1
|
Haldar K, Bhattacharjee S. Vesicular mechanisms of drug resistance in apicomplexan parasites. Microbiol Mol Biol Rev 2025; 89:e0001024. [PMID: 39853128 PMCID: PMC11948495 DOI: 10.1128/mmbr.00010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYVesicular mechanisms of drug resistance are known to exist across prokaryotes and eukaryotes. Vesicles are sacs that form when a lipid bilayer 'bends' to engulf and isolate contents from the cytoplasm or extracellular environment. They have a wide range of functions, including vehicles of communication within and across cells, trafficking of protein intermediates to their rightful organellar destinations, and carriers of substrates destined for autophagy. This review will provide an in-depth understanding of vesicular mechanisms of apicomplexan parasites, Plasmodium and Toxoplasma (that respectively cause malaria and toxoplasmosis). It will integrate mechanistic and evolutionarily insights gained from these and other pathogenic eukaryotes to develop a new model for plasmodial resistance to artemisinins, a class of drugs that have been the backbone of modern campaigns to eliminate malaria worldwide. We also discuss extracellular vesicles that present major vesicular mechanisms of drug resistance in parasite protozoa (that apicomplexans are part of). Finally, we provide a broader context of clinical drug resistance mechanisms of Plasmodium, Toxoplasma, as well as Cryptosporidium and Babesia, that are prominent members of the phyla, causative agents of cryptosporidiosis and babesiosis and significant for human and animal health.
Collapse
Affiliation(s)
- Kasturi Haldar
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Crispim M, Silva TC, Lima ADS, Cruz LDS, Bento NA, Cruz TM, Stelle Y, Mar JM, Rocha DDQ, Bezerra JDA, Azevedo L. From Traditional Amazon Use to Food Applications: Tapirira guianensis Seed Extracts as a Triad of Antiproliferative Effect, Oxidative Defense, and Antimalarial Activity. Foods 2025; 14:467. [PMID: 39942060 PMCID: PMC11817332 DOI: 10.3390/foods14030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Tapirira guianensis is a tropical plant found in South America and is widely used by indigenous communities owing to its medicinal properties. Its seeds are rich in phenolic compounds that are known for their anti-inflammatory, antioxidant, and antimicrobial properties. Despite its traditional use, there are limited scientific data on the biological activities of its seed extracts, especially in the context of antimalarial and cytoprotective effects. In this study, we investigated the chemical composition, antioxidant potential, cytotoxic effects, and antimalarial properties of hydroethanolic, ethanolic, and aqueous seed extracts. A 1:1 (v/v) water/ethanol combination efficiently extracted bioactive compounds and delivered the highest phenolic compound content. Furthermore, the hydroethanolic extracts exhibited significant biological activities, including an ability to reduce cancer-cell viability, protect against damage caused by reactive oxygen species (ROS), and decrease chromosomal aberrations, while exhibiting high efficacy against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. Hence, the use of T. guianensis seed extract as a natural source of bioactive compounds with cytoprotective, antiproliferative, antioxidant, and antimalarial properties is innovative and highlights the need for additional in vivo studies to better elucidate its mechanisms of action and safety.
Collapse
Affiliation(s)
- Marcell Crispim
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Thaise Caputo Silva
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Amanda dos Santos Lima
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Laura da Silva Cruz
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Nathalia Alves Bento
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Thiago Mendanha Cruz
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil; (T.M.C.); (Y.S.)
| | - Yasmin Stelle
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil; (T.M.C.); (Y.S.)
| | - Josiana Moreira Mar
- Department of Chemistry, Environment, and Food, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, AM, Brazil; (J.M.M.); (D.d.Q.R.); (J.d.A.B.)
| | - Daniel de Queiroz Rocha
- Department of Chemistry, Environment, and Food, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, AM, Brazil; (J.M.M.); (D.d.Q.R.); (J.d.A.B.)
| | - Jaqueline de Araújo Bezerra
- Department of Chemistry, Environment, and Food, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, AM, Brazil; (J.M.M.); (D.d.Q.R.); (J.d.A.B.)
| | - Luciana Azevedo
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| |
Collapse
|
3
|
Verhoef JM, Boshoven C, Evers F, Akkerman LJ, Gijsbrechts BC, van de Vegte-Bolmer M, van Gemert GJ, Vaidya AB, Kooij TW. Detailing organelle division and segregation in Plasmodium falciparum. J Cell Biol 2024; 223:e202406064. [PMID: 39485315 PMCID: PMC11535888 DOI: 10.1083/jcb.202406064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
The malaria-causing parasite, P. falciparum, replicates through schizogony, a tightly orchestrated process where numerous daughter parasites are formed simultaneously. Proper division and segregation of one-per-cell organelles, like the mitochondrion and apicoplast, are essential, yet remain poorly understood. We developed a new reporter parasite line that allows visualization of the mitochondrion in blood and mosquito stages. Using high-resolution 3D imaging, we found that the mitochondrion orients in a cartwheel structure, prior to stepwise, non-geometric division during last-stage schizogony. Analysis of focused ion beam scanning electron microscopy data confirmed these mitochondrial division stages. Furthermore, these data allowed us to elucidate apicoplast division steps, highlighted its close association with the mitochondrion, and showed putative roles of the centriolar plaques in apicoplast segregation. These observations form the foundation for a new detailed mechanistic model of mitochondrial and apicoplast division and segregation during P. falciparum schizogony and pave the way for future studies into the proteins and protein complexes involved in organelle division and segregation.
Collapse
Affiliation(s)
- Julie M.J. Verhoef
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura J. Akkerman
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barend C.A. Gijsbrechts
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Taco W.A. Kooij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Verhoef JM, Boshoven C, Evers F, Akkerman LJ, Gijsbrechts BC, van de Vegte-Bolmer M, van Gemert GJ, Vaidya AB, Kooij TW. Detailing organelle division and segregation in Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577899. [PMID: 38352445 PMCID: PMC10862848 DOI: 10.1101/2024.01.30.577899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The malaria causing parasite, Plasmodium falciparum, replicates through a tightly orchestrated process termed schizogony, where approximately 32 daughter parasites are formed in a single infected red blood cell and thousands of daughter cells in mosquito or liver stages. One-per-cell organelles, such as the mitochondrion and apicoplast, need to be properly divided and segregated to ensure a complete set of organelles per daughter parasites. Although this is highly essential, details about the processes and mechanisms involved remain unknown. We developed a new reporter parasite line that allows visualization of the mitochondrion in blood and mosquito stages. Using high-resolution 3D-imaging, we found that the mitochondrion orients in a cartwheel structure, prior to stepwise, non-geometric division during the last stage of schizogony. Analysis of focused ion beam scanning electron microscopy (FIB-SEM) data confirmed these mitochondrial division stages. Furthermore, these data allowed us to elucidate apicoplast division steps, highlighted its close association with the mitochondrion, and showed putative roles of the centriolar plaques (CPs) in apicoplast segregation. These observations form the foundation for a new detailed mechanistic model of mitochondrial and apicoplast division and segregation during P. falciparum schizogony and pave the way for future studies into the proteins and protein complexes involved in organelle division and segregation.
Collapse
Affiliation(s)
- Julie M.J. Verhoef
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura J. Akkerman
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barend C.A. Gijsbrechts
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, USA
| | - Taco W.A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Rai S, Shukla S, Scotti L, Mani A. Drug Repurposing against Novel Therapeutic Targets in Plasmodium falciparum for Malaria: The Computational Perspective. Curr Med Chem 2024; 31:6272-6287. [PMID: 37550911 DOI: 10.2174/0929867331666230807151708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 07/01/2023] [Indexed: 08/09/2023]
Abstract
Malaria remains one of the most challenging tropical diseases. Since malaria cases are reportedly alarming in terms of infections and mortality, urgent attention is needed for addressing the issues of drug resistance in falciparum malaria. High throughput screening methods have paved way for rapid identification of anti-malarial. Furthermore, drug repurposing helps in shortening the time required for drug safety approvals. Hence, discovery of new antimalarials by drug repurposing is a promising approach for combating the disease. This article summarizes the recent computational approaches used for identifying novel antimalarials by using drug target interaction tools followed by pharmacokinetic studies.
Collapse
Affiliation(s)
- Shweta Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Shruti Shukla
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Luciana Scotti
- Postgraduate Programa in Natural and Synthetic Bioactive Compounds, University Hospital, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| |
Collapse
|
6
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
7
|
Schnyder JL, de Jong HK, Bache EB, van Hest RM, Schlagenhauf P, Borrmann S, Hanscheid T, Grobusch MP. On the potential for discontinuing atovaquone-proguanil (AP) ad-hoc post-exposure and other abbreviated AP-regimens: Pharmacology, pharmacokinetics and perspectives. Travel Med Infect Dis 2022; 52:102520. [PMID: 36526126 DOI: 10.1016/j.tmaid.2022.102520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
According to current guidelines, atovaquone-proguanil (AP) malaria chemoprophylaxis should be taken once daily starting one day before travel and continued for seven days post-exposure. However, drug-sparing regimens, including discontinuing AP after leaving malaria-endemic areas are cost-saving and probably more attractive to travelers, and may thus enhance adherence. AP has causal prophylactic effects, killing malaria parasites during the hepatic stage. If early hepatic stages were already targeted by AP, AP could possibly be discontinued upon return. Pharmacokinetic data and studies on drug-sparing AP regimens suggest this to be the case. Nevertheless, the evidence is weak and considered insufficient to modify current recommendations. Field trials require large numbers of travelers and inherently suffer from the lack of a control group. Safely-designed controlled human malaria infection trials could significantly reduce study participant numbers and safely establish an effective AP abbreviated regimen which we propose as the optimal trial design to test this concept.
Collapse
Affiliation(s)
- Jenny L Schnyder
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Hanna K de Jong
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Emmanuel B Bache
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Reinier M van Hest
- Department of Hospital Pharmacy & Clinical Pharmacology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Patricia Schlagenhauf
- University of Zurich Centre for Travel Medicine, WHO Collaborating Centre for Travelers' Health, Department of Public and Global Health, Military Medicine Biology Competence Centre, Institute for Epidemiology, Biostatistics and Prevention, Zurich, Switzerland
| | - Steffen Borrmann
- Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon
| | - Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands; Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon; Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone; Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Kamiya T, Paton DG, Catteruccia F, Reece SE. Targeting malaria parasites inside mosquitoes: ecoevolutionary consequences. Trends Parasitol 2022; 38:1031-1040. [PMID: 36209032 PMCID: PMC9815470 DOI: 10.1016/j.pt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Proof-of-concept studies demonstrate that antimalarial drugs designed for human treatment can also be applied to mosquitoes to interrupt malaria transmission. Deploying a new control tool is ideally undertaken within a stewardship programme that maximises a drug's lifespan by minimising the risk of resistance evolution and slowing its spread once emerged. We ask: what are the epidemiological and evolutionary consequences of targeting parasites within mosquitoes? Our synthesis argues that targeting parasites inside mosquitoes (i) can be modelled by readily expanding existing epidemiological frameworks; (ii) provides a functionally novel control method that has potential to be more robust to resistance evolution than targeting parasites in humans; and (iii) could extend the lifespan and clinical benefit of antimalarials used exclusively to treat humans.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France; HRB Clinical Research Facility, National University of Ireland, Galway, Ireland; Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Douglas G Paton
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Sarah E Reece
- Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Kapur A, Mehta P, Simmons AD, Ericksen SS, Mehta G, Palecek SP, Felder M, Stenerson Z, Nayak A, Dominguez JMA, Patankar M, Barroilhet LM. Atovaquone: An Inhibitor of Oxidative Phosphorylation as Studied in Gynecologic Cancers. Cancers (Basel) 2022; 14:cancers14092297. [PMID: 35565426 PMCID: PMC9102822 DOI: 10.3390/cancers14092297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative phosphorylation is an active metabolic pathway in cancer. Atovaquone is an oral medication that inhibits oxidative phosphorylation and is FDA-approved for the treatment of malaria. We investigated its potential anti-cancer properties by measuring cell proliferation in 2D culture. The clinical formulation of atovaquone, Mepron, was given to mice with ovarian cancers to monitor its effects on tumor and ascites. Patient-derived cancer stem-like cells and spheroids implanted in NSG mice were treated with atovaquone. Atovaquone inhibited the proliferation of cancer cells and ovarian cancer growth in vitro and in vivo. The effect of atovaquone on oxygen radicals was determined using flow and imaging cytometry. The oxygen consumption rate (OCR) in adherent cells was measured using a Seahorse XFe96 Extracellular Flux Analyzer. Oxygen consumption and ATP production were inhibited by atovaquone. Imaging cytometry indicated that the majority of the oxygen radical flux triggered by atovaquone occurred in the mitochondria. Atovaquone decreased the viability of patient-derived cancer stem-like cells and spheroids implanted in NSG mice. NMR metabolomics showed shifts in glycolysis, citric acid cycle, electron transport chain, phosphotransfer, and metabolism following atovaquone treatment. Our studies provide the mechanistic understanding and preclinical data to support the further investigation of atovaquone's potential as a gynecologic cancer therapeutic.
Collapse
Affiliation(s)
- Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (P.M.); (G.M.)
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.D.S.); (S.P.P.)
| | - Spencer S. Ericksen
- Drug Development Core, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (P.M.); (G.M.)
- Department of Biomedical Engineering, Macromolecular Sciences and Engineering, Precision Health, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.D.S.); (S.P.P.)
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Zach Stenerson
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Amruta Nayak
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA;
| | | | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
- Correspondence: (M.P.); (L.M.B.); Tel.: +1-608-263-1210 (M.P.); +1-608-265-2319 (L.M.B.)
| | - Lisa M. Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
- Correspondence: (M.P.); (L.M.B.); Tel.: +1-608-263-1210 (M.P.); +1-608-265-2319 (L.M.B.)
| |
Collapse
|
10
|
Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol 2022; 13:856686. [PMID: 35422792 PMCID: PMC9002357 DOI: 10.3389/fmicb.2022.856686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Protozoan parasites interact with a wide variety of organisms ranging from bacteria to humans, representing one of the most common causes of parasitic diseases and an important public health problem affecting hundreds of millions of people worldwide. The current treatment for these parasitic diseases remains unsatisfactory and, in some cases, very limited. Treatment limitations together with the increased resistance of the pathogens represent a challenge for the improvement of the patient’s quality of life. The continuous search for alternative preclinical drugs is mandatory, but the mechanisms of action of several of these compounds have not been described. Electron microscopy is a powerful tool for the identification of drug targets in almost all cellular models. Interestingly, ultrastructural analysis showed that several classes of antiparasitic compounds induced similar autophagic phenotypes in trypanosomatids, trichomonadids, and apicomplexan parasites as well as in Giardia intestinalis and Entamoeba spp. with the presence of an increased number of autophagosomes as well as remarkable endoplasmic reticulum profiles surrounding different organelles. Autophagy is a physiological process of eukaryotes that maintains homeostasis by the self-digestion of nonfunctional organelles and/or macromolecules, limiting redundant and damaged cellular components. Here, we focus on protozoan autophagy to subvert drug effects, discussing its importance for successful chemotherapy.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Isabela S Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum. Antimicrob Agents Chemother 2021; 65:AAC.02143-20. [PMID: 33361312 DOI: 10.1128/aac.02143-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
The continued emergence of drug-resistant Plasmodium falciparum parasites hinders global attempts to eradicate malaria, emphasizing the need to identify new antimalarial drugs. Attractive targets for chemotherapeutic intervention are the cytochrome (cyt) bc 1 complex, which is an essential component of the mitochondrial electron transport chain (mtETC) required for ubiquinone recycling and mitochondrially localized dihydroorotate dehydrogenase (DHODH) critical for de novo pyrimidine synthesis. Despite the essentiality of this complex, resistance to a novel acridone class of compounds targeting cyt bc 1 was readily attained, resulting in a parasite strain (SB1-A6) that was panresistant to both mtETC and DHODH inhibitors. Here, we describe the molecular mechanism behind the resistance of the SB1-A6 parasite line, which lacks the common cyt bc 1 point mutations characteristic of resistance to mtETC inhibitors. Using Illumina whole-genome sequencing, we have identified both a copy number variation (∼2×) and a single-nucleotide polymorphism (C276F) associated with pfdhodh in SB1-A6. We have characterized the role of both genetic lesions by mimicking the copy number variation via episomal expression of pfdhodh and introducing the identified single nucleotide polymorphism (SNP) using CRISPR-Cas9 and assessed their contributions to drug resistance. Although both of these genetic polymorphisms have been previously identified as contributing to both DSM-1 and atovaquone resistance, SB1-A6 represents a unique genotype in which both alterations are present in a single line, suggesting that the combination contributes to the panresistant phenotype. This novel mechanism of resistance to mtETC inhibition has critical implications for the development of future drugs targeting the bc 1 complex or de novo pyrimidine synthesis that could help guide future antimalarial combination therapies and reduce the rapid development of drug resistance in the field.
Collapse
|
12
|
Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Sci Rep 2021; 11:2121. [PMID: 33483532 PMCID: PMC7822874 DOI: 10.1038/s41598-021-81486-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration–response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.
Collapse
|
13
|
Miguel-Blanco C, Murithi JM, Benavente ED, Angrisano F, Sala KA, van Schalkwyk DA, Vanaerschot M, Schwach F, Fuchter MJ, Billker O, Sutherland CJ, Campino SG, Clark TG, Blagborough AM, Fidock DA, Herreros E, Gamo FJ, Baum J, Delves MJ. The antimalarial efficacy and mechanism of resistance of the novel chemotype DDD01034957. Sci Rep 2021; 11:1888. [PMID: 33479319 PMCID: PMC7820608 DOI: 10.1038/s41598-021-81343-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 11/09/2022] Open
Abstract
New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance.
Collapse
Affiliation(s)
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ernest Diez Benavente
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Fiona Angrisano
- Division of Microbiology and Parasitology, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Donelly A van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Frank Schwach
- Parasites and Microbes Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 OBZ, UK
| | - Oliver Billker
- Parasites and Microbes Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87, Umeå, Sweden
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Susana G Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Andrew M Blagborough
- Division of Microbiology and Parasitology, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Esperanza Herreros
- Global Health, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
- Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | | | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
14
|
Whole-Cell Phenotypic Screening of Medicines for Malaria Venture Pathogen Box Identifies Specific Inhibitors of Plasmodium falciparum Late-Stage Development and Egress. Antimicrob Agents Chemother 2020; 64:AAC.01802-19. [PMID: 32071059 DOI: 10.1128/aac.01802-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 μM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 μM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 μM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.
Collapse
|
15
|
Murithi JM, Owen ES, Istvan ES, Lee MCS, Ottilie S, Chibale K, Goldberg DE, Winzeler EA, Llinás M, Fidock DA, Vanaerschot M. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol 2019; 27:158-171.e3. [PMID: 31813848 PMCID: PMC7031696 DOI: 10.1016/j.chembiol.2019.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
We report detailed susceptibility profiling of asexual blood stages of the malaria parasite Plasmodium falciparum to clinical and experimental antimalarials, combined with metabolomic fingerprinting. Results revealed a variety of stage-specific and metabolic profiles that differentiated the modes of action of clinical antimalarials including chloroquine, piperaquine, lumefantrine, and mefloquine, and identified late trophozoite-specific peak activity and stage-specific biphasic dose-responses for the mitochondrial inhibitors DSM265 and atovaquone. We also identified experimental antimalarials hitting previously unexplored druggable pathways as reflected by their unique stage specificity and/or metabolic profiles. These included several ring-active compounds, ones affecting hemoglobin catabolism through distinct pathways, and mitochondrial inhibitors with lower propensities for resistance than either DSM265 or atovaquone. This approach, also applicable to other microbes that undergo multiple differentiation steps, provides an effective tool to prioritize compounds for further development within the context of combination therapies.
Collapse
Affiliation(s)
- James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward S Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eva S Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis MO 63130, USA
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Daniel E Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis MO 63130, USA
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
16
|
Linzke M, Yan SLR, Tárnok A, Ulrich H, Groves MR, Wrenger C. Live and Let Dye: Visualizing the Cellular Compartments of the Malaria Parasite Plasmodium falciparum. Cytometry A 2019; 97:694-705. [PMID: 31738009 DOI: 10.1002/cyto.a.23927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Malaria remains one of the deadliest diseases worldwide and it is caused by the protozoan parasite Plasmodium spp. Parasite visualization is an important tool for the correct detection of malarial cases but also to understand its biology. Advances in visualization techniques promote new insights into the complex life cycle and biology of Plasmodium parasites. Live cell imaging by fluorescence microscopy or flow cytometry are the foundation of the visualization technique for malaria research. In this review, we present an overview of possibilities in live cell imaging of the malaria parasite. We discuss some of the state-of-the-art techniques to visualize organelles and processes of the parasite and discuss limitation and advantages of each technique. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University Leipzig, D-04107, Härtelstraße 16-18, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, São Paulo, São Paulo, 05508-900, Brazil
| | - Matthew R Groves
- Structural Biology Unit, Department of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9713AV, Antonius Deusinglaan 1, AV Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
17
|
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 2019; 17:607-620. [PMID: 31444481 PMCID: PMC7024564 DOI: 10.1038/s41579-019-0238-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as 'persister-like cells'. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
18
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
19
|
Skinner-Adams TS, Fisher GM, Riches AG, Hutt OE, Jarvis KE, Wilson T, von Itzstein M, Chopra P, Antonova-Koch Y, Meister S, Winzeler EA, Clarke M, Fidock DA, Burrows JN, Ryan JH, Andrews KT. Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Commun Biol 2019; 2:166. [PMID: 31069275 PMCID: PMC6499835 DOI: 10.1038/s42003-019-0397-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Atovaquone-proguanil (Malarone®) is used for malaria prophylaxis and treatment. While the cytochrome bc1-inhibitor atovaquone has potent activity, proguanil's action is attributed to its cyclization-metabolite, cycloguanil. Evidence suggests that proguanil has limited intrinsic activity, associated with mitochondrial-function. Here we demonstrate that proguanil, and cyclization-blocked analogue tBuPG, have potent, but slow-acting, in vitro anti-plasmodial activity. Activity is folate-metabolism and isoprenoid biosynthesis-independent. In yeast dihydroorotate dehydrogenase-expressing parasites, proguanil and tBuPG slow-action remains, while bc1-inhibitor activity switches from comparatively fast to slow-acting. Like proguanil, tBuPG has activity against P. berghei liver-stage parasites. Both analogues act synergistically with bc1-inhibitors against blood-stages in vitro, however cycloguanil antagonizes activity. Together, these data suggest that proguanil is a potent slow-acting anti-plasmodial agent, that bc1 is essential to parasite survival independent of dihydroorotate dehydrogenase-activity, that Malarone® is a triple-drug combination that includes antagonistic partners and that a cyclization-blocked proguanil may be a superior combination partner for bc1-inhibitors in vivo.
Collapse
Affiliation(s)
- Tina S. Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - Gillian M. Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - Andrew G. Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Oliver E. Hutt
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Karen E. Jarvis
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Tony Wilson
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, QLD 4222 Australia
| | - Pradeep Chopra
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, QLD 4222 Australia
| | - Yevgeniya Antonova-Koch
- School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
- Present Address: California Institute for Biomedical Research (Calibr), La Jolla, CA 92037 USA
| | - Stephan Meister
- School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
- Present Address: Beckman Coulter Life Sciences in Indianapolis, Indianapolis, IN 46268 USA
| | | | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - David A. Fidock
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
| | - Jeremy N. Burrows
- Medicines for Malaria Venture (MMV), Route de Pré Bois 20, Geneva, 1215 Switzerland
| | - John H. Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| |
Collapse
|
20
|
Lunev S, Butzloff S, Romero AR, Linzke M, Batista FA, Meissner KA, Müller IB, Adawy A, Wrenger C, Groves MR. Oligomeric interfaces as a tool in drug discovery: Specific interference with activity of malate dehydrogenase of Plasmodium falciparum in vitro. PLoS One 2018; 13:e0195011. [PMID: 29694407 PMCID: PMC5919072 DOI: 10.1371/journal.pone.0195011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 01/29/2023] Open
Abstract
Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Å resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets.
Collapse
Affiliation(s)
- Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sabine Butzloff
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Atilio R. Romero
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Fernando A. Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kamila A. Meissner
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
| | - Ingrid B. Müller
- LG Müller, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alaa Adawy
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Saõ Paulo, Brazil
- * E-mail: (MRG); (CW)
| | - Matthew R. Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- * E-mail: (MRG); (CW)
| |
Collapse
|
21
|
Bueno JM, Calderon F, Chicharro J, De la Rosa JC, Díaz B, Fernández J, Fiandor JM, Fraile MT, García M, Herreros E, García-Pérez A, Lorenzo M, Mallo A, Puente M, Saadeddin A, Ferrer S, Angulo-Barturen I, Burrows JN, León ML. Synthesis and Structure-Activity Relationships of the Novel Antimalarials 5-Pyridinyl-4(1 H)-Pyridones. J Med Chem 2018; 61:3422-3435. [PMID: 29589932 DOI: 10.1021/acs.jmedchem.7b01256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Malaria is still one of the most prevalent parasitic infections in the world, with half of the world's population at risk for malaria. The effectiveness of current antimalarial therapies, even that of the most recent class of antimalarial drugs (artemisinin-combination therapies, ACTs), is under continuous threat by the spread of resistant Plasmodium strains. As a consequence, there is still an urgent requirement for new antimalarial drugs. We previously reported the identification of 4(1 H)-pyridones as a novel series with potent antimalarial activities. The low solubility was identified as an issue to address. In this paper, we describe the synthesis and biological evaluation of 4(1 H)-pyridones with potent antimalarial activities in vitro and in vivo and improved pharmacokinetic profiles. Their main structural novelties are the presence of polar moieties, such as hydroxyl groups, and the replacement of the lipophilic phenyl rings with pyridines on their lipophilic side chains.
Collapse
Affiliation(s)
- José M Bueno
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Félix Calderon
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Jesús Chicharro
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Juan C De la Rosa
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Beatriz Díaz
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Jorge Fernández
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - José M Fiandor
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - María T Fraile
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Mercedes García
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Esperanza Herreros
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Adolfo García-Pérez
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Milagros Lorenzo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Araceli Mallo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Margarita Puente
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Anas Saadeddin
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Santiago Ferrer
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Iñigo Angulo-Barturen
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| | - Jeremy N Burrows
- Medicines for Malaria Venture, ICC , Route de Pré-Bois 20 , PO Box 1826, 1215 Geneva , Switzerland
| | - María L León
- Tres Cantos Medicines Development Campus, Diseases of the Developing World , GlaxoSmithKline , Calle de Severo Ochoa, 2 , 28760 Tres Cantos , Madrid , Spain
| |
Collapse
|
22
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
23
|
High-Content Screening of the Medicines for Malaria Venture Pathogen Box for Plasmodium falciparum Digestive Vacuole-Disrupting Molecules Reveals Valuable Starting Points for Drug Discovery. Antimicrob Agents Chemother 2018; 62:AAC.02031-17. [PMID: 29311064 DOI: 10.1128/aac.02031-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Plasmodium falciparum infections leading to malaria have severe clinical manifestations and high mortality rates. Chloroquine (CQ), a former mainstay of malaria chemotherapy, has been rendered ineffective due to the emergence of widespread resistance. Recent studies, however, have unveiled a novel mode of action in which low-micromolar levels of CQ permeabilized the parasite's digestive vacuole (DV) membrane, leading to calcium efflux, mitochondrial depolarization, and DNA degradation. These phenotypes implicate the DV as an alternative target of CQ and suggest that DV disruption is an attractive target for exploitation by DV-disruptive antimalarials. In the current study, high-content screening of the Medicines for Malaria Venture (MMV) Pathogen Box (2015) was performed to select compounds which disrupt the DV membrane, as measured by the leakage of intravacuolar Ca2+ using the calcium probe Fluo-4 AM. The hits were further characterized by hemozoin biocrystallization inhibition assays and dose-response half-maximal (50%) inhibitory concentration (IC50) assays across resistant and sensitive strains. Three hits, MMV676380, MMV085071, and MMV687812, were shown to demonstrate a lack of CQ cross-resistance in parasite strains and field isolates. Through systematic analyses, MMV085071 emerged as the top hit due to its rapid parasiticidal effect, low-nanomolar IC50, and good efficacy in triggering DV disruption, mitochondrial degradation, and DNA fragmentation in P. falciparum These programmed cell death (PCD)-like phenotypes following permeabilization of the DV suggests that these compounds kill the parasite by a PCD-like mechanism. From the drug development perspective, MMV085071, which was identified to be a potent DV disruptor, offers a promising starting point for subsequent hit-to-lead generation and optimization through structure-activity relationships.
Collapse
|
24
|
Kapur A, Beres T, Rathi K, Nayak AP, Czarnecki A, Felder M, Gillette A, Ericksen SS, Sampene E, Skala MC, Barroilhet L, Patankar MS. Oxidative stress via inhibition of the mitochondrial electron transport and Nrf-2-mediated anti-oxidative response regulate the cytotoxic activity of plumbagin. Sci Rep 2018; 8:1073. [PMID: 29348410 PMCID: PMC5773707 DOI: 10.1038/s41598-018-19261-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/19/2017] [Indexed: 11/15/2022] Open
Abstract
Plumbagin, an anti-cancer agent, is toxic to cells of multiple species. We investigated if plumbagin targets conserved biochemical processes. Plumbagin induced DNA damage and apoptosis in cells of diverse mutational background with comparable potency. A 3-5 fold increase in intracellular oxygen radicals occurred in response to plumbagin. Neutralization of the reactive oxygen species by N-acetylcysteine blocked apoptosis, indicating a central role for oxidative stress in plumbagin-mediated cell death. Plumbagin docks in the ubiquinone binding sites (Q0 and Qi) of mitochondrial complexes I-III, the major sites for oxygen radicals. Plumbagin decreased oxygen consumption rate, ATP production and optical redox ratio (NAD(P)H/FAD) indicating interference with electron transport downstream of mitochondrial Complex II. Oxidative stress induced by plumbagin triggered an anti-oxidative response via activation of Nrf2. Plumbagin and the Nrf2 inhibitor, brusatol, synergized to inhibit cell proliferation. These data indicate that while inhibition of electron transport is the conserved mechanism responsible for plumbagin's chemotoxicity, activation of Nrf2 is the resulting anti-oxidative response that allows plumbagin to serve as a chemopreventive agent. This study provides the basis for designing potent and selective plumbagin analogs that can be coupled with suitable Nrf2 inhibitors for chemotherapy or administered as single agents to induce Nrf2-mediated chemoprevention.
Collapse
Affiliation(s)
- Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA.
| | - Thomas Beres
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA
| | - Kavya Rathi
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA
| | - Amruta P Nayak
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA
- Indian Institute for Science Education and Research, Pune, India
| | - Austin Czarnecki
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA
| | - Amani Gillette
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer S Ericksen
- Small Molecule Screening Facility, University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emmanuel Sampene
- Department of Biostatistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa C Skala
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792-6188, USA.
| |
Collapse
|
25
|
Matthews H, Deakin J, Rajab M, Idris-Usman M, Nirmalan NJ. Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations. PLoS One 2017; 12:e0173303. [PMID: 28257497 PMCID: PMC5336292 DOI: 10.1371/journal.pone.0173303] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/17/2017] [Indexed: 11/18/2022] Open
Abstract
The widespread introduction of artemisinin-based combination therapy has contributed to recent reductions in malaria mortality. Combination therapies have a range of advantages, including synergism, toxicity reduction, and delaying the onset of resistance acquisition. Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we have previously employed drug-repositioning to identify the anti-amoebic drug, emetine dihydrochloride hydrate, as a potential candidate for repositioned use against malaria. Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with its anti-amoebic potency (ED50 26–32 uM), practical use of the compound has been limited by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner drug would present an opportunity for dose-reduction, thus increasing the therapeutic window. The lack of reliable and standardised methodology to enable the in vitro definition of synergistic potential for antimalarials is a major drawback. Here we use isobologram and combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define drug interactivity in an objective, automated manner. The method, based on the median effect principle proposed by Chou and Talalay, was initially validated for antimalarial application using the known synergistic combination (atovaquone-proguanil). The combination was used to further understand the relationship between SYBR Green viability and cytocidal versus cytostatic effects of drugs at higher levels of inhibition. We report here the use of the optimised Chou Talalay method to define synergistic antimalarial drug interactivity between emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential route to harness the nanomolar antimalarial efficacy of this affordable natural product.
Collapse
Affiliation(s)
- Holly Matthews
- Environment and Life sciences, University of Salford, Greater Manchester, United Kingdom
| | - Jon Deakin
- Environment and Life sciences, University of Salford, Greater Manchester, United Kingdom
| | - May Rajab
- Environment and Life sciences, University of Salford, Greater Manchester, United Kingdom
| | - Maryam Idris-Usman
- Environment and Life sciences, University of Salford, Greater Manchester, United Kingdom
| | - Niroshini J. Nirmalan
- Environment and Life sciences, University of Salford, Greater Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, Meyer AJ, Becker K. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med 2017; 104:104-117. [PMID: 28062360 DOI: 10.1016/j.freeradbiomed.2017.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, 101 Bagby Ave., Waco, TX 76706, USA
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
27
|
Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties. Molecules 2017; 22:molecules22010161. [PMID: 28106855 PMCID: PMC6155649 DOI: 10.3390/molecules22010161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/08/2017] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N-arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal -N(Me)₂ or -N(Et)₂ in different positions (ortho, meta and para) on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N-arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para-position of the substituent remains the most favourable position on the benzyl chain and the carbamate -NHBoc was found active both in vitro (42 nM versus 29 nM for plasmodione) and in vivo in Plasmodium berghei-infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.
Collapse
|
28
|
Viswanath P, Morayya S, Rautela N, Sinha A. Development of a rapid and reliable assay for in vitro determination of compound cidality against the asexual stages of Plasmodium falciparum. Acta Parasitol 2016; 61:828-835. [PMID: 27787213 DOI: 10.1515/ap-2016-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
Abstract
The pace of anti-malarial drug discovery is often impeded due to the lack of tools to determine the cidality of compounds in vitro. An anti-malarial compound must have a cidal mode of action, i.e. kill parasites, in order to quickly reduce parasite load. A static compound that merely inhibits growth must be identified early on in the discovery cascade. In this paper, we describe a high-throughput fluorescent assay for determination of the cidality of an anti-malarial compound. The assay works on the principle that cultures treated with a static compound will exhibit re-growth while treatment with a cidal compound leads to a marked reduction in parasite number. Parasite cultures are treated with the drug for 48 or 72 h following which the drug is washed off. Cultures are allowed to recover in drug-free media for 72 h and DNA content estimated using the fluorescent dye SyBR Green I. Following estimation of IC50 and IC99 values, we find that the IC99/IC50 ratio is a reliable indicator of the cidality of a compound. Cidal compounds like artemisinin and chloroquine display an IC99/IC50 ratio <5 while the ratio for a static compound like atovaquone is <5. This correlation holds true for various anti-malarial drugs with known modes of action. Importantly, the IC99/IC50 ratio drops to <5 when a compound becomes cidal in action with longer duration of treatment. The assay is robust, reliable and provides a fast and effective means for prioritizing cidal compounds for progression along the drug discovery cascade.
Collapse
|
29
|
Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways. Antimicrob Agents Chemother 2016; 60:6635-6649. [PMID: 27572391 DOI: 10.1128/aac.01224-16] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field.
Collapse
|
30
|
Li XP, Wan GZ, Wang GJ, Li JF. MMP3 -1171 5A/6A Promoter Genotype Influences Serum MMP3 Levels and Is Associated with Deep Venous Thrombosis. Ann Vasc Surg 2016; 34:261-7. [PMID: 27177702 DOI: 10.1016/j.avsg.2015.11.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/21/2015] [Accepted: 11/27/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND The aim of this study was to investigate the roles of MMP3 (matrix metalloproteinase-3) gene polymorphism and protein expression in deep venous thrombosis (DVT) among Chinese Han population. METHODS A total of 280 subjects were included in this study and categorized as case group (144 DVT patients) and control group (136 healthy individuals). Polymerase chain reaction-restriction fragment length polymorphism was used to detect MMP3 promoter -1171 5A>6A genotype and allele frequencies. MMP3 serum levels were measured by enzyme-linked immunosorbent assay. SPSS version 18.0 statistical software was used for data analysis. RESULTS There was significant difference in genotype frequencies of MMP3 gene -1171 5A>6A between the case group and the control group (all P < 0.05). Furthermore, the 6A allele on MMP3 -1171 5A>6A may be associated with increased risk of DVT (odds ratio 1.961, 95% confidence interval 1.309-2.939, P < 0.01). The MMP3 serum level in DVT patients was markedly higher than the control group (case group: 28.45 ± 10.97 vs. CONTROL GROUP 18.18 ± 9.03, P < 0.05). Serum MMP3 level in DVT patients carrying 5A/6A and 6A/6A genotypes was higher than the control group (P < 0.05). The bilateral calf circumference difference was significantly higher in DVT patients than the control group among all the genotypes at MMP3 gene -1171 5A>6A (all P < 0.05). CONCLUSION MMP3 gene -1171 5A>6A polymorphism and upregulated protein expression may be associated with DVT risk in Chinese Han population.
Collapse
Affiliation(s)
- Xiang-Ping Li
- Department of Emergency Orthopedics, Linyi People's Hospital of Shandong Province, Linyi, Shandong, P.R. China
| | - Guang-Zhen Wan
- Department of Spine Surgery, North Medical District, Linyi People's Hospital of Shandong Province, Linyi, Shandong, P.R. China
| | - Guang-Jian Wang
- Department of Internal Medicine, Dai Gu Hospital of Mengyin County, Linyi, Shandong, P.R. China
| | - Jing-Fang Li
- Department of Cardiology, Linyi People's Hospital of Shandong Province, Linyi, Shandong, P.R. China.
| |
Collapse
|
31
|
Linares M, Viera S, Crespo B, Franco V, Gómez-Lorenzo MG, Jiménez-Díaz MB, Angulo-Barturen Í, Sanz LM, Gamo FJ. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J 2015; 14:441. [PMID: 26542470 PMCID: PMC4635989 DOI: 10.1186/s12936-015-0962-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/22/2015] [Indexed: 11/21/2022] Open
Abstract
Background The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen
large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. Methods Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. Results The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium–high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture ‘Malaria Box’. Conclusion The quantification of new infections to determine parasite viability offers important advantages over existing methods, and is amenable to medium–high throughput screening. In particular, the parasite viability fast assay allows discrimination of rapidly parasiticidal anti-malarial candidates.
Collapse
Affiliation(s)
- María Linares
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - Sara Viera
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - Benigno Crespo
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - Virginia Franco
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - María G Gómez-Lorenzo
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - María Belén Jiménez-Díaz
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - Íñigo Angulo-Barturen
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - Laura María Sanz
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| | - Francisco-Javier Gamo
- R&D Alternative Discovery and Development, Diseases of the Developing World, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain.
| |
Collapse
|
32
|
Cobbold SA, Chua HH, Nijagal B, Creek DJ, Ralph SA, McConville MJ. Metabolic Dysregulation Induced in Plasmodium falciparum by Dihydroartemisinin and Other Front-Line Antimalarial Drugs. J Infect Dis 2015; 213:276-86. [PMID: 26150544 DOI: 10.1093/infdis/jiv372] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/26/2015] [Indexed: 01/02/2023] Open
Abstract
Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism.
Collapse
Affiliation(s)
| | - Hwa H Chua
- Department of Biochemistry and Molecular Biology
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne
| | - Darren J Creek
- Department of Biochemistry and Molecular Biology Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne
| |
Collapse
|
33
|
High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays. Malar J 2014; 13:412. [PMID: 25331683 PMCID: PMC4213491 DOI: 10.1186/1475-2875-13-412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45 for enumerating live parasites in bioassays was developed. The technique was applied to estimate the specific growth inhibition index (SGI) in the antibody-dependent cellular inhibition (ADCI) assay and compared to parasite quantification by microscopy and mitotracker red staining. The Bland-Altman analysis was used to compare biases between SGI estimated by the tri-colour staining technique, mitotracker red and by microscopy. RESULTS CPO allowed a better separation between early rings and uRBCs compared to mitotracker red resulting in a more accurate estimate of total parasitaemia. The tri-colour technique is rapid, cost effective and robust with comparable sensitivity to microscopy and capable of discriminating between live and dead and/or compromised parasites. Staining for CD45 improved parasitaemia estimates in ADCI assay since high numbers of leucocytes interfered with the accurate identification of parasitized RBC. The least bias (-1.60) in SGI was observed between the tri-colour and microscopy. CONCLUSION An improved methodology for high-throughput assessment of P. falciparum parasitaemia under culture conditions that could be useful in different bioassays, including ADCI and growth inhibition assays has been developed.
Collapse
|
34
|
Desgrouas C, Chapus C, Desplans J, Travaille C, Pascual A, Baghdikian B, Ollivier E, Parzy D, Taudon N. In vitro antiplasmodial activity of cepharanthine. Malar J 2014; 13:327. [PMID: 25145413 PMCID: PMC4152577 DOI: 10.1186/1475-2875-13-327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND New classes of anti-malarial drugs are needed to control the alarming Plasmodium falciparum resistance toward current anti-malarial therapy. The ethnopharmacological approach allows the discovery of original chemical structures from the vegetable biodiversity. Previous studies led to the selection of a bisbenzylisoquinoline, called cepharanthine and isolated from a Cambodian plant: Stephania rotunda. Cepharanthine could exert a mechanism of action different from commonly used drugs. Potential plasmodial targets are reported here. METHODS To study the mechanism of action of cepharanthine, a combined approach using phenotypic and transcriptomic techniques was undertaken. RESULTS Cepharanthine blocked P. falciparum development in ring stage. On a culture of synchronized ring stage, the comparisons of expression profiles showed that the samples treated with 5 μM of cepharanthine (IC90) were significantly closer to the initial controls than to the final ones. After a two-way ANOVA (p-value < 0.05) on the microarray results, 1,141 probes among 9,722 presented a significant differential expression.A gene ontology analysis showed that the Maurer's clefts seem particularly down-regulated by cepharanthine. The analysis of metabolic pathways showed an impact on cell-cell interactions (cytoadherence and rosetting), glycolysis and isoprenoid pathways. Organellar functions, more particularly constituted by apicoplast and mitochondrion, are targeted too. CONCLUSION The blockage at the ring stage by cepharanthine is described for the first time. Transcriptomic approach confirmed that cepharanthine might have a potential innovative antiplasmodial mechanism of action. Thus, cepharanthine might play an ongoing role in the progress on anti-malarial drug discovery efforts.
Collapse
Affiliation(s)
- Camille Desgrouas
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Charles Chapus
- />UMR-MD3, Institut de recherche biomédicale des armées, BP73 91223 Brétigny-sur-Orge, France
| | - Jérôme Desplans
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Christelle Travaille
- />Trypanosome Cell Biology Unit, CNRS URA2581 and Parasitology Department, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Aurélie Pascual
- />Département d’Infectiologie de Terrain, Unité de Parasitologie, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Béatrice Baghdikian
- />UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 5, Marseille, France
| | - Evelyne Ollivier
- />UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin 13385 Marseille Cedex 5, Marseille, France
| | - Daniel Parzy
- />UMR-MD3, Institut de recherche biomédicale des armées, Faculté de Pharmacie, Aix-Marseille Université, 27 Bd Jean Moulin CS30064 13385 Marseille cedex 5, Marseille, France
| | - Nicolas Taudon
- />UMR-MD3, Institut de recherche biomédicale des armées, BP73 91223 Brétigny-sur-Orge, France
| |
Collapse
|
35
|
Jain SA, Basu H, Prabhu PS, Soni U, Joshi MD, Mathur D, Patravale VB, Pathak S, Sharma S. Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers. Biomaterials 2014; 35:6636-45. [DOI: 10.1016/j.biomaterials.2014.04.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/16/2014] [Indexed: 12/30/2022]
|
36
|
Dike SY, Singh D, Thankachen BN, Sharma B, Mathur PK, Kore S, Kumar A. A Single-Pot Synthesis of Atovaquone: An Antiparasitic Drug of Choice. Org Process Res Dev 2014. [DOI: 10.1021/op500032w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suneel Y. Dike
- Ipca Laboratories Ltd., 123-AB, Kandivli Industrial Estate,
Kandivli (W), Mumbai - 400067, Maharashtra, India
| | - Dharmendra Singh
- Ipca Laboratories Ltd., 123-AB, Kandivli Industrial Estate,
Kandivli (W), Mumbai - 400067, Maharashtra, India
| | - Byju N. Thankachen
- Ipca Laboratories Ltd., 123-AB, Kandivli Industrial Estate,
Kandivli (W), Mumbai - 400067, Maharashtra, India
| | - Brajesh Sharma
- Ipca Laboratories Ltd., 123-AB, Kandivli Industrial Estate,
Kandivli (W), Mumbai - 400067, Maharashtra, India
| | - Pramil K. Mathur
- Ipca Laboratories Ltd., 123-AB, Kandivli Industrial Estate,
Kandivli (W), Mumbai - 400067, Maharashtra, India
| | - Swapnil Kore
- Ipca Laboratories Ltd., 123-AB, Kandivli Industrial Estate,
Kandivli (W), Mumbai - 400067, Maharashtra, India
| | - Ashok Kumar
- Ipca Laboratories Ltd., 123-AB, Kandivli Industrial Estate,
Kandivli (W), Mumbai - 400067, Maharashtra, India
| |
Collapse
|
37
|
Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun 2013; 4:2060. [PMID: 23804074 DOI: 10.1038/ncomms3060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/28/2013] [Indexed: 11/08/2022] Open
Abstract
Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.
Collapse
|
38
|
Le Manach C, Scheurer C, Sax S, Schleiferböck S, Cabrera DG, Younis Y, Paquet T, Street L, Smith P, Ding XC, Waterson D, Witty MJ, Leroy D, Chibale K, Wittlin S. Fast in vitro methods to determine the speed of action and the stage-specificity of anti-malarials in Plasmodium falciparum. Malar J 2013; 12:424. [PMID: 24237770 PMCID: PMC3842807 DOI: 10.1186/1475-2875-12-424] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/13/2013] [Indexed: 11/25/2022] Open
Abstract
Background Recent whole cell in vitro screening campaigns identified thousands of compounds that are active against asexual blood stages of Plasmodium falciparum at submicromolar concentrations. These hits have been made available to the public, providing many novel chemical starting points for anti-malarial drug discovery programmes. Knowing which of these hits are fast-acting compounds is of great interest. Firstly, a fast action will ensure rapid relief of symptoms for the patient. Secondly, by rapidly reducing the parasitaemia, this could minimize the occurrence of mutations leading to new drug resistance mechanisms. An in vitro assay that provides information about the speed of action of test compounds has been developed by researchers at GlaxoSmithKline (GSK) in Spain. This assay also provides an in vitro measure for the ratio between parasitaemia at the onset of drug treatment and after one intra-erythrocytic cycle (parasite reduction ratio, PRR). Both parameters are needed to determine in vitro killing rates of anti-malarial compounds. A drawback of the killing rate assay is that it takes a month to obtain first results. Methods The approach described in the present study is focused only on the speed of action of anti-malarials. This has the advantage that initial results can be achieved within 4–7 working days, which helps to distinguish between fast and slow-acting compounds relatively quickly. It is expected that this new assay can be used as a filter in the early drug discovery phase, which will reduce the number of compounds progressing to secondary, more time-consuming assays like the killing rate assay. Results The speed of action of a selection of seven anti-malarial compounds was measured with two independent experimental procedures using modifications of the standard [3H]hypoxanthine incorporation assay. Depending on the outcome of both assays, the tested compounds were classified as either fast or non-fast-acting. Conclusion The results obtained for the anti-malarials chloroquine, artesunate, atovaquone, and pyrimethamine are consistent with previous observations, suggesting the methodology is a valid way to rapidly identify fast-acting anti-malarial compounds. Another advantage of the approach is its ability to discriminate between static or cidal compound effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sergio Wittlin
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| |
Collapse
|
39
|
Plasmodium cell biology should inform strategies used in the development of antimalarial transmission-blocking drugs. Future Med Chem 2013; 4:2251-63. [PMID: 23234549 DOI: 10.4155/fmc.12.182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Malaria is a disease with a devastating impact affecting 216 million people each year and causing 655,000 deaths, most of which are children under 5 years old. Recent appreciation that malaria eradication will require novel interventions to target the parasite during transmission from the human host to the mosquito has lead to an exciting surge in activity to develop transmission-blocking drugs and the high-throughput assays to screen for them. This article presents an overview of transmission-stage cell biology and discusses its impact on assay development to provide a context for researchers to evaluate the relative merits/drawbacks of both screening data obtained from current assays and considerations for future assay design. The most recent knowledge of the transmission-blocking properties of current antimalarial classes is also summarized and, underdeveloped targets for transmission-stage drug discovery are highlighted.
Collapse
|
40
|
DellaValle B, Staalsoe T, Kurtzhals JAL, Hempel C. Investigation of hydrogen sulfide gas as a treatment against P. falciparum, murine cerebral malaria, and the importance of thiolation state in the development of cerebral malaria. PLoS One 2013; 8:e59271. [PMID: 23555646 PMCID: PMC3608628 DOI: 10.1371/journal.pone.0059271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/12/2013] [Indexed: 01/16/2023] Open
Abstract
Introduction Cerebral malaria (CM) is a potentially fatal cerebrovascular disease of complex pathogenesis caused by Plasmodium falciparum. Hydrogen sulfide (HS) is a physiological gas, similar to nitric oxide and carbon monoxide, involved in cellular metabolism, vascular tension, inflammation, and cell death. HS treatment has shown promising results as a therapy for cardio- and neuro- pathology. This study investigates the effects of fast (NaHS) and slow (GYY4137) HS-releasing drugs on the growth and metabolism of P. falciparum and the development of P. berghei ANKA CM. Moreover, we investigate the role of free plasma thiols and cell surface thiols in the pathogenesis of CM. Methods P. falciparum was cultured in vitro with varying doses of HS releasing drugs compared with artesunate. Growth and metabolism were quantified. C57Bl/6 mice were infected with P. berghei ANKA and were treated with varying doses and regimes of HS-releasing drugs. Free plasma thiols and cell surface thiols were quantified in CM mice and age-matched healthy controls. Results HS-releasing drugs significantly and dose-dependently inhibited P. falciparum growth and metabolism. Treatment of CM did not affect P. berghei growth, or development of CM. Interestingly, CM was associated with lower free plasma thiols, reduced leukocyte+erythrocyte cell surface thiols (infection day 3), and markedly (5-fold) increased platelet cell surface thiols (infection day 7). Conclusions HS inhibits P. falciparum growth and metabolism in vitro. Reduction in free plasma thiols, cell surface thiols and a marked increase in platelet cell surface thiols are associated with development of CM. HS drugs were not effective in vivo against murine CM.
Collapse
Affiliation(s)
- Brian DellaValle
- Centre for Medical Parasitology, Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
41
|
The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain. Antimicrob Agents Chemother 2013; 57:2114-20. [PMID: 23439633 DOI: 10.1128/aac.02248-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Methylene blue and a series of recently developed 1,4-naphthoquinones, including 3-[4-(substituted)benzyl]-menadiones, are potent antimalarial agents in vitro and in vivo. The activity of these structurally diverse compounds against the human malaria parasite Plasmodium falciparum might involve their peculiar redox properties. According to the current theory, redox-active methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione are "subversive substrates." These agents are thought to shuttle electrons from reduced flavoproteins to acceptors such as hemoglobin-associated or free Fe(III)-protoporphyrin IX. The reduction of Fe(III)-protoporphyrin IX could subsequently prevent essential hemoglobin digestion and heme detoxification in the parasite. Alternatively, owing to their structures and redox properties, methylene blue and 1,4-naphthoquinones might also affect the mitochondrial electron transport chain. Here, we tested the latter hypothesis using an established system of transgenic P. falciparum cell lines and the antimalarial agents atovaquone and chloroquine as controls. In contrast to atovaquone, methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione do not inhibit the mitochondrial electron transport chain. A systematic comparison of the morphologies of drug-treated parasites furthermore suggests that the three drugs do not share a mechanism of action. Our findings support the idea that methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione exert their antimalarial activity as redox-active subversive substrates.
Collapse
|
42
|
Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. EUKARYOTIC CELL 2012; 12:215-23. [PMID: 23223036 DOI: 10.1128/ec.00073-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antimalarial agent fosmidomycin is a validated inhibitor of the nonmevalonate isoprenoid biosynthesis (methylerythritol 4-phosphate [MEP]) pathway in the malaria parasite, Plasmodium falciparum. Since multiple classes of prenyltransferase inhibitors kill P. falciparum, we hypothesized that protein prenylation was one of the essential functions of this pathway. We found that MEP pathway inhibition with fosmidomycin reduces protein prenylation, confirming that de novo isoprenoid biosynthesis produces the isoprenyl substrates for protein prenylation. One important group of prenylated proteins is small GTPases, such as Rab family members, which mediate cellular vesicular trafficking. We have found that Rab5 proteins dramatically mislocalize upon fosmidomycin treatment, consistent with a loss of protein prenylation. Fosmidomycin treatment caused marked defects in food vacuolar morphology and integrity, consistent with a defect in Rab-mediated vesicular trafficking. These results provide insights to the biological functions of isoprenoids in malaria parasites and may assist the rational selection of secondary agents that will be useful in combination therapy with new isoprenoid biosynthesis inhibitors.
Collapse
|
43
|
Tarr SJ, Nisbet RER, Howe CJ. Transcript level responses of Plasmodium falciparum to antimycin A. Protist 2012; 163:755-66. [PMID: 22503086 PMCID: PMC3657180 DOI: 10.1016/j.protis.2012.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/23/2011] [Accepted: 01/28/2012] [Indexed: 01/06/2023]
Abstract
The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the transcript profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. The differentially expressed genes were enriched for transcripts encoding proteins involved in invasion, stress response, nucleotide biosynthesis and respiration. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis, implying the existence of a signalling pathway from the mitochondrion to the nucleus.
Collapse
Affiliation(s)
- Sarah J Tarr
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire, CB2 1QW, United Kingdom
| | | | | |
Collapse
|
44
|
Sanz LM, Crespo B, De-Cózar C, Ding XC, Llergo JL, Burrows JN, García-Bustos JF, Gamo FJ. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS One 2012; 7:e30949. [PMID: 22383983 PMCID: PMC3285618 DOI: 10.1371/journal.pone.0030949] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/27/2011] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria.
Collapse
Affiliation(s)
- Laura M. Sanz
- Tres Cantos Medicine Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Benigno Crespo
- Tres Cantos Medicine Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Cristina De-Cózar
- Tres Cantos Medicine Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Jose L. Llergo
- Tres Cantos Medicine Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Jose F. García-Bustos
- Tres Cantos Medicine Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Francisco-Javier Gamo
- Tres Cantos Medicine Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Bahamontes-Rosa N, Rodríguez-Alejandre A, González-del-Rio R, García-Bustos JF, Mendoza-Losana A. A new molecular approach for cidal vs static antimalarial determination by quantifying mRNA levels. Mol Biochem Parasitol 2012; 181:171-7. [DOI: 10.1016/j.molbiopara.2011.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022]
|
46
|
Abstract
Malaria is one of the most devastating diseases in the world, affecting almost 225 million people a year, and causing over 780,000 deaths, most of which are children under the age of 5 years. Following the recent call for the eradication of the disease, supported by the WHO, there has been increasing investment into antimalarial drug-discovery projects. These activities are aimed at generating the next generation of molecules focused on the treatment and transmission-blocking of Plasmodium falciparum and Plasmodium vivax endo- and exo-erythrocytic stages of the parasite. This article summarizes the current top-level thinking regarding the prosecution of such endeavors and the disease-specific considerations in project planning.
Collapse
|
47
|
Boysen KE, Matuschewski K. Arrested oocyst maturation in Plasmodium parasites lacking type II NADH:ubiquinone dehydrogenase. J Biol Chem 2011; 286:32661-71. [PMID: 21771793 DOI: 10.1074/jbc.m111.269399] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium mitochondrial electron transport chain has received considerable attention as a potential target for new antimalarial drugs. Atovaquone, a potent inhibitor of Plasmodium cytochrome bc(1), in combination with proguanil is recommended for chemoprophylaxis and treatment of malaria. The type II NADH:ubiquinone oxidoreductase (NDH2) is considered an attractive drug target, as its inhibition is thought to lead to the arrest of the mitochondrial electron transport chain and, as a consequence, pyrimidine biosynthesis, an essential pathway for the parasite. Using the rodent malaria parasite Plasmodium berghei as an in vivo infection model, we studied the role of NDH2 during Plasmodium life cycle progression. NDH2 can be deleted by targeted gene disruption and, thus, is dispensable for the pathogenic asexual blood stages, disproving the candidacy for an anti-malarial drug target. After transmission to the insect vector, NDH2-deficient ookinetes display an intact mitochondrial membrane potential. However, ndh2(-) parasites fail to develop into mature oocysts in the mosquito midgut. We propose that Plasmodium blood stage parasites rely on glycolysis as the main ATP generating process, whereas in the invertebrate vector, a glucose-deprived environment, the malaria parasite is dependent on an intact mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Katja E Boysen
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | |
Collapse
|
48
|
Development, evaluation, and application of an in silico model for antimalarial drug treatment and failure. Antimicrob Agents Chemother 2011; 55:3380-92. [PMID: 21537019 DOI: 10.1128/aac.01712-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacological mechanism-based modeling was refined and used to develop an in silico model of antimalarial drug treatment validated against clinical and field data. We used this approach to investigate key features of antimalarial drug action and effectiveness, with emphasis on the current generation of artemisinin combination therapies. We made the following conclusions. (i) The development of artemisinin tolerance and resistance will, unless checked, have an immediate, large impact on the protection afforded to its partner drug and on the likely clinical efficacy of artemisinin combination therapies. (ii) Long follow-up periods are required in clinical trials to detect all drug failures; the follow-up periods of 28 days recommended by the World Health Organization are likely to miss at least 50% of drug failures, and we confirmed recent suggestions that 63 days would be a more appropriate follow-up period. (iii) Day 7 serum drug concentrations are a significant risk factor of failure, although, paradoxically, receiver operating characteristic curve analysis revealed that their predictive power is relatively poor. (iv) The pharmacokinetic properties of the partner drugs in artemisinin-containing combination therapies are the most important determinants of treatment outcome, particularly the maximum killing rate. We discuss the assumptions made in such modeling approaches and how similar approaches may be refined in future work.
Collapse
|