1
|
Schwartz B, Klamer K, Zimmerman J, Kale-Pradhan PB, Bhargava A. Multidrug Resistant Pseudomonas aeruginosa in Clinical Settings: A Review of Resistance Mechanisms and Treatment Strategies. Pathogens 2024; 13:975. [PMID: 39599528 PMCID: PMC11597786 DOI: 10.3390/pathogens13110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is causing increasing concern among clinicians due to its high mortality and resistance rates. This bacterium is responsible for various infections, especially in hospital settings, affecting some of the most vulnerable patients. Pseudomonas aeruginosa has developed resistance through multiple mechanisms, making treatment challenging. Diagnostic techniques are evolving, with rapid testing systems providing results within 4-6 h. New antimicrobial agents are continuously being developed, offering potential solutions to these complex clinical decisions. This article provides a review of the epidemiology, at-risk populations, resistance mechanisms, and diagnostic and treatment options for Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Beth Schwartz
- Department of Internal Medicine, Henry Ford St. John Hospital, Detroit, MI 48236, USA
| | - Katherine Klamer
- Thomas Mackey Center for Infectious Disease, Henry Ford St. John Hospital, Detroit, MI 48201, USA;
| | - Justin Zimmerman
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Henry Ford St. John Hospital, Detroit, MI 48201, USA; (J.Z.); (P.B.K.-P.)
| | - Pramodini B. Kale-Pradhan
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Henry Ford St. John Hospital, Detroit, MI 48201, USA; (J.Z.); (P.B.K.-P.)
| | - Ashish Bhargava
- Thomas Mackey Center for Infectious Disease, Henry Ford St. John Hospital, Detroit, MI 48201, USA;
- School of Medicine, Wayne State University, Detroit, MI 48021, USA
| |
Collapse
|
2
|
Moule MG, Benjamin AB, Burger ML, Herlan C, Lebedev M, Lin JS, Koster KJ, Wavare N, Adams LG, Bräse S, Munoz-Medina R, Cannon CL, Barron AE, Cirillo JD. Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection. Commun Biol 2024; 7:1033. [PMID: 39174819 PMCID: PMC11341572 DOI: 10.1038/s42003-024-06725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2000 deaths in the U.S. annually. While the emergence of resistant bacteria has become ominously common, identification of useful new drug classes has been limited over the past over 40 years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity in mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 min in vitro, and is effective against a range of clinical isolates, including extensively drug resistant strains. In vivo, TM5 significantly reduced bacterial load in the lungs within 24 h compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Madeleine G Moule
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aaron B Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Melanie L Burger
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Claudine Herlan
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maxim Lebedev
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA
| | - Kent J Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Neha Wavare
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Leslie G Adams
- Department of Veterinary Pathobiology, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ricardo Munoz-Medina
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Annelise E Barron
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA.
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA.
| |
Collapse
|
3
|
Hickson SM, Hoehensteiger JK, Mayer-Coverdale J, Torres VVL, Feng W, Monteith JN, Henderson IR, McCarthy KL, Wells TJ. Antibody-Mediated Serum Resistance Protects Pseudomonas aeruginosa During Bloodstream Infections. J Infect Dis 2024; 230:e221-e229. [PMID: 38235716 PMCID: PMC11326846 DOI: 10.1093/infdis/jiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a frequent pathogen isolated from bacterial bloodstream infection (BSI) and is associated with high mortality. To survive in the blood, P aeruginosa must resist the bactericidal action of complement (ie, serum killing). Antibodies usually promote serum killing through the classical complement pathway; however, "cloaking antibodies" (cAbs) have been described, which paradoxically protect bacteria from serum killing. The relevance of cAbs in P aeruginosa BSI is unknown. METHODS Serum and P aeruginosa were collected from a cohort of 100 patients with BSI. Isolates were tested for sensitivity to healthy control serum (HCS). cAb prevalence was determined in sera. Patient sera were mixed with HCS to determine if killing of the matched isolate was inhibited. RESULTS Overall, 36 patients had elevated titers of cAbs, and 34 isolates were sensitive to HCS killing. Fifteen patients had cAbs and HCS-sensitive isolates; of these patients, 14 had serum that protected their matched bacteria from HCS killing. Patients with cAbs were less likely to be neutropenic or have comorbidities. CONCLUSIONS cAbs are prevalent in patients with P aeruginosa BSI and allow survival of otherwise serum-sensitive bacteria in the bloodstream. Generation of cAbs may be a risk factor for the development of BSI.
Collapse
Affiliation(s)
- Sarah M Hickson
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Johanna Mayer-Coverdale
- UQ Centre for Clinical Research, The University of Queensland, Herston, Australia
- Department of Microbiology, Pathology Queensland, Brisbane, Australia
| | - Von Vergel L Torres
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Wenkang Feng
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Joshua N Monteith
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ian R Henderson
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kate L McCarthy
- Department of Microbiology, Pathology Queensland, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Valzano F, La Bella G, Lopizzo T, Curci A, Lupo L, Morelli E, Mosca A, Marangi M, Melfitano R, Rollo T, De Nittis R, Arena F. Resistance to ceftazidime-avibactam and other new β-lactams in Pseudomonas aeruginosa clinical isolates: a multi-center surveillance study. Microbiol Spectr 2024; 12:e0426623. [PMID: 38934607 PMCID: PMC11302676 DOI: 10.1128/spectrum.04266-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
New β-lactam-β-lactamase inhibitor combinations represent last-resort antibiotics to treat infections caused by multidrug-resistant Pseudomonas aeruginosa. Carbapenemase gene acquisition can limit their spectrum of activity, and reports of resistance toward these new molecules are increasing. In this multi-center study, we evaluated the prevalence of resistance to ceftazidime-avibactam (CZA) and comparators among P. aeruginosa clinical isolates from bloodstream infections, hospital-acquired or ventilator-associated pneumonia, and urinary tract infections, circulating in Southern Italy. We also investigated the clonality and content of relevant β-lactam resistance mechanisms of CZA-resistant (CZAR) isolates. A total of 120 P. aeruginosa isolates were collected. CZA was among the most active β-lactams, retaining susceptibility in the 81.7% of cases, preceded by cefiderocol (95.8%) and followed by ceftolozane-tazobactam (79.2%), meropenem-vaborbactam (76.1%), imipenem-relebactam (75%), and aztreonam (69.6%). Among non-β-lactams, colistin and amikacin were active against 100% and 85.8% of isolates respectively. In CZAR strains subjected to whole-genome sequencing (n = 18), resistance was mainly due to the expression of metallo-β-lactamases (66.6% VIM-type and 5.5% FIM-1), followed by PER-1 (16.6%) and GES-1 (5.5%) extended-spectrum β-lactamases, mostly carried by international high-risk clones (ST111 and ST235). Of note, two strains producing the PER-1 enzyme were resistant to all β-lactams, including cefiderocol. In conclusion, the CZA resistance rate among P. aeruginosa clinical isolates in Southern Italy remained low. CZAR isolates were mostly metallo-β-lactamases producers and belonging to ST111 and ST253 epidemic clones. It is important to implement robust surveillance systems to monitor emergence of new resistance mechanisms and to limit the spread of P. aeruginosa high-risk clones. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa infections are a growing threat due to the limited therapeutic options available. Ceftazidime-avibactam (CZA) is among the last-resort antibiotics for the treatment of difficult-to-treat P. aeruginosa infections, although resistance due to the acquisition of transferable β-lactamase genes is increasing. With this work, we report that CZA represents a highly active antipseudomonal β-lactam compound (after cefiderocol), and that metallo-β-lactamases (VIM-type) and extended-spectrum β-lactamases (GES and PER-type) production is the major factor underlying CZA resistance in isolates from Southern Italian hospitals. In addition, we reported that such resistance mechanisms were mainly carried by the international high-risk clones ST111 and ST235.
Collapse
Affiliation(s)
- Felice Valzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianfranco La Bella
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Teresa Lopizzo
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Anna Curci
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Laura Lupo
- Clinical Pathology and Microbiology Unit, Vito Fazzi Hospital, Lecce, Italy
| | | | - Adriana Mosca
- Department of Interdisciplinary Medicine, Microbiology Section, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Tiziana Rollo
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Rosella De Nittis
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
5
|
Xiao S, Liang X, Han L, Zhao S. Incidence, antimicrobial resistance and mortality of Pseudomonas aeruginosa bloodstream infections among hospitalized patients in China: a retrospective observational multicenter cohort study from 2017 to 2021. Front Public Health 2024; 11:1294141. [PMID: 38249405 PMCID: PMC10797092 DOI: 10.3389/fpubh.2023.1294141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pseudomonas aeruginosa (P. aeruginosa) accounts for high antimicrobial resistance and mortality rates of bloodstream infections (BSIs). We aim to investigate incidence, antimicrobial resistance and risk factors for mortality of P. aeruginosa BSIs among inpatients. Methods A retrospective cohort study were conducted at two tertiary hospitals in 2017-2021. Medical and laboratory records of all inpatients diagnosed with P. aeruginosa BSIs were reviewed. A generalized linear mixed model was used to identify risk factors for mortality. Results A total of 285 patients with P. aeruginosa BSIs were identified. Incidence of P. aeruginosa BSIs fluctuated between 2.37 and 3.51 per 100,000 patient-days over the study period. Out of 285 P. aeruginosa isolates, 97 (34.04%) were carbapenem-resistant (CR) and 75 (26.32%) were multidrug-resistant (MDR). These isolates showed low resistance to aminoglycosides (9.51-11.62%), broad-spectrum cephalosporins (17.19-17.61%), fluoroquinolones (17.25-19.43%), and polymyxin B (1.69%). The crude 30-day mortality rate was 17.89% (51/285). Healthcare costs of patients with MDR/CR isolates were significantly higher than those of patients with non-MDR/CR isolates (P < 0.001/=0.002). Inappropriate definitive therapy [adjusted odds ratio (aOR) 4.47, 95% confidence interval (95% CI) 1.35-14.77; P = 0.014], ICU stay (aOR 2.89, 95% CI: 1.26-6.63; P = 0.012) and corticosteroids use (aOR 2.89, 95% CI: 1.31-6.41; P = 0.009) were independently associated with 30-day mortality. Conclusion Incidence of P. aeruginosa BSIs showed an upward trend during 2017-2020 but dropped in 2021. MDR/CR P. aeruginosa BSIs are associated with higher healthcare costs. Awareness is required that patients with inappropriate definitive antimicrobial therapy, ICU stay and corticosteroids use are at higher risk of death from P. aeruginosa BSIs.
Collapse
Affiliation(s)
- Shuzhen Xiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianghui Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengyuan Zhao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Moule MG, Benjamin AB, Buger ML, Herlan C, Lebedev M, Lin JS, Koster KJ, Wavare N, Adams LG, Bräse S, Barron AE, Cirillo JD. Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564794. [PMID: 37961726 PMCID: PMC10634950 DOI: 10.1101/2023.10.30.564794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2,000 deaths annually. While the emergence of resistant bacteria has become concerningly common, identification of useful new drug classes has been limited over the past 40+ years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity for mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 minutes in vitro , and is effective against a range of clinical isolates. In vivo , TM5 significantly reduced bacterial load in the lungs within 24 hours compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
Collapse
|
7
|
Hashiguchi Y, Matsumoto N, Oda K, Jono H, Saito H. Population Pharmacokinetics and AUC-Guided Dosing of Tobramycin in the Treatment of Infections Caused by Glucose-Nonfermenting Gram-Negative Bacteria. Clin Ther 2023:S0149-2918(23)00128-5. [PMID: 37120413 DOI: 10.1016/j.clinthera.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE Tobramycin (TOB) exhibits variable pharmacokinetic properties due to the clinical condition of patients. This study aimed to investigate the AUC-guided dosing of TOB based on population pharmacokinetic analysis in the treatment of infections caused by Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. METHODS This retrospective study was conducted between January 2010 and December 2020 after obtaining approval from our institutional review board. For 53 patients who received therapeutic drug monitoring of TOB, a population pharmacokinetic model was developed with covariates of estimated glomerular filtration rate using serum creatinine (eGFRcre) on clearance (CL) and weight on both CL and Vd in exponential error modeling (CL = 2.84 × [weight/70] × eGFRcre0.568, interindividual variability [IIV] = 31.1%; Vd = 26.3 × [weight/70], IIV = 20.2%; residual variability = 28.8%). FINDINGS The final regression model for predicting 30-day mortality was developed with risk factors of AUC during a 24-hour period after the first dose to MIC ratio (odds ratio [OR] = 0.996; 95% CI, 0.968-1.003) and serum albumin (OR = 0.137; 95% CI, 0.022-0.632). The final regression model for predicting acute kidney injury was developed with the risk factors of C-reactive protein (OR = 1.136; 95% CI, 1.040-1.266) and AUC during a 72-hour period after the first dose (OR = 1.004; 95% CI, 1.000-1.001). A dose of 8 or 15 mg/kg was beneficial for achievement of AUC during a 24-hour period after the first dose/MIC >80 and trough concentration <1 µg/mL in patients with preserved kidney function and TOB CL >4.47 L/h/70 kg in the events of MIC of 1 or 2 µg/mL, respectively. We propose that the first dose of 15, 11, 10, 8, and 7 mg/kg for eGFRcre >90, 60 to 89, 45 to 59, 30 to 44, and 15 to 29 mL/min/1.73 m2 be followed by therapeutic drug monitoring at peak and 24 hours after the first dose. IMPLICATIONS This study suggests that TOB use encourages the replacement of trough- and peak-targeted dosing with AUC-guided dosing.
Collapse
Affiliation(s)
- Yumi Hashiguchi
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Naoya Matsumoto
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutaka Oda
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan; Department of Infection Control, Kumamoto University Hospital, Kumamoto, Japan.
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan; Department of Infection Control, Kumamoto University Hospital, Kumamoto, Japan
| | - Hideyuki Saito
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan; Department of Infection Control, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
8
|
Pseudomonas aeruginosa and the Complement System: A Review of the Evasion Strategies. Microorganisms 2023; 11:microorganisms11030664. [PMID: 36985237 PMCID: PMC10056308 DOI: 10.3390/microorganisms11030664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The increasing emergence of multidrug resistant isolates of P. aeruginosa causes major problems in hospitals worldwide. This concern is particularly significant in bloodstream infections that progress rapidly, with a high number of deaths within the first hours and without time to select the most appropriate treatment. In fact, despite improvements in antimicrobial therapy and hospital care, P. aeruginosa bacteremia remains fatal in about 30% of cases. The complement system is a main defensive mechanism in blood against this pathogen. This system can mark bacteria for phagocytosis or directly lyse it via the insertion of a membrane attack complex in the bacterial membrane. P. aeruginosa exploits different strategies to resist complement attack. In this review for the special issue on “bacterial pathogens associated with bacteriemia”, we present an overview of the interactions between P. aeruginosa and the complement components and strategies used by this pathogen to prevent recognition and killing by the complement system. A thorough understanding of these interactions will be critical in order to develop drugs to counteract bacterial evasion mechanisms.
Collapse
|
9
|
Belanger CR, Dostert M, Blimkie TM, Lee AHY, Dhillon BK, Wu BC, Akhoundsadegh N, Rahanjam N, Castillo-Arnemann J, Falsafi R, Pletzer D, Haney CH, Hancock REW. Surviving the host: Microbial metabolic genes required for growth of Pseudomonas aeruginosa in physiologically-relevant conditions. Front Microbiol 2022; 13:1055512. [PMID: 36504765 PMCID: PMC9732424 DOI: 10.3389/fmicb.2022.1055512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa, like other pathogens, adapts to the limiting nutritional environment of the host by altering patterns of gene expression and utilizing alternative pathways required for survival. Understanding the genes essential for survival in the host gives insight into pathways that this organism requires during infection and has the potential to identify better ways to treat infections. Here, we used a saturated transposon insertion mutant pool of P. aeruginosa strain PAO1 and transposon insertion sequencing (Tn-Seq), to identify genes conditionally important for survival under conditions mimicking the environment of a nosocomial infection. Conditions tested included tissue culture medium with and without human serum, a murine abscess model, and a human skin organoid model. Genes known to be upregulated during infections, as well as those involved in nucleotide metabolism, and cobalamin (vitamin B12) biosynthesis, etc., were required for survival in vivo- and in host mimicking conditions, but not in nutrient rich lab medium, Mueller Hinton broth (MHB). Correspondingly, mutants in genes encoding proteins of nucleotide and cobalamin metabolism pathways were shown to have growth defects under physiologically-relevant media conditions, in vivo, and in vivo-like models, and were downregulated in expression under these conditions, when compared to MHB. This study provides evidence for the relevance of studying P. aeruginosa fitness in physiologically-relevant host mimicking conditions and identified metabolic pathways that represent potential novel targets for alternative therapies.
Collapse
Affiliation(s)
- Corrie R. Belanger
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Dostert
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Travis M. Blimkie
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Bhavjinder Kaur Dhillon
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Bing Catherine Wu
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Akhoundsadegh
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Negin Rahanjam
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Javier Castillo-Arnemann
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cara H. Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Robert E. W. Hancock,
| |
Collapse
|
10
|
Bharadwaj A, Rastogi A, Pandey S, Gupta S, Sohal JS. Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5419874. [PMID: 36105930 PMCID: PMC9467707 DOI: 10.1155/2022/5419874] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
In the present scenario, resistance to antibiotics is one of the crucial issues related to public health. Earlier, such resistance to antibiotics was limited to nosocomial infections, but it has now become a common phenomenon. Several factors, like extensive development, overexploitation of antibiotics, excessive application of broad-spectrum drugs, and a shortage of target-oriented antimicrobial drugs, could be attributed to this condition. Nowadays, there is a rise in the occurrence of these drug-resistant pathogens due to the availability of a small number of effective antimicrobial agents. It has been estimated that if new novel drugs are not discovered or formulated, there would be no effective antibiotic available to treat these deadly resistant pathogens by 2050. For this reason, we have to look for the formulation of some new novel drugs or other options or substitutes to treat such multidrug-resistant microorganisms (MDR). The current review focuses on the evolution of the most common multidrug-resistant bacteria and discusses how these bacteria escape the effects of targeted antibiotics and become multidrug resistant. In addition, we also discuss some alternative mechanisms to prevent their infection as well.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Amisha Rastogi
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Swadha Pandey
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Jagdip Singh Sohal
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| |
Collapse
|
11
|
Mateu-Borrás M, Zamorano L, González-Alsina A, Sánchez-Diener I, Doménech-Sánchez A, Oliver A, Albertí S. Molecular Analysis of the Contribution of Alkaline Protease A and Elastase B to the Virulence of Pseudomonas aeruginosa Bloodstream Infections. Front Cell Infect Microbiol 2022; 11:816356. [PMID: 35145924 PMCID: PMC8823171 DOI: 10.3389/fcimb.2021.816356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial bloodstream infections. This microorganism secretes two major proteases, alkaline protease A (AprA) and elastase B (LasB). Despite several in vitro studies having demonstrated that both purified proteases cleave a number of components of the immune system, their contribution to P. aeruginosa bloodstream infections in vivo remains poorly investigated. In this study, we used a set of isogenic mutants deficient in AprA, LasB or both to demonstrate that these exoproteases are sufficient to cleave the complement component C3, either soluble or deposited on the bacteria. Nonetheless, exoprotease-deficient mutants were as virulent as the wild-type strain in a murine model of systemic infection, in Caenorhabditis elegans and in Galleria mellonella. Consistently, the effect of the exoproteases on the opsonization of P. aeruginosa by C3 became evident four hours after the initial interaction of the complement with the microorganism and was not crucial to survival in blood. These results indicate that exoproteases AprA and LasB, although conferring the capacity to cleave C3, are not essential for the virulence of P. aeruginosa bloodstream infections.
Collapse
Affiliation(s)
- Margalida Mateu-Borrás
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Laura Zamorano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- Unidad de Investigación, Hospital Son Espases, Palma de Mallorca, Spain
| | - Alex González-Alsina
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Irina Sánchez-Diener
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- Unidad de Investigación, Hospital Son Espases, Palma de Mallorca, Spain
| | - Antonio Doménech-Sánchez
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- Unidad de Investigación, Hospital Son Espases, Palma de Mallorca, Spain
- Servicio de Microbiología, Hospital Son Espases, Palma de Mallorca, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
- *Correspondence: Sebastián Albertí,
| |
Collapse
|
12
|
Teelucksingh K, Shaw E. Clinical characteristics, appropriateness of empiric antibiotic therapy, and outcome of Pseudomonas aeruginosa bacteremia across multiple community hospitals. Eur J Clin Microbiol Infect Dis 2021; 41:53-62. [PMID: 34462815 DOI: 10.1007/s10096-021-04342-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
There is relatively little contemporary information regarding clinical characteristics of patients with Pseudomonas aeruginosa bacteremia (PAB) in the community hospital setting. This was a retrospective, observational cohort study examining the clinical characteristics of patients with PAB across several community hospitals in the USA with a focus on the appropriateness of initial empirical therapy and impact on patient outcomes. Cases of PAB occurring between 2016 and 2019 were pulled from 8 community medical centers. Patients were classified as having either positive or negative outcome at hospital discharge. Several variables including receipt of active empiric therapy (AET) and the time to receiving AET were collected. Variables with a p value of < 0.05 in univariate analyses were included in a multivariable logistic regression model. Two hundred and eleven episodes of PAB were included in the analysis. AET was given to 81.5% of patients and there was no difference in regard to outcome (p = 0.62). There was no difference in the median time to AET in patients with a positive or negative outcome (p = 0.53). After controlling for other variables, age, Pitt bacteremia score ≥ 4, and septic shock were independently associated with a negative outcome. A high proportion of patients received timely, active antimicrobial therapy for PAB and time to AET did not have a significant impact on patient outcome.
Collapse
Affiliation(s)
- Keith Teelucksingh
- HealthTrust Supply Chain, South Atlantic Division, Charleston, USA
- , 900 Island Park Drive, Suite 290, Charleston, 29492, USA
| | - Eric Shaw
- Mercer University School of Medicine, Memorial Health University Medical Center, Savannah, USA
| |
Collapse
|
13
|
Six A, Mosbahi K, Barge M, Kleanthous C, Evans T, Walker D. Pyocin efficacy in a murine model of Pseudomonas aeruginosa sepsis. J Antimicrob Chemother 2021; 76:2317-2324. [PMID: 34142136 PMCID: PMC8361349 DOI: 10.1093/jac/dkab199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Bloodstream infections with antibiotic-resistant Pseudomonas aeruginosa are common and increasingly difficult to treat. Pyocins are naturally occurring protein antibiotics produced by P. aeruginosa that have potential for human use. OBJECTIVES To determine if pyocin treatment is effective in a murine model of sepsis with P. aeruginosa. METHODS Recombinant pyocins S5 and AP41 were purified and tested for efficacy in a Galleria mellonella infection model and a murine model of P. aeruginosa sepsis. RESULTS Both pyocins produced no adverse effects when injected alone into mice and showed good in vitro antipseudomonal activity. In an invertebrate model of sepsis using G. mellonella, both pyocins significantly prolonged survival from 1/10 (10%) survival in controls to 80%-100% survival among groups of 10 pyocin-treated larvae. Following injection into mice, both showed extensive distribution into different organs. When administered 5 h after infection, pyocin S5 significantly increased survival from 33% (2/6) to 83% (5/6) in a murine model of sepsis (difference significant by log-rank test, P < 0.05). CONCLUSIONS Pyocins S5 and AP41 show in vivo biological activity and can improve survival in two models of P. aeruginosa infection. They hold promise as novel antimicrobial agents for treatment of MDR infections with this microbe.
Collapse
Affiliation(s)
- Anne Six
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Khedidja Mosbahi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Madhuri Barge
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Thomas Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
14
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
15
|
Pont S, Fraikin N, Caspar Y, Van Melderen L, Attrée I, Cretin F. Bacterial behavior in human blood reveals complement evaders with some persister-like features. PLoS Pathog 2020; 16:e1008893. [PMID: 33326490 PMCID: PMC7773416 DOI: 10.1371/journal.ppat.1008893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/30/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial bloodstream infections (BSI) are a major health concern and can cause up to 40% mortality. Pseudomonas aeruginosa BSI is often of nosocomial origin and is associated with a particularly poor prognosis. The mechanism of bacterial persistence in blood is still largely unknown. Here, we analyzed the behavior of a cohort of clinical and laboratory Pseudomonas aeruginosa strains in human blood. In this specific environment, complement was the main defensive mechanism, acting either by direct bacterial lysis or by opsonophagocytosis, which required recognition by immune cells. We found highly variable survival rates for different strains in blood, whatever their origin, serotype, or the nature of their secreted toxins (ExoS, ExoU or ExlA) and despite their detection by immune cells. We identified and characterized a complement-tolerant subpopulation of bacterial cells that we named “evaders”. Evaders shared some features with bacterial persisters, which tolerate antibiotic treatment. Notably, in bi-phasic killing curves, the evaders represented 0.1–0.001% of the initial bacterial load and displayed transient tolerance. However, the evaders are not dormant and require active metabolism to persist in blood. We detected the evaders for five other major human pathogens: Acinetobacter baumannii, Burkholderia multivorans, enteroaggregative Escherichia coli, Klebsiella pneumoniae, and Yersinia enterocolitica. Thus, the evaders could allow the pathogen to persist within the bloodstream, and may be the cause of fatal bacteremia or dissemination, in particular in the absence of effective antibiotic treatments. Blood infections by antibiotic resistant bacteria, notably Pseudomonas aeruginosa, are major concerns in hospital settings. The complex interplay between P. aeruginosa and the innate immune system in the context of human blood is still poorly understood. By studying the behavior of various P. aeruginosa strains in human whole blood and plasma, we showed that bacterial strains display different rate of tolerance to the complement system. Despite the complement microbicide activity, most bacteria withstand elimination through phenotypic heterogeneity creating a tiny (<0.1%) subpopulation of transiently tolerant evaders able to persist in plasma. This phenotypic heterogeneity thus prevents total elimination of the pathogen from the circulation, and represents a new strategy to disseminate within the organism.
Collapse
Affiliation(s)
- Stéphane Pont
- Université Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses team, CNRS ERL5261, CEA IRIG-BCI, INSERM UMR1036, Grenoble, France
| | - Nathan Fraikin
- Université Libre de Bruxelles, Department of Molecular Biology, Cellular & Molecular Microbiology, Gosselies, Belgium
| | - Yvan Caspar
- Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de bactériologie-hygiène hospitalière, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Laurence Van Melderen
- Université Libre de Bruxelles, Department of Molecular Biology, Cellular & Molecular Microbiology, Gosselies, Belgium
| | - Ina Attrée
- Université Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses team, CNRS ERL5261, CEA IRIG-BCI, INSERM UMR1036, Grenoble, France
- * E-mail: (FC); (IA)
| | - François Cretin
- Université Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses team, CNRS ERL5261, CEA IRIG-BCI, INSERM UMR1036, Grenoble, France
- * E-mail: (FC); (IA)
| |
Collapse
|
16
|
Identification of novel targets of azithromycin activity against Pseudomonas aeruginosa grown in physiologically relevant media. Proc Natl Acad Sci U S A 2020; 117:33519-33529. [PMID: 33318204 DOI: 10.1073/pnas.2007626117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa causes severe multidrug-resistant infections that often lead to bacteremia and sepsis. Physiologically relevant conditions can increase the susceptibility of pathogens to antibiotics, such as azithromycin (AZM). When compared to minimal-inhibitory concentrations (MICs) in laboratory media, AZM had a 16-fold lower MIC in tissue culture medium with 5% Mueller Hinton broth (MHB) and a 64-fold lower MIC in this tissue culture medium with 20% human serum. AZM also demonstrated increased synergy in combination with synthetic host-defense peptides DJK-5 and IDR-1018 under host-like conditions and in a murine abscess model. To mechanistically study the altered effects of AZM under physiologically relevant conditions, global transcriptional analysis was performed on P. aeruginosa with and without effective concentrations of AZM. This revealed that the arn operon, mediating arabinosaminylation of lipopolysaccharides and related regulatory systems, was down-regulated in host-like media when compared to MHB. Inactivation of genes within the arn operon led to increased susceptibility of P. aeruginosa to AZM and great increases in synergy between AZM and other antimicrobial agents, indicating that dysregulation of the arn operon might explain increased AZM uptake and synergy in host-like media. Furthermore, genes involved in central and energy metabolism and ribosome biogenesis were dysregulated more in physiologically relevant conditions treated with AZM, likely due to general changes in cell physiology as a result of the increased effectiveness of AZM in these conditions. These data suggest that, in addition to the arn operon, there are multiple factors in host-like environments that are responsible for observed changes in susceptibility.
Collapse
|
17
|
Zhang Y, Li Y, Zeng J, Chang Y, Han S, Zhao J, Fan Y, Xiong Z, Zou X, Wang C, Li B, Li H, Han J, Liu X, Xia Y, Lu B, Cao B. Risk Factors for Mortality of Inpatients with Pseudomonas aeruginosa Bacteremia in China: Impact of Resistance Profile in the Mortality. Infect Drug Resist 2020; 13:4115-4123. [PMID: 33209041 PMCID: PMC7669529 DOI: 10.2147/idr.s268744] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Pseudomonas aeruginosa bacteremia presents a severe challenge to hospitalized patients. However, to date, the risk factors for mortality among inpatients with P. aeruginosa bacteremia in China remain unclear. Patients and Methods This retrospective multicenter study was performed to analyze 215 patients with culture-confirmed P. aeruginosa bacteremia in five healthcare centers in China during the years 2012–2019. Results Of 215 patients with P. aeruginosa bacteremia, 61 (28.4%) died during the study period. Logistic multivariable analysis revealed that cardiovascular disease (OR=3.978, P=0.001), blood transfusion (OR=5.855, P<0.001) and carbapenem-resistant P. aeruginosa (CRPA) phenotype (OR=4.485, P=0.038) constituted the independent risk factors of mortality. Furthermore, both CRPA and multidrug-resistant P. aeruginosa (MDRPA) phenotypes were found to be significantly associated with 5-day mortality (Log-rank, P<0.05). Conclusion This study revealed a high mortality rate amongst hospitalized patients with P. aeruginosa bacteremia, and those with cardiovascular diseases, CRPA and MDRPA phenotypes, should be highlighted and given appropriate management in China.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Yi Li
- Department of Laboratory Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Ji Zeng
- Department of Laboratory Medicine, Wuhan Pu Ai Hospital of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yanzi Chang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Shouhua Han
- Department of Laboratory Medicine, Weifang No.2 People's Hospital, Weifang, People's Republic of China
| | - Jiankang Zhao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Yanyan Fan
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Zhujia Xiong
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Chunlei Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Binbin Li
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Haibo Li
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Jiajing Han
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xinmeng Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Yudi Xia
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China.,Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, People's Republic of China.,Tsinghua University-Peking University, Joint Center for Life Sciences, Beijing, People's Republic of China
| |
Collapse
|
18
|
Abstract
Multidrug-resistant bacteria are among the most important current threats to public health. Typically, they are associated with nosocomial infections. However, some have become prevalent causes of community-acquired infections, such as Neisseria gonorrhoeae, Shigella, Salmonella, and Streptococcus pneumoniae. The community spread of multidrug-resistant bacteria is also a crucial development. An important global threat on the horizon is represented by production of carbapenemases by community-acquired hypervirulent Klebsiella pneumoniae. Such strains have already been found in Asia, Europe, and North America. Prevention of further community spread of multidrug-resistant bacteria is of the utmost importance, and will require a multidisciplinary approach involving all stakeholders.
Collapse
|
19
|
Curtin AM, Thibodeau MC, Buckley HL. The Best-Practice Organism for Single-Species Studies of Antimicrobial Efficacy against Biofilms Is Pseudomonas aeruginosa. MEMBRANES 2020; 10:E211. [PMID: 32872560 PMCID: PMC7559251 DOI: 10.3390/membranes10090211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
As potable water scarcity increases across the globe; it is imperative to identify energy and cost-effective processes for producing drinking-water from non-traditional sources. One established method is desalination of brackish and seawater via reverse osmosis (RO). However, the buildup of microorganisms at the water-membrane interface, known as biofouling, clogs RO membranes over time, increasing energy requirements and cost. To investigate biofouling mitigation methods, studies tend to focus on single-species biofilms; choice of organism is crucial to producing useful results. To determine a best-practice organism for studying antimicrobial treatment of biofilms, with specific interest in biofouling of RO membranes, we answered the following two questions, each via its own semi-systematic review: 1. Which organisms are commonly used to test antimicrobial efficacy against biofilms on RO membranes? 2. Which organisms are commonly identified via genetic analysis in biofilms on RO membranes? We then critically review the results of two semi-systematic reviews to identify pioneer organisms from the listed species. We focus on pioneer organisms because they initiate biofilm formation, therefore, inhibiting these organisms specifically may limit biofilm formation in the first place. Based on the analysis of the results, we recommend utilizing Pseudomonas aeruginosa for future single-species studies focused on biofilm treatment including, but not limited to, biofouling of RO membranes.
Collapse
Affiliation(s)
| | | | - Heather L. Buckley
- Green Safe Water Lab, Civil Engineering Department, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.M.C.); (M.C.T.)
| |
Collapse
|
20
|
Pawar RD, Shih JA, Balaji L, Grossestreuer AV, Patel PV, Hansen CK, Donnino MW, Moskowitz A. Variation in SOFA (Sequential Organ Failure Assessment) Score Performance in Different Infectious States. J Intensive Care Med 2020; 36:1217-1222. [PMID: 32799718 DOI: 10.1177/0885066620944879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In this study, we investigated whether the Sequential Organ Failure Assessment (SOFA) score performance differs based on the type of infection among patients admitted to the intensive care unit (ICU) with infection. MATERIALS AND METHODS Single-center, retrospective study of adult ICU patients admitted with infection between January 2008 and April 2018 at an urban tertiary care center. Patients were uniquely classified into different infection types based on International Classification of Diseases, Ninth Revision (ICD-9) and ICD-10 codes. Infection types included were pneumonia, meningitis, bacteremia, cellulitis, cholangitis/cholecystitis, intestinal and diarrheal disease, endocarditis, urinary tract infection (UTI), and peritonitis. The SOFA score performance and mortality in relation to SOFA score were compared across infection types. RESULTS A total of 12 283 patients were included. Of these, 50.6% were female and the median age was 70 years (interquartile range: 57-82). The most common infection types were pneumonia (32.2%) and UTI (31.0%). Overall, 1703 (13.9%) patients died prior to hospital discharge. The median baseline SOFA score (within 24 hours of ICU admission) for the cohort was 5 (3-8). Patients with peritonitis had the highest median SOFA score, 7 (4-9), and patients with cellulitis and UTI had the lowest median SOFA score, 4 (2-7). The SOFA score discrimination to predict mortality was highest among patients with endocarditis (area under the receiver operating characteristic [AUC]: 0.79, 95% CI: 0.69-0.90) and lowest for patients with isolated bacteremia (AUC: 0.59, 95% CI: 0.49-0.70). Observed mortality by quartile of SOFA score differed substantially across infection types. CONCLUSIONS Type of infection is an important consideration when interpreting the SOFA score. This is relevant as SOFA emerges as an important tool in the definition and prognostication of sepsis.
Collapse
Affiliation(s)
- Rahul D Pawar
- Department of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jenny A Shih
- Department of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lakshman Balaji
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anne V Grossestreuer
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Parth V Patel
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher K Hansen
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael W Donnino
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ari Moskowitz
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
21
|
Torrens G, Escobar-Salom M, Oliver A, Juan C. Activity of mammalian peptidoglycan-targeting immunity against Pseudomonas aeruginosa. J Med Microbiol 2020; 69:492-504. [PMID: 32427563 DOI: 10.1099/jmm.0.001167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen's biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa. All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
22
|
The aetiology of severe community-acquired pneumonia requiring intensive care unit admission in the Western Cape Province, South Africa. Afr J Thorac Crit Care Med 2020; 26. [PMID: 34240018 PMCID: PMC8203087 DOI: 10.7196/ajtccm.2020.v26i1.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background
Community-acquired pneumonia (CAP) is a common condition, with mortality increasing in patients who require intensive
care unit (ICU) admission. A better understanding of the current aetiology of severe CAP will aid clinicians in requesting appropriate
diagnostic tests and initiating appropriate empiric antimicrobials.
Objectives
To assess the comorbidities, aetiology and mortality associated with severe CAP in a tertiary ICU in Cape Town, South Africa.
Methods
We retrospectively analysed a prospective registry of all adults admitted to the medical intensive care unit at Tygerberg Hospital
with severe CAP over a 1-year period.
Results
We identified 74 patients (mean (SD) age 40.0 (15.5) years; 44 females). The patients had a mean (SD) APACHE II score of
21.4 (7.9), and the mean ICU stay was 6.6 days. Of the 74 patients, 16 (21.6%) died in ICU. Non-survivors had a higher mean (SD) APACHE
II score than survivors (28.3 (6.8) v. 19.4 (7.1); p<0.001). Mycobacterium tuberculosis (n=16; 21.6%) was the single most common agent
identified, followed by Pseudomonas aeruginosa (n=9; 12.2%). All P. aeruginosa isolates were sensitive to first-line treatment. No organism
was identified in 32 patients (43.2%).
Conclusion M. tuberculosis was the single most common agent identified in patients presenting with CAP. The mortality of CAP requiring
invasive ventilation was relatively low, with a strong association between mortality and a higher APACHE II score.
Collapse
|
23
|
Susilowati H, Artanto S, Yulianto HDK, Sosroseno W, Hutomo S. The protective effects of antigen-specific IgY on pyocyanin-treated human lymphoma Raji cells. F1000Res 2020; 8:1008. [PMID: 32025288 PMCID: PMC6971839 DOI: 10.12688/f1000research.19327.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Pyocyanin (PCN), a highly pathogenic pigment produced by
Pseudomonas aeruginosa, induces caspase 3-dependent human B cell (Raji cells) death. The aim of the present study, therefore, was to assess whether antigen-specific IgY antibodies may be protective on PCN-induced Raji cell death. Methods: Chickens were subcutaneously immunized with Freund's complete adjuvant containing PCN, and then given two boosted immunizations. Anti-PCN IgY antibodies were purified from egg yolk and detected using an agar gel precipitation test (AGPT) and ELISA. Protective effects of antigen-specific IgY on Raji cells were tested using a cell viability assay. Results: AGPT results showed the formation of strong immune complex precipitates, whilst ELISA further confirmed the presence of IgY antibodies specific to PCN at significant concentration. Further experiments showed that anti-PCN IgY antibodies significantly increased PCN-treated Raji cell viability in a dose-dependent fashion (p<0.05). Conclusions: The results of the present study suggest that anti-PCN IgY antibodies may be protective on PCN-induced Raji cell death.
Collapse
Affiliation(s)
- Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Sidna Artanto
- Department of Microbiology, Faculty of Veteriner, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heribertus Dedy Kusuma Yulianto
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | | | - Suryani Hutomo
- Department of Microbiology, Faculty of Medicine, Dutawacana Christian University, Yogyakarta, 55225, Indonesia
| |
Collapse
|
24
|
Bachta KER, Allen JP, Cheung BH, Chiu CH, Hauser AR. Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat Commun 2020; 11:543. [PMID: 31992714 PMCID: PMC6987207 DOI: 10.1038/s41467-020-14363-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
Health care-associated infections such as Pseudomonas aeruginosa bacteremia pose a major clinical risk for hospitalized patients. However, these systemic infections are presumed to be a "dead-end" for P. aeruginosa and to have no impact on transmission. Here, we use a mouse infection model to show that P. aeruginosa can spread from the bloodstream to the gallbladder, where it replicates to extremely high numbers. Bacteria in the gallbladder can then seed the intestines and feces, leading to transmission to uninfected cage-mate mice. Our work shows that the gallbladder is crucial for spread of P. aeruginosa from the bloodstream to the feces during bacteremia, a process that promotes transmission in this experimental system. Further research is needed to test to what extent these findings are relevant to infections in patients.
Collapse
Affiliation(s)
- Kelly E R Bachta
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonathan P Allen
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Torrens G, Escobar-Salom M, Pol-Pol E, Camps-Munar C, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Comparative Analysis of Peptidoglycans From Pseudomonas aeruginosa Isolates Recovered From Chronic and Acute Infections. Front Microbiol 2019; 10:1868. [PMID: 31507543 PMCID: PMC6719521 DOI: 10.3389/fmicb.2019.01868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is one of the first causes of acute nosocomial and chronic infections in patients with underlying respiratory pathologies such as cystic fibrosis (CF). It has been proposed that P. aeruginosa accumulates mutations driving to peptidoglycan modifications throughout the development of the CF-associated infection, as a strategy to lower the immune detection hence ameliorating the chronic persistence. As well, some studies dealing with peptidoglycan modifications driving to a better survival within the host have been published in other gram-negatives. According to these facts, the gram-negative peptidoglycan could be considered as a pathogen-associated molecular pattern with very important implications regarding the host’s detection-response, worthy to dissect in detail. For this reason, in this work we characterized for the first time the peptidoglycans of three large collections [early CF, late CF and acute infection (bloodstream) P. aeruginosa strains] from qualitative (HPLC), quantitative and inflammatory capacity-related perspectives. The final goal was to identify composition trends potentially supporting the cited strategy of evasion/resistance to the immune system and providing information regarding the differential intrinsic adaptation depending on the type of infection. Although we found several punctual strain-specific particularities, our results indicated a high degree of inter-collection uniformity in the peptidoglycan-related features and the absence of trends amongst the strains studied here. These results suggest that the peptidoglycan of P. aeruginosa is a notably conserved structure in natural isolates regardless of transitory changes that some external conditions could force. Finally, the inverse correlation between the relative amount of stem pentapeptides within the murein sacculus and the resistance to immune lytic attacks against the peptidoglycan was also suggested by our results. Altogether, this work is a major step ahead to understand the biology of peptidoglycan from P. aeruginosa natural strains, hopefully useful in future for therapeutic alternatives design.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - María Escobar-Salom
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Elisabet Pol-Pol
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Cristina Camps-Munar
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Gabriel Cabot
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Carla López-Causapé
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Carlos Juan
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| |
Collapse
|
26
|
Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria. Antimicrob Agents Chemother 2019; 63:AAC.00342-19. [PMID: 30962344 DOI: 10.1128/aac.00342-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
The prevalence of multidrug-resistant Pseudomonas aeruginosa has stimulated development of alternative therapeutics. Bacteriophage peptidoglycan hydrolases, termed lysins, represent an emerging antimicrobial option for targeting Gram-positive bacteria. However, lysins against Gram-negatives are generally deterred by the outer membrane and their inability to work in serum. One solution involves exploiting evolved delivery systems used by colicin-like bacteriocins (e.g., S-type pyocins of P. aeruginosa) to translocate through the outer membrane. Following surface receptor binding, colicin-like bacteriocins form Tol- or TonB-dependent translocons to actively import bactericidal domains through outer membrane protein channels. With this understanding, we developed lysocins, which are bioengineered lysin-bacteriocin fusion molecules capable of periplasmic import. In our proof-of-concept studies, components from the P. aeruginosa bacteriocin pyocin S2 (PyS2) responsible for surface receptor binding and outer membrane translocation were fused to the GN4 lysin to generate the PyS2-GN4 lysocin. PyS2-GN4 delivered the GN4 lysin to the periplasm to induce peptidoglycan cleavage and log-fold killing of P. aeruginosa with minimal endotoxin release. While displaying narrow-spectrum antipseudomonal activity in human serum, PyS2-GN4 also efficiently disrupted biofilms, outperformed standard-of-care antibiotics, exhibited no cytotoxicity toward eukaryotic cells, and protected mice from P. aeruginosa challenge in a bacteremia model. In addition to targeting P. aeruginosa, lysocins can be constructed to target other prominent Gram-negative bacterial pathogens.
Collapse
|
27
|
Balkhair A, Al-Muharrmi Z, Al'Adawi B, Al Busaidi I, Taher HB, Al-Siyabi T, Al Amin M, Hassan KS. Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteraemia caused by Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae: Description of a decade-long trend. Int J Infect Dis 2019; 85:10-15. [PMID: 31100418 DOI: 10.1016/j.ijid.2019.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bacteraemia due to carbapenem-resistant gram-negative bacteria is challenging. This study examined the burden of carbapenem and colistin resistance in Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii bacteraemia in Oman. METHODS Adult patients admitted to Sultan Qaboos University Hospital between January 1, 2007 and December 31, 2016 with positive blood cultures for P. aeruginosa, A. baumannii, or K. pneumoniae were identified. Rates of carbapenem resistance, trends in prevalence, and 30-day all-cause mortality were examined. RESULTS Two hundred and twenty-seven (29.8%) of 761 bacteraemia cases due to these three isolates were carbapenem-resistant, with 87.2% being healthcare-associated. A. baumannii caused 52% of all carbapenem-resistant bacteraemia, K. pneumoniae caused 30%, and P. aeruginosa caused 18%. Rates of carbapenem resistance in P. aeruginosa, A. baumannii, and K. pneumoniae bacteraemia increased from 20%, 67%, and 0%, respectively, in 2007 to 25%, 86%, and 35%, respectively, in 2016. Seventeen (7.9%) carbapenem-resistant bacteraemia cases were also colistin-resistant. Thirty-day all-cause mortality was 62% in patients with carbapenem-resistant bacteraemia and 22% in patients with carbapenem-sensitive bacteraemia. CONCLUSIONS The prevalence of carbapenem-resistant K. pneumoniae, A. baumannii, and P. aeruginosa bacteraemia is increasing alarmingly in Oman, with a large proportion of K. pneumoniae and P. aeruginosa demonstrating additional resistance to colistin. Patients with carbapenem-resistant bacteraemia had higher 30-day all-cause mortality.
Collapse
Affiliation(s)
- A Balkhair
- Department of Medicine, Infectious Diseases Unit, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Z Al-Muharrmi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - B Al'Adawi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - I Al Busaidi
- Department of Medicine, Infectious Diseases Unit, Sultan Qaboos University Hospital, Muscat, Oman
| | - H B Taher
- Department of Medicine, Infectious Diseases Unit, Sultan Qaboos University Hospital, Muscat, Oman
| | - T Al-Siyabi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - M Al Amin
- Department of Medicine, Infectious Diseases Unit, Sultan Qaboos University Hospital, Muscat, Oman
| | - K S Hassan
- Department of Medicine, Infectious Diseases Unit, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
28
|
Phase 1 study of MEDI3902, an investigational anti–Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect 2019; 25:629.e1-629.e6. [DOI: 10.1016/j.cmi.2018.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022]
|
29
|
Rojas A, Palacios-Baena ZR, López-Cortés LE, Rodríguez-Baño J. Rates, predictors and mortality of community-onset bloodstream infections due to Pseudomonas aeruginosa: systematic review and meta-analysis. Clin Microbiol Infect 2019; 25:964-970. [PMID: 30995530 DOI: 10.1016/j.cmi.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is mostly a nosocomial pathogen affecting predisposed patients. However, community-onset bloodstream infections (CO-BSI) caused by this organism are not exceptional. OBJECTIVES To assess the predisposing factors for CO-BSI due to P. aeruginosa (CO-BSI-PA) and the impact in mortality of inappropriate empirical antimicrobial therapy. DATA SOURCE A systematic literature search was performed in the Medline, Embase, Cochrane Library, Scopus and Web of Science databases. Study eligibility criteria and participants: Articles published between 1 January 2002 and 31 January 2018 reporting at least of 20 adult patients with CO-BSI due to P. aeruginosa were considered. INTERVENTION Empiric antimicrobial therapy for CO-BSI-PA. METHODS A systematic review and a meta-analysis were conducted for risk factors and to evaluate if inappropriate empiric antimicrobial therapy increased mortality in CO-BSI-PA using a Mantel-Haenszel effects model. RESULTS Twelve studies assessing data of 1120 patients were included in the systematic review. Solid tumour (33.1%), haematologic malignancy (26.4%), neutropenia (31.7%) and previous antibiotic use (44.8%) were the most prevalent predisposing factors. Septic shock was present in 42.3% of cases, and 30-day crude mortality was 33.8%. Mortality in meta-analysis (four studies) was associated with septic shock at presentation (odds ratio, 22.31; 95% confidence interval, 3.52-141.35; p 0.001) and with inappropriate empiric antibiotic therapy (odds ratio, 1.83; 95% confidence interval, 1.12-2.98l p 0.02). CONCLUSIONS CO-BSI-PA mostly occurred in patients with predisposing factors and had a 30-day mortality comparable to hospital-acquired cases. Inappropriate empirical antibiotic therapy was associated with increased mortality. Appropriate identification of patients at risk for CO-BSI-PA is needed for empirical treatment decisions.
Collapse
Affiliation(s)
- A Rojas
- Departamento de Enfermedades Infecciosas del Adulto, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Z R Palacios-Baena
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - L E López-Cortés
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain.
| | - J Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| |
Collapse
|
30
|
Li H, Luo YF, Wang YS, Xiao YL, Cai HR, Xie CM. Pseudomonas aeruginosa induces cellular senescence in lung tissue at the early stage of two-hit septic mice. Pathog Dis 2018; 76:5289408. [PMID: 30649401 DOI: 10.1093/femspd/ftz001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
We presume that severe secondary Pseudomonas aeruginosa (PA) infection can lead to cellular senescence in lung tissue and thus contribute to high mortality. We established a two-hit mouse model using cecal ligation and puncture (CLP) followed by sublethal PA lung infection. In lung tissue, increased infiltration of inflammatory cells, elevated lung injury and augmented cellular senescence was shown in mice with CLP followed by sublethal PA infection, and these observations reached a higher rank when higher (H) loads PA (PAO1) were administered to CLP mice (CLP + PAO1-H). Accordingly, oxidative stress-related element gp91phox and inflammation regulator NF-κB were greatly activated in CLP + PAO1-H mice compared to others. There was no obvious inflammation or cellular senescence in sham control, PAO1-infected mice. Consequently, CLP + PAO1-H mice had the highest expression levels of inflammatory cytokines IL-6, TNFα and iNOS among those groups. There was lower bacterial clearance ability in CLP + PAO1-H mice than in other mice. CLP + PAO1-H only had approximately 10% survival after 7 days of investigation and was much lower than others. In conclusion, higher mortality due to increased lung inflammation and cellular senescence are observed in mice with increased loads of PA infection secondary to CLP.
Collapse
Affiliation(s)
- Hui Li
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yi-Feng Luo
- Department of Respiratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong-Sheng Wang
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yong-Long Xiao
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Hou-Rong Cai
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Can-Mao Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Hickey C, Schaible B, Nguyen S, Hurley D, Srikumar S, Fanning S, Brown E, Crifo B, Matallanas D, McClean S, Taylor CT, Schaffer K. Increased Virulence of Bloodstream Over Peripheral Isolates of P. aeruginosa Identified Through Post-transcriptional Regulation of Virulence Factors. Front Cell Infect Microbiol 2018; 8:357. [PMID: 30416988 PMCID: PMC6212473 DOI: 10.3389/fcimb.2018.00357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
The factors influencing the virulence of P. aeruginosa in the development of invasive infection remain poorly understood. Here, we investigated the role of the host microenvironment in shaping pathogen virulence and investigated the mechanisms involved. Comparing seven paired genetically indistinguishable clinical bloodstream and peripheral isolates of P. aeruginosa, we demonstrate that isolates derived from bloodstream infections are more virulent than their peripheral counterparts (p = 0.025). Bloodstream and peripheral isolates elicited similar NF-kB responses in a THP-1 monocyte NF-kappaB reporter cell line implicating similar immunogenicity. Proteomic analysis by mass spectrometry identified multiple virulence and virulence-related factors including LecA and RpoN in significantly greater abundance in the bacterial supernatant from the bloodstream isolate in comparison to that from the corresponding peripheral isolate. Investigation by qPCR revealed that control of expression of these virulence factors was not due to altered levels of transcription. Based on these data, we hypothesize a post-transcriptional mechanism of virulence regulation in P. aeruginosa bloodstream infections influenced by surrounding microenvironmental conditions.
Collapse
Affiliation(s)
| | | | - Scott Nguyen
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
| | - Daniel Hurley
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
| | - Shabarinath Srikumar
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
| | - Eric Brown
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Bianca Crifo
- Conway Institute, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Siobhán McClean
- Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- Conway Institute, University College Dublin, Dublin, Ireland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Kirsten Schaffer
- School of Medicine, University College Dublin, Dublin, Ireland.,Department of Clinical Microbiology, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
32
|
Bacteraemia due to extensively drug-resistant Pseudomonas aeruginosa sequence type 235 high-risk clone: Facing the perfect storm. Int J Antimicrob Agents 2018; 52:172-179. [DOI: 10.1016/j.ijantimicag.2018.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
|
33
|
Callejas-Díaz A, Fernández-Pérez C, Ramos-Martínez A, Múñez-Rubio E, Sánchez-Romero I, Vargas Núñez JA. Impact of Pseudomonas aeruginosa bacteraemia in a tertiary hospital: Mortality and prognostic factors. Med Clin (Barc) 2018; 152:83-89. [PMID: 29885868 DOI: 10.1016/j.medcli.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Pseudomonas aeruginosa bacteraemia is associated with a very high mortality, conditioned by comorbidity, source, severity of the episode and lack of adequate treatment. The aim of the study is to know the mortality and prognostic factors of bacteraemia by P.aeruginosa in our hospital. PATIENTS AND METHODS We conducted a retrospective study of P.aeruginosa bacteraemia detected between 2009 and 2014. Epidemiological, clinical and microbiological characteristics were described. A risk factor analysis for mortality was performed. RESULTS We analysed 110 episodes of bacteraemia, which was more frequent in men of advanced age and with a history of hospitalisation, comorbidity and immunosuppression. Most of the bacteraemias were secondary (mainly of respiratory or urinary source) and led to a significant clinical deterioration. The presence of antibiotic resistance was very high, with 27.3% of multiresistant strains. Empirical treatment was adequate in 60.0% and 92.3% for definite treatment. Overall mortality was 37.3% and attributable mortality was 29.1%. The most important prognostic factors were Charlson index ≥3, history of haematologic malignancy, neutropenia and previous use of corticosteroids, source of bacteraemia, Pitt index ≥4, renal insufficiency, adequate definite treatment, empiric treatment with piperacillin/tazobactam in severe episodes and focus control. CONCLUSION P.aeruginosa bacteraemia is associated with a very high mortality, possibly more related to previous comorbidity and severity of the episode than to the treatment chosen. However, the main goal in management remains to optimise treatment, including focus control.
Collapse
Affiliation(s)
- Alejandro Callejas-Díaz
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España; Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España.
| | | | - Antonio Ramos-Martínez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España; Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, España
| | - Elena Múñez-Rubio
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España; Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España
| | - Isabel Sánchez-Romero
- Servicio de Microbiología, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España
| | - Juan Antonio Vargas Núñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, España; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
34
|
Appaneal HJ, Caffrey AR, Jiang L, Dosa D, Mermel LA, LaPlante KL. Antibiotic resistance rates for Pseudomonas aeruginosa clinical respiratory and bloodstream isolates among the Veterans Affairs Healthcare System from 2009 to 2013. Diagn Microbiol Infect Dis 2017; 90:311-315. [PMID: 29310949 DOI: 10.1016/j.diagmicrobio.2017.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a major cause of healthcare-associated infections and resistance among isolates is an increasing burden. The study purpose was to describe national resistance rates for clinical P. aeruginosa respiratory and bloodstream cultures and the prevalence of multidrug-resistant (MDR) P. aeruginosa within the Veterans Affairs (VA). MDR was defined as non-susceptibility to at least one drug in at least 3 of the following 5 categories: carbapenems, extended-spectrum cephalosporins, aminoglycosides, and piperacillin/tazobactam. We reviewed 24,562 P. aeruginosa respiratory and bloodstream isolates across 126 VA facilities between 2009 and 2013. Most isolates were collected from inpatient settings (82%). Resistance was highest in fluoroquinolones (33%) and exceeded 20% for all classes assessed (carbapenems, extended-spectrum cephalosporins, aminoglycosides, and piperacillin/tazobactam). Resistance was higher in inpatient settings and in respiratory isolates. Prevalence of MDR was 20% overall (22% for inpatient isolates, 11% outpatient, 21% respiratory, 17% bloodstream). Our findings are consistent with previous surveillance reports.
Collapse
Affiliation(s)
- Haley J Appaneal
- Veterans Affairs Medical Center, Rhode Island Infectious Diseases Research Program, Providence, RI; University of Rhode Island, Department of Pharmacy Practice, College of Pharmacy, Kingston, RI; Veterans Affairs Medical Center, Center of Innovation in Long Term Services and Supports, Providence, RI.
| | - Aisling R Caffrey
- Veterans Affairs Medical Center, Rhode Island Infectious Diseases Research Program, Providence, RI; University of Rhode Island, Department of Pharmacy Practice, College of Pharmacy, Kingston, RI; Veterans Affairs Medical Center, Center of Innovation in Long Term Services and Supports, Providence, RI; Brown University School of Public Health, Providence, RI
| | - Lan Jiang
- Veterans Affairs Medical Center, Center of Innovation in Long Term Services and Supports, Providence, RI
| | - David Dosa
- Veterans Affairs Medical Center, Center of Innovation in Long Term Services and Supports, Providence, RI; Center for Gerontology and HealthCare Research, Brown University School of Public Health, Providence, RI
| | - Leonard A Mermel
- University of Rhode Island, Department of Pharmacy Practice, College of Pharmacy, Kingston, RI; Department of Epidemiology and Infection Control, Rhode Island Hospital, Providence, RI; Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, RI
| | - Kerry L LaPlante
- Veterans Affairs Medical Center, Rhode Island Infectious Diseases Research Program, Providence, RI; University of Rhode Island, Department of Pharmacy Practice, College of Pharmacy, Kingston, RI; Veterans Affairs Medical Center, Center of Innovation in Long Term Services and Supports, Providence, RI; Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, RI
| |
Collapse
|
35
|
John TJ, Lalla U, Taljaard JJ, John KG, Slabbert J, Koegelenberg CFN. An outbreak of community-acquired pseudomonas aeruginosa pneumonia in a setting of high water stress. QJM 2017; 110:855-856. [PMID: 29025050 DOI: 10.1093/qjmed/hcx148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- T-J John
- From the Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Academic Hospital, PO Box 241, Cape Town, 8000
| | - U Lalla
- From the Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Academic Hospital, PO Box 241, Cape Town, 8000
| | - J J Taljaard
- Division of Infectious Diseases, Department of Medicine, Stellenbosch University & Tygerberg Academic Hospital, PO Box 241, Cape Town, 8000
| | - K G John
- From the Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Academic Hospital, PO Box 241, Cape Town, 8000
| | - J Slabbert
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University & Tygerberg Academic Hospital, PO Box 241, Cape Town, 8000, South Africa
| | - C F N Koegelenberg
- From the Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Academic Hospital, PO Box 241, Cape Town, 8000
| |
Collapse
|
36
|
van Duin D, Paterson DL. Multidrug-Resistant Bacteria in the Community: Trends and Lessons Learned. Infect Dis Clin North Am 2017; 30:377-390. [PMID: 27208764 DOI: 10.1016/j.idc.2016.02.004] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multidrug resistant (MDR) bacteria are one of the most important threats to public health. Typically, MDR bacteria are associated with nosocomial infections. However, some MDR bacteria have become prevalent causes of community-acquired infections. The spread of MDR bacteria into the community is a crucial development, and is associated with increased morbidity, mortality, health care costs, and antibiotic use. Factors associated with community dissemination of MDR bacteria overlap but are distinct from those associated with nosocomial spread. Prevention of further community spread of MDR bacteria is of the utmost importance, and requires a multidisciplinary approach involving all stakeholders.
Collapse
Affiliation(s)
- David van Duin
- Division of Infectious Diseases, University of North Carolina, CB 7030, 130 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - David L Paterson
- The University of Queensland, Building 71/918 RBWH, Herston, QLD 4029, Australia
| |
Collapse
|
37
|
Juan C, Peña C, Oliver A. Host and Pathogen Biomarkers for Severe Pseudomonas aeruginosa Infections. J Infect Dis 2017; 215:S44-S51. [PMID: 28375513 DOI: 10.1093/infdis/jiw299] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa is among the leading causes of severe nosocomial infections, particularly affecting critically ill and immunocompromised patients. Here we review the current knowledge on the factors underlying the outcome of P. aeruginosa nosocomial infections, including aspects related to the pathogen, the host, and treatment. Intestinal colonization and previous use of antibiotics are key risk factors for P. aeruginosa infections, whereas underlying disease, source of infection, and severity of acute presentation are key host factors modulating outcome; delayed adequate antimicrobial therapy is also independently associated with increased mortality. Among pathogen-related factors influencing the outcome of P. aeruginosa infections, antibiotic resistance, and particularly multidrug-resistant profiles, is certainly of paramount relevance, given its obvious effect on the chances of appropriate empirical therapy. However, the direct impact of antibiotic resistance in the severity and outcomes of P. aeruginosa infections is not yet well established. The interplay between antibiotic resistance, virulence, and the concerning international high-risk clones (such as ST111, ST175, and ST235) still needs to be further analyzed. On the other hand, differential presence or expression of virulence factors has been shown to significantly impact disease severity and mortality. The likely more deeply studied P. aeruginosa virulence determinant is the type III secretion system (T3SS); the production of T3SS cytotoxins, and particularly ExoU, has been well established to determine a worse outcome both in respiratory and bloodstream infections. Other relevant pathogen-related biomarkers of severe infections include the involvement of specific clones or O-antigen serotypes, the presence of certain horizontally acquired genomic islands, or the expression of other virulence traits, such as the elastase. Finally, recent data suggest that host genetic factors may also modulate the severity of P. aeruginosa infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, and
| | - Carmen Peña
- Servicio de Medicina Interna, Hospital Virgen de los Lirios, Alcoy, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, and
| |
Collapse
|
38
|
Long-term mortality following Pseudomonas aeruginosa bloodstream infection. J Hosp Infect 2017; 95:292-299. [DOI: 10.1016/j.jhin.2016.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/24/2016] [Indexed: 11/23/2022]
|
39
|
Polisetti S, Baig NF, Morales-Soto N, Shrout JD, Bohn PW. Spatial Mapping of Pyocyanin in Pseudomonas Aeruginosa Bacterial Communities Using Surface Enhanced Raman Scattering. APPLIED SPECTROSCOPY 2017; 71:215-223. [PMID: 27354400 PMCID: PMC5475280 DOI: 10.1177/0003702816654167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) imaging was used in conjunction with principal component analysis (PCA) for the in situ spatiotemporal mapping of the virulence factor pyocyanin in communities of the pathogenic bacterium Pseudomonas aeruginosa. The combination of SERS imaging and PCA analysis provides a robust method for the characterization of heterogeneous biological systems while circumventing issues associated with interference from sample autofluorescence and low reproducibility of SERS signals. The production of pyocyanin is found to depend both on the growth carbon source and on the specific strain of P. aeruginosa studied. A cystic fibrosis lung isolate strain of P. aeruginosa synthesizes and secretes pyocyanin when grown with glucose and glutamate, while the laboratory strain exhibits detectable production of pyocyanin only when grown with glutamate as the source of carbon. Pyocyanin production in the laboratory strain grown with glucose was below the limit of detection of SERS. In addition, the combination of SERS imaging and PCA can elucidate subtle differences in the molecular composition of biofilms. PCA loading plots from the clinical isolate exhibit features corresponding to vibrational bands of carbohydrates, which represent the mucoid biofilm matrix specific to that isolate, features that are not seen in the PCA loading plots of the laboratory strain.
Collapse
Affiliation(s)
- Sneha Polisetti
- 1 Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA
| | - Nameera F Baig
- 2 Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| | - Nydia Morales-Soto
- 3 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, USA
- 4 Eck Institute for Global Health, University of Notre Dame, USA
| | - Joshua D Shrout
- 3 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, USA
- 4 Eck Institute for Global Health, University of Notre Dame, USA
- 5 Department of Biological Sciences, University of Notre Dame, USA
| | - Paul W Bohn
- 1 Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA
- 2 Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| |
Collapse
|
40
|
Antimicrobial combination treatment including ciprofloxacin decreased the mortality rate of Pseudomonas aeruginosa bacteraemia: a retrospective cohort study. Eur J Clin Microbiol Infect Dis 2017; 36:1187-1196. [PMID: 28110415 PMCID: PMC5495847 DOI: 10.1007/s10096-017-2907-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 10/31/2022]
Abstract
Ineffective antimicrobial therapy of Pseudomonas aeruginosa bacteraemia increases mortality. Recent studies have proposed the use of antimicrobial combination therapy composed of a beta-lactam with either ciprofloxacin or tobramycin. To determine if combination therapy correlates to lower mortality and is superior compared to monotherapy, we investigated the effect of antimicrobial treatment regimens on 30-day mortality in a cohort with Pseudomonas aeruginosa bacteraemia. All cases of P. aeruginosa bacteraemia (n = 292) in southwest Skåne County, Sweden (years 2005-2010, adult population 361,112) and the whole county (2011-2012, 966,130) were identified. Available medical and microbiological records for persons aged 18 years or more were reviewed (n = 235). Antimicrobial therapy was defined as empiric at admission or definitive after culture results and was correlated to 30-day mortality in a multivariate regression model. The incidence and mortality rates were 8.0 per 100,000 adults and 22.9% (67/292), respectively. As expected, multiple comorbidities and high age were associated with mortality. Adequate empiric or definitive antipseudomonal treatment was associated with lower mortality than other antimicrobial alternatives (empiric p = 0.02, adj. p = 0.03; definitive p < 0.001, adj. p = 0.007). No difference in mortality was seen between empiric antipseudomonal monotherapy or empiric combination therapy. However, definitive combination therapy including ciprofloxacin correlated to lower mortality than monotherapy (p = 0.006, adj. p = 0.003), whereas combinations including tobramycin did not. Our results underline the importance of adequate antipseudomonal treatment. These data also suggest that P. aeruginosa bacteraemia should be treated with an antimicrobial combination including ciprofloxacin when susceptible.
Collapse
|
41
|
Ratliff AR, Gentry CA, Williams RJ. A propensity score-matched analysis of the impact of minimum inhibitory concentration on mortality in patients with Pseudomonas aeruginosa bacteremia treated with cefepime or ceftazidime. Diagn Microbiol Infect Dis 2017; 87:376-381. [PMID: 28087171 DOI: 10.1016/j.diagmicrobio.2016.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 11/17/2022]
Abstract
The United States Clinical and Laboratory Standards Institute recently elected not to revise ceftazidime and cefepime Pseudomonas aeruginosa minimum inhibitory concentration (MIC) susceptibility breakpoints but rather recommended specific dosage regimens to correspond to breakpoints. This study's objective was to examine mortality of low and high MIC P. aeruginosa isolates in bacteremic patients treated with cefepime or ceftazidime. Data were gathered through a Veterans Health Administration national administrative database for veterans with P. aeruginosa blood cultures who received cefepime or ceftazidime. Seventy-four patients in the low MIC (≤2 μg/mL) group and 29 patients in the high (4-8 μg/mL) MIC group were included. Independent baseline variables associated with 30-day all-cause mortality were determined through multivariate analysis to calculate propensity scores and perform matching. All-cause 30-day mortality was not statistically significant between the 2 resultant propensity score-matched groups (17.2% mortality in the low MIC group versus 27.6% in the high MIC group; P=0.34). Data suggested that P. aeruginosa bacteremia episodes where the cephalosporin MIC = 8 μg/mL may have higher mortality, however this may be reflective of higher propensity scores. Our study suggests that it is reasonable to designate a cefepime or ceftazidime MIC ≤8 μg/mL as susceptible for P. aeruginosa bacteremia infections, but potential suboptimal outcomes in episodes for which the P. aeruginosa MIC is 8 μg/mL may need further investigation.
Collapse
Affiliation(s)
- Angharad R Ratliff
- Critical Care Clinical Pharmacy, Oklahoma City VA Medical Center, Pharmacy Service (119), 921 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Chris A Gentry
- Infectious Diseases, Oklahoma City VA Medical Center, Pharmacy Service (119), 921 NE 13th Street, Oklahoma City, OK 73104, USA.
| | - Riley J Williams
- Infectious Diseases PGY2, Oklahoma City VA Medical Center, Pharmacy Service (119), 921 NE 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
42
|
McCarthy KL, Paterson DL. Community-acquired Pseudomonas aeruginosa bloodstream infection: a classification that should not falsely reassure the clinician. Eur J Clin Microbiol Infect Dis 2016; 36:703-711. [PMID: 27942878 DOI: 10.1007/s10096-016-2852-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa bloodstream infection (BSI) is predominantly acquired in the hospital setting. Community-onset infection is less common. Differences in epidemiology, clinical features, microbiological factors and BSI outcomes led to the separation of bacterial community-onset BSI into the categories of healthcare-associated infection (HCAI) and community-acquired infection (CAI). Community-acquired P. aeruginosa BSI epidemiology is not well defined in the literature. In addition, it is also not clear if the same factors separate CAI and HCAI BSI caused by P. aeruginosa alone. A retrospective multicentre cohort study was performed looking at P. aeruginosa BSI from January 2008 to January 2011. Strict definitions for HCAI and CAI were applied. Extensive epidemiological, clinical and outcome data were obtained. Thirty-four CAI episodes and 156 HCAI episodes were analysed. The CAI group could be characterised into seven distinct categories based on comorbidities and clinically suspected source of infection. A pre-morbidly healthy group could not be identified. On multivariate analysis, the presence of a rheumatological or a gastrointestinal comorbidity were significantly associated with CAI. There was no significant difference in length of stay or rates of mortality between HCAI or CAI. The clinician should not be falsely reassured regarding outcome by the diagnosis of a community-acquired P. aeruginosa BSI.
Collapse
Affiliation(s)
- K L McCarthy
- UQ Centre for Clinical Research, University of Queensland, Building 71/918, Royal Brisbane and Women's Hospital Campus, Herston, Brisbane, QLD, 4029, Australia.
| | - D L Paterson
- UQ Centre for Clinical Research, University of Queensland, Building 71/918, Royal Brisbane and Women's Hospital Campus, Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
43
|
Colmer-Hamood JA, Dzvova N, Kruczek C, Hamood AN. In Vitro Analysis of Pseudomonas aeruginosa Virulence Using Conditions That Mimic the Environment at Specific Infection Sites. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:151-91. [PMID: 27571695 DOI: 10.1016/bs.pmbts.2016.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes chronic lung infection in patients with cystic fibrosis (CF) and acute systemic infections in severely burned patients and immunocompromised patients including cancer patients undergoing chemotherapy and HIV infected individuals. In response to the environmental conditions at specific infection sites, P. aeruginosa expresses certain sets of cell-associated and extracellular virulence factors that produce tissue damage. Analyzing the mechanisms that govern the production of these virulence factors in vitro requires media that closely mimic the environmental conditions within the infection sites. In this chapter, we review studies based on media that closely resemble three in vivo conditions, the thick mucus accumulated within the lung alveoli of CF patients, the serum-rich wound bed and the bloodstream. Media resembling the CF alveolar mucus include standard laboratory media supplemented with sputum obtained from CF patients as well as prepared synthetic mucus media formulated to contain the individual components of CF sputum. Media supplemented with serum or individual serum components have served as surrogates for the soluble host components of wound infections, while whole blood has been used to investigate the adaptation of pathogens to the bloodstream. Studies using these media have provided valuable information regarding P. aeruginosa gene expression in different host environments as varying sets of genes were differentially regulated during growth in each medium. The unique effects observed indicate the essential role of these in vitro media that closely mimic the in vivo conditions in providing accurate information regarding the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- J A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - N Dzvova
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - C Kruczek
- Honors College, Texas Tech University, Lubbock, TX, United States
| | - A N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
44
|
Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis. Sci Rep 2015; 5:11715. [PMID: 26108476 PMCID: PMC4479982 DOI: 10.1038/srep11715] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/03/2015] [Indexed: 02/05/2023] Open
Abstract
Treatment of infectious diseases caused by the carbapenem-resistant Pseudomonas aeruginosa (CRPA) is becoming more challenging with each passing year. We conducted a meta-analysis to assess the impact of carbapenem resistance on mortality of patients with P. aeruginosa infection. We searched PUBMED, Web of science, EMBASE, Google Scholar and the Cochrane Library up to December 25, 2014, to identify published cohort or case-control studies. 17 studies, including 6660 patients carrying P. aeruginosa, were identified. The pooling analysis indicated that patients infected with CRPA had significantly higher mortality than those infected with carbapenem-susceptible P. aeruginosa (CSPA) (crude OR = 1.64; 95%CI = 1.40, 1.93; adjusted OR = 2.38; 95%CI = 1.53, 3.69). The elevated risk of mortality in patients with CRPA infection was not lessened when stratified by study design, sites of infection, or type of carbapenem, except that the estimate effect vanished in CRPA high-incidence region, South America (crude OR = 1.12; 95%CI = 0.64, 1.99). Begg's (z = 0.95, p = 0.34) and Egger's test (t = 1.23, p = 0.24) showed no evidence of publication bias. Our results suggest that carbapenem resistance may increase the mortality of patients with P. aeruginosa infection, whether under univariate or multivariate analysis.
Collapse
|
45
|
Peña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodríguez-Baño J, Rodríguez-López F, Tubau F, Martínez-Martínez L, Oliver A. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 2014; 60:539-48. [PMID: 25378459 DOI: 10.1093/cid/ciu866] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The type III secretion system (TTSS) is a major virulence determinant of Pseudomonas aeruginosa. The objective of this study was to determine whether the TTSS genotype is a useful prognostic marker of P. aeruginosa bacteremia mortality. We also studied the potential association between TTSS genotypes and multidrug-resistant (MDR) profiles, and how this interaction impacts the outcome of bloodstream infections. METHODS We performed a post hoc analysis of a published prospective multicenter cohort of P. aeruginosa bloodstream infections. The impact in mortality of TTSS genotypes (exoS, exoT, exoU, and exoY genes) and resistance profiles was investigated. Cox regression analysis was used to control for confounding variables. RESULTS Among 590 patients, the 30-day mortality rate was 30% (175 patients), and 53% of them died in the first 5 days (early mortality). The unadjusted probabilities of survival until 5 days was 31.4% (95% confidence interval [CI], 17.4%-49.4%) for the patients with exoU-positive isolates and 53.2% (95% CI, 44.6%-61.5%) for exoU-negative isolates (log rank P = .005). After adjustment for confounders, exoU genotype (adjusted hazard ratio [aHR], 1.90 [95% CI, 1.15-3.14]; P = .01) showed association with early mortality. In contrast, late (30-day) mortality was not influenced by TTSS genotype but was independently associated with MDR profiles (aHR,1.40 [95% CI, 1.01-1.94]; P = .04). Moreover, the exoU genotype (21% of all isolates) was significantly less frequent (13%) among MDR strains (particularly among extensively drug-resistant isolates, 5%), but was positively linked to moderately resistant (1-2 antipseudomonals) phenotypes (34%). CONCLUSIONS Our results indicate that the exoU genotype, which is associated with specific susceptibility profiles, is a relevant independent marker of early mortality in P. aeruginosa bacteremia.
Collapse
Affiliation(s)
- Carmen Peña
- Servicio de Enfermedades Infecciosas, Hospital Universitario de Bellvitge-IDIBELL, Barcelona
| | - Gabriel Cabot
- Unidad de Investigación, Servicio de Microbiología y Servicio de Medicina Interna, Hospital Universitario de Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca
| | - Silvia Gómez-Zorrilla
- Servicio de Enfermedades Infecciosas, Hospital Universitario de Bellvitge-IDIBELL, Barcelona
| | - Laura Zamorano
- Unidad de Investigación, Servicio de Microbiología y Servicio de Medicina Interna, Hospital Universitario de Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca
| | - Alain Ocampo-Sosa
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander
| | - Javier Murillas
- Unidad de Investigación, Servicio de Microbiología y Servicio de Medicina Interna, Hospital Universitario de Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca
| | - Benito Almirante
- Servicio de Enfermedades Infecciosas, Hospital Universitario Vall d'Hebrón
| | - Virginia Pomar
- Unidad de Enfermedades Infecciosas, Hospital Santa Creu i Sant Pau, Barcelona
| | - Manuela Aguilar
- Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen del Rocío, Sevilla
| | - Ana Granados
- Sección de Enfermedades Infecciosas, Consorci Hospitalari Parc Taulí, Sabadell
| | - Esther Calbo
- Sección de Enfermedades Infecciosas, Hospital Mutua de Terrasa
| | - Jesús Rodríguez-Baño
- Sección de Enfermedades Infecciosas, Hospital Universitario Virgen Macarena, Sevilla
| | | | - Fe Tubau
- Servicio de Enfermedades Infecciosas, Hospital Universitario de Bellvitge-IDIBELL, Barcelona
| | - Luis Martínez-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Antonio Oliver
- Unidad de Investigación, Servicio de Microbiología y Servicio de Medicina Interna, Hospital Universitario de Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca
| | | |
Collapse
|
46
|
Weng SL, Chiu CM, Lin FM, Huang WC, Liang C, Yang T, Yang TL, Liu CY, Wu WY, Chang YA, Chang TH, Huang HD. Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS One 2014; 9:e110152. [PMID: 25340531 PMCID: PMC4207690 DOI: 10.1371/journal.pone.0110152] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Some previous studies have identified bacteria in semen as being a potential factor in male infertility. However, only few types of bacteria were taken into consideration while using PCR-based or culturing methods. Here we present an analysis approach using next-generation sequencing technology and bioinformatics analysis to investigate the associations between bacterial communities and semen quality. Ninety-six semen samples collected were examined for bacterial communities, measuring seven clinical criteria for semen quality (semen volume, sperm concentration, motility, Kruger's strict morphology, antisperm antibody (IgA), Atypical, and leukocytes). Computer-assisted semen analysis (CASA) was also performed. Results showed that the most abundant genera among all samples were Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%) and Gardnerella (4.21%). The proportion of Lactobacillus and Gardnerella was significantly higher in the normal samples, while that of Prevotella was significantly higher in the low quality samples. Unsupervised clustering analysis demonstrated that the seminal bacterial communities were clustered into three main groups: Lactobacillus, Pseudomonas, and Prevotella predominant group. Remarkably, most normal samples (80.6%) were clustered in Lactobacillus predominant group. The analysis results showed seminal bacteria community types were highly associated with semen health. Lactobacillus might not only be a potential probiotic for semen quality maintenance, but also might be helpful in countering the negative influence of Prevotella and Pseudomonas. In this study, we investigated whole seminal bacterial communities and provided the most comprehensive analysis of the association between bacterial community and semen quality. The study significantly contributes to the current understanding of the etiology of male fertility.
Collapse
Affiliation(s)
- Shun-Long Weng
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Min Chiu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Feng-Mao Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Chih Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chao Liang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ting Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Ling Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Yu Liu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Yun Wu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-An Chang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Health GeneTech Corporation, Taoyuan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, HsinChu, Taiwan
| |
Collapse
|
47
|
Wolfe CM, Cohen B, Larson E. Prevalence and risk factors for antibiotic-resistant community-associated bloodstream infections. J Infect Public Health 2014; 7:224-32. [PMID: 24631369 DOI: 10.1016/j.jiph.2014.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Antibiotic resistance is increasing in many community settings. The purpose of this study was to determine the proportion of antibiotic resistant community-associated bloodstream infections (CA-BSIs) present on hospital admissions to identify risk factors for acquiring resistant versus susceptible CA-BSIs and to describe the incidence of concurrent infections with CA-BSIs. METHODS We conducted a retrospective cohort study of patients discharged from one community, one pediatric, and two tertiary/quaternary care hospitals within an academically affiliated network in the borough of Manhattan in New York, NY, from 2006 to 2008. The CA-BSIs present at hospital admission were defined as BSIs occurring within the first 48h of hospitalization. Infections and patient characteristics were identified using data available from patients' electronic medical records and discharge records. RESULTS In total, 1677 CA-BSIs were identified. Staphylococcus aureus had the largest proportion of resistance (41.2%), followed by enterococcal species (24.3%), Pseudomonas aeruginosa (20.2%), Streptococcus pneumoniae (16.6%), Acinetobacter baumannii (10.0%), and Klebsiella pneumoniae (9.9%). Significant predictors of resistance were prior residence in a skilled nursing facility (OR, 2.55; 95% CI, 1.39-4.70), advanced age (1.01; 1.002-1.02), presence of malignancy (0.58; 0.37-0.91), prior hospitalization (1.62; 1.17-2.23), a weighted Charlson score (1.09; 1.02-1.17) for S. aureus, presence of malignancy (1.82; 1.004-3.30), prior hospitalizations (2.03; 1.12-3.38) for enterococcal species, and younger age for S. pneumoniae (p=0.02). Urinary tract infections were the most common concurrent infection (n=45/87, 51.7%). CONCLUSION Over 27% of the CA-BSIs present on admission were antibiotic resistant. Understanding the prevalence and risk factors for CA-BSIs may help improve empiric antibiotic therapy and outcomes for patients with community-onset infections.
Collapse
Affiliation(s)
- Caitlin M Wolfe
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA.
| | - Bevin Cohen
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA; Columbia University School of Nursing, 630 West 168th Street, New York, NY 10032, USA.
| | - Elaine Larson
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA; Columbia University School of Nursing, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
48
|
The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care 2014; 2:10. [PMID: 25520826 PMCID: PMC4267601 DOI: 10.1186/2052-0492-2-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/28/2014] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in P. aeruginosa pneumonia. The major pathogenic toxins among the exoproducts of P. aeruginosa and the mechanism by which they cause acute lung injury have been investigated: exoenzyme S and co-regulated toxins were found to contribute to acute lung injury. P. aeruginosa secretes these toxins through the recently defined type III secretion system (TTSS), by which gram-negative bacteria directly translocate toxins into the cytosol of target eukaryotic cells. TTSS comprises the secretion apparatus (termed the injectisome), translocators, secreted toxins, and regulatory components. In the P. aeruginosa genome, a pathogenic gene cluster, the exoenzyme S regulon, encodes genes underlying the regulation, secretion, and translocation of TTSS. Four type III secretory toxins, namely ExoS, ExoT, ExoU, and ExoY, have been identified in P. aeruginosa. ExoS is a 49-kDa form of exoenzyme S, a bifunctional toxin that exerts ADP-ribosyltransferase and GTPase-activating protein (GAP) activity to disrupt endocytosis, the actin cytoskeleton, and cell proliferation. ExoT, a 53-kDa form of exoenzyme S with 75% sequence homology to ExoS, also exerts GAP activity to interfere with cell morphology and motility. ExoY is a nucleotidal cyclase that increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation. ExoU, which exhibits phospholipase A2 activity activated by host cell ubiquitination after translocation, is a major pathogenic cytotoxin that causes alveolar epithelial injury and macrophage necrosis. Approximately 20% of clinical isolates also secrete ExoU, a gene encoded within an insertional pathogenic gene cluster named P. aeruginosa pathogenicity island-2. The ExoU secretory phenotype is associated with a poor clinical outcome in P. aeruginosa pneumonia. Blockade of translocation by TTSS or inhibition of the enzymatic activity of translocated toxins has the potential to decrease acute lung injury and improve clinical outcome.
Collapse
|
49
|
McEvoy C, Kollef MH. Determinants of hospital mortality among patients with sepsis or septic shock receiving appropriate antibiotic treatment. Curr Infect Dis Rep 2013; 15:400-6. [PMID: 23975687 DOI: 10.1007/s11908-013-0361-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Septic shock affects 750,000 people annually, and accounts for 10 % of all deaths annually in the US. In recent years, outcomes in patients with septic shock have improved; however, mortality still remains high at 40 - 50 %. The use of early protocolized resuscitation goals have been associated with reduced mortality in septic shock. However, strong evidenced-based recommendations for the continued management of patients with septic shock in the ICU setting are currently lacking. Appropriate antibiotic therapy is the cornerstone of management in septic shock. Inappropriate antibiotic therapy can lead to treatment failures and adverse outcomes, including high risk of mortality. This article outlines other key factors that contribute to outcome in septic shock. It is challenging for physicians to optimize therapy when fixed patient features such as age and underlying comorbidity can negatively influence mortality. However, outcomes can also potentially be affected by physician management decisions including fluid balance, corticosteroid use, glucose control and adherence to protocols including early goal-directed therapy and infection-control measures. Certain pathogen virulence characteristics also adversely affect outcomes. We give an overview of the determinants of outcome in septic shock in the setting of appropriate antibiotic use.
Collapse
Affiliation(s)
- Colleen McEvoy
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| | | |
Collapse
|