1
|
Ouédraogo A, Pouplin JNN, Mukaka M, Kaendiao T, Ruecker A, Millet P, Vallet T, Ruiz F, Sirima SB, Taylor WR. Anti-infectivity efficacy and pharmacokinetics of WHO recommended single low-dose primaquine in children with acute Plasmodium falciparum in Burkina Faso: study protocol. Trials 2024; 25:583. [PMID: 39227956 PMCID: PMC11373093 DOI: 10.1186/s13063-024-08428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Primaquine (PQ) has activity against mature P. falciparum gametocytes and proven transmission blocking efficacy (TBE) between humans and mosquitoes. WHO formerly recommended a single transmission blocking dose of 0.75 mg/kg but this was little used. Then in 2012, faced with the emergence of artemisinin-resistant P. falciparum (ARPf) in SE Asia, the WHO recommended a lower dose of 0.25 mg/kg to be added to artemisinin-based combination therapy in falciparum-infected patients in low transmission areas. This dose was considered safe in glucose-6-phosphate dehydrogenase deficiency (G6PDd) and not requiring G6PD testing. Subsequent single low-dose primaquine (SLDPQ) studies have demonstrated safety in different G6PD variants. Dosing remains challenging in children under the age of 5 because of the paucity of PQ pharmacokinetic (PK) data. We plan to assess the anti-infectivity efficacy of SLDPQ using an allometrically scaled, weight-based regimen, with a target dose of 0.25 mg/kg, in children with acute uncomplicated falciparum malaria. METHODS This study is an open label, randomised 1:1, phase IIb study to assess TBE, tolerability, pharmacokinetics and acceptability of artesunate pyronaridine (ASPYR) administered alone or combined with SLDPQ in 56 Burkinabe children aged ≥ 6 months- < 5 years, with uncomplicated P. falciparum and a haemoglobin (Hb) concentration of ≥ 5 g/dL. We will assess TBE, using direct membrane feeding assays (DMFA), and further investigate PQ pharmacokinetics, adverse events, Hb dynamics, G6PD, sickle cells, thalassaemia and cytochrome 2D6 (CYP2D6) status, acceptability of flavoured PQ [CAST-ClinSearch Acceptability Score Test®], and the population's knowledge, attitude and practices on malaria. EXPECTED RESULTS AND DISCUSSION We expect children to accept tablets, confirm the TBE and gametocytocidal effects of SLDPQ and then construct a PK infectivity model (including age, sex, baseline Hb, G6PD and CYP2D6 status) to define the dose response TBE relationship that may lead to fine tuning our SLDPQ regimen. Our study will complement others that have examined factors associated with Hb dynamics and PQ PK. It will provide much needed, high-quality evidence of SLDPQ in sick African children and provide reassurance that SLDPQ should be used as a strategy against emerging ARPf in Africa. TRIAL REGISTRATION ISRCTN16297951. Registered on September 26, 2021.
Collapse
Affiliation(s)
- Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso.
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thoopmanee Kaendiao
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Andrea Ruecker
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pascal Millet
- ReMeD, 21bis Avenue du Commandant de L'Herminier, Saint-Nazaire, 44 600, France
| | - Thibaut Vallet
- ClinSearch, 110 Avenue Pierre Brossolette, Malakoff, 92240, France
| | - Fabrice Ruiz
- ClinSearch, 110 Avenue Pierre Brossolette, Malakoff, 92240, France
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Santé (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chotsiri P, Mahamar A, Diawara H, Fasinu PS, Diarra K, Sanogo K, Bousema T, Walker LA, Brown JM, Dicko A, Gosling R, Chen I, Tarning J. Population pharmacokinetics of primaquine and its metabolites in African males. Malar J 2024; 23:159. [PMID: 38773528 PMCID: PMC11106956 DOI: 10.1186/s12936-024-04979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Pius S Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Larry A Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, USA
| | - Joelle M Brown
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Roly Gosling
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Ingrid Chen
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
3
|
Wattanakul T, Gilder ME, McGready R, Hanpithakpong W, Day NPJ, White NJ, Nosten F, Tarning J, Hoglund RM. Population pharmacokinetic modelling of primaquine exposures in lactating women and breastfed infants. Nat Commun 2024; 15:3851. [PMID: 38719803 PMCID: PMC11078975 DOI: 10.1038/s41467-024-47908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Warunee Hanpithakpong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
4
|
Onyamboko MA, Olupot-Olupot P, Were W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Okalebo CB, Williams TN, Uyoga S, Taya C, Bamisaiye A, Fanello C, Maitland K, Day NPJ, Taylor WRJ, Mukaka M. Factors affecting haemoglobin dynamics in African children with acute uncomplicated Plasmodium falciparum malaria treated with single low-dose primaquine or placebo. BMC Med 2023; 21:397. [PMID: 37858129 PMCID: PMC10588240 DOI: 10.1186/s12916-023-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Single low-dose primaquine (SLDPQ) effectively blocks the transmission of Plasmodium falciparum malaria, but anxiety remains regarding its haemolytic potential in patients with glucose-6-phopshate dehydrogenase (G6PD) deficiency. We, therefore, examined the independent effects of several factors on haemoglobin (Hb) dynamics in falciparum-infected children with a particular interest in SLDPQ and G6PD status. METHODS This randomised, double-blind, placebo-controlled, safety trial was conducted in Congolese and Ugandan children aged 6 months-11 years with acute uncomplicated P. falciparum and day (D) 0 Hbs ≥ 6 g/dL who were treated with age-dosed SLDPQ/placebo and weight-dosed artemether lumefantrine (AL) or dihydroartemisinin piperaquine (DHAPP). Genotyping defined G6PD (G6PD c.202T allele), haemoglobin S (HbS), and α-thalassaemia status. Multivariable linear and logistic regression assessed factor independence for continuous Hb parameters and Hb recovery (D42 Hb > D0 Hb), respectively. RESULTS One thousand one hundred thirty-seven children, whose median age was 5 years, were randomised to receive: AL + SLDPQ (n = 286), AL + placebo (286), DHAPP + SLDPQ (283), and DHAPP + placebo (282). By G6PD status, 284 were G6PD deficient (239 hemizygous males, 45 homozygous females), 119 were heterozygous females, 418 and 299 were normal males and females, respectively, and 17 were of unknown status. The mean D0 Hb was 10.6 (SD 1.6) g/dL and was lower in younger children with longer illnesses, lower mid-upper arm circumferences, splenomegaly, and α-thalassaemia trait, who were either G6PDd or heterozygous females. The initial fractional fall in Hb was greater in younger children with higher D0 Hbs and D0 parasitaemias and longer illnesses but less in sickle cell trait. Older G6PDd children with lower starting Hbs and greater factional falls were more likely to achieve Hb recovery, whilst lower D42 Hb concentrations were associated with younger G6PD normal children with lower fractional falls, sickle cell disease, α-thalassaemia silent carrier and trait, and late treatment failures. Ten blood transfusions were given in the first week (5 SLDPQ, 5 placebo). CONCLUSIONS In these falciparum-infected African children, posttreatment Hb changes were unaffected by SLDPQ, and G6PDd patients had favourable posttreatment Hb changes and a higher probability of Hb recovery. These reassuring findings support SLDPQ deployment without G6PD screening in Africa. TRIAL REGISTRATION The trial is registered at ISRCTN 11594437.
Collapse
Affiliation(s)
- Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Peter Olupot-Olupot
- Busitema University, P.O. Box 1460, Mbale, Uganda
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Winifred Were
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Cate Namayanja
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Peter Onyas
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Harriet Titin
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Joy Baseke
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | | | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, SW7 2AS, UK
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Adeola Bamisaiye
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, SW7 2AS, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Mukaka M, Onyamboko MA, Olupot-Olupot P, Peerawaranun P, Suwannasin K, Pagornrat W, Kouhathong J, Madmanee W, Were W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Bongo GS, Okalebo CB, Abongo G, Uyoga S, Williams TN, Taya C, Dhorda M, Dondorp AM, Waithira N, Imwong M, Maitland K, Fanello C, Day NPJ, Tarning J, White NJ, Taylor WRJ. Pharmacokinetics of single low dose primaquine in Ugandan and Congolese children with falciparum malaria. EBioMedicine 2023; 96:104805. [PMID: 37757570 PMCID: PMC10550634 DOI: 10.1016/j.ebiom.2023.104805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND There are no pharmacokinetic data of single low dose primaquine (SLDPQ) as transmission blocking in African children with acute Plasmodium falciparum and glucose-6-phosphate dehydrogenase deficiency (G6PDd). METHODS Primaquine pharmacokinetics of age-dosed SLDPQ (shown previously to be gametocytocidal with similar tolerability as placebo) were characterised in falciparum-infected Ugandan and Congolese children aged 6 months to 11 years, treated on admission with standard 3-day dihydroartemisinin-piperaquine or artemether-lumefantrine plus SLDPQ: 6 m-<1 y: 1.25 mg, 1-5 y: 2.5 mg, 6-9 y: 5 mg, 10-11 y: 7.5 mg. LC-MS/MS-measured plasma primaquine and carboxyprimaquine (baseline, 1, 1.5, 2, 4, 8, 12, 24 h) were analysed by noncompartmental analysis. Multivariable linear regression modelled associations between covariates, including cytochrome-P450 2D6 metaboliser status, and outcomes. FINDINGS 258 children (median age 5 [interquartile range (IQR) 3-7]) were sampled; 8 (3.1%) with early vomiting were excluded. Primaquine doses of 0.10-0.40 (median 0.21, IQR 0.16-0.25) mg base/kg resulted in primaquine maximum plasma concentrations (Cmax) of 2.3-447 (median 103.0, IQR 72.1-140.0) ng/mL between 1.0 and 8.0 (median 2) hours (Tmax) and median areas under the drug concentration curves (AUC0-last) 730.2 (6 m-<1 y, n = 12), 582.8 (1-5 y, n = 126), 871.1 (6-9 y, n = 80), and 931.0 (10-11 y, n = 32) ng∗h/mL. Median elimination half-live (T½) was 4.7 (IQR 3.8-5.6) hours. Primaquine clearance/kg peaked at 18 months, plateauing at 4 y. Increasing CYP2D6 metaboliser activity score [poor (3/250), intermediate (52/250), normal (150/250), ultrarapid (5/250), indeterminate (40/250)] and baseline haemoglobin were significantly associated with a lower primaquine AUC0-last,which increased with increasing mg/kg dose and age but was independent of the artemisinin treatment used. INTERPRETATION Age-dosed SLDPQ resulted in variable primaquine exposure that depended on bodyweight-adjusted dose, age, baseline haemoglobin and CYP2D6 metaboliser status, but not on dihydroartemisinin-piperaquine or artemether-lumefantrine. These data support age-dosed SLDPQ for transmission blocking in sub-Saharan Africa. FUNDING This work was cofunded by the UK Medical Research Council, Wellcome Trust, and UK Aid through the Global Health Trials (grant reference MR/P006973/1). The funders had no role in the study design, execution, and analysis and decisions regarding publication.
Collapse
Affiliation(s)
- Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Peter Olupot-Olupot
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda; Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Kanokon Suwannasin
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Watcharee Pagornrat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Jindarat Kouhathong
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Wanassanan Madmanee
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Winifred Were
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Cate Namayanja
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Peter Onyas
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Harriet Titin
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Joy Baseke
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Georgette S Bongo
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Charles B Okalebo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Grace Abongo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, SW7 2AS, United Kingdom
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, SW7 2AS, United Kingdom
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
6
|
Moore BR, Salman S, Tobe R, Benjamin J, Yadi G, Kasian B, Laman M, Robinson LJ, Page-Sharp M, Betuela I, Batty KT, Manning L, Mueller I, Davis TME. Short-course, high-dose primaquine regimens for the treatment of liver-stage vivax malaria in children. Int J Infect Dis 2023; 134:114-122. [PMID: 37269941 DOI: 10.1016/j.ijid.2023.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVES To assess the pharmacokinetics, safety, and tolerability of two high-dose, short-course primaquine (PQ) regimens compared with standard care in children with Plasmodium vivax infections. METHODS We performed an open-label pediatric dose-escalation study in Madang, Papua New Guinea (Clinicaltrials.gov NCT02364583). Children aged 5-10 years with confirmed blood-stage vivax malaria and normal glucose-6-phosphate dehydrogenase activity were allocated to one of three PQ treatment regimens in a stepwise design (group A: 0.5 mg/kg once daily for 14 days, group B: 1 mg/kg once daily for 7 days, and group C: 1 mg/kg twice daily for 3.5-days). The study assessments were completed at each treatment time point and fortnightly for 2 months after PQ administration. RESULTS Between August 2013 and May 2018, 707 children were screened and 73 met the eligibility criteria (15, 40, and 16 allocated to groups A, B, and C, respectively). All children completed the study procedures. The three regimens were safe and generally well tolerated. The pharmacokinetic analysis indicated that an additional weight adjustment of the conventionally recommended milligram per kilogram PQ doses is not necessary to ensure the therapeutic plasma concentrations in pediatric patients. CONCLUSIONS A novel, ultra-short 3.5-day PQ regimen has potential benefits for improving the treatment outcomes in children with vivax malaria that warrants further investigation in a large-scale clinical trial.
Collapse
Affiliation(s)
- Brioni R Moore
- Curtin Medical School, Curtin University, Perth, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; Medical School, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia.
| | - Sam Salman
- Medical School, The University of Western Australia, Perth, Australia; Clinical Pharmacology and Toxicology Unit, PathWest, Perth, Australia
| | - Roselyn Tobe
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - John Benjamin
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Gumul Yadi
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Bernadine Kasian
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | | | - Inoni Betuela
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Kevin T Batty
- Curtin Medical School, Curtin University, Perth, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Laurens Manning
- Medical School, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | - Timothy M E Davis
- Medical School, The University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Taylor WR, Olupot-Olupot P, Onyamboko MA, Peerawaranun P, Weere W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Bongo GS, Okalebo CB, Abongo G, Uyoga S, Williams TN, Taya C, Dhorda M, Tarning J, Dondorp AM, Waithira N, Fanello C, Maitland K, Mukaka M, Day NJP. Safety of age-dosed, single low-dose primaquine in children with glucose-6-phosphate dehydrogenase deficiency who are infected with Plasmodium falciparum in Uganda and the Democratic Republic of the Congo: a randomised, double-blind, placebo-controlled, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:471-483. [PMID: 36462528 DOI: 10.1016/s1473-3099(22)00658-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND WHO recommends gametocytocidal, single low-dose primaquine for blocking the transmission of Plasmodium falciparum; however, safety concerns have hampered the implementation of this strategy in sub-Saharan Africa. We aimed to investigate the safety of age-dosed, single low-dose primaquine in children from Uganda and the Democratic Republic of the Congo. METHODS We conducted this randomised, double-blind, placebo-controlled, non-inferiority trial at the Mbale Regional Referral Hospital, Mbale, Uganda, and the Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of the Congo. Children aged between 6 months and 11 years with acute uncomplicated P falciparum infection and haemoglobin concentrations of at least 6 g/dL were enrolled. Patients were excluded if they had a comorbid illness requiring inpatient treatment, were taking haemolysing drugs for glucose-6-phosphate dehydrogenase (G6PD) deficiency, were allergic to the study drugs, or were enrolled in another clinical trial. G6PD status was defined by genotyping for the G6PD c.202T allele, the cause of the G6PD-deficient A- variant. Participants were randomly assigned (1:1) to receive single low-dose primaquine combined with either artemether-lumefantrine or dihydroartemisinin-piperaquine, dosed by bodyweight. Randomisation was stratified by age and G6PD status. The primary endpoint was the development of profound (haemoglobin <4 g/dL) or severe (haemoglobin <5 g/dL) anaemia with severity features, within 21 days of treatment. Analysis was by intention to treat. The sample size assumed an incidence of 1·5% in the placebo group and a 3% non-inferiority margin. The trial is registered at ISRCTN, 11594437, and is closed to new participants. FINDINGS Participants were recruited at the Mbale Regional Referral Hospital between Dec 18, 2017, and Oct 7, 2019, and at the Kinshasa Mahidol Oxford Research Unit between July 17, 2017, and Oct 5, 2019. 4620 patients were assessed for eligibility. 3483 participants were excluded, most owing to negative rapid diagnostic test or negative malaria slide (n=2982). 1137 children with a median age of 5 years were enrolled and randomly assigned (286 to the artemether-lumefantrine plus single low-dose primaquine group, 286 to the artemether-lumefantrine plus placebo group, 283 to the dihydroartemisinin-piperaquine plus single low-dose primaquine group, and 282 to the dihydroartemisinin-piperaquine plus placebo group). Genotyping of G6PD identified 239 G6PD-c.202T hemizygous males and 45 G6PD-c.202T homozygous females (defining the G6PD-deficient group), 119 heterozygous females, 418 G6PD-c.202C normal males and 299 G6PD-c.202C normal females (defining the non-G6PD-deficient group), and 17 children of unknown status. 67 patients were lost to follow-up and four patients withdrew during the study-these numbers were similar between groups. No participants developed profound anaemia and three developed severe anaemia: from the G6PD-deficient group, none (0%) of 133 patients who received placebo and one (0·66%) of 151 patients who received primaquine (difference -0·66%, 95% CI -1·96 to 0·63; p=0·35); and from the non-G6PD-deficient group, one (0·23%) of 430 patients who received placebo and one (0·25%) of 407 patients who received primaquine (-0·014%, -0·68 to 0·65; p=0·97). INTERPRETATION Gametocytocidal, age-dosed, single low-dose primaquine was well tolerated in children from Uganda and the Democratic Republic of the Congo who were infected with P falciparum, and the safety profile of this treatment was similar to that of the placebo. These data support the wider implementation of single low-dose primaquine in Africa. FUNDING UK Government Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust Joint Global Health Trials Scheme.
Collapse
Affiliation(s)
- Walter R Taylor
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Peter Olupot-Olupot
- Mbale Clinical Research Institute, Mbale, Uganda; Department of Public Health, Busitema University, Mbale, Uganda
| | - Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | - Peter Onyas
- Mbale Clinical Research Institute, Mbale, Uganda
| | | | - Joy Baseke
- Department of Public Health, Busitema University, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Georgette S Bongo
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Grace Abongo
- Mbale Clinical Research Institute, Mbale, Uganda
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Imperial College London, London, UK
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Imperial College London, London, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J P Day
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Drysdale M, Tan L, Martin A, Fuhrer IB, Duparc S, Sharma H. Plasmodium vivax in Children: Hidden Burden and Conspicuous Challenges, a Narrative Review. Infect Dis Ther 2023; 12:33-51. [PMID: 36378465 PMCID: PMC9868225 DOI: 10.1007/s40121-022-00713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
There has been progress towards decreasing malaria prevalence globally; however, Plasmodium vivax has been less responsive to elimination efforts compared with Plasmodium falciparum. P. vivax malaria remains a serious public health concern in regions where it is the dominant species (South and South-East Asia, the Eastern Mediterranean region, and South America) and is increasingly recognized for its contribution to overall morbidity and mortality worldwide. The incidence of P. vivax decreases with increasing age owing to rapidly acquired clinical immunity and there is a disproportionate burden of P. vivax in infants and children, who remain highly vulnerable to severe disease, recurrence, and anemia with associated developmental impacts. Diagnosis is sometimes difficult owing to the sensitivity of diagnostic tests to detect low levels of parasitemia. Additionally, the propensity of P. vivax to relapse following reactivation of dormant hypnozoites in the liver contributes to disease recurrence in infants and children, and potentiates morbidity and transmission. The 8-aminoquinolines, primaquine and tafenoquine, provide radical cure (relapse prevention). However, the risk of hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency necessitates testing prior to administration of 8-aminoquinolines, which has limited their uptake. Additional challenges include lack of availability of pediatric dose formulations and problems with adherence to primaquine owing to the length of treatment recommended. A paucity of data and studies specific to pediatric P. vivax malaria impacts the ability to deliver targeted interventions. It is imperative that P. vivax in infants and children be the focus of future research, control initiatives, and anti-malarial drug development.
Collapse
Affiliation(s)
| | - Lionel Tan
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | - Ana Martin
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | | | | | - Hema Sharma
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| |
Collapse
|
9
|
Watson JA, Commons RJ, Tarning J, Simpson JA, Llanos Cuentas A, Lacerda MVG, Green JA, Koh GCKW, Chu CS, Nosten FH, Price RN, Day NPJ, White NJ. The clinical pharmacology of tafenoquine in the radical cure of Plasmodium vivax malaria: An individual patient data meta-analysis. eLife 2022; 11:e83433. [PMID: 36472067 PMCID: PMC9725750 DOI: 10.7554/elife.83433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Tafenoquine is a newly licensed antimalarial drug for the radical cure of Plasmodium vivax malaria. The mechanism of action and optimal dosing are uncertain. We pooled individual data from 1102 patients and 72 healthy volunteers studied in the pre-registration trials. We show that tafenoquine dose is the primary determinant of efficacy. Under an Emax model, we estimate the currently recommended 300 mg dose in a 60 kg adult (5 mg/kg) results in 70% of the maximal obtainable hypnozoiticidal effect. Increasing the dose to 7.5 mg/kg (i.e. 450 mg) would result in 90% reduction in the risk of P. vivax recurrence. After adjustment for dose, the tafenoquine terminal elimination half-life, and day 7 methaemoglobin concentration, but not the parent compound exposure, were also associated with recurrence. These results suggest that the production of oxidative metabolites is central to tafenoquine's hypnozoiticidal efficacy. Clinical trials of higher tafenoquine doses are needed to characterise their efficacy, safety and tolerability.
Collapse
Affiliation(s)
- James A Watson
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- WorldWide Antimalarial Resistance NetworkOxfordUnited Kingdom
| | - Robert J Commons
- WorldWide Antimalarial Resistance NetworkOxfordUnited Kingdom
- Global Health Division, Menzies School of Health Research, Charles Darwin UniversityDarwinAustralia
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Alejandro Llanos Cuentas
- Unit of Leishmaniasis and Malaria, Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano HerediaLimaPeru
| | | | - Justin A Green
- Formerly Senior Director, Global Health, GlaxoSmithKlineBrentfordUnited Kingdom
| | - Gavin CKW Koh
- Department of Infectious Diseases, Northwick Park HospitalHarrowUnited Kingdom
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
| | - François H Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
| | - Richard N Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- WorldWide Antimalarial Resistance NetworkOxfordUnited Kingdom
- Global Health Division, Menzies School of Health Research, Charles Darwin UniversityDarwinAustralia
| | - Nicholas PJ Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| |
Collapse
|
10
|
Soumare HM, Dabira ED, Camara MM, Jadama L, Gaye PM, Kanteh S, Jawara EA, Njie AK, Sanneh F, Ndiath MO, Lindsay SW, Conteh B, Ceesay S, Mohammed N, Ooko M, Bradley J, Drakeley C, Erhart A, Bousema T, D’Alessandro U. Entomological impact of mass administration of ivermectin and dihydroartemisinin-piperaquine in The Gambia: a cluster-randomized controlled trial. Parasit Vectors 2022; 15:435. [PMID: 36397132 PMCID: PMC9673448 DOI: 10.1186/s13071-022-05557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vector control interventions in sub-Saharan Africa rely on insecticide-treated nets and indoor residual spraying. Insecticide resistance, poor coverage of interventions, poor quality nets and changes in vector behavior threaten the effectiveness of these interventions and, consequently, alternative tools are needed. Mosquitoes die after feeding on humans or animals treated with ivermectin (IVM). Mass drug administration (MDA) with IVM could reduce vector survival and decrease malaria transmission. The entomological impact of MDA of combined IVM and dihydroartemisinin-piperaquine was assessed in a community-based, cluster-randomized trial. METHODS A cluster-randomized trial was implemented in 2018 and 2019 in 32 villages in the Upper River Region, The Gambia. The with the inhabitants of 16 intervention villages eligible to receive three monthly rounds of MDA at the beginning of the malaria transmission season. Entomological surveillance with light traps and human landing catches (HLC) was carried out during a 7- to 14-day period after each round of MDA, and then monthly until the end of the year. The mosquitocidal effect of IVM was determined by direct membrane feeding assays. RESULTS Of the 15,017 mosquitoes collected during the study period, 99.65% (n = 14,965) were Anopheles gambiae sensu lato (An. gambiae s.l.), comprising Anopheles arabiensis (56.2%), Anopheles coluzzii (24.5%), Anopheles gambiae sensu stricto (An. gembiae s.s.; 16.0%) and Anopheles funestus sensu lato (An. funestus s.l.; 0.35%). No effect of the intervention on vector parity was observed. Vector density determined on light trap collections was significantly lower in the intervention villages in 2019 (adjusted incidence rate ratio: 0.39; 95% confidence interval [CI]: 0.20, 0.74; P = 0.005) but not in 2018. However, vector density determined in HLC collections was similar in both the intervention and control villages. The entomological inoculation rate was significantly lower in the intervention villages than in the control villages (odds ratio: 0.36, 95% CI: 0.19, 0.70; P = 0·003). Mosquito mortality was significantly higher when blood fed on IVM-treated individuals up to 21 days post-treatment, particularly in adults and individuals with a higher body mass index. CONCLUSION Mass drug administration with IVM decreased vector density and the entomological inoculation rate while the effect on vector parity was less clear. Survival of mosquitoes fed on blood collected from IVM-treated individuals was significantly lower than that in mosquitoes which fed on controls. The influence of host characteristics on mosquito survivorship indicated that dose optimization could improve IVM efficacy. Future detailed entomological evaluation trials in which IVM is administered as stand-alone intervention may elucidate the contribution of this drug to the observed reduction in transmission.
Collapse
Affiliation(s)
- Harouna M. Soumare
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Edgard Diniba Dabira
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Muhammed M. Camara
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Lamin Jadama
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Pa Modou Gaye
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sainey Kanteh
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Ebrima A. Jawara
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Amie Kolleh Njie
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Fatou Sanneh
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mamadou Ousman Ndiath
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Bakary Conteh
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sainey Ceesay
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Nuredin Mohammed
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Michael Ooko
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Annette Erhart
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Umberto D’Alessandro
- Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
11
|
Kalkman LC, Hanscheid T, Krishna S, Kremsner PG, Grobusch MP. Antimalarial treatment in infants. Expert Opin Pharmacother 2022; 23:1711-1726. [PMID: 36174125 DOI: 10.1080/14656566.2022.2130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Malaria in infants is common in high-transmission settings, especially in infants >6 months. Infants undergo physiological changes impacting pharmacokinetics and pharmacodynamics of anti-malarial drugs and, consequently, the safety and efficacy of malaria treatment. Yet, treatment guidelines and evidence on pharmacological interventions for malaria often fail to address this vulnerable age-group. This review aims to summarise the available data on anti-malarial treatment in infants. AREAS COVERED The standard recommended treatments for severe and uncomplicated malaria are generally safe and effective in infants. However, infants have an increased risk of drug-related vomiting and have distinct pharmacokinetic parameters of antimalarials compared with older patients. These include larger volumes of distribution, higher clearance rates and immature enzyme systems. Consequently, infants with malaria may be at increased risk of treatment failure and drug toxicity. EXPERT OPINION Knowledge expansion to optimize treatment can be achieved by including more infants in antimalarial drug trials and by reporting separately on treatment outcomes in infants. Additional evidence on the efficacy, safety, tolerability, acceptability and effectiveness of ACTs in infants is needed, as well as population pharmacokinetics studies on antimalarials in the infant population.
Collapse
Affiliation(s)
- Laura C Kalkman
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sanjeev Krishna
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Clinical Academic Group, Institute for Infection and Immunity, and St. George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
| | - Peter G Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands.,Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
| |
Collapse
|
12
|
Cardoso JLM, Salazar YEAR, Almeida ACG, Barbosa LRA, Silva EL, Rodrigues MGA, Rodrigues-Soares F, Sampaio VS, Siqueira AM, Lacerda MVG, Monteiro WM, Melo GC. Influence of CYP2D6, CYP3A4 and CYP2C19 Genotypes on Recurrence of Plasmodium vivax. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.845451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe influence of the CYPs (cytochrome P-450) in the success of antimalarial therapy remains uncertain. In this study, the association of CYP2D6, CYP2C19 and CYP3A4 polymorphisms and predicted phenotypes with malaria recurrence was investigated.MethodsAfter diagnosis of vivax malaria, individuals treated at a reference center in Manaus were followed up for 180 days. Patients were separated into two groups: a recurrence group and a non-recurrence group. Genotyping of CYP2D6, CYP2C19 and CYP3A4 was performed using a TaqMan™ assay and real-time PCR.FindingsThe frequencies of decreased-function and normal-function alleles and phenotypes for all CYPs were similar between the groups, except for the CYP2D6*2xN allele (p=0.047) and the CYP2D6 gUM phenotype (p=0.057), which were more frequent in individuals without recurrence. Despite this, the CYP2D6, CYP2C19 and CYP3A4 genotypes had no association with an increased risk of recurrence. CYPs polymorphisms also had no influence in parasite clearance, neither in the time nor the number of recurrence episodes. MAINConclusionThis prospective cohort study demonstrated that CYP2D6, CYP2C19 and CYP3A4 polymorphisms have no influence on malaria recurrence. Nonetheless, our findings suggest that the CYP2D6 predicted ultrarapid phenotype was less susceptible to recurrence, and that patients with the CYP2D6 gUM phenotype are less susceptible to primaquine failure. Additional investigation of pharmacogenetics and pharmacokinetics are needed before implementing CYP analysis to better orientate individualized radical treatment of vivax malaria in reference centers that treat patients with multiple recurrences.
Collapse
|
13
|
Chan ER, Mehlotra RK, Pirani KA, Ratsimbasoa AC, Williams SM, Gaedigk A, Zimmerman PA. CYP2D6 gene resequencing in the Malagasy, a population at the crossroads between Asia and Africa: a pilot study. Pharmacogenomics 2022; 23:315-325. [PMID: 35230160 PMCID: PMC8965795 DOI: 10.2217/pgs-2021-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Plasmodium vivax malaria is endemic in Madagascar, where populations have genetic inheritance from Southeast Asia and East Africa. Primaquine, a drug of choice for vivax malaria, is metabolized principally via CYP2D6. CYP2D6 variation was characterized by locus-specific gene sequencing and was compared with TaqMan™ genotype data. Materials & methods: Long-range PCR amplicons were generated from 96 Malagasy samples and subjected to next-generation sequencing. Results: The authors observed high concordance between TaqMan™-based CYP2D6 genotype calls and the base calls from sequencing. In addition, there are new variants and haplotypes present in the Malagasy. Conclusion: Sequencing unique admixed populations provides more detailed and accurate insights regarding CYP2D6 variability, which may help optimize primaquine treatment across human genetic diversity.
Collapse
Affiliation(s)
- E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rajeev K Mehlotra
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Karim A Pirani
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar.,CNARP (Centre National d'Application de Recherche Pharmaceutique), Antananarivo, Madagascar
| | - Scott M Williams
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Chotsiri P, Mahamar A, Hoglund RM, Koita F, Sanogo K, Diawara H, Dicko A, Simpson JA, Bousema T, White NJ, Brown JM, Gosling R, Chen I, Tarning J. Mechanistic Modeling of Primaquine Pharmacokinetics, Gametocytocidal Activity, and Mosquito Infectivity. Clin Pharmacol Ther 2022; 111:676-685. [PMID: 34905220 PMCID: PMC9302630 DOI: 10.1002/cpt.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Abstract
Clinical studies have shown that adding a single 0.25 mg base/kg dose of primaquine to standard antimalarial regimens rapidly sterilizes Plasmodium falciparum gametocytes. However, the mechanism of action and overall impact on malaria transmission is still unknown. Using data from 81 adult Malians with P. falciparum gametocytemia who received the standard dihydroartemisinin-piperaquine treatment course and were randomized to receive either a single dose of primaquine between 0.0625 and 0.5 mg base/kg or placebo, we characterized the pharmacokinetic-pharmacodynamic relationships for transmission blocking activity. Both gametocyte clearance and mosquito infectivity were assessed. A mechanistically linked pharmacokinetic-pharmacodynamic model adequately described primaquine and carboxy-primaquine pharmacokinetics, gametocyte dynamics, and mosquito infectivity at different clinical doses of primaquine. Primaquine showed a dose-dependent gametocytocidal effect that precedes clearance. A single low dose of primaquine (0.25 mg/kg) rapidly prevented P. falciparum transmissibility.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Almahamoudou Mahamar
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Richard M. Hoglund
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Fanta Koita
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Koualy Sanogo
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Halimatou Diawara
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Alassane Dicko
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Julie A. Simpson
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Teun Bousema
- Radboud Institute of Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Nicholas J. White
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Joelle M. Brown
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Roly Gosling
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Global Health GroupMalaria Elimination InitiativeUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ingrid Chen
- Global Health GroupMalaria Elimination InitiativeUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| |
Collapse
|
15
|
Stone W, Mahamar A, Sanogo K, Sinaba Y, Niambele SM, Sacko A, Keita S, Youssouf A, Diallo M, Soumare HM, Kaur H, Lanke K, ter Heine R, Bradley J, Issiaka D, Diawara H, Traore SF, Bousema T, Drakeley C, Dicko A. Pyronaridine-artesunate or dihydroartemisinin-piperaquine combined with single low-dose primaquine to prevent Plasmodium falciparum malaria transmission in Ouélessébougou, Mali: a four-arm, single-blind, phase 2/3, randomised trial. THE LANCET. MICROBE 2022; 3:e41-e51. [PMID: 35028628 PMCID: PMC8721154 DOI: 10.1016/s2666-5247(21)00192-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pyronaridine-artesunate is the most recently licensed artemisinin-based combination therapy. WHO has recommended that a single low dose of primaquine could be added to artemisinin-based combination therapies to reduce Plasmodium falciparum transmission in areas aiming for elimination of malaria or areas facing artemisinin resistance. We aimed to determine the efficacy of pyronaridine-artesunate and dihydroartemisinin-piperaquine with and without single low-dose primaquine for reducing gametocyte density and transmission to mosquitoes. METHODS We conducted a four-arm, single-blind, phase 2/3, randomised trial at the Ouélessébougou Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako (Bamako, Mali). Participants were aged 5-50 years, with asymptomatic P falciparum malaria mono-infection and gametocyte carriage on microscopy, haemoglobin density of 9·5 g/dL or higher, bodyweight less than 80 kg, and no use of antimalarial drugs over the past week. Participants were randomly assigned (1:1:1:1) to one of four treatment groups: pyronaridine-artesunate, pyronaridine-artesunate plus primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus primaquine. Treatment allocation was concealed to all study staff other than the trial pharmacist and treating physician. Dihydroartemisinin-piperaquine and pyronaridine-artesunate were administered as per manufacturer guidelines over 3 days; primaquine was administered as a single dose in oral solution according to bodyweight (0·25 mg/kg; in 1 kg bands). The primary endpoint was percentage reduction in mosquito infection rate (percentage of mosquitoes surviving to dissection that were infected with P falciparum) at 48 h after treatment compared with baseline (before treatment) in all treatment groups. Data were analysed per protocol. This trial is now complete, and is registered with ClinicalTrials.gov, NCT04049916. FINDINGS Between Sept 10 and Nov 19, 2019, 1044 patients were assessed for eligibility and 100 were enrolled and randomly assigned to one of the four treatment groups (n=25 per group). Before treatment, 66 (66%) of 100 participants were infectious to mosquitoes, with a median of 15·8% (IQR 5·4-31·9) of mosquitoes becoming infected. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 48 h after treatment was 100·0% (IQR 100·0 to 100·0) for individuals treated with pyronaridine-artesunate plus primaquine (n=18; p<0·0001) and dihydroartemisinin-piperaquine plus primaquine (n=15; p=0·0001), compared with -8·7% (-54·8 to 93·2) with pyronaridine-artesunate (n=17; p=0·88) and 50·4% (13·8 to 70·9) with dihydroartemisinin-piperaquine (n=16; p=0·13). There were no serious adverse events, and there were no significant differences between treatment groups at any point in the frequency of any adverse events (Fisher's exact test p=0·96) or adverse events related to study drugs (p=0·64). The most common adverse events were headaches (40 events in 32 [32%] of 100 participants), rhinitis (31 events in 30 [30%]), and respiratory infection (20 events in 20 [20%]). INTERPRETATION These data support the use of single low-dose primaquine as an effective supplement to dihydroartemisinin-piperaquine and pyronaridine-artesunate for blocking P falciparum transmission. The new pyronaridine-artesunate plus single low-dose primaquine combination is of immediate relevance to regions in which the containment of partial artemisinin and partner-drug resistance is a growing concern and in regions aiming to eliminate malaria. FUNDING The Bill & Melinda Gates Foundation. TRANSLATIONS For the French, Spanish and Swahilil translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- William Stone
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Youssouf Sinaba
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Ahamadou Youssouf
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Harouna M Soumare
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Harparkash Kaur
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Kjerstin Lanke
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Rob ter Heine
- Department of Pharmacy and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Djibrilla Issiaka
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
16
|
Woon SA, Manning L, Moore BR. Antimalarials for children with Plasmodium vivax infection: Current status, challenges, and research priorities. Parasitol Int 2021; 87:102512. [PMID: 34785369 DOI: 10.1016/j.parint.2021.102512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The aim of this narrative review is to summarise efficacy and pharmacokinetic data for Plasmodium vivax in children. The burden of P. vivax malaria in children continues to remain a significant public health issue, and the need for improved treatment regimens for this vulnerable population is critical. Relapse after re-activation of dormant liver-stage hypnozoites poses additional challenges for treatment, elimination, and control strategies for P. vivax. Whilst it is recognised that paediatric pharmacology may be significantly influenced by anatomical and physiological changes of childhood, dosing regimens often continue to be extrapolated from adult data, highlighting the need for antimalarial dosing in children to be evaluated in early phase clinical trials. This will ensure that globally recommended treatment regimens do not result in suboptimal dosing in children. Furthermore, the development of affordable paediatric formulations to enhance treatment acceptability and widespread G6PD testing to facilitate use of anti-hypnozoite treatment such as primaquine and tafenoquine, should be further prioritised. As the world prepares for malaria elimination, a renewed focus on P. vivax malaria provides an ideal opportunity to harness momentum and ensure that all populations, including children have access to safe, efficacious, and correctly dosed antimalarial therapies.
Collapse
Affiliation(s)
- Sze-Ann Woon
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Laurens Manning
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Brioni R Moore
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
17
|
van Beek SW, Svensson EM, Tiono AB, Okebe J, D'Alessandro U, Gonçalves BP, Bousema T, Drakeley C, Ter Heine R. Model-based assessment of the safety of community interventions with primaquine in sub-Saharan Africa. Parasit Vectors 2021; 14:524. [PMID: 34627346 PMCID: PMC8502297 DOI: 10.1186/s13071-021-05034-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single low-dose primaquine (SLD-PQ) is recommended in combination with artemisinin-based combination therapy to reduce Plasmodium falciparum transmission in areas threatened by artemisinin resistance or aiming for malaria elimination. SLD-PQ may be beneficial in mass drug administration (MDA) campaigns to prevent malaria transmission but uptake is limited by concerns of hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The aim of this study was to improve the evidence on the safety of MDA with SLD-PQ in a sub-Saharan African setting. METHODS A nonlinear mixed-effects model describing the pharmacokinetics and treatment-induced hemolysis of primaquine was developed using data from an adult (n = 16, G6PD deficient) and pediatric study (n = 38, G6PD normal). The relationship between primaquine pharmacokinetics and hemolysis was modeled using an established erythrocyte lifespan model. The safety of MDA with SLD-PQ was explored through Monte Carlo simulations for SLD-PQ at 0.25 or 0.4 mg/kg using baseline data from a Tanzanian setting with detailed information on hemoglobin concentrations and G6PD status. RESULTS The predicted reduction in hemoglobin levels following SLD-PQ was small and returned to pre-treatment levels after 25 days. G6PD deficiency (African A- variant) was associated with a 2.5-fold (95% CI 1.2-8.2) larger reduction in hemoglobin levels. In the Tanzanian setting where 43% of the population had at least mild anemia (hemoglobin < 11-13 g/dl depending on age and sex) and 2.73% had severe anemia (hemoglobin < 7-8 g/dl depending on age and sex), an additional 3.7% and 6.0% of the population were predicted to develop at least mild anemia and 0.25% and 0.41% to develop severe anemia after 0.25 and 0.4 mg/kg SLD-PQ, respectively. Children < 5 years of age and women ≥ 15 years of age were found to have a higher chance to have low pre-treatment hemoglobin. CONCLUSIONS This study supports the feasibility of MDA with SLD-PQ in a sub-Saharan African setting by predicting small and transient reductions in hemoglobin levels. In a setting where a substantial proportion of the population had low hemoglobin concentrations, our simulations suggest treatment with SLD-PQ would result in small increases in the prevalence of anemia which would most likely be transient.
Collapse
Affiliation(s)
- Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alfred B Tiono
- National Center for Research and Training on Malaria (CNRFP), Ouagadougou, Burkina Faso
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Faraja , The Gambia
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, UK.
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Taylor WR, Hoglund RM, Peerawaranun P, Nguyen TN, Hien TT, Tarantola A, von Seidlein L, Tripura R, Peto TJ, Dondorp AM, Landier J, H Nosten F, Smithuis F, Phommasone K, Mayxay M, Kheang ST, Say C, Neeraj K, Rithea L, Dysoley L, Kheng S, Muth S, Roca-Feltrer A, Debackere M, Fairhurst RM, Song N, Buchy P, Menard D, White NJ, Tarning J, Mukaka M. Development of weight and age-based dosing of daily primaquine for radical cure of vivax malaria. Malar J 2021; 20:366. [PMID: 34503519 PMCID: PMC8427859 DOI: 10.1186/s12936-021-03886-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In many endemic areas, Plasmodium vivax malaria is predominantly a disease of young adults and children. International recommendations for radical cure recommend fixed target doses of 0.25 or 0.5 mg/kg/day of primaquine for 14 days in glucose-6-phosphate dehydrogenase normal patients of all ages. However, for many anti-malarial drugs, including primaquine, there is evidence that children have lower exposures than adults for the same weight-adjusted dose. The aim of the study was to develop 14-day weight-based and age-based primaquine regimens against high-frequency relapsing tropical P. vivax. METHODS The recommended adult target dose of 0.5 mg/kg/day (30 mg in a 60 kg patient) is highly efficacious against tropical P. vivax and was assumed to produce optimal drug exposure. Primaquine doses were calculated using allometric scaling to derive a weight-based primaquine regimen over a weight range from 5 to 100 kg. Growth curves were constructed from an anthropometric database of 53,467 individuals from the Greater Mekong Subregion (GMS) to define weight-for-age relationships. The median age associated with each weight was used to derive an age-based dosing regimen from the weight-based regimen. RESULTS The proposed weight-based regimen has 5 dosing bands: (i) 5-7 kg, 5 mg, resulting in 0.71-1.0 mg/kg/day; (ii) 8-16 kg, 7.5 mg, 0.47-0.94 mg/kg/day; (iii) 17-40 kg, 15 mg, 0.38-0.88 mg/kg/day; (iv) 41-80 kg, 30 mg, 0.37-0.73 mg/kg/day; and (v) 81-100 kg, 45 mg, 0.45-0.56 mg/kg/day. The corresponding age-based regimen had 4 dosing bands: 6-11 months, 5 mg, 0.43-1.0 mg/kg/day; (ii) 1-5 years, 7.5 mg, 0.35-1.25 mg/kg/day; (iii) 6-14 years, 15 mg, 0.30-1.36 mg/kg/day; and (iv) ≥ 15 years, 30 mg, 0.35-1.07 mg/kg/day. CONCLUSION The proposed weight-based regimen showed less variability around the primaquine dose within each dosing band compared to the age-based regimen and is preferred. Increased dose accuracy could be achieved by additional dosing bands for both regimens. The age-based regimen might not be applicable to regions outside the GMS, which must be based on local anthropometric data. Pharmacokinetic data in small children are needed urgently to inform the proposed regimens.
Collapse
Affiliation(s)
- Walter Robert Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
| | - Thuy Nhien Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Oversea Programme, Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Wellcome Trust Major Oversea Programme, Ho Chi Minh City, Vietnam
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, Phnom Penh, 12201, Cambodia
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Global Health, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Aix-Marseille Université, IRD, INSERM, SESSTIM, Marseille, France
| | - Francois H Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | | | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR
| | - Soy Ty Kheang
- Center for Health and Social Development (HSD), National Institute for Public Health (NIPH) and University Research Co., LLC (URC), Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
- AQUITY Global Inc, 987 Avenel Farm Dr, Potomac, MD, 20854, USA
| | - Chy Say
- Center for Health and Social Development (HSD), National Institute for Public Health (NIPH) and University Research Co., LLC (URC), Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Kak Neeraj
- University Research Co., LLC Washington DC, 7200 Wisconsin Ave, Bethesda, MD, 20814, USA
| | - Leang Rithea
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
- Institute of Public Health, Phnom Penh, Cambodia
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
| | | | - Mark Debackere
- MSF Belgium Cambodia Malaria Program, Khan Chamkarmon, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ngak Song
- FHI 360 Cambodia Office, Keng Kang III Khan Chamkamon, Phnom Penh, Cambodia
| | - Philippe Buchy
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, Phnom Penh, 12201, Cambodia
- GSK Vaccines, 23 Rochester Park, Singapore, Singapore
| | - Didier Menard
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, Phnom Penh, 12201, Cambodia
- Unité Génétique du Paludisme Et Résistance, Département Parasites Et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Determinants of primaquine and carboxyprimaquine exposures in children and adults with Plasmodium vivax malaria. Antimicrob Agents Chemother 2021; 65:e0130221. [PMID: 34398667 DOI: 10.1128/aac.01302-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Primaquine is the only widely available drug for radical cure of Plasmodium vivax malaria. There is uncertainty whether the pharmacokinetic properties of primaquine are altered significantly in childhood or not. Methods Glucose-6-phosphate dehydrogenase normal patients with uncomplicated P. vivax malaria were randomized to receive either chloroquine (25mg base/kg) or dihydroartemisinin-piperaquine (dihydroartemisinin 7mg/kg and piperaquine 55mg/kg) plus primaquine; given either as 0.5 mg base/kg/day for 14 days or 1 mg/kg/day for 7 days. Pre-dose day 7 venous plasma concentrations of chloroquine, desethylchloroquine, piperaquine, primaquine and carboxyprimaquine were measured. Methemoglobin levels were measured on day 7. Results Day 7 primaquine and carboxyprimaquine concentrations were available for 641 patients. After adjustment for the primaquine mg/kg daily dose, day of sampling, partner drug, and fever clearance, there was a significant non-linear relationship between age and trough primaquine and carboxyprimaquine concentrations, and day methemoglobin levels. Compared to adults 30 years of age, children 5 years of age had trough primaquine concentrations 0.53 (95% CI: 0.39- 0.73) fold lower, trough carboxyprimaquine concentrations 0.45 (95% CI: 0.35- 0.55) fold lower, and day 7 methemoglobin levels 0.87 (95% CI: 0.58-1.27) fold lower. Increasing concentrations of piperaquine and chloroquine and poor metabolizer CYP 2D6 alleles were associated with higher day 7 primaquine and carboxyprimaquine concentrations. Higher blood methemoglobin concentrations were associated with a lower risk of recurrence. Conclusion Young children have lower primaquine and carboxyprimaquine exposures, and lower levels of methemoglobinemia, than adults. Young children may need higher weight adjusted primaquine doses than adults.
Collapse
|
20
|
Pookmanee W, Thongthip S, Tankanitlert J, Mungthin M, Sukasem C, Wittayalertpanya S. Simplified and Rapid Determination of Primaquine and 5,6-Orthoquinone Primaquine by UHPLC-MS/MS: Its Application to a Pharmacokinetic Study. Molecules 2021; 26:molecules26144357. [PMID: 34299634 PMCID: PMC8304466 DOI: 10.3390/molecules26144357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The method for the determination of primaquine (PQ) and 5,6-orthoquinone primaquine (5,6-PQ), the representative marker for PQ active metabolites, via CYP2D6 in human plasma and urine has been validated. All samples were extracted using acetonitrile for protein precipitation and analyzed using the ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) system. Chromatography separation was carried out using a Hypersil GOLDTM aQ C18 column (100 × 2.1 mm, particle size 1.9 μm) with a C18 guard column (4 × 3 mm) flowed with an isocratic mode of methanol, water, and acetonitrile in an optimal ratio at 0.4 mL/min. The retention times of 5,6-PQ and PQ in plasma and urine were 0.8 and 1.6 min, respectively. The method was validated according to the guideline. The linearity of the analytes was in the range of 25–1500 ng/mL. The matrix effect of PQ and 5,6-PQ ranged from 100% to 116% and from 87% to 104% for plasma, and from 87% to 89% and from 86% to 87% for urine, respectively. The recovery of PQ and 5,6-PQ ranged from 78% to 95% and form 80% to 98% for plasma, and from 102% to from 112% to 97% to 109% for urine, respectively. The accuracy and precision of PQ and 5,6-PQ in plasma and urine were within the acceptance criteria. The samples should be kept in the freezer (−80 °C) and analyzed within 7 days due to the metabolite stability. This validated UHPLC-MS/MS method was beneficial for a pharmacokinetic study in subjects receiving PQ.
Collapse
Affiliation(s)
- Waritda Pookmanee
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriwan Thongthip
- Maha Chakri Sirindhorn Clinical Research Center Under the Royal Patronage, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jeeranut Tankanitlert
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand; (J.T.); (M.M.)
| | - Mathirut Mungthin
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand; (J.T.); (M.M.)
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
| | - Supeecha Wittayalertpanya
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-8-1421-9164
| |
Collapse
|
21
|
Population Pharmacokinetics of Primaquine in the Korean Population. Pharmaceutics 2021; 13:pharmaceutics13050652. [PMID: 34063671 PMCID: PMC8147617 DOI: 10.3390/pharmaceutics13050652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
While primaquine has long been used for malaria treatment, treatment failure is common. This study aims to develop a population pharmacokinetic model of primaquine and its metabolite, carboxyprimaquine, and examine factors influencing pharmacokinetic variability. The data was obtained from a clinical study in 24 Korean subjects randomly assigned to normal and obese groups. The participants received primaquine 15 mg daily for 4 days and blood samples were collected at day 4. Pharmacokinetic modeling was performed with NONMEM and using simulations; the influences of doses and covariates on drug exposure were examined. A minimal physiology-based pharmacokinetic model connected with a liver compartment comprehensively described the data, with CYP450 mediated clearance being positively correlated with the body weight and CYP2D6 activity score (p < 0.05). In the simulation, while the weight-normalized area under drug concentration for primaquine in the obese group decreased by 29% at the current recommended dose of 15 mg, it became similar to the normal weight group at a weight-normalized dose of 3.5 mg/kg. This study has demonstrated that the body weight and CYP2D6 activity score significantly influence the pharmacokinetics of primaquine. The developed model is expected to be used as a basis for optimal malaria treatment in Korean patients.
Collapse
|
22
|
Mehlotra RK, Gaedigk A, Howes RE, Rakotomanga TA, Ratsimbasoa AC, Zimmerman PA. CYP2D6 Genetic Variation and Its Implication for Vivax Malaria Treatment in Madagascar. Front Pharmacol 2021; 12:654054. [PMID: 33959023 PMCID: PMC8093859 DOI: 10.3389/fphar.2021.654054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Plasmodium vivax is one of the five human malaria parasite species, which has a wide geographical distribution and can cause severe disease and fatal outcomes. It has the ability to relapse from dormant liver stages (hypnozoites), weeks to months after clearance of the acute blood-stage infection. An 8-aminoquinoline drug primaquine (PQ) can clear the hypnozoites, and thus can be used as an anti-relapse therapeutic agent. Recently, a number of studies have found that its efficacy is compromised by polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene; decreased or absence of CYP2D6 activity contributes to PQ therapeutic failure. The present study sought to characterize CYP2D6 genetic variation in Madagascar, where populations originated from admixture between Asian and African populations, vivax malaria is endemic, and PQ can be deployed soon to achieve national malaria elimination. In a total of 211 samples collected from two health districts, CYP2D6 decreased function alleles CYP2D6*10, *17, *29, *36+*10, and *41 were observed at frequencies of 3.55-17.06%. In addition, nonfunctional alleles were observed, the most common of which were CYP2D6*4 (2.13%), *5 (1.66%), and the *4x2 gene duplication (1.42%). Given these frequencies, 34.6% of the individuals were predicted to be intermediate metabolizers (IM) with an enzyme activity score (AS) ≤ 1.0; both the IM phenotype and AS ≤ 1.0 have been found to be associated with PQ therapeutic failure. Furthermore, the allele and genotype frequency distributions add to the archaeological and genomic evidence of Malagasy populations constituting a unique, Asian-African admixed origin. The results from this exploratory study provide fresh insights about genomic characteristics that could affect the metabolism of PQ into its active state, and may enable optimization of PQ treatment across human genetic diversity, which is critical for achieving P. vivax elimination.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kanas City, MO, United States
| | - Rosalind E Howes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom.,Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Tovonahary A Rakotomanga
- The National Malaria Control Program, Ministry of Health, Antananarivo, Madagascar.,University of Fianarantsoa, Fianarantsoa, Madagascar
| | - Arsene C Ratsimbasoa
- The National Malaria Control Program, Ministry of Health, Antananarivo, Madagascar.,University of Fianarantsoa, Fianarantsoa, Madagascar
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
23
|
Sepúlveda N, Grignard L, Curry J, Mahey L, Bastiaens GJH, Tiono AB, Okebe J, Coulibaly SA, Gonçalves BP, Affara M, Ouédraogo A, Bougouma EC, Sanou GS, Nébié I, Lanke K, Sirima SB, Dicko A, d’Alessandro U, Clark TG, Campino S, Chen I, Eziefula AC, Gosling R, Bousema T, Drakeley C. G6PD Polymorphisms and Hemolysis After Antimalarial Treatment With Low Single-Dose Primaquine: A Pooled Analysis of Six African Clinical Trials. Front Genet 2021; 12:645688. [PMID: 33897764 PMCID: PMC8062977 DOI: 10.3389/fgene.2021.645688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Primaquine (PQ) is an antimalarial drug with the potential to reduce malaria transmission due to its capacity to clear mature Plasmodium falciparum gametocytes in the human host. However, the large-scale roll-out of PQ has to be counterbalanced by the additional risk of drug-induced hemolysis in individuals suffering from Glucose-6-phospate dehydrogenase (G6PD) deficiency, a genetic condition determined by polymorphisms on the X-linked G6PD gene. Most studies on G6PD deficiency and PQ-associated hemolysis focused on the G6PD A- variant, a combination of the two single nucleotide changes G202A (rs1050828) and A376G (rs1050829), although other polymorphisms may play a role. In this study, we tested the association of 20 G6PD single nucleotide polymorphisms (SNPs) with hemolysis measured seven days after low single dose of PQ given at the dose of 0.1 mg/kg to 0.75 mg/kg in 957 individuals from 6 previously published clinical trials investigating the safety and efficacy of this drug spanning five African countries. After adjusting for inter-study effects, age, gender, baseline hemoglobin level, PQ dose, and parasitemia at screening, our analysis showed putative association signals from the common G6PD mutation, A376G [-log10(p-value) = 2.44] and two less-known SNPs, rs2230037 [-log10(p-value] = 2.60), and rs28470352 [-log10(p-value) = 2.15]; A376G and rs2230037 were in very strong linkage disequilibrium with each other (R 2 = 0.978). However, when the effects of these SNPs were included in the same regression model, the subsequent associations were in the borderline of statistical significance. In conclusion, whilst a role for the A- variant is well established, we did not observe an important additional role for other G6PD polymorphisms in determining post-treatment hemolysis in individuals treated with low single-dose PQ.
Collapse
Affiliation(s)
- Nuno Sepúlveda
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- CEAUL – Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
| | - Lynn Grignard
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Guido J. H. Bastiaens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alfred B. Tiono
- Department of Public Health, Centre National de Recherche et de Formation sur le Paludisme & Institut National de Santé Publique, Ouagadougou, Burkina Faso
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sam A. Coulibaly
- Department of Public Health, Centre National de Recherche et de Formation sur le Paludisme & Institut National de Santé Publique, Ouagadougou, Burkina Faso
| | - Bronner P. Gonçalves
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Muna Affara
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
| | - Alphonse Ouédraogo
- Department of Public Health, Centre National de Recherche et de Formation sur le Paludisme & Institut National de Santé Publique, Ouagadougou, Burkina Faso
| | - Edith C. Bougouma
- Department of Public Health, Centre National de Recherche et de Formation sur le Paludisme & Institut National de Santé Publique, Ouagadougou, Burkina Faso
| | - Guillaume S. Sanou
- Department of Public Health, Centre National de Recherche et de Formation sur le Paludisme & Institut National de Santé Publique, Ouagadougou, Burkina Faso
| | - Issa Nébié
- Department of Public Health, Centre National de Recherche et de Formation sur le Paludisme & Institut National de Santé Publique, Ouagadougou, Burkina Faso
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sodiomon B. Sirima
- Department of Public Health, Centre National de Recherche et de Formation sur le Paludisme & Institut National de Santé Publique, Ouagadougou, Burkina Faso
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Umberto d’Alessandro
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingrid Chen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Alice C. Eziefula
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Roly Gosling
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Teun Bousema
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
24
|
White NJ. Anti-malarial drug effects on parasite dynamics in vivax malaria. Malar J 2021; 20:161. [PMID: 33743731 PMCID: PMC7981980 DOI: 10.1186/s12936-021-03700-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Relapses of Plasmodium vivax malaria are prevented by 8-aminoquinolines. If hypnozoites survive, then the subsequent blood stage infections in early relapses (< 2 months) are suppressed by the slowly eliminated anti-malarial drugs used to treat the blood stage infection (chloroquine, artemisinin combination treatments), but they are not usually eliminated. The 8-aminoquinolines have significant blood stage activity which contributes to therapeutic responses. The latent interval from primary infection to early relapse depends on the number of activatable hypnozoites, the dose of anti-malarial, its pharmacokinetic properties, the level of resistance (minimum inhibitory concentration) and immunity. The dose-response relationship for radical curative efficacy of primaquine and tafenoquine is steep over the total dose range from 1.5 to 5 mg base/kg which may explain the poor efficacy of tafenoquine at the currently recommended dose.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Vieira MVDF, Matos Lopes TR, Mello AGNC, de Sena LWP, Commons RJ, Vieira JLF. Doses of primaquine administered to children with Plasmodium vivax according to an age-based dose regimen. Pathog Glob Health 2020; 114:388-392. [PMID: 32705964 DOI: 10.1080/20477724.2020.1799166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primaquine is still the first-line drug to eliminate hypnozoites of Plasmodium vivax. The therapeutic efficacy is related to the total dose administered. In several endemic areas, the drug is administered for children in an age-based regimen, which can lead to inadequate exposure, increasing the rates of recurrence of the infection. The present study aims to describe the mg/kg total dose of primaquine administered to children for treatment for vivax malaria when an age-based regimen is used and to measure the plasma concentrations of primaquine and carboxyprimaquine. A total of 85 children were included in the study. The total dose of primaquine administered based on mg/kg had a median value of 3.22 mg/kg. The percentage of patients with a total dose below the required dose of 3.5 mg/kg was 55.75%. The median primaquine maximum concentration was 94 ng/ml. For carboxy-primaquine, the median maximum concentration was 375 ng/ml. The results suggest that age-based dosing regimens likely lead to substantial under-dosing of primaquine, which is evident in the youngest children and is reflected in decreased levels of primaquine and carboxy-primaquine in plasma samples 13.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University , Darwin, Australia.,WorldWide Antimalarial Resistance Network , Oxford, UK
| | | |
Collapse
|
26
|
Spring MD, Sousa JC, Li Q, Darko CA, Morrison MN, Marcsisin SR, Mills KT, Potter BM, Paolino KM, Twomey PS, Moon JE, Tosh DM, Cicatelli SB, Froude JW, Pybus BS, Oliver TG, McCarthy WF, Waters NC, Smith PL, Reichard GA, Bennett JW. Determination of Cytochrome P450 Isoenzyme 2D6 (CYP2D6) Genotypes and Pharmacogenomic Impact on Primaquine Metabolism in an Active-Duty US Military Population. J Infect Dis 2020; 220:1761-1770. [PMID: 31549155 PMCID: PMC6804407 DOI: 10.1093/infdis/jiz386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium vivax malaria requires a 2-week course of primaquine (PQ) for radical cure. Evidence suggests that the hepatic isoenzyme cytochrome P450 2D6 (CYP2D6) is the key enzyme required to convert PQ into its active metabolite. Methods CYP2D6 genotypes and phenotypes of 550 service personnel were determined, and the pharmacokinetics (PK) of a 30-mg oral dose of PQ was measured in 45 volunteers. Blood and urine samples were collected, with PQ and metabolites were measured using ultraperformance liquid chromatography with mass spectrometry. Results Seventy-six CYP2D6 genotypes were characterized for 530 service personnel. Of the 515 personnel for whom a single phenotype was predicted, 58% had a normal metabolizer (NM) phenotype, 35% had an intermediate metabolizer (IM) phenotype, 5% had a poor metabolizer (PM) phenotype, and 2% had an ultrametabolizer phenotype. The median PQ area under the concentration time curve from 0 to ∞ was lower for the NM phenotype as compared to the IM or PM phenotypes. The novel 5,6-ortho-quinone was detected in urine but not plasma from all personnel with the NM phenotype. Conclusion The plasma PK profile suggests PQ metabolism is decreased in personnel with the IM or PM phenotypes as compared to those with the NM phenotype. The finding of 5,6-ortho-quinone, the stable surrogate for the unstable 5-hydroxyprimaquine metabolite, almost exclusively in personnel with the NM phenotype, compared with sporadic or no production in those with the IM or PM phenotypes, provides further evidence for the role of CYP2D6 in radical cure. Clinical Trials Registration NCT02960568.
Collapse
Affiliation(s)
- Michele D Spring
- Department of Bacterial and Parasitic Diseases, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring
| | | | - Qigui Li
- Experimental Therapeutics Branch, Silver Spring
| | | | | | | | | | | | - Kristopher M Paolino
- Division of Infectious Disease, SUNY Upstate Medical University, Syracuse, New York
| | - Patrick S Twomey
- Licensing and Early Development-Oncology, Genentech, South San Francisco, California
| | | | - Donna M Tosh
- Clinical Operations, Government and Public Health Solutions, ICON, Hinckley, Ohio
| | | | - Jeffrey W Froude
- Vaccines/Therapeutics Division, Defense Threat Reduction Agency, Fort Belvoir, Virginia
| | | | | | - William F McCarthy
- U. S. Army Medical Materiel Development Activity, Fort Detrick, Maryland
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Jason W Bennett
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Silver Spring.,Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring
| |
Collapse
|
27
|
Abstract
There is a pressing need for compounds with broad-spectrum activity against malaria parasites at various life cycle stages to achieve malaria elimination. However, this goal cannot be accomplished without targeting the tenacious dormant liver-stage hypnozoite that causes multiple relapses after the first episode of illness. In the search for the magic bullet to radically cure Plasmodium vivax malaria, tafenoquine outperformed other candidate drugs and was approved by the U.S. Food and Drug Administration in 2018. Tafenoquine is an 8-aminoquinoline that inhibits multiple life stages of various Plasmodium species. Additionally, its much longer half-life allows for single-dose treatment, which will improve the compliance rate. Despite its approval and the long-time use of other 8-aminoquinolines, the mechanisms behind tafenoquine's activity and adverse effects are still largely unknown. In this Perspective, we discuss the plausible underlying mechanisms of tafenoquine's antiparasitic activity and highlight its role as a cellular stressor. We also discuss potential drug combinations and the development of next-generation 8-aminoquinolines to further improve the therapeutic index of tafenoquine for malaria treatment and prevention.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
28
|
Abstract
The scientific community worldwide has realized that malaria elimination will not be possible without development of safe and effective transmission-blocking interventions. Primaquine, the only WHO recommended transmission-blocking drug, is not extensively utilized because of the toxicity issues in G6PD deficient individuals. Therefore, there is an urgent need to develop novel therapeutic interventions that can target malaria parasites and effectively block transmission. But at first, it is imperative to unravel the existing portfolio of transmission-blocking drugs. This review highlights transmission-blocking potential of current antimalarial drugs and drugs that are in various stages of clinical development. The collective analysis of the relationships between the structure and the activity of transmission-blocking drugs is expected to help in the design of new transmission-blocking antimalarials.
Collapse
|
29
|
Haga SB. Pharmacogenomic Testing In Pediatrics: Navigating The Ethical, Social, And Legal Challenges. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:273-285. [PMID: 31686893 PMCID: PMC6800463 DOI: 10.2147/pgpm.s179172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
For the past several years, the implementation of pharmacogenetic (PGx) testing has become widespread in several centers and clinical practice settings. PGx testing may be ordered at the point-of-care when treatment is needed or in advance of treatment for future use. The potential benefits of PGx testing are not limited to adult patients, as children are increasingly using medications more often and at earlier ages. This review provides some background on the use of PGx testing in children as well as mothers (prenatally and post-natally) and discusses the challenges, benefits, and the ethical, legal, and social implications of providing PGx testing to children.
Collapse
Affiliation(s)
- Susanne B Haga
- Department of Medicine, Division of General Internal Medicine, Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
30
|
Chairat K, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Hanpithakpong W, Blessborn D, White NJ, Day NPJ, Tarning J. Enantiospecific pharmacokinetics and drug-drug interactions of primaquine and blood-stage antimalarial drugs. J Antimicrob Chemother 2019; 73:3102-3113. [PMID: 30085149 PMCID: PMC6198747 DOI: 10.1093/jac/dky297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Objectives Characterization of the pharmacokinetic properties of the enantiomers of primaquine and carboxyprimaquine following administration of racemic primaquine given alone and in combination with commonly used antimalarial drugs. Methods Enantiomeric pharmacokinetics were evaluated in 49 healthy adult volunteers enrolled in three randomized cross-over studies in which a single dose of primaquine was given alone and then, after a suitable washout period, in combination with chloroquine, dihydroartemisinin/piperaquine or pyronaridine/artesunate. Non-linear mixed-effects modelling was used to characterize pharmacokinetics and assess the impact of drug-drug interactions. Results The volume of distribution of racemic primaquine was decreased by a median (95% CI) of 22.0% (2.24%-39.9%), 24.0% (15.0%-31.5%) and 25.7% (20.3%-31.1%) when co-administered with chloroquine, dihydroartemisinin/piperaquine and pyronaridine/artesunate, respectively. The oral clearance of primaquine was decreased by a median of 19.1% (14.5%-22.8%) when co-administered with pyronaridine/artesunate. These interactions were enantiospecific with a relatively higher effect on (+)-S-primaquine than on (-)-R-primaquine. No drug-drug interaction effects were seen on the pharmacokinetics of either carboxyprimaquine enantiomer. Conclusions Population pharmacokinetic models characterizing the enantiospecific properties of primaquine were developed successfully. Exposure to primaquine, particularly to the (+)-S-primaquine but not the carboxy metabolites, increased by up to 30% when co-administered with commonly used antimalarial drugs. A better mechanistic understanding of primaquine metabolism is required for assessment of its efficacy and haematological toxicity in humans.
Collapse
Affiliation(s)
- Kalayanee Chairat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Podjanee Jittamala
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Warunee Hanpithakpong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel Blessborn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Med 2019; 16:e1002928. [PMID: 31584960 PMCID: PMC6777759 DOI: 10.1371/journal.pmed.1002928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax. METHODS AND FINDINGS Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups. CONCLUSIONS In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.
Collapse
|
32
|
CYP2D6 Polymorphisms and the Safety and Gametocytocidal Activity of Single-Dose Primaquine for Plasmodium falciparum. Antimicrob Agents Chemother 2019; 63:AAC.00538-19. [PMID: 31383656 PMCID: PMC6761544 DOI: 10.1128/aac.00538-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Single-dose primaquine (PQ) clears mature gametocytes and reduces the transmission of Plasmodium falciparum after artemisinin combination therapy. Genetic variation in CYP2D6, the gene producing the drug-metabolizing enzyme cytochrome P450 2D6 (CYP2D6), influences plasma concentrations of PQ and its metabolites and is associated with PQ treatment failure in Plasmodium vivax malaria. Single-dose primaquine (PQ) clears mature gametocytes and reduces the transmission of Plasmodium falciparum after artemisinin combination therapy. Genetic variation in CYP2D6, the gene producing the drug-metabolizing enzyme cytochrome P450 2D6 (CYP2D6), influences plasma concentrations of PQ and its metabolites and is associated with PQ treatment failure in Plasmodium vivax malaria. Using blood and saliva samples of varying quantity and quality from 8 clinical trials across Africa (n = 1,076), we were able to genotype CYP2D6 for 774 samples (72%). We determined whether genetic variation in CYP2D6 has implications for PQ efficacy in individuals with gametocytes at the time of PQ administration (n = 554) and for safety in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals treated with PQ (n = 110). Individuals with a genetically inferred CYP2D6 poor/intermediate metabolizer status had a higher gametocyte prevalence on day 7 or 10 after PQ than those with an extensive/ultrarapid CYP2D6 metabolizer status (odds ratio [OR] = 1.79 [95% confidence interval {CI}, 1.10, 2.90]; P = 0.018). The mean minimum hemoglobin concentrations during follow-up for G6PD-deficient individuals were 11.8 g/dl for CYP2D6 extensive/ultrarapid metabolizers and 12.1 g/dl for CYP2D6 poor/intermediate metabolizers (P = 0. 803). CYP2D6 genetically inferred metabolizer status was also not associated with anemia following PQ treatment (P = 0.331). We conclude that CYP2D6 poor/intermediate metabolizer status may be associated with prolonged gametocyte carriage after treatment with single-low-dose PQ but not with treatment safety.
Collapse
|
33
|
Hirvensalo P, Tornio A, Neuvonen M, Kiander W, Kidron H, Paile-Hyvärinen M, Tapaninen T, Backman JT, Niemi M. Enantiospecific Pharmacogenomics of Fluvastatin. Clin Pharmacol Ther 2019; 106:668-680. [PMID: 30989645 PMCID: PMC6767327 DOI: 10.1002/cpt.1463] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate how variability in multiple genes related to pharmacokinetics affects fluvastatin exposure. We determined fluvastatin enantiomer pharmacokinetics and sequenced 379 pharmacokinetic genes in 200 healthy volunteers. CYP2C9*3 associated with significantly increased area under the plasma concentration-time curve (AUC) of both 3R,5S-fluvastatin and 3S,5R-fluvastatin (by 67% and 94% per variant allele copy, P = 3.77 × 10-9 and P = 3.19 × 10-12 ). In contrast, SLCO1B1 c.521T>C associated with increased AUC of active 3R,5S-fluvastatin only (by 34% per variant allele copy; P = 8.15 × 10-8 ). A candidate gene analysis suggested that CYP2C9*2 also affects the AUC of both fluvastatin enantiomers and that SLCO2B1 single-nucleotide variations may affect the AUC of 3S,5R-fluvastatin. Thus, SLCO transporters have enantiospecific effects on fluvastatin pharmacokinetics in humans. Genotyping of both CYP2C9 and SLCO1B1 may be useful in predicting fluvastatin efficacy and myotoxicity.
Collapse
Affiliation(s)
- Päivi Hirvensalo
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Helsinki University Hospital, Helsinki, Finland
| | - Aleksi Tornio
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Helsinki University Hospital, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Helsinki University Hospital, Helsinki, Finland
| | - Tuija Tapaninen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Understanding human genetic factors influencing primaquine safety and efficacy to guide primaquine roll-out in a pre-elimination setting in southern Africa. Malar J 2018; 17:120. [PMID: 29558929 PMCID: PMC5859786 DOI: 10.1186/s12936-018-2271-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/27/2022] Open
Abstract
Background Primaquine (PQ) is recommended as an addition to standard malaria treatments in pre-elimination settings due to its pronounced activity against mature Plasmodium falciparum gametocytes, the parasite stage responsible for onward transmission to mosquitoes. However, PQ may trigger haemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. Additional human genetic factors, including polymorphisms in the human cytochrome P450 2D6 (CYP2D6) complex, may negatively influence the efficacy of PQ. This study assessed the prevalence of G6PD deficiency and two important CYP2D6 variants in representative pre-elimination settings in South Africa, to inform malaria elimination strategies. Methods Volunteers (n = 248) attending six primary health care facilities in a malaria-endemic region of South Africa were enrolled between October and November 2015. G6PD status was determined phenotypically, using a CareStart™ G6PD rapid diagnostic test (RDT), and genotypically for two common African G6PD variants, namely A+ (A376G) and A− (G202A, A542T, G680T & T968C) by PCR, restriction fragment length polymorphisms (RFLP) and DNA sequencing. CYP2D6*4 and CYP2D6*17 variants were determined with PCR and RFLP. Results A prevalence of 13% (33/248) G6PD deficiency was observed in the cohort by G6PD RDT whilst by genotypic assessment, 32% (79/248) were A+ and 3.2% were A−, respectively. Among the male participants, 11% (6/55) were G6PD A− hemizygous; among females 1% (2/193) were G6PD A− homozygous and 16% (32/193) G6PD A− heterozygous. The strength of agreement between phenotyping and genotyping result was fair (Cohens Kappa κ = 0.310). The negative predictive value for the G6PD RDT for detecting hemizygous, homozygous and heterozygous individuals was 0.88 (95% CI 0.85–0.91), compared to the more sensitive genotyping. The CYP2D6*4 allele frequencies for CYP2D6*4 (inferred poor metabolizer phenotype) and CYP2D6*17 (inferred intermediate metabolizer phenotype) were 3.2 and 19.5%, respectively. Conclusions Phenotypic and genotypic analyses both detected low prevalence of G6PD deficiency and the CYP2D6*4 variants. These findings, combined with increasing data confirming safety of single low-dose PQ in individuals with African variants of G6PD deficiency, supports the deployment of single low-dose PQ as a gametocytocidal drug. PQ would pose minimal risks to the study populations and could be a useful elimination strategy in the study area.
Collapse
|
35
|
Taylor WR, Naw HK, Maitland K, Williams TN, Kapulu M, D'Alessandro U, Berkley JA, Bejon P, Okebe J, Achan J, Amambua AN, Affara M, Nwakanma D, van Geertruyden JP, Mavoko M, Lutumba P, Matangila J, Brasseur P, Piola P, Randremanana R, Lasry E, Fanello C, Onyamboko M, Schramm B, Yah Z, Jones J, Fairhurst RM, Diakite M, Malenga G, Molyneux M, Rwagacondo C, Obonyo C, Gadisa E, Aseffa A, Loolpapit M, Henry MC, Dorsey G, John C, Sirima SB, Barnes KI, Kremsner P, Day NP, White NJ, Mukaka M. Single low-dose primaquine for blocking transmission of Plasmodium falciparum malaria - a proposed model-derived age-based regimen for sub-Saharan Africa. BMC Med 2018; 16:11. [PMID: 29347975 PMCID: PMC5774032 DOI: 10.1186/s12916-017-0990-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/12/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination.
Collapse
Affiliation(s)
- W Robert Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Tropical and Humanitarian Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | - Htee Khu Naw
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Melissa Kapulu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Umberto D'Alessandro
- MRC Unit, Fajara, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James A Berkley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | | | | | | | | | | | | | - Muhindo Mavoko
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Pascal Lutumba
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Junior Matangila
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Patrice Piola
- Institut Pasteur de Madagascar, BP 1274, Antananarivo, Madagascar
| | | | - Estrella Lasry
- Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of Congo
| | - Caterina Fanello
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Marie Onyamboko
- Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of Congo
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | | | - Zolia Yah
- National Malaria Control Programme, Monrovia, Sierra Leone
| | - Joel Jones
- National Malaria Control Programme, Monrovia, Sierra Leone
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | | | - Malcolm Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chandy John
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tubingen, Tubingen, Germany
| | - Nicholas P Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|