |
Collapse
|
47
|
Katzenberger RJ, Chtarbanova S, Rimkus SA, Fischer JA, Kaur G, Seppala JM, Swanson LC, Zajac JE, Ganetzky B, Wassarman DA. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. eLife 2015; 4. [PMID: 25742603 PMCID: PMC4377547 DOI: 10.7554/elife.04790] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI:http://dx.doi.org/10.7554/eLife.04790.001 Traumatic brain injury (TBI) caused by a violent blow to the head or body and the resultant collision of the brain against the skull is a major cause of disability and death in humans. Primary injury to the brain triggers secondary injuries that further damage the brain and other organs, generating many of the detrimental consequences of TBI. However, despite decades of study, the exact nature of these secondary injuries and their origin are poorly understood. A better understanding of secondary injuries should help to develop novel therapies to improve TBI outcomes in affected individuals. To obtain this information, in 2013 researchers devised a method to inflict TBI in the common fruit fly, Drosophila melanogaster, an organism that is readily amenable to detailed genetic and molecular studies. This investigation demonstrated that flies subjected to TBI display many of the same symptoms observed in humans after a brain injury, including temporary loss of mobility and damage to the brain that becomes worse over time. In addition, many of the flies die within 24 hr after brain injury. Now Katzenberger et al. use this experimental system to investigate the secondary injuries responsible for these deaths. First, genetic variants were identified that confer increased or decreased susceptibility to death after brain injury. Several of the identified genes affect the structural integrity of the intestinal barrier that isolates the contents of the gut—including nutrients and bacteria—from the circulatory system. Katzenberger et al. subsequently found that the breakdown of this barrier after brain injury permits bacteria and glucose to leak out of the intestine. Treating flies with antibiotics did not increase survival, whereas reducing glucose levels in the circulatory system after brain injury did. Thus, Katzenberger et al. conclude that high levels of glucose in the circulatory system, a condition known as hyperglycemia, is a key culprit in death following TBI. Notably, these results parallel findings in humans, where hyperglycemia is highly predictive of death following TBI. Similarly, individuals with diabetes have a significantly increased risk of death after TBI. These results suggest that the secondary injuries leading to death are the same in flies and humans and that further studies in flies are likely to provide additional new information that will help us understand the complex consequences of TBI. Important challenges remain, including understanding precisely how the brain and intestine communicate, how injury to the brain leads to disruption of the intestinal barrier, and why elevated glucose levels increase mortality after brain injury. Answers to these questions could help pave the way to new therapies for TBI. DOI:http://dx.doi.org/10.7554/eLife.04790.002
Collapse
Affiliation(s)
- Rebeccah J Katzenberger
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | | | - Stacey A Rimkus
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Julie A Fischer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Gulpreet Kaur
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Jocelyn M Seppala
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Laura C Swanson
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Jocelyn E Zajac
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - David A Wassarman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
48
|
Keembiyehetty C, Love DC, Harwood KR, Gavrilova O, Comly ME, Hanover JA. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J Biol Chem 2015; 290:7097-113. [PMID: 25596529 DOI: 10.1074/jbc.m114.617779] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-GlcNAc cycling is maintained by the reciprocal activities of the O-GlcNAc transferase and the O-GlcNAcase (OGA) enzymes. O-GlcNAc transferase is responsible for O-GlcNAc addition to serine and threonine (Ser/Thr) residues and OGA for its removal. Although the Oga gene (MGEA5) is a documented human diabetes susceptibility locus, its role in maintaining insulin-glucose homeostasis is unclear. Here, we report a conditional disruption of the Oga gene in the mouse. The resulting homozygous Oga null (KO) animals lack OGA enzymatic activity and exhibit elevated levels of the O-GlcNAc modification. The Oga KO animals showed nearly complete perinatal lethality associated with low circulating glucose and low liver glycogen stores. Defective insulin-responsive GSK3β phosphorylation was observed in both heterozygous (HET) and KO Oga animals. Although Oga HET animals were viable, they exhibited alterations in both transcription and metabolism. Transcriptome analysis using mouse embryonic fibroblasts revealed deregulation in the transcripts of both HET and KO animals specifically in genes associated with metabolism and growth. Additionally, metabolic profiling showed increased fat accumulation in HET and KO animals compared with WT, which was increased by a high fat diet. Reduced insulin sensitivity, glucose tolerance, and hyperleptinemia were also observed in HET and KO female mice. Notably, the respiratory exchange ratio of the HET animals was higher than that observed in WT animals, indicating the preferential utilization of glucose as an energy source. These results suggest that the loss of mouse OGA leads to defects in metabolic homeostasis culminating in obesity and insulin resistance.
Collapse
Affiliation(s)
| | - Dona C Love
- From the Laboratory of Cell Biology and Biochemistry and
| | | | - Oksana Gavrilova
- Mouse Metabolic Core Laboratory, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - John A Hanover
- From the Laboratory of Cell Biology and Biochemistry and
| |
Collapse
|
49
|
Hong HR, Ha CD, Kong JY, Lee SH, Song MG, Kang HS. Roles of physical activity and cardiorespiratory fitness on sex difference in insulin resistance in late elementary years. J Exerc Nutrition Biochem 2014; 18:361-369. [PMID: 25671203 PMCID: PMC4322027 DOI: 10.5717/jenb.2014.18.4.361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Little is known about the potential role of lifestyle factors in sex differences in insulin resistance in late elementary school children. METHODS In this cross-sectional study, we compared sex differences in Tanner scales, body fat, physical activity (PA) and fitness, and insulin resistance markers in elementary school children (boys, n = 69 and girls, n = 81) aged 12-13 years. Body composition was assessed with a standardized protocol. Cardiorespiratory fitness was measured as oxygen consumption during an incremental treadmill exercise. Fasting blood samples were collected for blood chemistry assays including lipids, glucose, insulin and homeostasis model assessment for insulin resistance (HOMA-IR), leptin, and adiponectin. Daily PA was measured with an accelerometer for 7 consecutive days, and they were classified as low-, moderate-, and vigorous-PA. Independent t-tests were used to compare mean differences in the measured variables between boys and girls. There were significant sex differences in Tanner scales, body mass index, percent body fat, and waist circumference (WC). RESULTS Girls had significantly higher values in Tanner scales (p < 0.001) and percent body fat (p < 0.001) than boys. Boys had significantly higher values in body mass index (p = 0.019) and waist circumference (p < 0.001) than girls. Boys also had significantly higher values in VO2max (p < 0.001) and low (p < 0.001), moderate (p < 0.001), and vigorous (p < 0.001) PAs. With respect to metabolic risk factors, girls had significantly higher serum levels of triglycerides (p = 0.005), insulin (p < 0.001), and HOMA-IR (p < 0.001) and significantly lower high-density lipoprotein cholesterol (p = 0.015) than boys. CONCLUSION In summary, the current findings of the study showed that the increased risk for insulin resistance in girls over boys is associated with higher Tanner scale and percent body fat in conjunction with poor cardiorespiratory fitness and physical inactivity, suggesting that exercise intervention to promote physical activity and fitness is imperative for general health promotion of school children, with a special focus on girls.
Collapse
Affiliation(s)
- Hye-Ryun Hong
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Chang-Duk Ha
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Ji-Young Kong
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Sang-Hee Lee
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Moon-Goo Song
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Sik Kang
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
50
|
De Palma S, Capitanio D, Vasso M, Braghetta P, Scotton C, Bonaldo P, Lochmüller H, Muntoni F, Ferlini A, Gelfi C. Muscle Proteomics Reveals Novel Insights into the Pathophysiological Mechanisms of Collagen VI Myopathies. J Proteome Res 2014; 13:5022-30. [DOI: 10.1021/pr500675e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sara De Palma
- Department
of Biomedical Sciences for Health, University of Milan, Segrate, Milan 20090, Italy
- Institute
of Bioimaging and Molecular Physiology, National Research Council, Cefalù
90015 − Segrate 20090, Italy
| | - Daniele Capitanio
- Department
of Biomedical Sciences for Health, University of Milan, Segrate, Milan 20090, Italy
- IRCCS Policlinico
San Donato, San Donato Milanese, Milan 20097, Italy
| | - Michele Vasso
- Institute
of Bioimaging and Molecular Physiology, National Research Council, Cefalù
90015 − Segrate 20090, Italy
| | - Paola Braghetta
- Department
of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Chiara Scotton
- Department
of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Paolo Bonaldo
- Department
of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Centre
for Neuromuscular Diseases, Newcastle
upon Tyne NE1 3BZ, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of
Child Health, London WC1N 1EH, United Kingdom
| | - Alessandra Ferlini
- Department
of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Cecilia Gelfi
- Department
of Biomedical Sciences for Health, University of Milan, Segrate, Milan 20090, Italy
- Institute
of Bioimaging and Molecular Physiology, National Research Council, Cefalù
90015 − Segrate 20090, Italy
- IRCCS Policlinico
San Donato, San Donato Milanese, Milan 20097, Italy
| |
Collapse
|