1
|
Vollenweider V, Rehm K, Chepkirui C, Pérez-Berlanga M, Polymenidou M, Piel J, Bigler L, Kümmerli R. Antimicrobial activity of iron-depriving pyoverdines against human opportunistic pathogens. eLife 2024; 13:RP92493. [PMID: 39693130 DOI: 10.7554/elife.92493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental Pseudomonas spp., have strong antibacterial properties by inducing iron starvation and growth arrest in pathogens. A screen of 320 natural Pseudomonas isolates used against 12 human pathogens uncovered several pyoverdines with particularly high antibacterial properties and distinct chemical characteristics. The most potent pyoverdine effectively reduced growth of the pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus in a concentration- and iron-dependent manner. Pyoverdine increased survival of infected Galleria mellonella host larvae and showed low toxicity for the host, mammalian cell lines, and erythrocytes. Furthermore, experimental evolution of pathogens combined with whole-genome sequencing revealed limited resistance evolution compared to an antibiotic. Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karoline Rehm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Kircheva N, Dobrev S, Nikolova V, Yocheva L, Angelova S, Dudev T. Implementation of Three Gallium-Based Complexes in the "Trojan Horse" Antibacterial Strategy against A. baumannii: A DFT Approach. Inorg Chem 2024; 63:15409-15420. [PMID: 39116415 DOI: 10.1021/acs.inorgchem.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Microorganisms of the ESKAPE group pose an enormous threat to human well-being, thus requiring a multidisciplinary approach for discovering novel drugs that are not only effective but utilize an innovative mechanism of action in order to decrease fast developing resistance. A promising but still hardly explored implementation in the "Trojan horse" antibacterial strategy has been recognized in gallium, an iron mimicry species with no known function but exerting a bacteriostatic/bactericidal effect against some representatives of the group. The study herewith focuses on the bacterium A. baumannii and its siderophore acinetobactin in its two isomeric forms depending on the acidity of the medium. By applying the powerful tools of the DFT approach, we aim to delineate those physicochemical characteristics that are of great importance for potentiating gallium's ability to compete with the native ferric cation for binding acinetobactin such as pH, solvent exposure (dielectric constant of the environment), different metal/siderophore ratios, and complex composition. Hence, the provided results not only furnish some explanation of the positive effect of three Ga3+-based anti-infectives in terms of metal cation competition but also shed light on reported in vitro and in vivo observations at a molecular level in regard to gallium's antibacterial effect against A. baumannii.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Lyubima Yocheva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
4
|
Mathuria A, Ali N, Kataria N, Mani I. Drug repurposing for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:59-78. [PMID: 38942545 DOI: 10.1016/bs.pmbts.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The rise of multidrug-resistant bacteria is a well-recognized threat to world health, necessitating the implementation of effective treatments. This issue has been identified as a top priority on the global agenda by the World Health Organization. Certain strains, such as Candida glabrata, Candida krusei, Candida lusitaniae, Candida auris, select cryptococcal species, and opportunistic Aspergillus or Fusarium species, have significant intrinsic resistance to numerous antifungal medicines. This inherent resistance and subsequent suboptimal clinical outcomes underscore the critical imperative for enhanced therapeutic alternatives and management protocols. The challenge of effectively treating fungal infections, compounded by the protracted timelines involved in developing novel drugs, underscores the pressing need to explore alternative therapeutic avenues. Among these, drug repurposing emerges as a particularly promising and expeditious solution, providing cost-effective solutions and safety benefits. In the fight against life-threatening resistant fungal infections, the idea of repurposing existing medications has encouraged research into both established and new compounds as a last-resort therapy. This chapter seeks to provide a comprehensive overview of contemporary antifungal drugs, as well as their key resistance mechanisms. Additionally, it seeks to provide insight into the antimicrobial properties of non-traditional drugs, thereby offering a holistic perspective on the evolving landscape of antifungal therapeutics.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
5
|
Feizi S, Awad M, Nepal R, Cooksley CM, Psaltis AJ, Wormald PJ, Vreugde S. Deferiprone-gallium-protoporphyrin (IX): A promising treatment modality against Mycobacterium abscessus. Tuberculosis (Edinb) 2023; 142:102390. [PMID: 37506532 DOI: 10.1016/j.tube.2023.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD) caused by Mycobacterium abscessus is a frequent complication in patients with cystic fibrosis (CF) that worsens lung function over time. Currently, there is no cure for NTM-PD, hence new therapies are urgently required. Disrupting bacterial iron uptake pathways using gallium-protoporphyrin (IX) (GaPP), a heme analog, has been proposed as a novel antibacterial approach to tackle multi-drug resistant M. abscessus. However, the antibacterial activity of GaPP has been tested only in iron-deficient media, which cannot accurately mirror the potential activity in vivo. Herein, we investigated the potential synergistic activity between GaPP and the iron-chelating agent deferiprone (Def) in regular media against M. abscessus-infected macrophages. The safety of the treatment was assessed in vitro using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Nuli-1 and THP-1 cell lines. Def-GaPP had synergistic activity against M. abscessus-infected macrophages where 10 mM-12.5 mg/L of Def-GaPP reduced the viability by up to 0.9 log10. Furthermore, Def-GaPP showed no cytotoxicity to Nuli-1 and THP-1 cell lines at the effective antibacterial concentrations (10 mM-12.5 mg/L) of Def- GaPP. These data encourage future investigation of Def-GaPP as a novel antimicrobial against NTM-PD.
Collapse
Affiliation(s)
- Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Muhammed Awad
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia; Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Al-Azhar University, Assiut, Egypt
| | - Roshan Nepal
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Clare M Cooksley
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia; The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
6
|
Limantoro C, Das T, He M, Dirin D, Manos J, Kovalenko MV, Chrzanowski W. Synthesis of Antimicrobial Gallium Nanoparticles Using the Hot Injection Method. ACS MATERIALS AU 2023; 3:310-320. [PMID: 38090131 PMCID: PMC10347687 DOI: 10.1021/acsmaterialsau.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 09/03/2024]
Abstract
Antibiotic resistance continues to be an ongoing problem in global public health despite interventions to reduce antibiotic overuse. Furthermore, it threatens to undo the achievements and progress of modern medicine. To address these issues, the development of new alternative treatments is needed. Metallic nanoparticles have become an increasingly attractive alternative due to their unique physicochemical properties that allow for different applications and their various mechanisms of action. In this study, gallium nanoparticles (Ga NPs) were tested against several clinical strains of Pseudomonas aeruginosa (DFU53, 364077, and 365707) and multi-drug-resistant Acinetobacter baumannii (MRAB). The results showed that Ga NPs did not inhibit bacterial growth when tested against the bacterial strains using a broth microdilution assay, but they exhibited effects in biofilm production in P. aeruginosa DFU53. Furthermore, as captured by atomic force microscopy imaging, P. aeruginosa DFU53 and MRAB biofilms underwent morphological changes, appearing rough and irregular when they were treated with Ga NPs. Although Ga NPs did not affect planktonic bacterial growth, their effects on both biofilm formation and established biofilm demonstrate their potential role in the race to combat antibiotic resistance, especially in biofilm-related infections.
Collapse
Affiliation(s)
- Christina Limantoro
- Sydney
Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Theerthankar Das
- Department
of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Meng He
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Dmitry Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Jim Manos
- Department
of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Wojciech Chrzanowski
- Sydney
Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Eales BM, Bai B, Merlau PR, Tam VH. Growth of Acinetobacter baumannii impacted by iron chelation. Lett Appl Microbiol 2023; 76:ovad019. [PMID: 36731874 PMCID: PMC9990167 DOI: 10.1093/lambio/ovad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Acinetobacter baumannii (AB) has become multidrug-resistant (MDR) in recent years, and, currently, there are limited effective treatment options. Nutrient metals (e.g. iron) are essential to the metabolic functions of AB. This study examined the impact of iron chelation on the growth of AB in vitro and in vivo. Susceptible and MDR-AB bloodstream isolates (n = 9) were recovered from different patients between 2011 and 2018. Clonal diversity was ascertained by Fourier-transform infrared spectroscopy. In vitro bacterial densities were measured over 20 h to determine growth profiles. Variable amounts of a chelating agent [deferiprone (DFP)] were added to create a concentration gradient. Galleria mellonella larvae were inoculated with an isolate, with and without DFP. Quantitative culture was used to ascertain the bacterial burden of aggregate larvae immediately and 4 h post-infection. Increasing concentrations of DFP caused a transient and concentration-dependent hindrance to in vitro growth, compared to the no-treatment group. In vivo bacterial burden immediately post-infection in both groups was comparable. After 4 h, the burden was much higher in the control group comparatively (8.7 and 6.7 log CFU g-1). These results support that micro-nutrient limitation has the potential of being a novel approach for treating high-risk infections due to MDR-AB.
Collapse
Affiliation(s)
- Brianna M Eales
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, TX 77204, USA
| | - Bing Bai
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, TX 77204, USA
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, Shenzhen, Guangdong 518052, China
| | - Paul R Merlau
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, TX 77204, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
8
|
Hu Y, Zhang X, Deng S, Yue C, Jia X, Lyu Y. Non-antibiotic prevention and treatment against Acinetobacter baumannii infection: Are vaccines and adjuvants effective strategies? Front Microbiol 2023; 14:1049917. [PMID: 36760499 PMCID: PMC9905804 DOI: 10.3389/fmicb.2023.1049917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative opportunistic pathogen widely attached to the surface of medical instruments, making it one of the most common pathogens of nosocomial infection, and often leading to cross-infection and co-infection. Due to the extensive antibiotic and pan-resistance, A. baumannii infection is facing fewer treatment options in the clinic. Therefore, the prevention and treatment of A. baumannii infection have become a tricky global problem. The requirement for research and development of the new strategy is urgent. Now, non-antibiotic treatment strategies are urgently needed. This review describes the research on A. baumannii vaccines and antibacterial adjuvants, discusses the advantages and disadvantages of different candidate vaccines tested in vitro and in vivo, especially subunit protein vaccines, and shows the antibacterial efficacy of adjuvant drugs in monotherapy.
Collapse
Affiliation(s)
- Yue Hu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Changwu Yue
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,*Correspondence: Changwu Yue ✉
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China,Xu Jia ✉
| | - Yuhong Lyu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Yuhong Lyu ✉
| |
Collapse
|
9
|
Antimicrobial Susceptibility Testing Performed in RPMI 1640 Reveals Azithromycin Efficacy against Carbapenem-Resistant Acinetobacter baumannii and Predicts In Vivo Outcomes in Galleria mellonella. Antimicrob Agents Chemother 2023; 67:e0132022. [PMID: 36468875 PMCID: PMC9872712 DOI: 10.1128/aac.01320-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Antimicrobial susceptibility testing (AST) in RPMI 1640, a more physiologically relevant culture medium, revealed that a substantial proportion of carbapenem-resistant Acinetobacter baumannii isolates were susceptible to azithromycin, a macrolide antibiotic not currently considered effective against A. baumannii. Experiments using Galleria mellonella validated these in vitro data. Our finding that RPMI 1640's predictive accuracy for in vivo outcomes is superior to that of Mueller-Hinton II broth also supports the use of more physiologically relevant AST culturing conditions.
Collapse
|
10
|
Aksoyalp ZŞ, Temel A, Erdogan BR. Iron in infectious diseases friend or foe?: The role of gut microbiota. J Trace Elem Med Biol 2023; 75:127093. [PMID: 36240616 DOI: 10.1016/j.jtemb.2022.127093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2022]
Abstract
Iron is a trace element involved in metabolic functions for all organisms, from microorganisms to mammalians. Iron deficiency is a prevalent health problem that affects billions of people worldwide, and iron overload could have some hazardous effect. The complex microbial community in the human body, also called microbiota, influences the host immune defence against infections. An imbalance in gut microbiota, dysbiosis, changes the host's susceptibility to infections by regulating the immune system. In recent years, the number of studies on the relationship between infectious diseases and microbiota has increased. Gut microbiota is affected by different parameters, including mode of delivery, hygiene habits, diet, drugs, and plasma iron levels during the lifetime. Gut microbiota may influence iron levels in the body, and iron overload and deficiency can also affect gut microbiota composition. Novel researches on microbiota shed light on the fact that the bidirectional interactions between gut microbiota and iron play a role in the pathogenesis of many diseases, especially infections. A better understanding of these interactions may help us to comprehend the pathogenesis of many infectious and metabolic diseases affecting people worldwide and following the development of more effective preventive and/or therapeutic strategies. In this review, we aimed to present the iron-mediated host-gut microbiota interactions, susceptibility to bacterial infections, and iron-targeted therapy approaches for infections.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| | - Aybala Temel
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Izmir, Turkey.
| | - Betul Rabia Erdogan
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| |
Collapse
|
11
|
Theriault ME, Pisu D, Wilburn KM, Lê-Bury G, MacNamara CW, Michael Petrassi H, Love M, Rock JM, VanderVen BC, Russell DG. Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Commun Biol 2022; 5:685. [PMID: 35810253 PMCID: PMC9271047 DOI: 10.1038/s42003-022-03650-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the cause of the human pulmonary disease tuberculosis (TB), contributes to approximately 1.5 million deaths every year. Prior work has established that lipids are actively catabolized by Mtb in vivo and fulfill major roles in Mtb physiology and pathogenesis. We conducted a high-throughput screen to identify inhibitors of Mtb survival in its host macrophage. One of the hit compounds identified in this screen, sAEL057, demonstrates highest activity on Mtb growth in conditions where cholesterol was the primary carbon source. Transcriptional and functional data indicate that sAEL057 limits Mtb’s access to iron by acting as an iron chelator. Furthermore, pharmacological and genetic inhibition of iron acquisition results in dysregulation of cholesterol catabolism, revealing a previously unappreciated linkage between these pathways. Characterization of sAEL057’s mode of action argues that Mtb’s metabolic regulation reveals vulnerabilities in those pathways that impact central carbon metabolism. An inhibitor of Mycobacterium tuberculosis (Mtb) survival acts as an iron chelator, demonstrating that iron deprivation alters Mtb cholesterol and central carbon metabolism.
Collapse
Affiliation(s)
- Monique E Theriault
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gabrielle Lê-Bury
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Case W MacNamara
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - H Michael Petrassi
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Melissa Love
- California Institute for Biomedical Research (Calibr), La Jolla, CA, USA
| | - Jeremy M Rock
- Department of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov Today 2022; 27:2028-2041. [PMID: 35561965 DOI: 10.1016/j.drudis.2022.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Infections are a growing global threat, and the number of resistant species of microbial pathogens is alarming. However, the rapid development of cross-resistant or multidrug-resistant strains and the development of so-called 'superbugs' are in stark contrast to the number of newly launched anti-infectives on the market. In this review, I summarize the causes of antimicrobial resistance, briefly discuss different approaches to the discovery and development of new anti-infective drugs, and focus on drug repurposing strategy, which is discussed from all possible perspectives. A comprehensive overview of drugs of other indications tested for their in vitro antimicrobial activity to support existing anti-infective therapeutics is provided, including several critical remarks on this strategy of repurposing non-antibiotics to antibacterial drugs.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Fereshteh S, Noori Goodarzi N, Sepehr A, Shafiei M, Ajdary S, Badmasti F. In Silico Analyses of Extracellular Proteins of Acinetobacter baumannii as Immunogenic Candidates. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e126559. [PMID: 36060914 PMCID: PMC9420209 DOI: 10.5812/ijpr-126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Background: Acinetobacter baumannii is an important nosocomial pathogen causing high morbidity and mortality in immunocompromised patients with prolonged hospitalization. Multidrug-resistant A. baumannii infections are on the rise worldwide. Therefore, the discovery of an effective vaccine against this bacterium seems necessary as a cost-effective and preventive strategy. Methods: In this present study, 35 genomes of A. baumannii strains were considered, and the extracellular proteins were selected, maximally having one transmembrane helix with high adhesion probability and no similarity to host proteins, as immunogenic candidates using the web tool Vaxign. Subsequently, the role of these selected proteins in bacterial pathogenesis was investigated using VICMpred. Then, the major histocompatibility complex class II, linear B-cell epitopes, and conservation of epitopes were identified using the Immune Epitope Database, BepiPred, and Epitope Conservancy Analysis, respectively. Finally, the B-cell discontinuous epitopes of each protein were predicted using ElliPro and plotted on the three-dimensional structure (3D) of the proteins. The role of the unknown proteins was predicted using the STRING database. Results: In this study, eight acceptable immunogenic candidates, including FilF, FimA, putative acid phosphatase, putative exported protein, subtilisin-like serine protease, and three uncharacterized proteins, were identified in A. baumannii. Conclusions: The results of the STRING database showed that these three uncharacterized proteins play a role in nutrition (heme utilization), peptide bond cleavage (serine peptidases), and cellular processes (MlaD protein). Extracellular proteins might play a catalyst role in the outer membrane protein-based vaccine of A. baumannii. Furthermore, this study proposed a list of potent immunogenic candidates of extracellular proteins.
Collapse
Affiliation(s)
| | | | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Ribeiro M, Sousa CA, Simões M. Harnessing microbial iron chelators to develop innovative therapeutic agents. J Adv Res 2021; 39:89-101. [PMID: 35777919 PMCID: PMC9263657 DOI: 10.1016/j.jare.2021.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023] Open
Abstract
Microbial iron chelators as a new route to develop inspiring antimicrobials. Siderophore-mimicking antibiotics as a pathogen-targeted strategy. Effectiveness of iron chelators on antibiotic-resistant Gram-negative bacteria. Iron chelators and the treatment of iron overload diseases. Iron chelators as powerful tools for cancer therapy.
Background Aim of Review Key Scientific Concepts of Review
Collapse
|
15
|
Kim MS, Ro HS. Generation of Iron-Independent Siderophore-Producing Agaricus bisporus through the Constitutive Expression of hapX. Genes (Basel) 2021; 12:genes12050724. [PMID: 34067973 PMCID: PMC8152254 DOI: 10.3390/genes12050724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Agaricus bisporus secretes siderophore to uptake environmental iron. Siderophore secretion in A. bisporus was enabled only in the iron-free minimal medium due to iron repression of hapX, a transcriptional activator of siderophore biosynthetic genes. Aiming to produce siderophore using conventional iron-containing complex media, we constructed a recombinant strain of A. bisporus that escapes hapX gene repression. For this, the A. bisporushapX gene was inserted next to the glyceraldehyde 3-phosphate dehydrogenase promoter (pGPD) in a binary vector, pBGgHg, for the constitutive expression of hapX. Transformants of A. bisporus were generated using the binary vector through Agrobacterium tumefaciens-mediated transformation. PCR and Northern blot analyses of the chromosomal DNA of the transformants confirmed the successful integration of pGPD-hapX at different locations with different copy numbers. The stable integration of pGPD-hapX was supported by PCR analysis of chromosomal DNA obtained from the 20 passages of the transformant. The transformants constitutively over-expressed hapX by 3- to 5-fold and sidD, a key gene in the siderophore biosynthetic pathway, by 1.5- to 4-fold in mRNA levels compared to the wild-type strain (without Fe3+), regardless of the presence of iron. Lastly, HPLC analysis of the culture supernatants grown in minimal medium with or without Fe3+ ions presented a peak corresponding to iron-chelating siderophore at a retention time of 5.12 min. The siderophore concentrations of the transformant T2 in the culture supernatant were 9.3-fold (−Fe3+) and 8-fold (+Fe3+) higher than that of the wild-type A. bisporus grown without Fe3+ ions, while no siderophore was detected in the wild-type supernatant grown with Fe3+. The results described here demonstrate the iron-independent production of siderophore by a recombinant strain of A. bisporus, suggesting a new application for mushrooms through molecular biological manipulation.
Collapse
|
16
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
17
|
Evans A, Kavanagh KA. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J Med Microbiol 2021; 70:001363. [PMID: 33961541 PMCID: PMC8289199 DOI: 10.1099/jmm.0.001363] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest global health challenges of modern times and its prevalence is rising worldwide. AMR within bacteria reduces the efficacy of antibiotics and increases both the morbidity and the mortality associated with bacterial infections. Despite this growing risk, few antibiotics with a novel mode of action are being produced, leading to a lack of antibiotics that can effectively treat bacterial infections with AMR. Metals have a history of antibacterial use but upon the discovery of antibiotics, often became overlooked as antibacterial agents. Meanwhile, metal-based complexes have been used as treatments for other diseases, such as the gold-containing drug auranofin, used to treat rheumatoid arthritis. Metal-based antibacterial compounds have novel modes of action that provide an advantage for the treatment of bacterial infections with resistance to conventional antibiotics. In this review, the antibacterial activity, mode of action, and potential for systemic use of a number of metal-based antibacterial complexes are discussed. The current limitations of these compounds are highlighted to determine if metal-based agents are a potential solution for the treatment of bacterial infections, especially those resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Andris Evans
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin A. Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
18
|
Vinuesa V, McConnell MJ. Recent Advances in Iron Chelation and Gallium-Based Therapies for Antibiotic Resistant Bacterial Infections. Int J Mol Sci 2021; 22:2876. [PMID: 33809032 PMCID: PMC8000330 DOI: 10.3390/ijms22062876] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is essential for multiple bacterial processes and is thus required for host colonization and infection. The antimicrobial activity of multiple iron chelators and gallium-based therapies against different bacterial species has been characterized in preclinical studies. In this review, we provide a synthesis of studies characterizing the antimicrobial activity of the major classes of iron chelators (hydroxamates, aminocarboxylates and hydroxypyridinones) and gallium compounds. Special emphasis is placed on recent in-vitro and in-vivo studies with the novel iron chelator DIBI. Limitations associated with iron chelation and gallium-based therapies are presented, with emphasis on limitations of preclinical models, lack of understanding regarding mechanisms of action, and potential host toxicity. Collectively, these studies demonstrate potential for iron chelators and gallium to be used as antimicrobial agents, particularly in combination with existing antibiotics. Additional studies are needed in order to characterize the activity of these compounds under physiologic conditions and address potential limitations associated with their clinical use as antimicrobial agents.
Collapse
Affiliation(s)
| | - Michael J. McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| |
Collapse
|
19
|
Best MG, Cunha-Reis C, Ganin AY, Sousa A, Johnston J, Oliveira AL, Smith DGE, Yiu HHP, Cooper IR. Antimicrobial Properties of Gallium(III)- and Iron(III)-Loaded Polysaccharides Affecting the Growth of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, In Vitro. ACS APPLIED BIO MATERIALS 2020; 3:7589-7597. [PMID: 35019499 DOI: 10.1021/acsabm.0c00811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) has become a global concern as many bacterial species have developed resistance to commonly prescribed antibiotics, making them ineffective to treatments. One type of antibiotics, gallium(III) compounds, stands out as possible candidates due to their unique "Trojan horse" mechanism to tackle bacterial growth, by substituting iron(III) in the metabolic cycles of bacteria. In this study, we tested three polysaccharides (carboxymethyl cellulose (CMC), alginate, and pectin) as the binding and delivery agent for gallium on three bacteria (Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) with a potential bioresponsive delivery mode. Two types of analysis on bacterial growth (minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC)) were carried out while iron(III)-loaded polysaccharide samples were also tested for comparison. The results suggested that gallium showed an improved inhibitory activity on bacterial growth, in particular gallium(III)-loaded carboxymethyl cellulose (Ga-CMC) sample showing an inhibiting effect on growth for all three tested bacteria. At the MIC for all three bacteria, Ga-CMC showed no cytotoxicity effect on human dermal neonatal fibroblasts (HDNF). Therefore, these bioresponsive gallium(III) polysaccharide compounds show significant potential to be developed as the next-generation antibacterial agents with controlled release capability.
Collapse
Affiliation(s)
- Mark G Best
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, U.K
| | - Cassilda Cunha-Reis
- CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alexey Y Ganin
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Aureliana Sousa
- 1i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jenna Johnston
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - David G E Smith
- The Institute of Biological Chemistry, Biophysics and. Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Humphrey H P Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Ian R Cooper
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, U.K
| |
Collapse
|
20
|
Jian Y, Merceron R, De Munck S, Forbes HE, Hulpia F, Risseeuw MDP, Van Hecke K, Savvides SN, Munier-Lehmann H, Boshoff HIM, Van Calenbergh S. Endeavors towards transformation of M. tuberculosis thymidylate kinase (MtbTMPK) inhibitors into potential antimycobacterial agents. Eur J Med Chem 2020; 206:112659. [PMID: 32823003 PMCID: PMC11000207 DOI: 10.1016/j.ejmech.2020.112659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/30/2023]
Abstract
As the last enzyme in nucleotide synthesis as precursors for DNA replication, thymidylate kinase of M. tuberculosis (MtbTMPK) attracts significant interest as a target in the discovery of new anti-tuberculosis agents. Earlier, we discovered potent MtbTMPK inhibitors, but these generally suffered from poor antimycobacterial activity, which we hypothesize is due to poor bacterial uptake. To address this, we herein describe our efforts to equip previously reported MtbTMPK inhibitors with targeting moieties to increase the whole cell activity of the hybrid analogues. Introduction of a simplified Fe-chelating siderophore motif gave rise to analogue 17 that combined favorable enzyme inhibitory activity with significant activity against M. tuberculosis (MIC of 12.5 μM). Conjugation of MtbTMPK inhibitors with an imidazo[1,2-a]pyridine or 3,5-dinitrobenzamide scaffold afforded analogues 26, 27 and 28, with moderate MtbTMPK enzyme inhibitory potency, but sub-micromolar activity against mycobacteria without significant cytotoxicity. These results indicate that conjugation with structural motifs known to favor mycobacterial uptake may be a valid approach for discovering new antimycobacterial agents.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Romain Merceron
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | - Steven De Munck
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 S3, Gent, B-9000, Belgium
| | - Savvas N Savvides
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, 9052, Belgium
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex, 15 75724, Paris, France
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| |
Collapse
|
21
|
Kircheva N, Dudev T. Competition between abiogenic and biogenic metal cations in biological systems: Mechanisms of gallium's anticancer and antibacterial effect. J Inorg Biochem 2020; 214:111309. [PMID: 33212396 DOI: 10.1016/j.jinorgbio.2020.111309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/29/2022]
Abstract
Metal cations are key players in a plethora of essential biological processes. Over the course of evolution specific biological functions have been bestowed upon two dozen of (biogenic) metal species, some of the most frequently found being sodium, potassium, magnesium, calcium, zinc, manganese, iron, and copper. On the other hand, there is a group of less studied abiogenic metals like lithium, strontium and gallium that possess not known functions in living organisms, but, by mimicking the native ions and/or competing with them for binding to key metalloenzymes, may exert beneficial effect on humans in particular medical conditions. This review summarizes and critically examines the mechanisms of gallium's therapeutic action in anticancer and antibacterial therapies by exploiting the tools of molecular modeling and experimental biochemistry. These approaches allow for identifying key factors for Ga3+ beneficial effect such as the electrostatic interactions with the protein ligands, substrates or bacterial siderophores, intramolecular hydrogen bond formation, and pH and dielectric properties of the medium. Several intriguing questions concerning the gallium competition with the native ferric ion have found their answers.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski", 1164 Sofia, Bulgaria.
| |
Collapse
|
22
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
23
|
Henríquez T, Stein NV, Jung H. Resistance to Bipyridyls Mediated by the TtgABC Efflux System in Pseudomonas putida KT2440. Front Microbiol 2020; 11:1974. [PMID: 32973714 PMCID: PMC7461776 DOI: 10.3389/fmicb.2020.01974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/27/2020] [Indexed: 01/26/2023] Open
Abstract
Resistance-nodulation-division (RND) transporters are involved in antibiotic resistance and have a broad substrate specificity. However, the physiological significance of these efflux pumps is not fully understood. Here, we have investigated the role of the RND system TtgABC in resistance to metal ion chelators in the soil bacterium Pseudomonas putida KT2440. We observed that the combined action of an RND inhibitor and the chelator 2,2'-bipyridyl inhibited bacterial growth. In addition, the deletion of ttgB made the strain susceptible to 2,2'-bipyridyl and natural bipyridyl derivatives such as caerulomycin A, indicating that TtgABC is required for detoxification of compounds of the bipyridyl family. Searching for the basis of growth inhibition by bipyridyls, we found reduced adenosine triphosphate (ATP) levels in the ttgB mutant compared to the wild type. Furthermore, the expression of genes related to iron acquisition and the synthesis of the siderophore pyoverdine were reduced in the mutant compared to the wild type. Investigating the possibility that 2,2'-bipyridyl in the ttgB mutant mediates iron accumulation in cells (which would cause the upregulation of genes involved in oxidative stress via the Fenton reaction), we measured the expression of genes coding for proteins involved in intracellular iron storage and the response to oxidative stress. However, none of the genes was significantly upregulated. In a further search for a possible link between 2,2'-bipyridyl and the observed phenotypes, we considered the possibility that the ion chelator limits the intracellular availability of metabolically important metal ions. In this context, we found that the addition of copper restores the growth of the ttgB mutant and the production of pyoverdine, suggesting a relationship between copper availability and iron acquisition. Taken together, the results suggest that detoxification of metal chelating compounds of the bipyridyl family produced by other bacteria or higher ordered organisms is one of the native functions of the RND efflux pump TtgABC. Without the efflux pump, these compounds may interfere with cell ion homeostasis with adverse effects on cell metabolism, including siderophore production. Finally, our results suggest that TtgABC is involved in resistance to bile salts and deoxycholate.
Collapse
Affiliation(s)
- Tania Henríquez
- Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Heinrich Jung
- Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
24
|
Fereshteh S, Abdoli S, Shahcheraghi F, Ajdary S, Nazari M, Badmasti F. New putative vaccine candidates against Acinetobacter baumannii using the reverse vaccinology method. Microb Pathog 2020; 143:104114. [DOI: 10.1016/j.micpath.2020.104114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 01/15/2023]
|
25
|
Kircheva N, Dudev T. Gallium as an Antibacterial Agent: A DFT/SMD Study of the Ga3+/Fe3+ Competition for Binding Bacterial Siderophores. Inorg Chem 2020; 59:6242-6254. [DOI: 10.1021/acs.inorgchem.0c00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| |
Collapse
|
26
|
Forging New Antibiotic Combinations under Iron-Limiting Conditions. Antimicrob Agents Chemother 2020; 64:AAC.01909-19. [PMID: 31907180 DOI: 10.1128/aac.01909-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant nosocomial pathogen. We showed previously that thiostrepton (TS), a Gram-positive thiopeptide antibiotic, is imported via pyoverdine receptors and synergizes with iron chelator deferasirox (DSX) to inhibit the growth of P. aeruginosa and Acinetobacter baumannii clinical isolates. A small number of P. aeruginosa and A. baumannii isolates were resistant to the combination, prompting us to search for other compounds that could synergize with TS against those strains. From literature surveys, we selected 14 compounds reported to have iron-chelating activity, plus one iron analogue, and tested them for synergy with TS. Doxycycline (DOXY), ciclopirox olamine (CO), tropolone (TRO), clioquinol (CLI), and gallium nitrate (GN) synergized with TS. Individual compounds were bacteriostatic, but the combinations were bactericidal. Our spectrophotometric data and chrome azurol S agar assay confirmed that the chelators potentiate TS activity through iron sequestration rather than through their innate antimicrobial activities. A triple combination of TS plus DSX plus DOXY had the most potent activity against P. aeruginosa and A. baumannii isolates. One P. aeruginosa clinical isolate was resistant to the triple combination but susceptible to a triple combination containing higher concentrations of CLI, CO, or DOXY. All A. baumannii isolates were susceptible to the triple combinations. Our data reveal a diverse set of compounds with dual activity as antibacterial agents and TS adjuvants, allowing combinations to be tailored for resistant clinical isolates.
Collapse
|
27
|
Hwang H, Isaacson RE, Singer RS. Comparison of relative expressions of genes involved in iron acquisition and regulation in fluoroquinolone-resistant and wild-type Campylobacter jejuni. Vet Microbiol 2020; 243:108615. [PMID: 32273001 DOI: 10.1016/j.vetmic.2020.108615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
Campylobacteriosis caused by C. jejuni is a serious yet common foodborne disease in the U.S. The prevalence of fluoroquinolone-resistant C. jejuni from poultry has continued to increase despite the withdrawal of fluoroquinolone use in the U.S. poultry industry in 2005. To date, no clear selective pressures that explain this effect have been documented. In this study, we investigated limited bioavailability of iron in poultry and enhanced iron uptake and regulation as potential indirect selective pressures conferring fitness advantages in fluoroquinolone-resistant C. jejuni compared to its susceptible wild-type counterpart. Five fluoroquinolone-susceptible C. jejuni isolates were selected from litter collected from commercial broiler farms. Using antibiotic selection, five fluoroquinolone-resistant strains were created. Relative expressions of six genes involved in iron acquisition and regulation were compared between the resistant and susceptible strains using RT-qPCR under normal and iron-limiting conditions. High variability in the relative gene expressions was observed among the strains, with only one resistant strain showing the consistent upregulation of the measured genes compared to the matching susceptible wild-type. Our results suggest that the hypothesis tested in the study may not be an adequate explanation of the molecular mechanism behind the enhanced fitness of fluoroquinolone-resistant C. jejuni compared to susceptible C. jejuni. This study highlights the need for a better understanding of the complex ecology and dynamics of fluoroquinolone resistance in C. jejuni in poultry environment and warrants an examination of fluoroquinolone-resistant C. jejuni strains recovered from the natural broiler chicken environment.
Collapse
Affiliation(s)
- Haejin Hwang
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
28
|
Potential Mechanisms of Mucin-Enhanced Acinetobacter baumannii Virulence in the Mouse Model of Intraperitoneal Infection. Infect Immun 2019; 87:IAI.00591-19. [PMID: 31405959 DOI: 10.1128/iai.00591-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine mucin has been commonly used to enhance the infectivity of bacterial pathogens, including Acinetobacter baumannii, in animal models, but the mechanisms for enhancement by mucin remain relatively unknown. In this study, using the mouse model of intraperitoneal (i.p.) mucin-enhanced A. baumannii infection, we characterized the kinetics of bacterial replication and dissemination and the host innate immune responses, as well as their potential contribution to mucin-enhanced bacterial virulence. We found that mucin, either admixed with or separately injected with the challenge bacterial inoculum, was able to enhance the tissue and blood burdens of A. baumannii strains of different virulence. Intraperitoneal injection of A. baumannii-mucin or mucin alone induced a significant but comparable reduction of peritoneal macrophages and lymphocytes, accompanied by a significant neutrophil recruitment and early interleukin-10 (IL-10) responses, suggesting that the resulting inflammatory cellular and cytokine responses were largely induced by the mucin. Depletion of peritoneal macrophages or neutralization of endogenous IL-10 activities showed no effect on the mucin-enhanced infectivity. However, pretreatment of mucin with iron chelator DIBI, but not deferoxamine, partially abolished its virulence enhancement ability, and replacement of mucin with iron significantly enhanced the bacterial burdens in the peritoneal cavity and lung. Taken together, our results favor the hypothesis that iron at least partially contributes to the mucin-enhanced infectivity of A. baumannii in this model.
Collapse
|
29
|
Antibiotic-Resistant Acinetobacter baumannii Is Susceptible to the Novel Iron-Sequestering Anti-infective DIBI In Vitro and in Experimental Pneumonia in Mice. Antimicrob Agents Chemother 2019; 63:AAC.00855-19. [PMID: 31209004 DOI: 10.1128/aac.00855-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii is a major cause of nosocomial infections especially hospital-acquired pneumonia. This bacterium readily acquires antibiotic resistance traits and therefore, new treatment alternatives are urgently needed. The virulence of A. baumannii linked to iron acquisition suggests a potential for new anti-infectives that target its iron acquisition. DIBI, a 3-hydroxypyridin-4-one chelator, is a purpose-designed, iron-sequestering antimicrobial that has shown promise for treating microbial infection. DIBI was investigated for its in vitro and in vivo activities against clinical A. baumannii isolates. DIBI was inhibitory for all isolates tested with very low MICs (2 μg/ml, equivalent to 0.2 μM), i.e., at or below the typical antibiotic MICs reported for antibiotic-sensitive strains. DIBI inhibition is Fe specific, and it caused an iron-restricted bacterial physiology that led to enhanced antibiotic killing by several discrete antibiotics. DIBI also strongly suppressed recovery growth of the surviving population following antibiotic exposure. A low intranasal dose (11 μmol/kg) of DIBI after intranasal challenge with hypervirulent ciprofloxacin (CIP)-resistant A. baumannii LAC-4 significantly reduced bacterial burdens in mice, and DIBI also suppressed the spread of the infection to the spleen. Treatment of infected mice with CIP alone (20 mg/kg, equivalent to 60 μmol/kg) was ineffective given LAC-4's CIP resistance, but if combined with DIBI, the treatment efficacy improved significantly. Our evidence suggests that DIBI restricts host iron availability to A. baumannii growing in the respiratory tract, bolstering the host innate iron restriction mechanisms. DIBI has potential as a sole anti-infective or in combination with conventional antibiotics for the treatment of A. baumannii pneumonia.
Collapse
|
30
|
Post SJ, Shapiro JA, Wuest WM. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MEDCHEMCOMM 2019; 10:505-512. [PMID: 31057729 PMCID: PMC6482887 DOI: 10.1039/c9md00032a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistant bacteria has become a problem of global concern. Of particular interest are the ESKAPE pathogens, species with high rates of multi-drug resistant infections. Novel antibiotic mechanisms of action are necessary to compliment traditional therapeutics. Recent research has focused on targeting virulence factors as a method of combatting infection without creating selective pressure for resistance or damaging the host commensal microbiome. Some investigations into one such virulence behavior, iron acquisition, have displayed additional effects on another virulence behavior, biofilm formation. The use of exogenous iron-chelators, gallium as an iron mimic, and inhibition of siderophore-mediated iron acquisition are all strategies for disturbing iron-homeostasis that have implicated effects on biofilms. However, the exact nature of this connection remains ambiguous. Herein we summarize these findings and identify opportunities for further investigation.
Collapse
Affiliation(s)
- Savannah J Post
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - Justin A Shapiro
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
- Antibiotic Resistance Center , Emory University School of Medicine , Atlanta , GA 30322 , USA
| |
Collapse
|
31
|
Miró-Canturri A, Ayerbe-Algaba R, Smani Y. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front Microbiol 2019; 10:41. [PMID: 30745898 PMCID: PMC6360151 DOI: 10.3389/fmicb.2019.00041] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a well-recognized global health threat that demands effective solutions; the situation is deemed a global priority by the World Health Organization and the European Centre for Disease Prevention and Control. Therefore, the development of new antimicrobial therapeutic strategies requires immediate attention to avoid the ten million deaths predicted to occur by 2050 as a result of MDR bacteria. The repurposing of drugs as therapeutic alternatives for infections has recently gained renewed interest. As drugs approved by the United States Food and Drug Administration, information about their pharmacological characteristics in preclinical and clinical trials is available. Therefore, the time and economic costs required to evaluate these drugs for other therapeutic applications, such as the treatment of bacterial and fungal infections, are mitigated. The goal of this review is to provide an overview of the scientific evidence on potential non-antimicrobial drugs targeting bacteria and fungi. In particular, we aim to: (i) list the approved drugs identified in drug screens as potential alternative treatments for infections caused by MDR pathogens; (ii) review their mechanisms of action against bacteria and fungi; and (iii) summarize the outcome of preclinical and clinical trials investigating approved drugs that target these pathogens.
Collapse
Affiliation(s)
- Andrea Miró-Canturri
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Rafael Ayerbe-Algaba
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| |
Collapse
|
32
|
Ooi ML, Richter K, Drilling AJ, Thomas N, Prestidge CA, James C, Moratti S, Vreugde S, Psaltis AJ, Wormald PJ. Safety and Efficacy of Topical Chitogel- Deferiprone-Gallium Protoporphyrin in Sheep Model. Front Microbiol 2018; 9:917. [PMID: 29867828 PMCID: PMC5958210 DOI: 10.3389/fmicb.2018.00917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/20/2018] [Indexed: 12/26/2022] Open
Abstract
Objectives: Increasing antimicrobial resistance has presented new challenges to the treatment of recalcitrant chronic rhinosinusitis fuelling a continuous search for novel antibiofilm agents. This study aimed to assess the safety and efficacy of Chitogel (Chitogel®, Wellington New Zealand) combined with novel antibiofilm agents Deferiprone and Gallium Protoporphyrin (CG-DG) as a topical treatment against S. aureus biofilms in vivo. Methods: To assess safety, 8 sheep were divided into two groups of 7 day treatments (n = 8 sinuses per treatment); (1) Chitogel (CG) with twice daily saline flush, and (2) CG-DG gel with twice daily saline flush. Tissue morphology was analyzed using histology and scanning electron microscopy (SEM). To assess efficacy we used a S. aureus sheep sinusitis model. Fifteen sheep were divided into three groups of 7 day treatments (n = 10 sinuses per treatment); (1) twice daily saline flush (NT), (2) Chitogel (CG) with twice daily saline flush, and (3) CG-DG gel with twice daily saline flush. Biofilm biomass across all groups was compared using LIVE/DEAD BacLight stain and confocal scanning laser microscopy. Results: Safety study showed no cilia denudation on scanning electron microscopy and no change in sinus mucosa histopathology when comparing CG-DG to CG treated sheep. COMSTAT2 assessment of biofilm biomass showed a significant reduction in CG-DG treated sheep compared to NT controls. Conclusion: Results indicate that CG-DG is safe and effective against S. aureus biofilms in a sheep sinusitis model and could represent a viable treatment option in the clinical setting.
Collapse
Affiliation(s)
- Mian L Ooi
- Department of Surgery- Otolaryngology, Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, SA, Australia
| | - Katharina Richter
- Department of Surgery- Otolaryngology, Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, SA, Australia.,Adelaide Biofilm Test Facility, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Amanda J Drilling
- Department of Surgery- Otolaryngology, Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, SA, Australia
| | - Nicky Thomas
- Adelaide Biofilm Test Facility, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Craig James
- Clinpath Laboratories, Adelaide, SA, Australia
| | - Stephen Moratti
- Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Sarah Vreugde
- Department of Surgery- Otolaryngology, Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, SA, Australia
| | - Alkis J Psaltis
- Department of Surgery- Otolaryngology, Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, SA, Australia
| | - Peter-John Wormald
- Department of Surgery- Otolaryngology, Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
33
|
Hoyer J, Bartel J, Gómez-Mejia A, Rohde M, Hirschfeld C, Heß N, Sura T, Maaß S, Hammerschmidt S, Becher D. Proteomic response of Streptococcus pneumoniae to iron limitation. Int J Med Microbiol 2018; 308:713-721. [PMID: 29496408 DOI: 10.1016/j.ijmm.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Iron is an essential trace element and involved in various key metabolic pathways in bacterial lifestyle. Within the human host, iron is extremely limited. Hence, the ability of bacteria to acquire iron from the environment is critical for a successful infection. Streptococcus pneumoniae (the pneumococcus) is a human pathobiont colonizing symptomless the human respiratory tract, but can also cause various local and invasive infections. To survive and proliferate pneumococci have therefore to adapt their metabolism and virulence factor repertoire to different host compartments. In this study, the response of S. pneumoniae to iron limitation as infection-relevant condition was investigated on the proteome level. The iron limitation was induced by application of the iron chelator 2,2'-bipyridine (BIP) in two different media mimicking different physiological traits. Under these conditions, the influence of the initial iron concentration on pneumococcal protein expression in response to limited iron availability was analyzed. Interestingly, one major difference between these two iron limitation experiments is the regulation of proteins involved in pneumococcal pathogenesis. In iron-poor medium several proteins of this group were downregulated whereas these proteins are upregulated in iron-rich medium. However, iron limitation in both environments led to a strong upregulation of the iron uptake protein PiuA and the significant downregulation of the non-heme iron-containing ferritin Dpr. Based on the results, it is shown that the pneumococcal proteome response to iron limitation is strongly dependent on the initial iron concentration in the medium or the environment.
Collapse
Affiliation(s)
- Juliane Hoyer
- Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Jürgen Bartel
- Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Alejandro Gómez-Mejia
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Claudia Hirschfeld
- Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Nathalie Heß
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Thomas Sura
- Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
34
|
Dickey SW, Cheung GY, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 PMCID: PMC11849574 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 516] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W. Dickey
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Gordon Y.C. Cheung
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Iron chelation for the treatment of uveitis. Med Hypotheses 2017; 103:1-4. [DOI: 10.1016/j.mehy.2017.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/04/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
|
36
|
Muzaheed, Alzahrani FM, Sattar Shaikh S. Acinetobacter baumannii Infection in Transfusion Dependent Thalassemia Patients with Sepsis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2351037. [PMID: 28596960 PMCID: PMC5450173 DOI: 10.1155/2017/2351037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE To identify the Acinetobacter baumannii infection among transfusion dependent thalassemia patients. METHODS A quantitative approach was employed to assess Acinetobacter baumannii infection in transfusion dependent thalassemia patients. Samples were collected from 916 patients, which have shown bacterial growth on MacConkey and blood agar culture media. A. baumannii strains were identified by microbiological methods and Gram's staining. API 20 E kit (Biomerieux, USA) was used for final identification. RESULTS From 916 cultured blood specimens, 107 (11.6%) showed growth of A. baumannii. Serum ferritin in thalassemic patients without bacterial infections was 3849.5 ± 1513.5 µg/L versus 6413.5 ± 2103.9 µg/L in those with bacterial infections (p = 0.0001). Acinetobacter baumannii infected patients have shown higher serum ferritin levels (p = 0.0001). Serum ferritin in thalassemic patients was 3849.5 ± 1513.5 µg/L versus 6413.5 ± 2103.9 µg/L in those with bacterial infections (p = 0.0001). Acinetobacter baumannii infected patients showed high serum ferritin levels (p = 0.0001). The clinical symptoms have been found with A. baumannii +ve with a mean and standard deviation of 47 (5.1%) and A. baumannii -ve with mean and standard deviation of 60 (6.5%). CONCLUSION Isolation of asymptomatic A. baumannii from the thalassemia patients shows an alarming situation of bacterial infections. A continuous surveillance of transfusion dependent thalassemia patients is recommended for bacterial sepsis.
Collapse
Affiliation(s)
- Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| | - Faisal Mousa Alzahrani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| | - Saeed Sattar Shaikh
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
37
|
Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E. Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Workman DG, Hunter M, Dover LG, Tétard D. Synthesis of novel Iron(III) chelators based on triaza macrocycle backbone and 1-hydroxy-2(H)-pyridin-2-one coordinating groups and their evaluation as antimicrobial agents. J Inorg Biochem 2016; 160:49-58. [DOI: 10.1016/j.jinorgbio.2016.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
|
39
|
Smani Y, Pachón-Ibáñez ME, Pachón J. New molecules and adjuvants in the treatment of infections by Acinetobacter baumannii. Expert Opin Pharmacother 2016; 17:1207-14. [PMID: 27067283 DOI: 10.1080/14656566.2016.1176144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The current problems of the treatment of infections by Acinetobacter baumannii are linked with the increase of multidrug- and extensive-drug resistance and the lack of development of new antimicrobial drugs for Gram-negative bacilli. For these reasons, new alternatives for the treatment and control of severe infections by A. baumannii are necessary. Several studies have reported the effect of adjuvants to restore the efficacy of existing antimicrobial agents. AREAS COVERED In the present review, the authors describe the main results in the development of adjuvant drugs as well as new data on antimicrobial peptides, in monotherapy or in combination therapy with existing antimicrobial agents, which have shown promising preclinical results in vitro and in vivo. EXPERT OPINION The preclinical evaluation of adjuvants and antimicrobial peptides, in monotherapy or in combination therapy, for A. baumannii infections has shown promising results. However, caution is needed and further extensive in vivo studies and clinical trials have to be performed to confirm the potential use of these adjuvants as true therapeutic alternatives.
Collapse
Affiliation(s)
- Younes Smani
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - María Eugenia Pachón-Ibáñez
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - Jerónimo Pachón
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| |
Collapse
|
40
|
López-Rojas R, García-Quintanilla M, Labrador-Herrera G, Pachón J, McConnell MJ. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2016; 47:473-7. [PMID: 27179817 DOI: 10.1016/j.ijantimicag.2016.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022]
Abstract
Acquisition of colistin resistance in Acinetobacter baumannii has been associated with reduced bacterial fitness and virulence, although the mechanisms underlying this fitness loss have not been well characterised. In this study, the role played by environmental iron levels on the growth and survival of colistin-resistant strains of A. baumannii was assessed. Growth assays with the colistin-susceptible ATCC 19606 strain and its colistin-resistant derivative RC64 [colistin minimum inhibitory concentration (MIC) of 64 mg/L] demonstrated that the strains grew similarly in rich laboratory medium (Mueller-Hinton broth), whereas RC64 demonstrated impaired growth compared with ATCC 19606 in human serum (>100-fold at 24 h). Compared with RC64, ATCC 19606 grew in the presence of higher concentrations of the iron-specific chelator 2,2'-bipyridine and grew more readily under iron-limiting conditions in solid and liquid media. In addition, iron supplementation of human serum increased the growth of RC64 compared with unsupplemented human serum to a greater extent than ATCC 19606. The ability of 11 colistin-resistant clinical isolates with mutations in the pmrB gene to grow in iron-replete and iron-limiting conditions was assessed, demonstrating that eight of the strains showed reduced growth under iron limitation. Individual mutations in the pmrB gene did not directly correlate with a decreased capacity for growth under iron limitation, suggesting that mutations in pmrB may not directly produce this phenotype. Together these results indicate that acquisition of colistin resistance in A. baumannii can be associated with a decreased ability to grow in low-iron environments.
Collapse
Affiliation(s)
- Rafael López-Rojas
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville 41013, Spain
| | - Meritxell García-Quintanilla
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville 41013, Spain
| | - Gema Labrador-Herrera
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville 41013, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville 41013, Spain
| | - Michael J McConnell
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville 41013, Spain.
| |
Collapse
|
41
|
Activity of Gallium Meso- and Protoporphyrin IX against Biofilms of Multidrug-Resistant Acinetobacter baumannii Isolates. Pharmaceuticals (Basel) 2016; 9:ph9010016. [PMID: 26999163 PMCID: PMC4812380 DOI: 10.3390/ph9010016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii is a challenging pathogen due to antimicrobial resistance and biofilm development. The role of iron in bacterial physiology has prompted the evaluation of iron-modulation as an antimicrobial strategy. The non-reducible iron analog gallium(III) nitrate, Ga(NO3)3, has been shown to inhibit A. baumannii planktonic growth; however, utilization of heme-iron by clinical isolates has been associated with development of tolerance. These observations prompted the evaluation of iron-heme sources on planktonic and biofilm growth, as well as antimicrobial activities of gallium meso- and protoporphyrin IX (Ga-MPIX and Ga-PPIX), metal heme derivatives against planktonic and biofilm bacteria of multidrug-resistant (MDR) clinical isolates of A. baumannii in vitro. Ga(NO3)3 was moderately effective at reducing planktonic bacteria (64 to 128 µM) with little activity against biofilms (≥512 µM). In contrast, Ga-MPIX and Ga-PPIX were highly active against planktonic bacteria (0.25 to 8 µM). Cytotoxic effects in human fibroblasts were observed following exposure to concentrations exceeding 128 µM of Ga-MPIX and Ga-PPIX. We observed that the gallium metal heme conjugates were more active against planktonic and biofilm bacteria, possibly due to utilization of heme-iron as demonstrated by the enhanced effects on bacterial growth and biofilm formation.
Collapse
|
42
|
Richter K, Ramezanpour M, Thomas N, Prestidge CA, Wormald PJ, Vreugde S. Mind “De GaPP”: in vitro efficacy of deferiprone and gallium-protoporphyrin againstStaphylococcus aureusbiofilms. Int Forum Allergy Rhinol 2016; 6:737-43. [DOI: 10.1002/alr.21735] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Katharina Richter
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, The Queen Elizabeth Hospital; Basil Hetzel Institute for Translational Health Research; Woodville South Australia
| | - Mahnaz Ramezanpour
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, The Queen Elizabeth Hospital; Basil Hetzel Institute for Translational Health Research; Woodville South Australia
| | - Nicky Thomas
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, The Queen Elizabeth Hospital; Basil Hetzel Institute for Translational Health Research; Woodville South Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide Australia
| | - Clive A. Prestidge
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide Australia
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, The Queen Elizabeth Hospital; Basil Hetzel Institute for Translational Health Research; Woodville South Australia
| | - Sarah Vreugde
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, The Queen Elizabeth Hospital; Basil Hetzel Institute for Translational Health Research; Woodville South Australia
| |
Collapse
|
43
|
Xia Y, Farah N, Maxan A, Zhou J, Lehmann C. Therapeutic iron restriction in sepsis. Med Hypotheses 2016; 89:37-9. [PMID: 26968906 DOI: 10.1016/j.mehy.2016.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/18/2016] [Accepted: 01/30/2016] [Indexed: 01/27/2023]
Abstract
Sepsis represents the systemic immune response to an infection. Mortality of sepsis slightly decreased over the past years, but due to the growing incidence, the absolute number of deaths still increases and belongs to the three most frequent causes of death worldwide. To date, there is no specific treatment for sepsis available yet. Iron is essential to both human beings and microbes and of great significance in many physiological and biochemical processes. Since iron is involved in the bacterial proliferation and immune dysregulation, we hypothesize that restricting host iron levels by application of iron chelators attenuates bacterial growth and improves the detrimental dysregulation of the systemic immune response in sepsis.
Collapse
Affiliation(s)
- Yanfang Xia
- School of Basic Medical Sciences, Zhejiang University, Zhejiang, China
| | - Nizam Farah
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Alexander Maxan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Juan Zhou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| |
Collapse
|
44
|
An In Vitro Comparison of PMMA and Calcium Sulfate as Carriers for the Local Delivery of Gallium(III) Nitrate to Staphylococcal Infected Surgical Sites. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7078989. [PMID: 26885514 PMCID: PMC4739006 DOI: 10.1155/2016/7078989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/24/2015] [Indexed: 11/17/2022]
Abstract
Antibiotic-loaded bone cements, including poly(methyl methacrylate) (PMMA) and calcium sulfate (CaSO4), are often used for treatment of orthopaedic infections involving Staphylococcus spp., although the effectiveness of this treatment modality may be limited due to the emergence of antimicrobial resistance and/or the development of biofilms within surgical sites. Gallium(III) is an iron analog capable of inhibiting essential iron-dependent pathways, exerting broad antimicrobial activity against multiple microorganisms, including Staphylococcus spp. Herein, we evaluated PMMA and CaSO4 as carriers for delivery of gallium(III) nitrate (Ga(NO3)3) to infected surgical sites by assessing the release kinetics subsequent to incorporation and antimicrobial activity against S. aureus and S. epidermidis. PMMA and to a lesser extent CaSO4 were observed to be compatible as carriers for Ga(NO3)3, eluting concentrations with antimicrobial activity against planktonic bacteria, inhibiting bacterial growth, and preventing bacterial colonization of beads, and effective against established bacterial biofilms of S. aureus and S. epidermidis. Collectively, our in vitro results indicate that PMMA is a more suitable carrier compared to CaSO4 for delivery of Ga(NO3)3; moreover they provide evidence for the potential use of Ga(NO3)3 with PMMA as a strategy for the prevention and/or treatment for orthopaedic infections.
Collapse
|
45
|
Antimicrobial Activity of Gallium Protoporphyrin IX against Acinetobacter baumannii Strains Displaying Different Antibiotic Resistance Phenotypes. Antimicrob Agents Chemother 2015; 59:7657-65. [PMID: 26416873 DOI: 10.1128/aac.01472-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023] Open
Abstract
A paucity of effective, currently available antibiotics and a lull in antibiotic development pose significant challenges for treatment of patients with multidrug-resistant (MDR) Acinetobacter baumannii infections. Thus, novel therapeutic strategies must be evaluated to meet the demands of treatment of these often life-threatening infections. Accordingly, we examined the antibiotic activity of gallium protoporphyrin IX (Ga-PPIX) against a collection of A. baumannii strains, including nonmilitary and military strains and strains representing different clonal lineages and isolates classified as susceptible or MDR. Susceptibility testing demonstrated that Ga-PPIX inhibits the growth of all tested strains when cultured in cation-adjusted Mueller-Hinton broth, with a MIC of 20 μg/ml. This concentration significantly reduced bacterial viability, while 40 μg/ml killed all cells of the A. baumannii ATCC 19606(T) and ACICU MDR isolate after 24-h incubation. Recovery of ATCC 19606(T) and ACICU strains from infected A549 human alveolar epithelial monolayers was also decreased when the medium was supplemented with Ga-PPIX, particularly at a 40-μg/ml concentration. Similarly, the coinjection of bacteria with Ga-PPIX increased the survival of Galleria mellonella larvae infected with ATCC 19606(T) or ACICU. Ga-PPIX was cytotoxic only when monolayers or larvae were exposed to concentrations 16-fold and 1,250-fold higher than those showing antibacterial activity, respectively. These results indicate that Ga-PPIX could be a viable therapeutic option for treatment of recalcitrant A. baumannii infections regardless of the resistance phenotype, clone lineage, time and site of isolation of strains causing these infections and their iron uptake phenotypes or the iron content of the media.
Collapse
|
46
|
Bruhn KW, Spellberg B. Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections. Curr Opin Microbiol 2015; 27:57-61. [PMID: 26261881 DOI: 10.1016/j.mib.2015.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Pathogenic microbes must acquire essential nutrients, including iron, from the host in order to proliferate and cause infections. Iron sequestration is an ancient host antimicrobial strategy. Thus, enhancing iron sequestration is a promising, novel anti-infective strategy. Unfortunately, small molecule iron chelators have proven difficult to develop as anti-infective treatments, in part due to unacceptable toxicities. Iron sequestration in mammals is predominantly mediated by the transferrin family of iron-binding proteins. In this review, we explore the possibility of administering supraphysiological levels of exogenous transferrin as an iron sequestering therapy for infections, which could overcome some of the problems associated with small molecule chelation. Recent studies suggest that transferrin delivery may represent a promising approach to augment both natural resistance and traditional antibiotic therapy.
Collapse
Affiliation(s)
- Kevin W Bruhn
- Department of Molecular Microbiology & Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, United States.
| | - Brad Spellberg
- Department of Medicine, Keck School of Medicine at USC, Los Angeles, United States
| |
Collapse
|
47
|
Evaluation of Gallium Citrate Formulations against a Multidrug-Resistant Strain of Klebsiella pneumoniae in a Murine Wound Model of Infection. Antimicrob Agents Chemother 2015; 59:6484-93. [PMID: 26239978 PMCID: PMC4576086 DOI: 10.1128/aac.00882-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
Skin and soft tissue infections (SSTIs) are a common occurrence in health care facilities with a heightened risk for immunocompromised patients. Klebsiella pneumoniae has been increasingly implicated as the bacterial agent responsible for SSTIs, and treatment can be challenging as more strains become multidrug resistant (MDR). Therefore, new treatments are needed to counter this bacterial pathogen. Gallium complexes exhibit antimicrobial activity and are currently being evaluated as potential treatment for bacterial infections. In this study, we tested a topical formulation containing gallium citrate (GaCi) for the treatment of wounds infected with K. pneumoniae. First, the MIC against K. pneumoniae ranged from 0.125 to 2.0 μg/ml GaCi. After this in vitro efficacy was established, two topical formulations with GaCi (0.1% [wt/vol] and 0.3% [wt/vol]) were tested in a murine wound model of MDR K. pneumoniae infection. Gross pathology and histopathology revealed K. pneumoniae-infected wounds appeared to close faster with GaCi treatment and were accompanied by reduced inflammation compared to those of untreated controls. Similarly, quantitative indications of infection remediation, such as reduced weight loss and wound area, suggested that treatment improved outcomes compared to those of untreated controls. Bacterial burdens were measured 1 and 3 days following inoculation, and a 0.5 to 1.5 log reduction of CFU was observed. Lastly, upon scanning electron microscopy analysis, GaCi treatment appeared to prevent biofilm formation on dressings compared to those of untreated controls. These results suggest that with more preclinical testing, a topical application of GaCi may be a promising alternative treatment strategy for K. pneumoniae SSTI.
Collapse
|
48
|
Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum. Antimicrob Agents Chemother 2015; 59:5641-6. [PMID: 26149986 DOI: 10.1128/aac.01097-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022] Open
Abstract
Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections.
Collapse
|
49
|
Rangel-Vega A, Bernstein LR, Mandujano-Tinoco EA, García-Contreras SJ, García-Contreras R. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Front Microbiol 2015; 6:282. [PMID: 25914685 PMCID: PMC4391038 DOI: 10.3389/fmicb.2015.00282] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/21/2015] [Indexed: 01/17/2023] Open
Abstract
Bacterial infection remains one of the leading causes of death worldwide, and the options for treating such infections are decreasing, due the rise of antibiotic-resistant bacteria. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking several approaches toward developing new classes of antibiotics, including (1) focusing on new targets and processes, such as bacterial cell–cell communication that upregulates virulence; (2) designing inhibitors of bacterial resistance, such as blockers of multidrug efflux pumps; and (3) using alternative antimicrobials such as bacteriophages. In addition, the strategy of finding new uses for existing drugs is beginning to produce results: antibacterial properties have been discovered for existing anticancer, antifungal, anthelmintic, and anti-inflammatory drugs. In this review, we discuss the antimicrobial properties of gallium compounds, 5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs and argue that their repurposing for the treatment of bacterial infections, including those that are multidrug resistant, is a feasible strategy.
Collapse
Affiliation(s)
- Adrián Rangel-Vega
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Edna Ayerim Mandujano-Tinoco
- Epigenetics of Cancer Laboratory, Division of Basic Research, National Institute of Genomic Medicine Mexico City, Mexico
| | | | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México Mexico City, Mexico
| |
Collapse
|
50
|
Gentile V, Frangipani E, Bonchi C, Minandri F, Runci F, Visca P. Iron and Acinetobacter baumannii Biofilm Formation. Pathogens 2014; 3:704-19. [PMID: 25438019 PMCID: PMC4243436 DOI: 10.3390/pathogens3030704] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.
Collapse
Affiliation(s)
- Valentina Gentile
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Emanuela Frangipani
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Carlo Bonchi
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Fabrizia Minandri
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Federica Runci
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Paolo Visca
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| |
Collapse
|