1
|
Ho K, Hoesley C, Anderson PL, Fernández-Romero JA, Friedland BA, Kelly CW, Jiao Y, Edick S, Brand R, Ayudhya RPKN, Zyhowski A, Hartman DJ, Reddy NB, Al-Khouja A, Piper J, Bauermeister JA, Teleshova N, Melo C, Cornejal N, Barnable P, Singh D, Scheckter R, McClure T, Hillier SL, Hendrix CW. Phase I Dose Volume Escalation of Rectally Administered PC-1005 to Assess Safety, Pharmacokinetics, and Antiviral Pharmacodynamics as a Multipurpose Prevention Technology (MTN-037). J Acquir Immune Defic Syndr 2024; 97:379-386. [PMID: 39808074 PMCID: PMC11733313 DOI: 10.1097/qai.0000000000003506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/29/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND On demand, topical PrEP is desired by those preferring episodic, nonsystemic PrEP. PC-1005 gel (MIV-150, zinc, and carrageenan) exhibits in vitro antiviral HIV-1, human papillomavirus (HPV), and herpes simplex virus type 2 (HSV-2) activity, attractive for a multipurpose prevention technology candidate. We evaluated the safety, pharmacokinetics, and antiviral effect of rectally applied PC-1005. METHODS HIV-uninfected adults received a series of 3 rectal PC-1005 doses-4, 16, and 32 mL separated by 2-week washout periods. Following each dose, plasma, rectal fluid and tissue, and vaginal fluid were collected over 48 hours. RESULTS Thirteen adults enrolled; 12 completed all 3 doses. All 13 adverse events reported were grade 1 or 2; 5 were judged study drug related. Plasma MIV-150 peaked 1-2 h after dosing with a median peak concentrations range of 0.07-0.23 ng/mL and median half-life range of 4.9-7.4 hours across dose volumes; median concentrations were below assay quantitation limits (BLQ) 24 hours after dosing. Rectal tissue MIV-150 peaked 0.5-1 hours after dosing at 1.4 ng/g (ng/mL) (0.8, 1.9), 46.0 (30.7, 831.0), and 79.7 (11.9, 116.0), respectively, after each dose volume; median tissue concentrations were BLQ beyond 5 hours for all doses. All vaginal fluid samples were BLQ. Ex vivo antiviral assays showed 5 hours of antiviral HPV and HSV effects but no anti-HIV activity. CONCLUSIONS MIV-150 rectal tissue concentrations were below the 100 ng/g target concentration and transient. Ex vivo assays demonstrated antiviral HSV and HPV effects but not against HIV. PC-1005 requires a more potent antiviral and longer-lasting formulation for further consideration as a multipurpose prevention technology candidate. CLINICAL TRIALS NCT03408899.
Collapse
Affiliation(s)
- Ken Ho
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, USA
| | - Craig Hoesley
- University of Alabama-Birmingham, 1670 University Blvd, Birmingham, USA
| | - Peter L. Anderson
- University of Colorado, Anschutz Medical Campus, 13001 E 17th Pl, Aurora, USA
| | - Jose A. Fernández-Romero
- Population Council, 1188 York Ave, New York, USA
- Borough of Manhattan Community College, 199 Chambers St, New York, USA
| | | | - Clifton W. Kelly
- Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA
| | - Yuqing Jiao
- Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA
| | - Stacey Edick
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, USA
| | - Rhonda Brand
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, USA
- Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA
| | | | - Ashley Zyhowski
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, USA
- Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA
| | | | - Nipun B. Reddy
- University of Alabama-Birmingham, 1670 University Blvd, Birmingham, USA
| | - Amer Al-Khouja
- The Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD
| | - Jeanna Piper
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of AIDS, 6705 Rockledge Drive, Bethesda, MD
| | | | | | - Claudia Melo
- Borough of Manhattan Community College, 199 Chambers St, New York, USA
| | - Nadjet Cornejal
- Borough of Manhattan Community College, 199 Chambers St, New York, USA
| | | | - Devika Singh
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, USA
- Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA
| | | | | | - Sharon L. Hillier
- University of Pittsburgh, 3550 Terrace St, Pittsburgh, USA
- Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, PA
| | - Craig W. Hendrix
- The Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD
| |
Collapse
|
2
|
Boliukh I, Rombel-Bryzek A, Bułdak RJ. Lectins in oncology and virology: Mechanisms of anticancer activity and SARS-CoV-2 inhibition. Int J Biol Macromol 2024; 275:133664. [PMID: 38969035 DOI: 10.1016/j.ijbiomac.2024.133664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Lectins are proteins or glycoproteins of non-immune origin with carbohydrate-binding properties. They are found both prokaryotic and eukaryotic organisms. The most abundant source of the lectins are plants. Many lectins have anticancer effects by directly exerting cytotoxic effects on malignant cells or indirectly activating the immune system. Lectins also have antiviral activities. These proteins can recognise glycoproteins on the surface of enveloped viruses and bind to them. This creates a physical barrier between them and the corresponding receptors on the surface of the host cell, which prevents the virus from entering the cell and can thus effectively inhibit the replication of the virus. In this review, we focus on the anticancer activities of selected lectins and the underlying mechanisms. We also discuss different types of lectins with antiviral activity. We have paid special attention to lectins with inhibitory activity against SARS-CoV-2. Finally, we outline the challenges of using lectins in therapy and suggest future research directions.
Collapse
Affiliation(s)
- Iryna Boliukh
- Institute of Medical Sciences, University of Opole, Opole, Poland
| | | | - Rafał J Bułdak
- Institute of Medical Sciences, University of Opole, Opole, Poland
| |
Collapse
|
3
|
Liu S, Yu Y, Guo K, Zhang Q, Jia Z, Alfredo MR, Ma P, Xie H, Bian X. Expression and antiviral application of exogenous lectin (griffithsin) in sweetpotatoes. FRONTIERS IN PLANT SCIENCE 2024; 15:1421244. [PMID: 39081525 PMCID: PMC11286482 DOI: 10.3389/fpls.2024.1421244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Griffithsin (GRFT) is a highly effective, broad-spectrum, safe, and stable viral inhibitor used to suppress a variety of viruses. However, little information is available on whether GRFT can prevent plant viral diseases. In this study, we constructed a GRFT overexpression vector containing the sweetpotato storage cell signal peptide and generated exogenous GRFT overexpression lines through genetic transformation. The transgenic plants showed notable resistance to sweetpotato virus disease in the virus nursery. To verify the antiplant virus function of GRFT, transient expression in tobacco leaves showed that GRFT inhibited the sweetpotato leaf curl virus (SPLCV). The replication of SPLCV was entirely inhibited when the concentration of GRFT reached a certain level. The results of pulldown and BIFC assays showed that GRFT did not interact with the six components of SPLCV. In addition, the mutated GRFTD/A without the binding ability of carbohydrate and anticoronavirus function, in which three aspartate residues at carbohydrate binding sites were all mutated to alanine, also inhibited SPLCV. Quantitative reverse-transcription PCR analyses showed that the tobacco antiviral-related genes HIN1, ICS1, WRKY40, and PR10 were overexpressed after GRFT/GRFTD/A injection. Furthermore, HIN1, ICS1, and PR10 were more highly expressed in the leaves injected with GRFTD/A. The results suggest that sweetpotato is able to express GRFT exogenously as a bioreactor. Moreover, exogenous GRFT expression inhibits plant viruses by promoting the expression of plant antiviral genes.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Yu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ke Guo
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qian Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhaodong Jia
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Morales Rodriguez Alfredo
- Center for Tropical Crop Research, Research Institute of Tropical Roots and Tuber Crops (INIVIT), Santo Domingo, Cuba
| | - Peiyong Ma
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hao Xie
- Xuzhou Institute of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Xuzhou, China
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
4
|
Das IJ, Bal T. Exploring carrageenan: From seaweed to biomedicine-A comprehensive review. Int J Biol Macromol 2024; 268:131822. [PMID: 38677668 DOI: 10.1016/j.ijbiomac.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biomaterials are pivotal in the realms of tissue engineering, regenerative medicine, and drug delivery and serve as fundamental building blocks. Within this dynamic landscape, polymeric biomaterials emerge as the frontrunners, offering unparalleled versatility across physical, chemical, and biological domains. Natural polymers, in particular, captivate attention for their inherent bioactivity. Among these, carrageenan (CRG), extracted from red seaweeds, stands out as a naturally occurring polysaccharide with immense potential in various biomedical applications. CRG boasts a unique array of properties, encompassing antiviral, antibacterial, immunomodulatory, antihyperlipidemic, antioxidant, and antitumor attributes, positioning it as an attractive choice for cutting-edge research in drug delivery, wound healing, and tissue regeneration. This comprehensive review encapsulates the multifaceted properties of CRG, shedding light on the chemical modifications that it undergoes. Additionally, it spotlights pioneering research that harnesses the potential of CRG to craft scaffolds and drug delivery systems, offering high efficacy in the realms of tissue repair and disease intervention. In essence, this review celebrates the remarkable versatility of CRG and its transformative role in advancing biomedical solutions.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
5
|
Hao C, Xu Z, Xu C, Yao R. Anti-herpes simplex virus activities and mechanisms of marine derived compounds. Front Cell Infect Microbiol 2024; 13:1302096. [PMID: 38259968 PMCID: PMC10800978 DOI: 10.3389/fcimb.2023.1302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpes simplex virus (HSV) is the most widely prevalent herpes virus worldwide, and the herpetic encephalitis and genital herpes caused by HSV infection have caused serious harm to human health all over the world. Although many anti-HSV drugs such as nucleoside analogues have been ap-proved for clinical use during the past few decades, important issues, such as drug resistance, toxicity, and high cost of drugs, remain unresolved. Recently, the studies on the anti-HSV activities of marine natural products, such as marine polysaccharides, marine peptides and microbial secondary metabolites are attracting more and more attention all over the world. This review discusses the recent progress in research on the anti-HSV activities of these natural compounds obtained from marine organisms, relating to their structural features and the structure-activity relationships. In addition, the recent findings on the different anti-HSV mechanisms and molecular targets of marine compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Pradhan B, Ki JS. Biological activity of algal derived carrageenan: A comprehensive review in light of human health and disease. Int J Biol Macromol 2023; 238:124085. [PMID: 36948331 DOI: 10.1016/j.ijbiomac.2023.124085] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Carrageenans are a family of natural linear sulfated polysaccharides derived from red seaweeds and used as a common food additive. Carrageenan's properties, impact on health, and aesthetic benefits have all been studied for a long time; however, the mechanisms are still unclear. In pharmaceutical aspects, carrageenan displayed potential antioxidant and immunomodulatory properties in both in vivo and in vitro action. It also contributes to potential disease-preventive activities through dynamic modulation of important intracellular signaling pathways, regulation of ROS buildup, and preservation of major cell survival and death processes which leads to potential drug development. Furthermore, the chemical synthesis of the current bioactive medicine with confirmational rearrangement may increase availability and bioactivity needs diligent examination. In this review, we give an up-to-date overview of recent research on Carrageenan with reference to health and therapeutic advantages. In addition, we have focused on structural conformation and its primary strategic deployment in disease prevention, as well as the mechanistic investigation of how it functions to combat various disease-preventive employed for future therapeutic interventions. This review may get new insights into the possible novel role of carrageenan and open up a novel disease-preventive mechanism and enhance human health.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea; School of Biological Sciences, AIPH University, Bhubaneswar 752101, Odisha, India
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
7
|
Saini J, Kaur P, Malik N, Lakhawat SS, Sharma PK. Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS CoV2 era. Microbiol Res 2022; 265:127206. [PMID: 36162150 PMCID: PMC9491010 DOI: 10.1016/j.micres.2022.127206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 09/16/2022] [Indexed: 10/25/2022]
Abstract
COVID-19 (Coronavirus Disease 2019), a life-threatening viral infection, is caused by a highly pathogenic virus named SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Currently, no treatment is available for COVID-19; hence there is an urgent need to find effective therapeutic drugs to combat COVID-19 pandemic. Considering the fact that the world is facing a major issue of antimicrobial drug resistance, naturally occurring compounds have the potential to achieve this goal. Antimicrobial peptides (AMPs) are naturally occurring antimicrobial agents which are effective against a wide variety of microbial infections. Therefore, the use of AMPs is an attractive therapeutic strategy for the treatment of SARS-CoV-2 infection. This review sheds light on the potential of antimicrobial peptides as antiviral agents followed by a comprehensive description of effective antiviral peptides derived from various natural sources found to be effective against SARS-CoV and other respiratory viruses. It also highlights the mechanisms of action of antiviral peptides with special emphasis on their effectiveness against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jasleen Saini
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Pritpal Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | | |
Collapse
|
8
|
Zeng S, Li Y, Zhu W, Luo Z, Wu K, Li X, Fang Y, Qin Y, Chen W, Li Z, Zou L, Liu X, Yi L, Fan S. The Advances of Broad-Spectrum and Hot Anti-Coronavirus Drugs. Microorganisms 2022; 10:microorganisms10071294. [PMID: 35889013 PMCID: PMC9317368 DOI: 10.3390/microorganisms10071294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses, mainly including severe acute respiratory syndrome virus, severe acute respiratory syndrome coronavirus 2, Middle East respiratory syndrome virus, human coronavirus OC43, chicken infectious bronchitis virus, porcine infectious gastroenteritis virus, porcine epidemic diarrhea virus, and murine hepatitis virus, can cause severe diseases in humans and livestock. The severe acute respiratory syndrome coronavirus 2 is infecting millions of human beings with high morbidity and mortality worldwide, and the multiplicity of swine epidemic diarrhea coronavirus in swine suggests that coronaviruses seriously jeopardize the safety of public health and that therapeutic intervention is urgently needed. Currently, the most effective methods of prevention and control for coronaviruses are vaccine immunization and pharmacotherapy. However, the emergence of mutated viruses reduces the effectiveness of vaccines. In addition, vaccine developments often lag behind, making it difficult to put them into use early in the outbreak. Therefore, it is meaningful to screen safe, cheap, and broad-spectrum antiviral agents for coronaviruses. This review systematically summarizes the mechanisms and state of anti-human and porcine coronavirus drugs, in order to provide theoretical support for the development of anti-coronavirus drugs and other antivirals.
Collapse
Affiliation(s)
- Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| |
Collapse
|
9
|
Antiviral Activity and Mechanisms of Seaweeds Bioactive Compounds on Enveloped Viruses-A Review. Mar Drugs 2022; 20:md20060385. [PMID: 35736188 PMCID: PMC9228758 DOI: 10.3390/md20060385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed’s currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed’s extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host’s defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed’s bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed’s bioactive compounds are analyzed, suggesting seaweed’s potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.
Collapse
|
10
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
11
|
Ahan RE, Hanifehnezhad A, Kehribar EŞ, Oguzoglu TC, Földes K, Özçelik CE, Filazi N, Öztop S, Palaz F, Önder S, Bozkurt EU, Ergünay K, Özkul A, Şeker UÖŞ. A Highly Potent SARS-CoV-2 Blocking Lectin Protein. ACS Infect Dis 2022; 8:1253-1264. [PMID: 35426678 PMCID: PMC9017247 DOI: 10.1021/acsinfecdis.2c00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The COVID-19 (coronavirus
disease-19) pandemic affected more than
180 million people around the globe, causing more than five million
deaths as of January 2022. SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2), the new coronavirus, has been identified as the primary
cause of the infection. The number of vaccinated people is increasing;
however, prophylactic drugs are highly demanded to ensure secure social
contact. A number of drug molecules have been repurposed to fight
against SARS-CoV-2, and some of them have been proven to be effective
in preventing hospitalization or ICU admissions. Here, we demonstrated
griffithsin (GRFT), a lectin protein, to block the entry of SARS-CoV-2
and its variants, Delta and Omicron, into the Vero E6 cell lines and
IFNAR–/– mouse models by attaching to the
spike protein of SARS-CoV-2. Given the current mutation frequency
of SARS-CoV-2, we believe that GRFT protein-based drugs will have
a high impact in preventing the transmission of both the Wuhan strain
as well as any other emerging variants, including Delta and Omicron
variants, causing the high-speed spread of COVID-19.
Collapse
Affiliation(s)
- Recep E. Ahan
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Alireza Hanifehnezhad
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara 06110, Turkey
| | - Ebru Ş. Kehribar
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Tuba C. Oguzoglu
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara 06110, Turkey
| | - Katalin Földes
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara 06110, Turkey
| | - Cemile E. Özçelik
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Nazlican Filazi
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara 06110, Turkey
| | - Sıdıka Öztop
- Adana Dr. Turgut Noyan Medical and Research Center, Department of Immunology, Baskent University, Adana 01250, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Sevgen Önder
- Faculty of Medicine, Department of Medical Pathology, Hacettepe University, Ankara 06230, Turkey
| | - Eray U. Bozkurt
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Koray Ergünay
- Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Hacettepe University, Ankara 06230, Turkey
| | - Aykut Özkul
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara 06110, Turkey
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
12
|
Prabhu S, Vijayakumar S, Praseetha P. Cyanobacterial metabolites as novel drug candidates in corona viral therapies: A review. Chronic Dis Transl Med 2022; 8:172-183. [PMID: 35572950 PMCID: PMC9086949 DOI: 10.1002/cdt3.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
Most of the medical and nonmedical research labs, all around the world, are racing against time to produce an effective vaccine or an antiviral medicine for coronavirus disease 2019 (COVID‐19). Conventional medicines and novel nano‐materials including chemical and herbal‐based compounds are all into positive trials toward coronaviruses and other pandemic infections. Among them, natural immune boosters have attracted physicians because of their longevity and reliability for fewer side effects. This is a review article with a detailed picture of an unexplored antiviral source with maximum potency in curing viral infections. Cyanobacteriae have been known for centuries and are rich in secondary metabolites of proteins, biopeptides, and polysaccharides for prominent antiviral action against chest infections. But detailed exploratory research is required to purify, scale‐up, and commercialize the pharmacologically active agents from these drug reserves.
Collapse
Affiliation(s)
- Srinivasan Prabhu
- Department of Botany Annai Vailankanni Arts and Science College Thanjavur Tamil Nadu India
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Subramaniyan Vijayakumar
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Pabakaran Praseetha
- Department of Nanotechnology Noorul Islam Centre for Higher Education Kumaracoil Tamil Nadu India
| |
Collapse
|
13
|
Algal Metabolites Can Be an Immune Booster against COVID-19 Pandemic. Antioxidants (Basel) 2022; 11:antiox11030452. [PMID: 35326102 PMCID: PMC8944855 DOI: 10.3390/antiox11030452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The world has faced the challenges of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) for the last two years, first diagnosed at the end of 2019 in Wuhan and widely distributed worldwide. As a result, the WHO has proclaimed the illness brought on by this virus to be a global pandemic. To combat COVID-19, researcher communities continuously develop and implement rapid diagnoses, safe and effective vaccinations and other alternative therapeutic procedures. However, synthetic drug-related side effects and high costs have piqued scientists’ interest in natural product-based therapies and medicines. In this regard, antiviral substances derived from natural resources and some medicines have seen a boom in popularity. For instance, algae are a rich source of compounds such as lectins and sulfated polysaccharides, which have potent antiviral and immunity-boosting properties. Moreover, Algae-derived compounds or metabolites can be used as antibodies and vaccine raw materials against COVID-19. Furthermore, some algal species can boost immunity, reduce viral activity in humans and be recommended for usage as a COVID-19 preventative measure. However, this field of study is still in its early stages of development. Therefore, this review addresses critical characteristics of algal metabolites, their antioxidant potential and therapeutic potential in COVID-19.
Collapse
|
14
|
Teleshova N, Keller MJ, Fernández Romero JA, Friedland BA, Creasy GW, Plagianos MG, Ray L, Barnable P, Kizima L, Rodriguez A, Cornejal N, Melo C, Cruz Rodriguez G, Mukhopadhyay S, Calenda G, Sinkar SU, Bonnaire T, Wesenberg A, Zhang S, Kleinbeck K, Palmer K, Alami M, O’Keefe BR, Gillevet P, Hur H, Liang Y, Santone G, Fichorova RN, Kalir T, Zydowsky TM. Results of a phase 1, randomized, placebo-controlled first-in-human trial of griffithsin formulated in a carrageenan vaginal gel. PLoS One 2022; 17:e0261775. [PMID: 35051209 PMCID: PMC8775213 DOI: 10.1371/journal.pone.0261775] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
HIV pre-exposure prophylaxis (PrEP) is dominated by clinical therapeutic antiretroviral (ARV) drugs. Griffithsin (GRFT) is a non-ARV lectin with potent anti-HIV activity. GRFT’s preclinical safety, lack of systemic absorption after vaginal administration in animal studies, and lack of cross-resistance with existing ARV drugs prompted its development for topical HIV PrEP. We investigated safety, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of PC-6500 (0.1% GRFT in a carrageenan (CG) gel) in healthy women after vaginal administration. This randomized, placebo-controlled, parallel group, double-blind first-in-human phase 1 study enrolled healthy, HIV-negative, non-pregnant women aged 24–45 years. In the open label period, all participants (n = 7) received single dose of PC-6500. In the randomized period, participants (n = 13) were instructed to self-administer 14 doses of PC-6500 or its matching CG placebo (PC-535) once daily for 14 days. The primary outcomes were safety and PK after single dose, and then after 14 days of dosing. Exploratory outcomes were GRFT concentrations in cervicovaginal fluids, PD, inflammatory mediators and gene expression in ectocervical biopsies. This trial is registered with ClinicalTrials.gov, number NCT02875119. No significant adverse events were recorded in clinical or laboratory results or histopathological evaluations in cervicovaginal mucosa, and no anti-drug (GRFT) antibodies were detected in serum. No cervicovaginal proinflammatory responses and no changes in the ectocervical transcriptome were evident. Decreased levels of proinflammatory chemokines (CXCL8, CCL5 and CCL20) were observed. GRFT was not detected in plasma. GRFT and GRFT/CG in cervicovaginal lavage samples inhibited HIV and HPV, respectively, in vitro in a dose-dependent fashion. These data suggest GRFT formulated in a CG gel is a safe and promising on-demand multipurpose prevention technology product that warrants further investigation.
Collapse
Affiliation(s)
- Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, New York, United States of America
- * E-mail:
| | - Marla J. Keller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - José A. Fernández Romero
- Center for Biomedical Research, Population Council, New York, New York, United States of America
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Barbara A. Friedland
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - George W. Creasy
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Marlena G. Plagianos
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Laurie Ray
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Patrick Barnable
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nadjet Cornejal
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Claudia Melo
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Gearoff Cruz Rodriguez
- Science Department, Borough of Manhattan Community College, New York, New York, United States of America
| | - Sampurna Mukhopadhyay
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shweta U. Sinkar
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Thierry Bonnaire
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Asa Wesenberg
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Kyle Kleinbeck
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Kenneth Palmer
- University of Louisville, Louisville, Kentucky, United States of America
| | - Mohcine Alami
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Barry R. O’Keefe
- Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research and Natural Products Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Patrick Gillevet
- George Mason University, Manassas, Virginia, United States of America
| | - Hong Hur
- Rockefeller University, New York, New York, United States of America
| | - Yupu Liang
- Rockefeller University, New York, New York, United States of America
| | - Gabriela Santone
- Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Tamara Kalir
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
15
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Bondu V, Sterk RT, Surviladze Z, Ozbun MA. Protamine Sulfate Is a Potent Inhibitor of Human Papillomavirus Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0151321. [PMID: 34723633 PMCID: PMC8765401 DOI: 10.1128/aac.01513-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Human papillomavirus (HPV) infections are transmitted through sexual or other close contact and are etiologically associated with epithelial warts, papillomas, and intraepithelial lesions that may progress to cancer. Indeed, 4.8% of the global cancer burden is linked to HPV infection. Highly effective vaccines protect against two to nine of the most medically important HPV genotypes, yet vaccine uptake is inadequate and/or cost prohibitive in many settings. With HPV-related cancer incidence expected to rise over the coming decades, there is a need for effective HPV microbicides. Herein, we demonstrate the strong inhibitory activity of the heparin-neutralizing drug protamine sulfate (PS) against HPV infection. Pretreatment of cells with PS greatly reduced infection, regardless of HPV genotype or virus source. Vaginal application of PS prevented infection of the murine genital tract by HPV pseudovirions. Time-of-addition assays where PS was added to cells before infection, during infection, or after viral attachment demonstrated strong inhibitory activities on early infection steps. No effect on virus infection was found for cell lines deficient in heparan sulfate expression, suggesting that PS binds to heparan sulfate on the cell surface. Consistent with this, prophylactic PS exposure prevented viral attachment, including under low-pH conditions akin to the human vaginal tract. Our findings suggest PS acts dually to prevent HPV infection: prophylactic treatment prevents HPV attachment to host cells, and postattachment administration alters viral entry. Clinical trials are warranted to determine whether protamine-based products are effective as topical microbicides against genital HPVs.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Amira Zine El Abidine
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ricardo A. Gómez-Martinez
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rosa T. Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Zurab Surviladze
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| |
Collapse
|
16
|
Reis JG, Cadamuro RD, Cabral AC, Thaís da Silva I, Rodríguez-Lázaro D, Fongaro G. Broad Spectrum Algae Compounds Against Viruses. Front Microbiol 2022; 12:809296. [PMID: 35095816 PMCID: PMC8795700 DOI: 10.3389/fmicb.2021.809296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
The pharmaceutical industry is currently trying to develop new bioactive compounds to inactivate both enveloped and non-enveloped viruses for therapeutic purposes. Consequently, microalgal and macroalgal bioactive compounds are being explored by pharmaceutical, as well as biotechnology and food industries. In this review, we show how compounds produced by algae include important candidates for viral control applications. We discuss their mechanisms of action and activity against enveloped and non-enveloped viruses, including those causing infections by enteric, parenteral, and respiratory routes. Indeed, algal products have potential in human and animal medicine.
Collapse
Affiliation(s)
- Jacqueline Graff Reis
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ariadne Cristiane Cabral
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Izabella Thaís da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- *Correspondence: Gislaine Fongaro,
| |
Collapse
|
17
|
Zhu Y. Human Papillomavirus (HPV) Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:223-239. [DOI: 10.1007/978-981-16-8702-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Fröba M, Große M, Setz C, Rauch P, Auth J, Spanaus L, Münch J, Ruetalo N, Schindler M, Morokutti-Kurz M, Graf P, Prieschl-Grassauer E, Grassauer A, Schubert U. Iota-Carrageenan Inhibits Replication of SARS-CoV-2 and the Respective Variants of Concern Alpha, Beta, Gamma and Delta. Int J Mol Sci 2021; 22:ijms222413202. [PMID: 34947999 PMCID: PMC8709357 DOI: 10.3390/ijms222413202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic continues to spread around the world and remains a major public health threat. Vaccine inefficiency, vaccination breakthroughs and lack of supply, especially in developing countries, as well as the fact that a non-negligible part of the population either refuse vaccination or cannot be vaccinated due to age, pre-existing illness or non-response to existing vaccines intensify this issue. This might also contribute to the emergence of new variants, being more efficiently transmitted, more virulent and more capable of escaping naturally acquired and vaccine-induced immunity. Hence, the need of effective and viable prevention options to reduce viral transmission is of outmost importance. In this study, we investigated the antiviral effect of iota-, lambda- and kappa-carrageenan, sulfated polysaccharides extracted from red seaweed, on SARS-CoV-2 Wuhan type and the spreading variants of concern (VOCs) Alpha, Beta, Gamma and Delta. Carrageenans as part of broadly used nasal and mouth sprays as well as lozenges have the potential of first line defense to inhibit the infection and transmission of SARS-CoV-2. Here, we demonstrate by using a SARS-CoV-2 spike pseudotyped lentivirus particles (SSPL) system and patient-isolated SARS-CoV-2 VOCs to infect transgenic A549ACE2/TMPRSS2 and Calu-3 human lung cells that all three carrageenan types exert antiviral activity. Iota-carrageenan exhibits antiviral activity with comparable IC50 values against the SARS-CoV-2 Wuhan type and the VOCs. Altogether, these results indicate that iota-carrageenan might be effective for prophylaxis and treatment of SARS-CoV-2 infections independent of the present and potentially future variants.
Collapse
Affiliation(s)
- Maria Fröba
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.F.); (M.G.); (C.S.); (P.R.); (J.A.); (L.S.)
| | - Maximilian Große
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.F.); (M.G.); (C.S.); (P.R.); (J.A.); (L.S.)
| | - Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.F.); (M.G.); (C.S.); (P.R.); (J.A.); (L.S.)
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.F.); (M.G.); (C.S.); (P.R.); (J.A.); (L.S.)
| | - Janina Auth
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.F.); (M.G.); (C.S.); (P.R.); (J.A.); (L.S.)
| | - Lucas Spanaus
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.F.); (M.G.); (C.S.); (P.R.); (J.A.); (L.S.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (N.R.); (M.S.)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (N.R.); (M.S.)
| | | | - Philipp Graf
- Marinomed Biotech AG, A-2100 Korneuburg, Austria; (M.M.-K.); (P.G.); (E.P.-G.); (A.G.)
| | | | - Andreas Grassauer
- Marinomed Biotech AG, A-2100 Korneuburg, Austria; (M.M.-K.); (P.G.); (E.P.-G.); (A.G.)
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.F.); (M.G.); (C.S.); (P.R.); (J.A.); (L.S.)
- Correspondence: ; Tel.: +49-9131-85-26478
| |
Collapse
|
19
|
Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Mar Drugs 2021; 19:md19120687. [PMID: 34940686 PMCID: PMC8707200 DOI: 10.3390/md19120687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.
Collapse
|
20
|
New Insights into the Structure of Kappa/Beta-Carrageenan: A Novel Potential Inhibitor of HIV-1. Int J Mol Sci 2021; 22:ijms222312905. [PMID: 34884718 PMCID: PMC8657973 DOI: 10.3390/ijms222312905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
New insights into the structure of the hybrid κ/β-carrageenan (κ/β-CRG) of the red alga Tichocarpus crinitus have been obtained. Carrageenan oligosaccharides were prepared through the chemical and enzymatic depolymerization of κ/β-CRG with κ-carrageenase and its the enzyme-resistant fraction. The composition and distribution of the repetition units of κ/β- CRG were investigated by using the negative ion tandem MALDI-TOFMS and ESIMS method, which made it possible to prove and characterize the hybrid structure of this polysaccharide. An analysis revealed the blockwise distribution of the long β-blocks along the polysaccharide chain, with the inclusion of κ/β, μ/ν-blocks and some ι-blocks. Furthermore, the desulfated κ/β-CRG was shown to contain of –G–D– repeating units up to 3.5 kDa. Previous studies have demonstrated that CRGs suppress the replication of several viruses. Here, we established that κ/β-CRG and its oligosaccharides significantly inhibit the transduction efficiency of replication-defective lentiviral particles pseudotyped with the envelope proteins of three different viruses. We found that the polysaccharide and its oligosaccharides strongly reduced the transduction efficiency of lentiviral particles pseudotyped with GP160—the envelope protein of the human immunodeficiency virus HIV-1—when added to T-lymphocyte Jurkat cells. The CRG oligosaccharides displayed significantly higher antiviral activity.
Collapse
|
21
|
Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses 2021; 13:v13091817. [PMID: 34578399 PMCID: PMC8473461 DOI: 10.3390/v13091817] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.
Collapse
|
22
|
Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14080774. [PMID: 34451871 PMCID: PMC8400714 DOI: 10.3390/ph14080774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have led to a better understanding of the mechanisms of action of viruses in systemic infections for the development of prevention strategies and very promising antiviral therapies. Viruses still remain one of the main causes of human diseases, mainly because the development of new vaccines is usually challenging and drug resistance has become an increasing concern in recent decades. Therefore, the development of potential antiviral agents remains crucial and is an unmet clinical need. One abundant source of potential therapeutic molecules are plants: they biosynthesize a myriad of compounds, including peptides which can have antimicrobial activity. Our objective is to summarize the literature on peptides with antiviral properties derived from plants and to identify key features of these peptides and their application in systemic viral infections. This literature review highlights studies including clinical trials which demonstrated that plant cyclotides have the ability to inhibit the growth of viruses causing human diseases, defensin-like peptides possess anti-HIV-1 activity, and lipid transfer proteins and some lectins exhibit a varied antimicrobial profile. To conclude, plant peptides remain interesting to explore in the context of emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Nour Mammari
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
| | - Ysaline Krier
- Faculté de Pharmacie, 7 Avenue de la Foret de Haye, 54505 Vandoeuvre-Les-Nancy, France;
| | - Quentin Albert
- Fungal Biodiversity and Biotechnology, INRAE/Aix-Marseille University, UMR1163, 13009 Marseille, France;
- CIRM-CF, INRAE/Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Marc Devocelle
- SSPC (SFI Research Centre for Pharmaceuticals), V94T9PX Limerick, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123, St. Stephen’s Green, D02 YN77 Dublin 2, Ireland
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
- Correspondence:
| | | |
Collapse
|
23
|
Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD, Bandín I, Domínguez H. Antiviral Activity of Carrageenans and Processing Implications. Mar Drugs 2021; 19:437. [PMID: 34436276 PMCID: PMC8400836 DOI: 10.3390/md19080437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.
Collapse
Affiliation(s)
- Milena Álvarez-Viñas
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Sandra Souto
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Noelia Flórez-Fernández
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Maria Dolores Torres
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Isabel Bandín
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Herminia Domínguez
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| |
Collapse
|
24
|
Alsaidi S, Cornejal N, Mahoney O, Melo C, Verma N, Bonnaire T, Chang T, O’Keefe BR, Sailer J, Zydowsky TM, Teleshova N, Romero JAF. Griffithsin and Carrageenan Combination Results in Antiviral Synergy against SARS-CoV-1 and 2 in a Pseudoviral Model. Mar Drugs 2021; 19:md19080418. [PMID: 34436255 PMCID: PMC8400000 DOI: 10.3390/md19080418] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over 182 million confirmed cases of COVID-19 and more than 4 million deaths have been reported to date around the world. It is essential to identify broad-spectrum antiviral agents that may prevent or treat infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but also by other coronaviruses that may jump the species barrier in the future. We evaluated the antiviral selectivity of griffithsin and sulfated and non-sulfated polysaccharides against SARS-CoV-1 and SARS-CoV-2 using a cytotoxicity assay and a cell-based pseudoviral model. The half-maximal cytotoxic concentration (CC50) and half-maximal effective concentration (EC50) were determined for each compound, using a dose-response-inhibition analysis on GraphPad Prism v9.0.2 software (San Diego, CA, USA). The therapeutic index (TI = CC50/EC50) was calculated for each compound. The potential synergistic, additive, or antagonistic effect of different compound combinations was determined by CalcuSyn v1 software (Biosoft, Cambridge, UK), which estimated the combination index (CI) values. Iota and lambda carrageenan showed the most potent antiviral activity (EC50 between 3.2 and 7.5 µg/mL). Carrageenan and griffithsin combinations exhibited synergistic activity (EC50 between 0.2 and 3.8 µg/mL; combination index <1), including against recent SARS-CoV-2 mutations. The griffithsin and carrageenan combination is a promising candidate to prevent or treat infections by SARS-CoV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Sahar Alsaidi
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
- Department of Science, Borough of Manhattan Community College, The City University of New York, New York, NY 10007, USA
- Department of Anthropology, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Nadjet Cornejal
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
- Department of Science, Borough of Manhattan Community College, The City University of New York, New York, NY 10007, USA
- Center for Achievement in Science Education, Department of Biology and Chemistry, School of Natural and Behavioral Sciences, Brooklyn College, The City University of New York, New York, NY 11210, USA
| | - Oneil Mahoney
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
- Department of Science, Borough of Manhattan Community College, The City University of New York, New York, NY 10007, USA
| | - Claudia Melo
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
- Department of Science, Borough of Manhattan Community College, The City University of New York, New York, NY 10007, USA
- Center for Achievement in Science Education, Department of Biology and Chemistry, School of Natural and Behavioral Sciences, Brooklyn College, The City University of New York, New York, NY 11210, USA
| | - Neeharika Verma
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
| | - Thierry Bonnaire
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
| | - Theresa Chang
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA;
| | - Barry R. O’Keefe
- Natural Products Branch, Molecular Targets Program, Developmental Therapeutics Program, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702, USA;
| | - James Sailer
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
| | - Thomas M. Zydowsky
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
| | - Natalia Teleshova
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
| | - José A. Fernández Romero
- Population Council, New York, NY 10065, USA; (S.A.); (N.C.); (O.M.); (C.M.); (N.V.); (T.B.); (J.S.); (T.M.Z.); (N.T.)
- Department of Science, Borough of Manhattan Community College, The City University of New York, New York, NY 10007, USA
- Correspondence:
| |
Collapse
|
25
|
Laurie C, El-Zein M, Coutlée F, de Pokomandy A, Franco EL. Carrageenan as a Preventive Agent Against Human Papillomavirus Infection: A Narrative Review. Sex Transm Dis 2021; 48:458-465. [PMID: 33433173 DOI: 10.1097/olq.0000000000001363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ABSTRACT Carrageenan, an extract from red algae, was identified over a decade ago as a potent inhibitor of human papillomavirus (HPV) infection in vitro. After this discovery, several studies evaluated carrageenan's anti-HPV activity in cells, experimental animals, and humans. We reviewed the evidence for carrageenan's anti-HPV activity. Studies had to be in vitro, in vivo, or in humans and report on carrageenan's anti-HPV activity. Of the 39 records identified in PubMed and 29 records in Clinicaltrials.gov, 22 records were included after screening: 8 in vitro (including 2 ex vivo), 3 in vivo, 5 in vitro and in vivo, 3 clinical studies, and 3 trial protocols. A total of 12 studies evaluated carrageenan exclusively, whereas 7 considered carrageenan combined with additional antiviral or other agents. One study protocol will evaluate carrageenan exclusively, and 2 others will evaluate carrageenan-combination products. Most clinical studies evaluated carrageenan's ability to prevent HPV acquisition (n = 4), whereas one study explored its ability to promote clearance of existing infection (defined as the absence of HPV DNA detection). Carrageenan's anti-HPV activity was observed consistently across study designs, except in 2 studies: 1 in vitro study where 2 of the HPV types tested were not significantly inhibited by carrageenan and 1 phase IIB trial in gay, bisexual, and other men who have sex with men. This review supports the premise that carrageenan, alone or in combination with other antiviral agents, might be a potential prevention strategy complementary to HPV vaccination for women.
Collapse
Affiliation(s)
| | - Mariam El-Zein
- From the Division of Cancer Epidemiology, McGill University
| | - François Coutlée
- Laboratoire de virologie moléculaire, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), et Département de Microbiologie, infectiologie et Immunologie, Université de Montréal
| | | | | |
Collapse
|
26
|
Reynolds D, Huesemann M, Edmundson S, Sims A, Hurst B, Cady S, Beirne N, Freeman J, Berger A, Gao S. Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: A review of antiviral potential throughout pathogenesis. ALGAL RES 2021; 57:102331. [PMID: 34026476 PMCID: PMC8128986 DOI: 10.1016/j.algal.2021.102331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
Viruses are abiotic obligate parasites utilizing complex mechanisms to hijack cellular machinery and reproduce, causing multiple harmful effects in the process. Viruses represent a growing global health concern; at the time of writing, COVID-19 has killed at least two million people around the world and devastated global economies. Lingering concern regarding the virus' prevalence yet hampers return to normalcy. While catastrophic in and of itself, COVID-19 further heralds in a new era of human-disease interaction characterized by the emergence of novel viruses from natural sources with heretofore unseen frequency. Due to deforestation, population growth, and climate change, we are encountering more viruses that can infect larger groups of people with greater ease and increasingly severe outcomes. The devastation of COVID-19 and forecasts of future human/disease interactions call for a creative reconsideration of global response to infectious disease. There is an urgent need for accessible, cost-effective antiviral (AV) drugs that can be mass-produced and widely distributed to large populations. Development of AV drugs should be informed by a thorough understanding of viral structure and function as well as human biology. To maximize efficacy, minimize cost, and reduce development of drug-resistance, these drugs would ideally operate through a varied set of mechanisms at multiple stages throughout the course of infection. Due to their abundance and diversity, natural compounds are ideal for such comprehensive therapeutic interventions. Promising sources of such drugs are found throughout nature; especially remarkable are the algae, a polyphyletic grouping of phototrophs that produce diverse bioactive compounds. While not much literature has been published on the subject, studies have shown that these compounds exert antiviral effects at different stages of viral pathogenesis. In this review, we follow the course of viral infection in the human body and evaluate the AV effects of algae-derived compounds at each stage. Specifically, we examine the AV activities of algae-derived compounds at the entry of viruses into the body, transport through the body via the lymph and blood, infection of target cells, and immune response. We discuss what is known about algae-derived compounds that may interfere with the infection pathways of SARS-CoV-2; and review which algae are promising sources for AV agents or AV precursors that, with further investigation, may yield life-saving drugs due to their diversity of mechanisms and exceptional pharmaceutical potential.
Collapse
Affiliation(s)
- Daman Reynolds
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Michael Huesemann
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Scott Edmundson
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Amy Sims
- Pacific Northwest National Laboratory, Chemical and Biological Signatures Group, Richland, WA, USA
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Sherry Cady
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Nathan Beirne
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Jacob Freeman
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Adam Berger
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Song Gao
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| |
Collapse
|
27
|
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells 2021; 10:cells10071619. [PMID: 34203435 PMCID: PMC8305077 DOI: 10.3390/cells10071619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.
Collapse
|
28
|
Crakes KR, Herrera C, Morgan JL, Olstad K, Hessell AJ, Ziprin P, LiWang PJ, Dandekar S. Efficacy of silk fibroin biomaterial vehicle for in vivo mucosal delivery of Griffithsin and protection against HIV and SHIV infection ex vivo. J Int AIDS Soc 2021; 23:e25628. [PMID: 33073530 PMCID: PMC7569169 DOI: 10.1002/jia2.25628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction The majority of new HIV infections occur through mucosal transmission. The availability of readily applicable and accessible platforms for anti‐retroviral (ARV) delivery is critical for the prevention of HIV acquisition through sexual transmission in both women and men. There is a compelling need for developing new topical delivery systems that have advantages over the pills, gels and rings, which currently fail to guarantee protection against mucosal viral transmission in vulnerable populations due to lack of user compliance. The silk fibroin (SF) platform offers another option that may be better suited to individual circumstances and preferences to increase efficacy through user compliance. The objective of this study was to test safety and efficacy of SF for anti‐HIV drug delivery to mucosal sites and for viral prevention. Methods We formulated a potent HIV inhibitor Griffithsin (Grft) in a mucoadhesive silk fibroin (SF) drug delivery platform and tested the application in a non‐human primate model in vivo and a pre‐clinical human cervical and colorectal tissue explant model. Both vaginal and rectal compartments were assessed in rhesus macaques (Mucaca mulatta) that received SF (n = 4), no SF (n = 7) and SF‐Grft (n = 11). In this study, we evaluated the composition of local microbiota, inflammatory cytokine production, histopathological changes in the vaginal and rectal compartments and mucosal protection after ex vivo SHIV challenge. Results Effective Grft release and retention in mucosal tissues from the SF‐Grft platform resulted in protection against HIV in human cervical and colorectal tissue as well as against SHIV challenge in both rhesus macaque vaginal and rectal tissues. Mucoadhesion of SF‐Grft inserts did not cause any inflammatory responses or changes in local microbiota. Conclusions We demonstrated that in vivo delivery of SF‐Grft in rhesus macaques fully protects against SHIV challenge ex vivo after two hours of application and is safe to use in both the vaginal and rectal compartments. Our study provides support for the development of silk fibroin as a highly promising, user‐friendly HIV prevention modality to address the global disparity in HIV infection.
Collapse
Affiliation(s)
- Katti R Crakes
- Department of Medical Microbiology & Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Carolina Herrera
- Department of Medicine, St. Mary's Campus Imperial College, London, United Kingdom
| | - Jessica L Morgan
- Department of Molecular Cell Biology, University of California Merced, Merced, CA, USA
| | - Katie Olstad
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Paul Ziprin
- Department of Surgery and Cancer, St. Mary's Campus Imperial College, London, United Kingdom
| | - Patricia J LiWang
- Department of Molecular Cell Biology, University of California Merced, Merced, CA, USA
| | - Satya Dandekar
- Department of Medical Microbiology & Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
29
|
Jiang JL, Zhang WZ, Ni WX, Shao JW. Insight on structure-property relationships of carrageenan from marine red algal: A review. Carbohydr Polym 2021; 257:117642. [DOI: 10.1016/j.carbpol.2021.117642] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023]
|
30
|
Kramzer LF, Hamorsky KT, Graebing PW, Wang L, Fuqua JL, Matoba N, Lasnik AB, Moncla BJ, Zhang J, Palmer KE, Rohan LC. Preformulation Characterization of Griffithsin, a Biopharmaceutical Candidate for HIV Prevention. AAPS PharmSciTech 2021; 22:83. [PMID: 33625602 PMCID: PMC7903873 DOI: 10.1208/s12249-021-01931-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Griffithsin (GRFT) has shown potent anti-HIV activity, and it is being developed as a drug candidate for HIV prevention. Successful implementation requires thorough understanding of its preformulation characterization. In this work, preformulation assessments were conducted to characterize GRFT and identify its degradation pathways under selected conditions of temperature, light, pH, shear, ionic strength, and oxidation. Compatibility with vaginal fluid simulant, vaginal enzymes, Lactobacillus spp., and human cervicovaginal secretions was assessed. The purity, melting temperature, and HIV gp120-binding affinity of GRFT stored at 4°C and 25°C in phosphate-buffered saline (PBS) were assessed for 2 years. Chemical modifications were evaluated by intact mass analysis and peptide sequencing. Excised human ectocervical tissue permeability and localization of GRFT were evaluated. Our results demonstrated GRFT to be safe and stable under all the preformulation assessment conditions studied except oxidative stress. When GRFT was exposed to hydrogen peroxide or human cervicovaginal secretion, methionine 78 in the protein sequence underwent oxidation. GRFT did not permeate through human cervical tissue but adhered to the superficial epithelial tissue. The 2-year stability study revealed no significant change in GRFT's aggregation, degradation, melting temperature, or gp120-binding affinity despite a slow increase in oxidation over time. These studies elucidated desirable safety and bioactivity profile for GRFT, showing promise as a potential drug candidate for HIV prevention. However, susceptibility to oxidative degradation was identified. Effective protection of GRFT from oxidation is required for further development.
Collapse
|
31
|
Antiviral Potential of Algal Metabolites-A Comprehensive Review. Mar Drugs 2021; 19:md19020094. [PMID: 33562153 PMCID: PMC7914423 DOI: 10.3390/md19020094] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Historically, algae have stimulated significant economic interest particularly as a source of fertilizers, feeds, foods and pharmaceutical precursors. However, there is increasing interest in exploiting algal diversity for their antiviral potential. Here, we present an overview of 50-years of scientific and technological developments in the field of algae antivirals. After bibliometric analysis of 999 scientific references, a survey of 16 clinical trials and analysis of 84 patents, it was possible to identify the dominant algae, molecules and viruses that have been shaping and driving this promising field of research. A description of the most promising discoveries is presented according to molecule class. We observed a diverse range of algae and respective molecules displaying significant antiviral effects against an equally diverse range of viruses. Some natural algae molecules, like carrageenan, cyanovirin or griffithsin, are now considered prime reference molecules for their outstanding antiviral capacity. Crucially, while many algae antiviral applications have already reached successful commercialization, the large spectrum of algae antiviral capacities already identified suggests a strong potential for future expansion of this field.
Collapse
|
32
|
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs 2020; 18:E583. [PMID: 33238488 PMCID: PMC7700686 DOI: 10.3390/md18110583] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | | |
Collapse
|
33
|
Bhatt A, Arora P, Prajapati SK. Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection? Front Microbiol 2020; 11:596374. [PMID: 33262750 PMCID: PMC7686535 DOI: 10.3389/fmicb.2020.596374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ankita Bhatt
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
34
|
Castillo E, Duarte LF, Corrales N, Álvarez DM, Farías MA, Henríquez A, Smith PC, Agurto-Muñoz C, González PA. Anti-herpetic Activity of Macrocystis pyrifera and Durvillaea antarctica Algae Extracts Against HSV-1 and HSV-2. Front Microbiol 2020; 11:2006. [PMID: 33013743 PMCID: PMC7516053 DOI: 10.3389/fmicb.2020.02006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex viruses (HSVs) type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population, and the infections they produce are lifelong with frequent reactivations throughout life. Both viruses produce uncomfortable and sometimes painful lesions in the orofacial and genital areas, as well as herpetic gingivostomatitis, among other clinical manifestations. At present, the most common treatments against HSVs consist of nucleoside analogs that target the viral polymerases. However, such drugs are poorly effective for treating skin lesions, as they only reduce in 1-2 days the duration of the herpetic lesions. Additionally, viral isolates resistant to these drugs can emerge in immunosuppressed individuals, and second-line drugs for such variants are frequently accompanied by adverse effects requiring medical supervision. Thus, novel or improved therapeutic drugs for treating HSV lesions are needed. Here, we assessed the potential antiviral activity of aqueous extracts obtained from two brown macroalgae, namely Macrocystis pyrifera and Durvillaea antarctica against HSVs. Both extracts showed antiviral activity against acyclovir-sensitive and acyclovir-resistant HSV-1 and HSV-2. Our analyses show that there is a significant antiviral activity associated with proteins in the extract, although other compounds also seem to contribute to inhibiting the replication cycle of these viruses. Evaluation of the algae extracts as topical formulations in an animal model of HSV-1 skin infection significantly reduced the severity of the disease more than acyclovir, as well as the duration of the herpetic lesions, when compared to mock-treated animals, with the D. antarctica extract performing best. Taken together, these findings suggest that these algae extracts may be potential phytotherapeutics against HSVs and may be useful for the treatment and reduction of common herpetic manifestations in humans.
Collapse
Affiliation(s)
- Estefanía Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M. Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adolfo Henríquez
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Patricio C. Smith
- Escuela de Odontología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Agurto-Muñoz
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Andryukov BG, Besednova NN, Kuznetsova TA, Zaporozhets TS, Ermakova SP, Zvyagintseva TN, Chingizova EA, Gazha AK, Smolina TP. Sulfated Polysaccharides from Marine Algae as a Basis of Modern Biotechnologies for Creating Wound Dressings: Current Achievements and Future Prospects. Biomedicines 2020; 8:E301. [PMID: 32842682 PMCID: PMC7554790 DOI: 10.3390/biomedicines8090301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The goal of this review is to summarize available information about the modern wound dressing technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with a focus on promising and innovative designs. Future perspectives for the use of marine-derived biopolymers necessitate summarizing and analyzing results of numerous experiments and clinical trial data, developing a scientifically substantiated approach to wound treatment, and suggesting relevant practical recommendations.
Collapse
Affiliation(s)
- Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russian
| | - Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Ekaterina A. Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Anna K. Gazha
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana P. Smolina
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| |
Collapse
|
36
|
Lee C. Carrageenans as Broad-Spectrum Microbicides: Current Status and Challenges. Mar Drugs 2020; 18:md18090435. [PMID: 32825645 PMCID: PMC7551811 DOI: 10.3390/md18090435] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Different kinds of red algae are enriched with chemically diverse carbohydrates. In particular, a group of sulfated polysaccharides, which were isolated from the cell walls of red algae, gained a large amount of attention due to their broad-spectrum antimicrobial activities. Within that group, carrageenans (CGs) were expected to be the first clinically applicable microbicides that could prevent various viral infections due to their superior antiviral potency and desirable safety profiles in subclinical studies. However, their anticipated beneficial effects could not be validated in human studies. To assess the value of a second attempt at pharmacologically developing CGs as a new class of preventive microbicides, all preclinical and clinical development processes of CG-based microbicides need to be thoroughly re-evaluated. In this review, the in vitro toxicities; in vivo safety profiles; and in vitro, ex vivo, and in vivo antiviral activities of CGs are summarized according to the study volume of their target viruses, which include human immunodeficiency virus, herpesviruses, respiratory viruses, human papillomavirus, dengue virus, and other viruses along with a description of their antiviral modes of action and development of antiviral resistance. This evaluation of the strengths and weaknesses of CGs will help provide future research directions that may lead to the successful development of CG-based antimicrobial prophylactics.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
37
|
Calagna G, Maranto M, Paola C, Capra G, Perino A, Chiantera V, Cucinella G. 'Secondary prevention' against female HPV infection: literature review of the role of carrageenan. Expert Rev Anti Infect Ther 2020; 18:865-874. [PMID: 32552158 DOI: 10.1080/14787210.2020.1770082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Human papillomaviruses (HPVs) are common sexually transmitted pathogens, causally associated with cervical cancer and other anogenital cancers, as well as approximately 20% of head and neck cancers. The HPV vaccine is an exceptional primary prevention tool, but the question of adequate secondary-prevention strategies remains open. The aim of this review is to better clarify the role of carrageenan in HPV prevention-strategies. Areas covered: A comprehensive literature search was performed (PubMed/MEDLINE, Embase, Google Scholar, Cochrane Databases) to identify articles on the use of carrageenan against HPV infection. The studies were identified using combinations of the search terms 'carrageenan,' 'papillomavirus,' 'HPV,' including only English language papers. Expert opinion: Our review data confirmed the 'inhibitory role' of carrageenan against HPV- pseudoviruses infection on different cell types. The most accredited mechanism to explain this effect involves the direct binding of CG to the viral capsid creating a 'physical' obstacle. However, a different susceptibility to carrageenan for different HPV types has been highlighted, suggesting the possibility of other strategies to infect the host. There are also relevant emerging data regarding the possible role of carrageenan as an adjuvant for antigen-specific immune responses and antitumor effects.
Collapse
Affiliation(s)
- Gloria Calagna
- Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo , Palermo, Italy
| | - Marianna Maranto
- Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo , Palermo, Italy
| | - Consiglio Paola
- Obstetrics and Gynecology, Casa di Cura Candela Spa , Palermo, Italy
| | - Giuseppina Capra
- Department of Science for Health Promotion and Mother Child Care "G. D'Alessandro", University of Palermo , Palermo, Italy
| | - Antonino Perino
- Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo , Palermo, Italy
| | - Vito Chiantera
- Department of Gynecologic Oncology, ARNAS Civico di Cristina Benfratelli, University of Palermo , Palermo, Italy
| | - Gaspare Cucinella
- Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo , Palermo, Italy
| |
Collapse
|
38
|
Rapid-Release Griffithsin Fibers for Dual Prevention of HSV-2 and HIV-1 Infections. Antimicrob Agents Chemother 2020; 64:AAC.02139-19. [PMID: 32229493 DOI: 10.1128/aac.02139-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
The biologic griffithsin (GRFT) has recently emerged as a candidate to safely prevent sexually transmitted infections (STIs), including human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus 2 (HSV-2). However, to date, there are few delivery platforms that are available to effectively deliver biologics to the female reproductive tract (FRT). The goal of this work was to evaluate rapid-release polyethylene oxide (PEO), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP) fibers that incorporate GRFT in in vitro (HIV-1 and HSV-2) and in vivo (HSV-2) infection models. GRFT loading was determined via enzyme-linked immunosorbent assay (ELISA), and the bioactivity of GRFT fibers was assessed using in vitro HIV-1 pseudovirus and HSV-2 plaque assays. Afterwards, the efficacy of GRFT fibers was assessed in a murine model of lethal HSV-2 infection. Finally, murine reproductive tracts and vaginal lavage samples were evaluated for histology and cytokine expression, 24 and 72 h after fiber administration, to determine safety. All rapid-release formulations achieved high levels of GRFT incorporation and were completely efficacious against in vitro HIV-1 and HSV-2 infections. Importantly, all rapid-release GRFT fibers provided potent protection in a murine model of HSV-2 infection. Moreover, histology and cytokine levels, evaluated from collected murine reproductive tissues and vaginal lavage samples treated with blank fibers, showed no increased cytokine production or histological aberrations, demonstrating the preliminary safety of rapid-release GRFT fibers in vaginal tissue.
Collapse
|
39
|
Pacheco-Quito EM, Ruiz-Caro R, Rubio J, Tamayo A, Veiga MD. Carrageenan-Based Acyclovir Mucoadhesive Vaginal Tablets for Prevention of Genital Herpes. Mar Drugs 2020; 18:E249. [PMID: 32403219 PMCID: PMC7281190 DOI: 10.3390/md18050249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/18/2023] Open
Abstract
Women are the most affected by genital herpes, which is one of the most common sexually transmitted infections, affecting more than 400 million people worldwide. The application of vaginal microbicides could provide a safe method of protection. Acyclovir is a safe and effective medication for vaginal administration, and numerous benefits have been observed in the treatment of primary or recurrent lesions due to genital herpes. Vaginal tablets based on a combination of the polymers iota-carrageenan and hydroxypropyl methylcellulose were developed for the controlled release of acyclovir. Swelling, mucoadhesion and drug release studies were carried out in simulated vaginal fluid. The tablets, containing a combination of iota-carrageenan and hydroxypropyl methylcellulose, have an adequate uptake of the medium that allows them to develop the precise consistency and volume of gel for the controlled release of acyclovir. Its high mucoadhesive capacity also allows the formulation to remain in the vaginal area long enough to ensure the complete release of acyclovir. These promising formulations for the prevention of genital herpes deserve further evaluation.
Collapse
Affiliation(s)
- Edisson-Mauricio Pacheco-Quito
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | - Juan Rubio
- Institute of Ceramics and Glass, Spanish National Research Council, CSIC, 28049 Madrid, Spain; (J.R.); (A.T.)
| | - Aitana Tamayo
- Institute of Ceramics and Glass, Spanish National Research Council, CSIC, 28049 Madrid, Spain; (J.R.); (A.T.)
| | - María-Dolores Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| |
Collapse
|
40
|
Fernandes T, Baxi K, Sawarkar S, Sarmento B, das Neves J. Vaginal multipurpose prevention technologies: promising approaches for enhancing women's sexual and reproductive health. Expert Opin Drug Deliv 2020; 17:379-393. [PMID: 32036727 DOI: 10.1080/17425247.2020.1728251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Multipurpose prevention technologies (MPTs) have the potential to avert multiple concomitant sexual and reproductive health issues in women such as sexually transmitted infections and unintended pregnancy. MPTs incorporate one or more active pharmaceutical ingredients in a single product, which adds more convenience for users and may promote increased adherence. Various vaginal dosage forms/delivery systems have been studied for designing MPTs. However, several challenges remain that are mainly related to requirements of individual drugs or intended multiple applications.Areas covered: This review focuses on the emerging need and development of vaginal MPTs. It illustrates numerous examples that are currently in the preclinical and clinical development pipeline, highlighting the concept behind vaginal MPTs. The article also highlights the challenges associated with formulation design and development, including regulatory issues that need to be addressed.Expert opinion: Vaginal MPTs present great potential to empower women with novel, efficient, and safe products for protection against sexually transmitted infections and unintended pregnancy. However, several technological issues and regulatory gaps still need to be addressed in order to meet real-world needs.
Collapse
Affiliation(s)
- Trinette Fernandes
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai,India
| | - Krishna Baxi
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai,India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai,India
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| |
Collapse
|
41
|
Álvarez DM, Castillo E, Duarte LF, Arriagada J, Corrales N, Farías MA, Henríquez A, Agurto-Muñoz C, González PA. Current Antivirals and Novel Botanical Molecules Interfering With Herpes Simplex Virus Infection. Front Microbiol 2020; 11:139. [PMID: 32117158 PMCID: PMC7026011 DOI: 10.3389/fmicb.2020.00139] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent within the human population and are characterized by lifelong infections and sporadic recurrences due to latent neuron infection. Upon reactivations, HSVs may manifest either, symptomatically or asymptomatically and be shed onto others through mucosae body fluids. Although, HSVs can produce severe disease in humans, such as life-threatening encephalitis and blindness, the most common symptoms are skin and mucosal lesions in the oro-facial and the genital areas. Nucleoside analogs with antiviral activity can prevent severe HSV infection, yet they are not very effective for treating skin manifestations produced by these viruses, as they only reduce in a few days at most the duration of lesions. Additionally, HSV variants that are resistant to these antivirals may arise, especially in immunosuppressed individuals. Thus, new antivirals that can reduce the severity and duration of these cutaneous manifestations would certainly be welcome. Here, we review currently available anti-herpetic therapies, novel molecules being assessed in clinical trials and new botanical compounds reported in the last 20 years with antiviral activities against HSVs that might represent future treatments against these viruses.
Collapse
Affiliation(s)
- Diana M. Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefanía Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Arriagada
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adolfo Henríquez
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Cristian Agurto-Muñoz
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Treml J, Gazdová M, Šmejkal K, Šudomová M, Kubatka P, Hassan STS. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses 2020; 12:E154. [PMID: 32013134 PMCID: PMC7077281 DOI: 10.3390/v12020154] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/06/2023] Open
Abstract
Recently, the problem of viral infection, particularly the infection with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), has dramatically increased and caused a significant challenge to public health due to the rising problem of drug resistance. The antiherpetic drug resistance crisis has been attributed to the overuse of these medications, as well as the lack of new drug development by the pharmaceutical industry due to reduced economic inducements and challenging regulatory requirements. Therefore, the development of novel antiviral drugs against HSV infections would be a step forward in improving global combat against these infections. The incorporation of biologically active natural products into anti-HSV drug development at the clinical level has gained limited attention to date. Thus, the search for new drugs from natural products that could enter clinical practice with lessened resistance, less undesirable effects, and various mechanisms of action is greatly needed to break the barriers to novel antiherpetic drug development, which, in turn, will pave the road towards the efficient and safe treatment of HSV infections. In this review, we aim to provide an up-to-date overview of the recent advances in natural antiherpetic agents. Additionally, this paper covers a large scale of phenolic compounds, alkaloids, terpenoids, polysaccharides, peptides, and other miscellaneous compounds derived from various sources of natural origin (plants, marine organisms, microbial sources, lichen species, insects, and mushrooms) with promising activities against HSV infections; these are in vitro and in vivo studies. This work also highlights bioactive natural products that could be used as templates for the further development of anti-HSV drugs at both animal and clinical levels, along with the potential mechanisms by which these compounds induce anti-HSV properties. Future insights into the development of these molecules as safe and effective natural anti-HSV drugs are also debated.
Collapse
Affiliation(s)
- Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Markéta Gazdová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; (M.G.); (K.Š.)
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; (M.G.); (K.Š.)
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| |
Collapse
|
43
|
Bhatt A, Arora P, Prajapati SK. Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection? Front Microbiol 2020. [PMID: 33262750 DOI: 10.3389/fmicb2020596374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Affiliation(s)
- Ankita Bhatt
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
44
|
Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Mar Drugs 2019; 18:E8. [PMID: 31861879 PMCID: PMC7024274 DOI: 10.3390/md18010008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Macroalgae are increasingly viewed as a source of secondary metabolites with great potential for the development of new drugs. In this development, in vitro studies are only the first step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true potential and limitations that a given metabolite may have as a new drug. This literature review aims to give a critical overview of the secondary metabolites that reveal the most interesting results in these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as well as griffithsin which showed such stunning results over a variety of animal models and which will probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity and diabetes.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
| | - Wilson R. Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Aida K. Pagès
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
45
|
Fischer K, Nguyen K, LiWang PJ. Griffithsin Retains Anti-HIV-1 Potency with Changes in gp120 Glycosylation and Complements Broadly Neutralizing Antibodies PGT121 and PGT126. Antimicrob Agents Chemother 2019; 64:e01084-19. [PMID: 31611356 PMCID: PMC7187567 DOI: 10.1128/aac.01084-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/19/2019] [Indexed: 11/20/2022] Open
Abstract
Griffithsin (Grft) is an antiviral lectin that has been shown to potently inhibit HIV-1 by binding high-mannose N-linked glycosylation sites on HIV-1 gp120. A key factor for Grft potency is glycosylation at N295 of gp120, which is directly adjacent to N332, a target glycan for an entire class of broadly neutralizing antibodies (bNAbs). Here, we unify previous work on the importance of other glycans to Grft potency against HIV-1 and Grft's role in mediating the conformational change of gp120 by mutating nearly every glycosylation site in gp120. In addition to a significant loss of Grft activity by the removal of glycosylation at N295, glycan absence at N332 or N448 was found to have moderate effects on Grft potency. Interestingly, in the absence of N295, Grft effectiveness could be improved by a mutation that results in the glycan at N448 shifting to N446, indicating that the importance of individual glycans may be related to their effect on glycosylation density. Grft's ability to alter the structure of gp120, exposing the CD4 binding site, correlated with the presence of glycosylation at N295 only in clade B strains, not clade C strains. We further demonstrate that Grft can rescue the activity of the bNAbs PGT121 and PGT126 in the event of a loss or a shift of glycosylation at N332, where the bNAbs suffer a drastic loss of potency. Despite targeting the same region, Grft in combination with PGT121 and PGT126 produced additive effects. This indicates that Grft could be an important combinational therapeutic.
Collapse
Affiliation(s)
- Kathryn Fischer
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
| | - Kimberly Nguyen
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
| | - Patricia J LiWang
- Molecular Cell Biology, University of California, Merced, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, Merced, California, USA
| |
Collapse
|
46
|
Abstract
Herpes simplex viruses (HSVs) are common human pathogens belonging to the subfamily alpha-herpesvirinae that trigger severe infections in neonates and immunocompromised patients. After primary infection, the HSVs establish a lifelong latent infection in the vegetative neural ganglia of their hosts. HSV infections contribute to substantial disease burden in humans as well as in newborns. Despite a fair number of drugs being available for the treatment of HSV infections, new, effective, and safe antiviral agents, exerting different mechanisms of action, are urgently required, mainly due to the increasing number of resistant strains. Accumulating pieces of evidence have suggested that structurally diverse compounds from marine algae possess promising anti-HSV potentials. Several studies have documented a variety of algal polysaccharides possessing anti-HSV activity, including carrageenan and fucan. This review aimed to compile previous anti-HSV studies on marine algae–derived compounds, especially sulfated polysaccharides, along with their mode of action, toward their development as novel natural anti-HSV agents for future investigations.
Collapse
|
47
|
Griffithsin, a Highly Potent Broad-Spectrum Antiviral Lectin from Red Algae: From Discovery to Clinical Application. Mar Drugs 2019; 17:md17100567. [PMID: 31590428 PMCID: PMC6835697 DOI: 10.3390/md17100567] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Virus entry into a susceptible host cell is the first step in the formation of all viral diseases. Controlling viral infections by disrupting viral entry is advantageous for antibody-mediated neutralization by the host’s immune system and as a preventive and therapeutic antiviral strategy. Recently, several plant-derived carbohydrate-binding proteins (lectins) have emerged as a new class of antiviral biologics by taking advantage of a unique glycosylation pattern only found on the surface of viruses. In particular, a red algae-derived griffithsin (GRFT) protein has demonstrated superior in vitro and in vivo antiviral activity with minimum host toxicity against a variety of clinically relevant, enveloped viruses. This review examines the structural characteristics of GRFT, focusing on its carbohydrate-binding capability. Its in vitro antiviral profiles against human immunodeficiency virus (HIV) are also discussed followed by a description of the results from a combination study using anti-HIV drugs. The results of several studies regarding its novel antiviral mechanism of action are provided in conjunction with an explanation of viral resistance profiles to GRFT. In addition, its in vitro and in vivo host toxicity profiles are summarized with its pharmacokinetic behavior using in vivo efficacy study results. Also, a large-scale production and formulation strategy, as well as a drug delivery strategy, for GRFT as a new class of broad-spectrum microbicides is discussed. Finally, results from two ongoing clinical studies examining GRFT’s effects on viruses are presented.
Collapse
|
48
|
Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Mar Drugs 2019; 17:E440. [PMID: 31357490 PMCID: PMC6723950 DOI: 10.3390/md17080440] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
To date, a number of mannose-specific lectins have been isolated and characterized from seaweeds, especially from red algae. In fact, man-specific seaweed lectins consist of different structural scaffolds harboring a single or a few carbohydrate-binding sites which specifically recognize mannose-containing glycans. Depending on the structural scaffold, man-specific seaweed lectins belong to five distinct structurally-related lectin families, namely (1) the griffithsin lectin family (β-prism I scaffold); (2) the Oscillatoria agardhii agglutinin homolog (OAAH) lectin family (β-barrel scaffold); (3) the legume lectin-like lectin family (β-sandwich scaffold); (4) the Galanthus nivalis agglutinin (GNA)-like lectin family (β-prism II scaffold); and, (5) the MFP2-like lectin family (MFP2-like scaffold). Another algal lectin from Ulva pertusa, has been inferred to the methanol dehydrogenase related lectin family, because it displays a rather different GlcNAc-specificity. In spite of these structural discrepancies, all members from the five lectin families share a common ability to specifically recognize man-containing glycans and, especially, high-mannose type glycans. Because of their mannose-binding specificity, these lectins have been used as valuable tools for deciphering and characterizing the complex mannose-containing glycans from the glycocalyx covering both normal and transformed cells, and as diagnostic tools and therapeutic drugs that specifically recognize the altered high-mannose N-glycans occurring at the surface of various cancer cells. In addition to these anti-cancer properties, man-specific seaweed lectins have been widely used as potent human immunodeficiency virus (HIV-1)-inactivating proteins, due to their capacity to specifically interact with the envelope glycoprotein gp120 and prevent the virion infectivity of HIV-1 towards the host CD4+ T-lymphocyte cells in vitro.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
49
|
Li L, Yu X, Zhang H, Cheng H, Hou L, Zheng Q, Hou J. In vitro antiviral activity of Griffithsin against porcine epidemic diarrhea virus. Virus Genes 2019; 55:174-181. [PMID: 30637608 PMCID: PMC7089098 DOI: 10.1007/s11262-019-01633-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Griffithsin is a lectin with potent antiviral activity against enveloped viruses. The objective of this study was to assess Griffithsin’s inhibitory effect on porcine epidemic diarrhea virus (PEDV). The results showed that Griffithsin reduced PEDV infection of Vero cells by approximately 82.8%. Moreover, using time-of-addition assays and RT-qPCR, we found that delayed addition of Griffithsin had a weaker inhibitory effect on PEDV than earlier treatment. The mechanism of Griffithsin’s action against PEDV involved both preventing viral attachment to host cells and disrupting cell-to-cell transmission; its dual mode of action distinguished Griffithsin from most other antiviral drugs. In conclusion, Griffithsin was identified as a potent PEDV inhibitor and may represent a candidate drug for preventing PEDV infection.
Collapse
Affiliation(s)
- Lan Li
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xiaoming Yu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Haoming Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Haiwei Cheng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Liting Hou
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Qisheng Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Jibo Hou
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
50
|
Li L, Tian X, Chen J, Li P, Zheng Q, Hou J. Griffithsin inhibits porcine reproductive and respiratory syndrome virus infection in vitro. Arch Virol 2018; 163:3317-3325. [PMID: 30220033 PMCID: PMC7087274 DOI: 10.1007/s00705-018-4029-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that severely disrupts swine production. Despite sustained efforts, the disease is still endemic, with high mortality and morbidity. New antiviral strategies to control PRRSV are needed. Griffithsin, a red algal lectin, has potent antiviral effect on several human enveloped viruses, but this effect has not been demonstrated on PRRSV. Here, we first tested the in vitro antiviral activity of Griffithsin against PRRSV. Griffithsin exerted strong saccharide-dependent antiviral activity against PRRSV, probably through interactions with glycans on the surface of PRRSV that interfered with virus entry. Furthermore we revealed that Griffithsin's action on PRRSV involved blocking viral adsorption, and it had no effect on viral penetration. Besides Our findings also suggested that Griffithsin may interfere with cell-to-cell spread to prevent virus transmission. The remarkable potency profile of Griffithsin supports its potential value as an antiviral agent against PRRSV.
Collapse
Affiliation(s)
- Lan Li
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Xiaoning Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Jin Chen
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Pengcheng Li
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Qisheng Zheng
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Jibo Hou
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu People’s Republic of China
| |
Collapse
|