1
|
Wang Z, Rumrill S, Kang D, Guma SD, Feng D, De Clercq E, Pannecouque C, Chen CH, Arnold E, Ruiz FX, Liu X, Zhan P. Development of enhanced HIV-1 non-nucleoside reverse transcriptase inhibitors with improved resistance and pharmacokinetic profiles. SCIENCE ADVANCES 2025; 11:eadt8916. [PMID: 40446037 PMCID: PMC12124364 DOI: 10.1126/sciadv.adt8916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
HIV-1 infection is a manageable chronic condition, with non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs) remaining a cornerstone of antiretroviral therapy. Nevertheless, drug resistance to existing therapeutics is a serious and immediate concern. Using structure-based and scaffold-hopping approaches, we designed evolved diarylpyrimidine analogs targeting reverse transcriptase (RT), exploiting chemical space surrounding the NNRTI-binding pocket. We identified compounds 5i3 and 5e2, with robust antiviral efficacy against wild-type HIV-1 and rilpivirine-resistant strains. Encouragingly, in vitro selection of mutant strains with 5i3 took 39 passages to select resistance, with no phenotypic cross-resistance observed with known RT drugs. Co-crystal structures of wild-type and mutant RT with 5i3 and 5e2 revealed their resilience toward resistance mutations due to enhanced conformational flexibility and positional adaptability. 5i3 exhibited good pharmacokinetic properties and favorable safety profiles, without substantial cytochrome P450 inhibition, and excellent oral bioavailability. These derivatives represent a promising scaffold for the development of anti-HIV drugs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, Shandong, PR China
| | - Shawn Rumrill
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, Shandong, PR China
| | - Samuel Desta Guma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, Shandong, PR China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Chin Ho Chen
- Surgical Oncology Research Facility, Duke University Medical Center, Box 2926, Durham, NC 27710, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, Shandong, PR China
| |
Collapse
|
2
|
Cock IE, Matthews B, Basson AE. Liquid Chromatography-Mass Spectrometry Metabolomic Analysis of Terminalia ferdinandiana Exell. Fruit Extracts That Inhibit HIV-1 Cell Infection, HIV-1 Reverse Transcriptase and HIV-1 Protease. Molecules 2025; 30:1701. [PMID: 40333606 PMCID: PMC12029459 DOI: 10.3390/molecules30081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
The emergence of HIV strains resistant to the current anti-retroviral drugs has necessitated the search for new anti-retroviral medications. Methanolic and aqueous T. ferdinandiana fruit extracts have potent inhibitory activity against several phases of the HIV-1 replicative cycle. Cell infectivity studies using a non-resistant HIV-1 pseudovirus demonstrated that the methanolic (IC50 16 µg/mL) and aqueous extracts (IC50 19 µg/mL) were potent inhibitors of viral infection in a non-replicating HIV-1 assay. Both extracts also inhibited HIV-1 reverse transcriptase (IC50 values of 35 and 33 µg/mL for methanolic and aqueous extracts, respectively) and HIV-1 protease (IC50 values of 19 and 27 µg/mL, respectively) in recombinant enzyme assays. Given their inhibitory activities against multiple phases of HIV-1 replication, T. ferdinandiana fruit extracts may be particularly useful as HIV-1 therapeutics. Furthermore, both extracts displayed good safety profiles and therapeutic indices, indicating their suitability for therapeutic usage. LC-MS metabolomic profiling analysis of the methanolic extract identified several interesting constituents, including a relative abundance of tannins, as well as several flavonoids and stilbenes. All of these compounds have previously been reported to have bioactivities consistent with the anti-HIV-1 activities reported herein. Based on these studies, methanolic and aqueous T. ferdinandiana fruit extracts are promising potential therapies for the prevention, treatment and management of HIV-1.
Collapse
Affiliation(s)
- Ian Edwin Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane 4222, Australia
| | - Benjamin Matthews
- Queensland Brain Institute, University of Queensland, Brisbane 4072, Australia;
| | - Adriaan Erasmus Basson
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| |
Collapse
|
3
|
Yu KL, Shin Y, Kim DE, Kim JA, Kang JE, Singh P, Lee KW, Park CM, Kwon H, Kim S, Bae S, Yoon CH. Identification of a novel small-molecule inhibitor of the HIV-1 reverse transcriptase activity with a non-nucleoside mode of action. Virol J 2025; 22:65. [PMID: 40055750 PMCID: PMC11887385 DOI: 10.1186/s12985-025-02680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/23/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome, which is a major global health problem. Although combination antiretroviral therapy (cART) successfully expands the lifespan of HIV-1-infected patients, long-term cART often increases drug resistance and adverse effects. Therefore, efforts are ongoing to develop novel anti-HIV-1 drugs. METHODS The anti-HIV-1 activities of compounds were investigated using TZM-bl reporter cell line, A3.01 T cell line, and peripheral blood mononuclear cells infected with several HIV-1 strains, including wild type and drug-resistance associated mutants. Next-generation sequencing analysis and in silico molecular docking studies were employed to determine the mode of action of the compound. RESULTS We identified a small-molecule inhibitor consisting of a thiadiazole core appended to two pyrazoles (BPPT), which exerted a highly potent inhibitory effect on HIV-1 infectivity, with a half-maximal effective concentration (EC50) of 60 nM, without causing cytotoxicity. In experiments with various HIV-1 strains and cell types, the potency of BPPT was found to be comparable to that of commercial antiretroviral agents (azidothymidine, nevirapine, and others). Further analysis of the mode of action demonstrated that BPPT is a novel type of HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI). Analysis of viruses harboring drug-resistance-associated mutations showed that BPPT was potent against G190A (C or S) mutations in reverse transcriptase (RTase), exhibiting high-level resistance to other NNRTIs. Next-generation sequencing analysis of long-term treatment with BPPT displayed an RTase mutation profile different from that in the case of established NNRTIs. Given these data, in silico molecular docking studies demonstrated the molecular mechanism underlying the BPPT-mediated inhibition of RTase. CONCLUSION Our data suggest that BPPT is a novel small-molecule inhibitor of HIV-1 RTase and could serve as a promising chemical scaffold to complement or replace conventional treatments, particularly for overcoming resistance associated with the G190 mutation.
Collapse
Affiliation(s)
- Kyung-Lee Yu
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - YoungHyun Shin
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Dong-Eun Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Jeong-Ah Kim
- Division of Emerging Infectious Diseases, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Jeong-Eun Kang
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Keun Woo Lee
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju, 52650, Republic of Korea
- Quantum-AI Lab, Korea Quantum Computing (KQC), 55 Centumjungang-ro, Busan, 48058, Republic of Korea
| | - Chul Min Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hojin Kwon
- Drug Information Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Sunwoo Kim
- Drug Information Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 28159, Republic of Korea.
| |
Collapse
|
4
|
Sonawane A, Selvam D, Yue L, Nesakumar M, Vivekanandan S, Ashokkumar M, Hunter E, Hanna LE. Virulence and Replicative Fitness of HIV-1 Transmitted/Founder (T/F) Viruses Harbouring Drug Resistance-Associated Mutation. Viruses 2024; 16:1854. [PMID: 39772167 PMCID: PMC11680346 DOI: 10.3390/v16121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The biological characteristics of early transmitted/founder (T/F) variants are crucial factors for viral transmission and constitute key determinants for the development of better therapeutics and vaccine strategies. The present study aimed to generate T/F viruses and to characterize their biological properties. For this purpose, we constructed 18 full-length infectious molecular clones (IMCs) of HIV from recently infected infants. All the clones were characterized genotypically through whole genome sequencing and phenotypically for infectivity, replication kinetics, co-receptor usage, as well as their susceptibility to neutralizing antibodies and entry inhibitors using standard virological assays. Genotypic analysis revealed that all the T/F clones were of non-recombinant subtype C, but some of them harboured the Y181C drug resistance mutation associated with resistance to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class of antiretroviral drugs. In vitro studies showed that while all the IMCs were capable of replicating in PBMCs and utilized the CCR5 co-receptor for cellular entry, the drug-resistant variants had significantly lower replicative capacity and per particle infectivity than the drug-sensitive viruses. Both exhibited similar sensitivities to a standard panel of broadly neutralizing monoclonal antibodies and viral entry inhibitors. These findings suggest that despite their diminished replicative fitness, the drug-resistant T/F variants retain transmission fitness and remain susceptible to neutralizing antibody-based interventions and viral entry inhibitors.
Collapse
Affiliation(s)
- Aanand Sonawane
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
- Department of Immunology, University of Madras, Chennai 600005, India
| | - Deepak Selvam
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
| | - Ling Yue
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (L.Y.); (E.H.)
| | - Manohar Nesakumar
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
| | - Sandhya Vivekanandan
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
- Department of Immunology, University of Madras, Chennai 600005, India
| | - Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hil, NC 27599, USA;
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (L.Y.); (E.H.)
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Luke Elizabeth Hanna
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
| |
Collapse
|
5
|
Reddy N, Papathanasopoulos M, Steegen K, Basson AE. K103N, V106M and Y188L Significantly Reduce HIV-1 Subtype C Phenotypic Susceptibility to Doravirine. Viruses 2024; 16:1493. [PMID: 39339969 PMCID: PMC11437401 DOI: 10.3390/v16091493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Doravirine (DOR) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) with efficacy against some NNRTI-resistant mutants. Although DOR resistance mutations are established for HIV-1 subtype B, it is less clear for non-B subtypes. This study investigated prevalent NNRTI resistance mutations on DOR susceptibility in HIV-1 subtype C. Prevalent drug resistance mutations were identified from a South African genotypic drug resistance testing database. Mutations, single or in combination, were introduced into replication-defective pseudoviruses and assessed for DOR susceptibility in vitro. The single V106M and Y188L mutations caused high-level resistance while others did not significantly impact DOR susceptibility. We observed an agreement between our in vitro and the Stanford HIVdb predicted susceptibilities. However, the F227L mutation was predicted to cause high-level DOR resistance but was susceptible in vitro. Combinations of mutations containing K103N, V106M or Y188L caused high-level resistance, in agreement with the predictions. These mutations are frequently observed in patients failing efavirenz- or nevirapine-based first-line regimens. However, they are also observed in those failing a protease inhibitor-based second-line regimen, as we have observed in our database. Genotypic drug resistance testing is therefore vital prior to the initiation of DOR-based treatment for those previously exposed to efavirenz or nevirapine.
Collapse
Affiliation(s)
- Nikita Reddy
- HIV Pathogenesis Research Unit, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Maria Papathanasopoulos
- HIV Pathogenesis Research Unit, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kim Steegen
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Adriaan Erasmus Basson
- HIV Pathogenesis Research Unit, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
6
|
Schwarzmüller M, Lozano C, Schanz M, Abela IA, Grosse-Holz S, Epp S, Curcio M, Greshake J, Rusert P, Huber M, Kouyos RD, Günthard HF, Trkola A. Decoupling HIV-1 antiretroviral drug inhibition from plasma antibody activity to evaluate broadly neutralizing antibody therapeutics and vaccines. Cell Rep Med 2024; 5:101702. [PMID: 39216479 PMCID: PMC11524982 DOI: 10.1016/j.xcrm.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.
Collapse
Affiliation(s)
| | - Cristina Lozano
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Silvan Grosse-Holz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Curcio
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Greshake
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
7
|
Mulinge MM, Oluoch JO, Abisi HK, Otieno LE, Anzala O, Wamalwa DC, Nduati RW, Kimani J, Herbeck J, McKinnon L. Age and CD4+ T cell counts are inversely associated with HIV drug resistance mutations in treatment naive female sex workers. Medicine (Baltimore) 2023; 102:e34060. [PMID: 37327289 PMCID: PMC10270489 DOI: 10.1097/md.0000000000034060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
The increasing prevalence of human immunodeficiency virus (HIV) drug resistance mutations (HIVDRM) in untreated seropositive persons has consequences for future treatment options. This is extremely important in key populations such as female sex workers (FSWs), where the prevalence of pretreatment drug resistance (PDR) and associated risk factors are unknown. In this study, we analyzed PDR and associated risk factors in recently diagnosed and treatment-naive FSWs in Nairobi, Kenya. In this cross-sectional study, we used 64 HIV-seropositive plasma samples collected from FSWs between November 2020 and April 2021. To identify HIVDRM, the pol gene was amplified and genotyped using sanger sequencing. The effects of age, tropism, CD4+ T cell count, subtype, and location on HIVDRM counts were examined using Poisson regression. Overall, the prevalence of PDR was 35.9% (95% CI: 24.3-48.9), which was strongly influenced by K103N and M184V mutations, which confer resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) and nucleoside reverse transcriptase inhibitors (NRTI), respectively. Subtype A1 was predominant followed by subtype D with a notable increase in inter-subtype recombinants. We found statistically significant evidence that age was inversely related to HIVDRM. A FSW who is 1 year older had 12% less HIVDRM (incidence rate ratios [IRR]: 0.88; 95% CI: 0.82-0.95; P < .001), after adjusting for CD4+ T cell count, subtype, location, and tropism. Similarly, an increase in CD4+ T cell count by 1 unit, was associated with 0.4% fewer HIVDRM (IRR: 0.996; 95% CI: 0.994-0.998; P = .001), while controlling for the other variables. HIV-1 tropism was not associated with HIVDRM counts. In conclusion, our findings show a high prevalence of NNRTIs. Lower CD4+ T cell counts and younger age were significant risk factors that influenced HIVDRM loads. This finding underscores the relevance of targeted interventions and the importance of continuing to focus on FSWs as a way of addressing the HIV epidemic.
Collapse
Affiliation(s)
- Martin M. Mulinge
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Kenya AIDS Vaccine Initiative - Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Jeff O. Oluoch
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Hellen K. Abisi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Leon E. Otieno
- Molecular Medicine and Infectious Diseases Laboratory, University of Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative - Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Dalton C. Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ruth W. Nduati
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Partners for Health and Development in Africa (PHDA), Nairobi, Kenya
| | - Joshua Herbeck
- Department of Global Health, University of Washington, Seattle, WA
| | - Lyle McKinnon
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Clark KM, Kim JG, Wang Q, Gao H, Presti RM, Shan L. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nat Chem Biol 2023; 19:431-439. [PMID: 36357533 PMCID: PMC10065922 DOI: 10.1038/s41589-022-01182-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) induce pyroptosis of HIV-1-infected CD4+ T cells through induction of intracellular HIV-1 protease activity, which activates the CARD8 inflammasome. Because high concentrations of NNRTIs are required for efficient elimination of HIV-1-infected cells, it is important to elucidate ways to sensitize the CARD8 inflammasome to NNRTI-induced activation. We show that this sensitization can be achieved through chemical inhibition of the CARD8 negative regulator DPP9. The DPP9 inhibitor Val-boroPro (VbP) can kill HIV-1-infected cells without the presence of NNRTIs and act synergistically with NNRTIs to promote clearance of HIV-1-infected cells in vitro and in humanized mice. More importantly, VbP is able to enhance clearance of residual HIV-1 in CD4+ T cells isolated from people living with HIV (PLWH). We also show that VbP can partially overcome NNRTI resistance. This offers a promising strategy for enhancing NNRTI efficacy in the elimination of HIV-1 reservoirs in PLWH.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
9
|
Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine. Proc Natl Acad Sci U S A 2022; 119:e2203660119. [PMID: 35858448 PMCID: PMC9335299 DOI: 10.1073/pnas.2203660119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The enzyme reverse transcriptase (RT) is a key antiviral target, and nonnucleoside RT inhibitors (NNRTIs) are among the frequently used components of antiretroviral therapy for treating HIV-1 infection. The emergence of drug-resistant mutations continues to pose a challenge in HIV treatment. The RT mutations M184I and E138K emerge in patients receiving rilpivirine. We obtained the structural snapshots of rilpivirine, doravirine, and nevirapine inhibited wild-type and M184I/E138K RT/DNA polymerase complexes by cryo-electron microscopy. Key structural changes observed in the rilpivirine- and doravirine-bound structures have implications for understanding NNRTI drug resistance. Additionally, the cryo-EM structure determination strategy outlined in this study can be adapted to aid drug design targeting smaller and flexible proteins. Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme’s relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)–bound RT/double-stranded DNA (dsDNA), RT/RNA–DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3′-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.
Collapse
|
10
|
Parikh UM, Mellors JW. How could HIV-1 drug resistance impact preexposure prophylaxis for HIV prevention? Curr Opin HIV AIDS 2022; 17:213-221. [PMID: 35762376 PMCID: PMC9245149 DOI: 10.1097/coh.0000000000000746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To review current laboratory and clinical data on the frequency and relative risk of drug resistance and range of mutations selected from approved and investigational antiretroviral agents used for preexposure prophylaxis (PrEP) of HIV-1 infection, including tenofovir disproxil fumarate (TDF)-based oral PrEP, dapivirine ring, injectable cabotegravir (CAB), islatravir, lenacapavir and broadly neutralizing antibodies (bNAbs). RECENT FINDINGS The greatest risk of HIV-1 resistance from PrEP with oral TDF/emtricitabine (FTC) or injectable CAB is from starting or continuing PrEP after undiagnosed acute HIV infection. By contrast, the dapivirine intravaginal ring does not appear to select nonnucleoside reverse transcriptase inhibitor resistance in clinical trial settings. Investigational inhibitors including islatravir, lenacapavir, and bNAbs are promising for use as PrEP due to their potential for sustained delivery and low risk of cross-resistance to currently used antiretrovirals, but surveillance for emergence of resistance mutations in more HIV-1 gene regions (gag, env) will be important as the same drugs are being developed for HIV therapy. SUMMARY PrEP is highly effective in preventing HIV infection. Although HIV drug resistance from PrEP use could impact future options in individuals who seroconvert on PrEP, the current risk is low and continued monitoring for the emergence of resistance and cross-resistance during product development, clinical studies, and product roll-out is advised to preserve antiretroviral efficacy for both treatment and prevention.
Collapse
Affiliation(s)
- Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
11
|
Kurle SN, Kandaswami S, Gadhe S, Patil A, Sarkar R, Mehta S, Gangakhedkar R, Arumugam V, Chawla U. HIV-1 Drug Resistance Among Treatment-Naive Transgenders from India. AIDS Res Hum Retroviruses 2021; 37:990-993. [PMID: 34652967 DOI: 10.1089/aid.2021.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenders (TGs) are highly affected by HIV with high prevalence of 3.14% in India. Since 2017, targeted preventive efforts have been initiated by the government and HIV-infected TGs are being provided the antiretroviral (ART) treatment. Information on the primary HIV drug resistance is crucial for appropriate treatment selection to curb further spread of HIV in this population. In this study, we analyzed HIV-1 pol gene sequences from 36 TGs for presence of drug resistance mutations. To our knowledge, this first study from India reports high-level primary drug resistance (13.8%) among the TG population. Mutations M184V, A98G, K103N, G190A, and Y318F associated with resistance to nucleoside reverse transcriptase inhibitor and non-nucleoside reverse transcriptase inhibitors were observed. All pol gene sequences revealed HIV-1 subtype C in all study TG. High-level HIV-1 drug resistance warrant nationwide larger studies on TGs to understand the level of primary ART drug resistance among this population.
Collapse
Affiliation(s)
- Swarali N Kurle
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune, India
| | | | - Sharda Gadhe
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune, India
| | - Ajit Patil
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune, India
| | | | | | | | | | | |
Collapse
|
12
|
Parikh UM, Penrose KJ, Heaps AL, Halvas EK, Goetz BJ, Gordon KC, Hardesty R, Sethi R, Schwarzmann W, Szydlo DW, Husnik MJ, Chandran U, Palanee‐Phillips T, Baeten JM, Mellors JW, the MTN‐020 Study Team. HIV-1 drug resistance among individuals who seroconverted in the ASPIRE dapivirine ring trial. J Int AIDS Soc 2021; 24:e25833. [PMID: 34762770 PMCID: PMC8583424 DOI: 10.1002/jia2.25833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION A potential concern with the use of dapivirine (DPV) for HIV prevention is the selection of a drug-resistant virus that could spread and reduce the effectiveness of non-nucleoside reverse transcriptase (NNRTI)-based first-line antiretroviral therapy. We evaluated HIV-1 seroconversions in MTN-020/ASPIRE for selection of drug resistance and evaluated the genetic basis for observed reductions in susceptibility to DPV. METHODS MTN-020/ASPIRE was a placebo-controlled, Phase III safety and effectiveness study of DPV ring for HIV-1 prevention conducted at 15 sites in South Africa, Zimbabwe, Malawi and Uganda between 2012 and 2015. Plasma from individuals who seroconverted in ASPIRE was analysed for HIV-1 drug resistance using both population Sanger sequencing and next-generation sequencing (NGS) with unique molecular identifiers to report mutations at ≥1% frequency. DPV susceptibility of plasma-derived recombinant HIV-1 containing bulk-cloned full-length reverse transcriptase sequences from MTN-020/ASPIRE seroconversions was determined in TZM-bl cells. Statistical significance was calculated using the Fisher's exact test. RESULTS Plasma from all 168 HIV seroconversions were successfully tested by Sanger sequencing; 57 of 71 DPV arm and 82 of 97 placebo (PLB) arm participants had NGS results at 1% sensitivity. Overall, 18/168 (11%) had NNRTI mutations including K101E, K103N/S, V106M, V108I, E138A/G, V179D/I/T and H221Y. Five samples from both arms had low-frequency NNRTI mutations that were not detected by Sanger sequencing. The frequency of NNRTI mutations from the DPV arm (11%) was not different from the PLB arm (10%; p = 0.80). The E138A mutation was detected in both the DPV (3 of 71 [4.2%]) and PLB arm (5 of 97 [5.2%]) and conferred modest reductions in DPV susceptibility in some reverse transcriptase backgrounds but not others. CONCLUSIONS HIV-1 drug resistance including NNRTI resistance did not differ between the DPV and placebo arms of the MTN-020/ASPIRE study, indicating that drug resistance was not preferentially acquired or selected by the DPV ring and that the preventive benefit of DPV ring outweighs resistance risk.
Collapse
Affiliation(s)
- Urvi M. Parikh
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kerri J. Penrose
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Amy L. Heaps
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elias K. Halvas
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - B. Jay Goetz
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kelley C. Gordon
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Russell Hardesty
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Albany Stratton Veterans Administration Medical CenterAlbanyNYUSA
| | - Rahil Sethi
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William Schwarzmann
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | | | - Uma Chandran
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Jared M. Baeten
- Departments of Global HealthMedicineEpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Present address:
Gilead SciencesFoster CityCAUSA
| | - John W. Mellors
- Department of Medicine, Division of Infectious DiseasesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | |
Collapse
|
13
|
Huang SW, Shen MC, Wang WH, Li WY, Wang JH, Tseng CY, Liu PY, Wang LS, Lee YL, Chen YMA, Lee CY, Lu PL, Wang SF. High prevalence of HIV-1 transmitted drug resistance and factors associated with time to virological failure and viral suppression in Taiwan. J Antimicrob Chemother 2021; 77:185-195. [PMID: 34648632 DOI: 10.1093/jac/dkab361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Integrase strand transfer inhibitor (InSTI)-based regimens have become the major first-line treatment for HIV-1-infected patients in Taiwan. Transmitted drug resistance (TDR) and several clinical characteristics are associated with time to virological failure or viral suppression; however, these have not been investigated in Taiwan. OBJECTIVES To determine the impact of several factors on treatment outcomes in HIV-1-infected patients in Taiwan. METHODS The cohort included 164 HIV-1 treatment-naive patients in Taiwan from 2018 to 2020. Blood specimens were collected to determine the genotypic drug resistance using the Stanford University HIV drug resistance database. Cox proportional hazards models were used to identify factors associated with time to virological failure or viral suppression. RESULTS The prevalence of TDR in Taiwan was 27.4% and an increasing trend was seen from 2018 to 2020. TDR mutations related to NNRTIs were the most prevalent (21%) while TDR to InSTIs remained at a relatively low level (1.3%). A baseline HIV-1 viral load of ≥100 000 copies/mL was associated with a shorter time to virological failure [multivariate hazard ratio (mHR) 7.84; P = 0.018] and longer time to viral suppression (mHR 0.46; P < 0.001). Time to viral suppression was shorter in patients receiving InSTI-based regimens (mHR 2.18; P = 0.006). Different InSTI-based regimens as initial treatment did not affect the treatment outcomes. CONCLUSIONS This study found an increasing trend of HIV-1 TDR prevalence from 2018 to 2020 in Taiwan. Baseline HIV-1 viral load and receiving InSTI-based regimens are important factors associated with time to virological failure or viral suppression.
Collapse
Affiliation(s)
- Szu-Wei Huang
- Model Development Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mei-Chen Shen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-You Li
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jen-Hsien Wang
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yin Tseng
- Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Lih-Shinn Wang
- Section of Infectious Disease, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ming Arthur Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chun-Yuan Lee
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Scriven YA, Mulinge MM, Saleri N, Luvai EA, Nyachieo A, Maina EN, Mwau M. Prevalence and factors associated with HIV-1 drug resistance mutations in treatment-experienced patients in Nairobi, Kenya: A cross-sectional study. Medicine (Baltimore) 2021; 100:e27460. [PMID: 34622871 PMCID: PMC8500620 DOI: 10.1097/md.0000000000027460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT An estimated 1.5 million Kenyans are HIV-seropositive, with 1.1 million on antiretroviral therapy (ART), with the majority of them unaware of their drug resistance status. In this study, we assessed the prevalence of drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs), nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors, and the variables associated with drug resistance in patients failing treatment in Nairobi, Kenya.This cross-sectional study utilized 128 HIV-positive plasma samples obtained from patients enrolled for routine viral monitoring in Nairobi clinics between 2015 and 2017. The primary outcome was human immunodeficiency virus type 1 (HIV-1) drug resistance mutation counts determined by Sanger sequencing of the polymerase (pol) gene followed by interpretation using Stanford's HIV Drug Resistance Database. Poisson regression was used to determine the effects of sex, viral load, age, HIV-subtype, treatment duration, and ART-regimen on the primary outcome.HIV-1 drug resistance mutations were found in 82.3% of the subjects, with 15.3% of subjects having triple-class ART resistance and 45.2% having dual-class resistance. NRTI primary mutations M184 V/I and K65R/E/N were found in 28.8% and 8.9% of subjects respectively, while NNRTI primary mutations K103N/S, G190A, and Y181C were found in 21.0%, 14.6%, and 10.9% of subjects. We found statistically significant evidence (P = .013) that the association between treatment duration and drug resistance mutations differed by sex. An increase of one natural-log transformed viral load unit was associated with 11% increase in drug resistance mutation counts (incidence rate ratio [IRR] 1.11; 95% CI 1.06-1.16; P < .001) after adjusting for age, HIV-1 subtype, and the sex-treatment duration interaction. Subjects who had been on treatment for 31 to 60 months had 63% higher resistance mutation counts (IRR 1.63; 95% CI 1.12-2.43; P = .013) compared to the reference group (<30 months). Similarly, patients on ART for 61 to 90 months were associated with 133% higher mutation counts than the reference group (IRR 2.33; 95% CI 1.59-3.49; P < .001). HIV-1 subtype, age, or ART-regimen were not associated with resistance mutation counts.Drug resistance mutations were found in alarmingly high numbers, and they were associated with viral load and treatment time. This finding emphasizes the importance of targeted resistance monitoring as a tool for addressing the problem.
Collapse
Affiliation(s)
- Yvonne A Scriven
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Martin M Mulinge
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- Kenya AIDS Vaccine Initiative - Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Norah Saleri
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Elizabeth A Luvai
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Atunga Nyachieo
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Esther N Maina
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Matilu Mwau
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| |
Collapse
|
15
|
Faria-Gonçalves P, Rolo J, Gaspar C, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Virulence Factors as Promoters of Chronic Vulvovaginal Candidosis: A Review. Mycopathologia 2021; 186:755-773. [PMID: 34613569 DOI: 10.1007/s11046-021-00592-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The vast majority of the species of the genus Candida spp. is commensal in humans; however, some are opportunistic pathogens that can cause infection, called candidosis. Among the different types of candidosis, we highlight the vulvovaginal (VVC) which can occur in two main clinical variants: chronic (cVVC) and episodic or sporadic. The incidence of cVVC has been worrying the scientific community, promoting the research on genotypic and phenotypic causes of its occurrence. We summarize important findings on factors that favor chronic vulvovaginal candidosis with respect to molecular epidemiology and the expression of various virulence factors, while clarifying the terminology involving these infections. AIM AND METHODOLOGY The aim of this review was to gather research that linked virulence factors to VVC and its persistence and recurrence, using two databases (Pubmed and Google Scholar). Predisposing factors in women for the occurrence of cVVC and some studies that refer new preventive and alternative therapies were also included, where appropriate. RESULTS AND DISCUSSION Several studies have been shedding light on the increasing number of persistence and recurrences of VVC. The expression of virulence factors has been related to both chronic forms of VVC and antifungal resistance. Other studies report mutations occurring in the genome of Candida spp. during the infection phase which may be important indications for new therapies. The introduction of preventive therapies and new therapies has revealed great importance and is also highlighted here.
Collapse
Affiliation(s)
- Paula Faria-Gonçalves
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Medicine, University Mandume Ya Ndemufayo, Lubango, Angola.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Joana Rolo
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - José Martinez-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal
| |
Collapse
|
16
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
17
|
High nonnucleoside reverse transcriptase inhibitor resistance levels in HIV-1-infected Zambian mother-infant pairs. AIDS 2020; 34:1833-1842. [PMID: 32889853 DOI: 10.1097/qad.0000000000002614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE(S) To elucidate relationships in antiretroviral resistance between HIV-1-infected mother-infant pairs by defining the resistance profiles in the mothers and infants and quantifying drug resistance prevalence in the pairs post-Option B+ implementation. DESIGN Collection of dried blood spots from mother-infant pairs during routine HIV-1 screens in Lusaka, Zambia from 2015 to 2018. METHODS DNA was extracted from the dried blood spots, the HIV-1 pol region was amplified, and the purified proviral DNA was sequenced using Sanger sequencing. Drug resistance mutations (DRM) were identified in sequenced DNA using the Stanford HIVdb (https://hivdb.stanford.edu/). RESULTS DRM were detected in 45% (44/97) of samples, and these samples were found to harbor resistance to at least two antiretrovirals. The prevalence of nonnucleoside reverse transcriptase inhibitor resistance was significantly higher than that of other antiretroviral classes. DRM were detected disproportionately in infants (67%; 33/49) compared with mothers (23%; 11/48), but the magnitude of resistance did not differ when resistance was detected. The disparity in drug resistance profiles was reinforced in pairwise comparison of resistance profiles in mother-infant pairs. CONCLUSION While Option B+ is effective in reducing mother-to-child transmission, in cases where this regimen fails, high-level nonnucleoside reverse transcriptase inhibitor resistance is frequently detected in infants. This underscores the importance of pretreatment drug resistance screening in both mothers and infants and emphasizes the necessary change to protease inhibitor-based and integrase inhibitor-based regimens for treatment of HIV-1-infected infants and mothers.
Collapse
|
18
|
Basson AE, Charalambous S, Hoffmann CJ, Morris L. HIV-1 re-suppression on a first-line regimen despite the presence of phenotypic drug resistance. PLoS One 2020; 15:e0234937. [PMID: 32555643 PMCID: PMC7302689 DOI: 10.1371/journal.pone.0234937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022] Open
Abstract
We have previously reported on HIV-1 infected patients who fail anti-retroviral therapy but manage to re-suppress without a regimen change despite harbouring major drug resistance mutations. Here we explore phenotypic drug resistance in such patients in order to better understand this phenomenon. Patients (n = 71) failing a non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimen, but who subsequently re-suppressed on the same regimen, were assessed for HIV-1 genotypic drug resistance through Sanger sequencing. A subset (n = 23) of these samples, as well as genotypically matched samples from patients who did not re-suppress (n = 19), were further assessed for phenotypic drug resistance in an in vitro single cycle assay. Half of the patients (n = 36/71, 51%) harboured genotypic drug resistance, with M184V (n = 18/36, 50%) and K103N (n = 16/36, 44%) being the most prevalent mutations. No significant difference in the median time to re-suppression (31–39 weeks) were observed for either group (p = 0.41). However, re-suppressors with mutant virus rebounded significantly earlier than those with wild-type virus (16 vs. 33 weeks; p = 0.014). Similar phenotypic drug resistance profiles were observed between patients who re-suppressed and patients who failed to re-suppress. While most remained susceptible to stavudine (d4T) and zidovudine (AZT), both groups showed a reduced susceptibility to 3TC and NNRTIs. HIV- 1 infected patients on an NNRTI-based regimen can achieve viral re-suppression on the same regimen despite harbouring viruses with genotypic and phenotypic drug resistance. However, re-suppression was less durable in those with resistance, reinforcing the importance of appropriate regimen choices, ongoing viral load monitoring and adherence counselling.
Collapse
Affiliation(s)
- Adriaan E. Basson
- Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- * E-mail:
| | - Salome Charalambous
- The Aurum Institute, Johannesburg, Gauteng, South Africa
- School of Public Health, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Christopher J. Hoffmann
- The Aurum Institute, Johannesburg, Gauteng, South Africa
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
19
|
Retrospective analysis of HIV-1 drug resistance mutations in Suzhou, China from 2009 to 2014. Virus Genes 2020; 56:557-563. [PMID: 32500372 DOI: 10.1007/s11262-020-01774-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
In this study, we investigated drug resistance levels in human immunodeficiency virus (HIV)-1-infected patients in Suzhou by retrospectively analyzing this property and the characteristics of circulating HIV-1 strains collected from 2009 to 2014. A total of 261 HIV-1-positive plasma samples, confirmed by the Suzhou CDC, were collected and evaluated to detect HIV-1 drug resistance genotypes using an in-house method. The pol gene fragment was amplified, and its nucleic acid sequence was determined by Sanger sequencing. Drug resistance mutations were then analyzed using the Stanford University HIV resistance database ( https://hivdb.stanford.edu ). A total of 216 pol gene fragments were amplified and sequenced with 16.7% (36/216) of sequences revealing these mutations. The drug resistance rates of protease, nucleoside reverse transcriptase, and non-nucleoside reverse transcriptase inhibitors (NNRTIs) were 4/36 (11.1%), 2/36 (5.6%), and 30/36 (83.3%), respectively. Five surveillance drug resistance mutations were found in 36 sequences, of which, three were found among specimens of men who have sex with men. Potential low-level resistance accounted for 33% of amino acid mutations associated with NNRTIs. Two of the mutations, M230L and L100I, which confer a high level of resistance efavirenz (EFV) and nevirapine (NVP) used as NNRTIs for first-line antiretroviral therapy (ART), were detected in this study. Therefore, when HIV-1 patients in Suzhou are administered fist-line ART, much attention should be paid to the status of these mutations that cause resistance to EVP, EFV, and NVP.
Collapse
|
20
|
Giannini A, Vicenti I, Materazzi A, Boccuto A, Dragoni F, Zazzi M, Saladini F. The HIV-1 reverse transcriptase E138A natural polymorphism decreases the genetic barrier to resistance to etravirine in vitro. J Antimicrob Chemother 2020; 74:607-613. [PMID: 30462235 DOI: 10.1093/jac/dky479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The HIV-1 reverse transcriptase (RT) natural polymorphism E138A is included among the mutations with a minor impact on response to etravirine. However, the interpretation of E138A on etravirine susceptibility is not consistent across different genotypic resistance algorithms. The aim of the study was to investigate the effect of E138A on the genetic barrier to resistance to etravirine in vitro. METHODS A panel of 20 clinically derived recombinant viruses (10 with WT 138E and 10 with 138A, all without any other resistance mutation) were cultured in the presence of increasing etravirine concentrations and analysed for genotypic changes at virus breakthrough. Parallel experiments were conducted with 138E/A/G/K/Q NL4-3-based clones. RESULTS In the NL4-3 background, codon 138 changes increased etravirine resistance in the following order: Q > K > A > G > E. The 138A viruses were less susceptible to etravirine compared with the 138E viruses [median (IQR) fold change, 1.8 (1.5-2.8) versus 1.3 (0.8-1.8); P = 0.026], overcame etravirine pressure earlier [HR (95% CI) for viral outgrowth with 138A, 5.48 (2.95-28.24); P < 0.001] and grew at higher drug concentrations [median (IQR), 1350 (1350-1350) versus 0 (0-1350) nM; P = 0.005]. A variety of etravirine resistance-related mutations and changes in the RT connection and RNase H domains accumulated without any consistent pattern depending on baseline codon 138. CONCLUSIONS E138A can contribute to reduced response to etravirine through a decreased genetic barrier to resistance. In vitro drug resistance selection is a valuable complement to define the full potential of low-level resistance mutations.
Collapse
Affiliation(s)
- Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Angelo Materazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
21
|
Higa N, Pelz A, Birch D, Beck IA, Sils T, Samson P, Bwakura-Dangarembizi M, Bolton-Moore C, Capparelli E, Chadwick E, Frenkel LM. Association of Virologic Failure and Nonnucleoside Reverse Transcriptase Inhibitor Resistance Found in Antiretroviral-Naive Children Infected With Human Immunodeficiency Virus and Given Efavirenz-Based Treatment. J Pediatric Infect Dis Soc 2020; 9:261-264. [PMID: 31194860 PMCID: PMC7192398 DOI: 10.1093/jpids/piz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022]
Abstract
Among 66 antiretroviral-naive children aged <3 years with human immunodeficiency virus (HIV) or coinfected with HIV and tuberculosis and initiating efavirenz-based antiretroviral therapy (ART), non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance was detected before ART in 5 (7.6%). Virologic failure occurred in 2 of these children; they were last tested at 16 and 24 weeks of ART. Pre-ART NNRTI resistance was not associated with virologic failure.
Collapse
Affiliation(s)
- Nikki Higa
- Seattle Children’s Research Institute, Washington
| | - Amy Pelz
- Seattle Children’s Research Institute, Washington
| | - Donald Birch
- Seattle Children’s Research Institute, Washington
| | | | - Tatiana Sils
- Seattle Children’s Research Institute, Washington
| | - Pearl Samson
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Carolyn Bolton-Moore
- Centre for Infectious Disease Research in Zambia, Lusaka
- University of Alabama at Birmingham, Alabama
| | | | - Ellen Chadwick
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa M Frenkel
- Seattle Children’s Research Institute, Washington
- University of Washington, Seattle
| |
Collapse
|
22
|
McCormick KD, Penrose KJ, Brumme CJ, Harrigan PR, Viana RV, Mellors JW, Parikh UM, Wallis CL. Discordance between Etravirine Phenotype and Genotype-Based Predicted Phenotype for Subtype C HIV-1 from First-Line Antiretroviral Therapy Failures in South Africa. Antimicrob Agents Chemother 2020; 64:e02101-19. [PMID: 32071061 PMCID: PMC7179637 DOI: 10.1128/aac.02101-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Etravirine (ETR) is a nonnucleoside reverse transcriptase inhibitor (NNRTI) used in treatment-experienced individuals. Genotypic resistance test-interpretation systems can predict ETR resistance; however, genotype-based algorithms are derived primarily from HIV-1 subtype B and may not accurately predict resistance in non-B subtypes. The frequency of ETR resistance among recombinant subtype C HIV-1 and the accuracy of genotypic interpretation systems were investigated. HIV-1LAI containing full-length RT from HIV-1 subtype C-positive individuals experiencing virologic failure (>10,000 copies/ml and >1 NNRTI resistance-associated mutation) were phenotyped for ETR susceptibility. Fold change (FC) was calculated against a composite 50% effective concentration (EC50) from treatment-naive individuals and three classifications were assigned: (i) <2.9-FC, susceptible; (ii) ≥2.9- to 10-FC, partially resistant; and (iii) >10-FC, fully resistant. The Stanford HIVdb-v8.4 was used for genotype predictions merging the susceptible/potential low-level and low-level/intermediate groups for 3 × 3 comparison. Fifty-four of a hundred samples had reduced ETR susceptibility (≥2.9-FC). The FC correlated with HIVdb-v8.4 (Spearman's rho = 0.62; P < 0.0001); however, 44% of samples were partially (1 resistance classification difference) and 4% completely discordant (2 resistance classification differences). Of the 34 samples with an FC of >10, 26 were HIVdb-v8.4 classified as low-intermediate resistant. Mutations L100I, Y181C, or M230L were present in 27/34 (79%) of samples with an FC of >10 but only in 2/46 (4%) of samples with an FC of <2.9. No other mutations were associated with ETR resistance. Viruses containing the mutation K65R were associated with reduced ETR susceptibility, but 65R reversions did not increase ETR susceptibility. Therefore, genotypic interpretation systems were found to misclassify ETR susceptibility in HIV-1 subtype C samples. Modifications to genotypic algorithms are needed to improve the prediction of ETR resistance for the HIV-1 subtype C.
Collapse
Affiliation(s)
| | | | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Richard Harrigan
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raquel V Viana
- BARC-SA and Lancet Laboratories, Johannesburg, South Africa
| | | | - Urvi M Parikh
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
23
|
Shafer RW, Frenkel LM. The Clinical Implications of Pretreatment Drug Resistance-A Moving Target. Clin Infect Dis 2020; 69:215-217. [PMID: 30321316 DOI: 10.1093/cid/ciy895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, California
| | - Lisa M Frenkel
- Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle
| |
Collapse
|
24
|
Long-Acting Rilpivirine (RPV) Preexposure Prophylaxis Does Not Inhibit Vaginal Transmission of RPV-Resistant HIV-1 or Select for High-Frequency Drug Resistance in Humanized Mice. J Virol 2020; 94:JVI.01912-19. [PMID: 31969438 PMCID: PMC7108851 DOI: 10.1128/jvi.01912-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
The antiretroviral drug rilpivirine was developed into a long-acting formulation (RPV LA) to improve adherence for preexposure prophylaxis (PrEP) to prevent HIV-1 transmission. A concern is that RPV LA will not inhibit transmission of drug-resistant HIV-1 and may select for drug-resistant virus. In female humanized mice, we found that RPV LA inhibited vaginal transmission of WT or 3-fold RPV-resistant HIV-1 but not virus with 30-fold RPV resistance. In animals that became infected despite RPV LA PrEP, WT HIV-1 dissemination was delayed until genital and plasma RPV concentrations waned. RPV resistance was detected at similar low frequencies in untreated and PrEP-treated mice that became infected. These results indicate the importance of maintaining RPV at a sustained threshold after virus exposure to prevent dissemination of HIV-1 after vaginal infection and low-frequency resistance mutations conferred low-level resistance, suggesting that RPV resistance is difficult to develop after HIV-1 infection during RPV LA PrEP. As a long-acting formulation of the nonnucleoside reverse transcriptase inhibitor rilpivirine (RPV LA) has been proposed for use as preexposure prophylaxis (PrEP) and the prevalence of transmitted RPV-resistant viruses can be relatively high, we evaluated the efficacy of RPV LA to inhibit vaginal transmission of RPV-resistant HIV-1 in humanized mice. Vaginal challenges of wild-type (WT), Y181C, and Y181V HIV-1 were performed in mice left untreated or after RPV PrEP. Plasma viremia was measured for 7 to 10 weeks, and single-genome sequencing was performed on plasma HIV-1 RNA in mice infected during PrEP. RPV LA significantly prevented vaginal transmission of WT HIV-1 and Y181C HIV-1, which is 3-fold resistant to RPV. However, it did not prevent transmission of Y181V HIV-1, which has 30-fold RPV resistance in the viruses used for this study. RPV LA did delay WT HIV-1 dissemination in infected animals until genital and plasma RPV concentrations waned. Animals that became infected despite RPV LA PrEP did not acquire new RPV-resistant mutations above frequencies in untreated mice or untreated people living with HIV-1, and the mutations detected conferred low-level resistance. These data suggest that high, sustained concentrations of RPV were required to inhibit vaginal transmission of HIV-1 with little or no resistance to RPV but could not inhibit virus with high resistance. HIV-1 did not develop high-level or high-frequency RPV resistance in the majority of mice infected after RPV LA treatment. However, the impact of low-frequency RPV resistance on virologic outcome during subsequent antiretroviral therapy still is unclear. IMPORTANCE The antiretroviral drug rilpivirine was developed into a long-acting formulation (RPV LA) to improve adherence for preexposure prophylaxis (PrEP) to prevent HIV-1 transmission. A concern is that RPV LA will not inhibit transmission of drug-resistant HIV-1 and may select for drug-resistant virus. In female humanized mice, we found that RPV LA inhibited vaginal transmission of WT or 3-fold RPV-resistant HIV-1 but not virus with 30-fold RPV resistance. In animals that became infected despite RPV LA PrEP, WT HIV-1 dissemination was delayed until genital and plasma RPV concentrations waned. RPV resistance was detected at similar low frequencies in untreated and PrEP-treated mice that became infected. These results indicate the importance of maintaining RPV at a sustained threshold after virus exposure to prevent dissemination of HIV-1 after vaginal infection and low-frequency resistance mutations conferred low-level resistance, suggesting that RPV resistance is difficult to develop after HIV-1 infection during RPV LA PrEP.
Collapse
|
25
|
Sun Z, Ouyang J, Zhao B, An M, Wang L, Ding H, Han X. Natural polymorphisms in HIV-1 CRF01_AE strain and profile of acquired drug resistance mutations in a long-term combination treatment cohort in northeastern China. BMC Infect Dis 2020; 20:178. [PMID: 32102660 PMCID: PMC7045473 DOI: 10.1186/s12879-020-4808-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impacts of genetic polymorphisms on drug resistance mutations (DRMs) among various HIV-1 subtypes have long been debated. In this study, we aimed to analyze the natural polymorphisms and acquired DRM profile in HIV-1 CRF01_AE-infected patients in a large first-line antiretroviral therapy (ART) cohort in northeastern China. METHODS The natural polymorphisms of CRF01_AE were analyzed in 2034 patients from a long-term ART cohort in northeastern China. The polymorphisms in 105 treatment failure (TF) patients were compared with those in 1148 treatment success (TS) patients. The acquired DRM profile of 42 patients who experienced TF with tenofovir/lamivudine/efavirenz (TDF/3TC/EFV) treatment was analyzed by comparing the mutations at TF time point to those at baseline. The Stanford HIVdb algorithm was used to interpret the DRMs. Binomial distribution, McNemar test, Wilcoxon test and CorMut package were used to analyze the mutation rates and co-variation. Deep sequencing was used to analyze the evolutionary dynamics of co-variation. RESULTS Before ART, there were significantly more natural polymorphisms of 31 sites on reverse transcriptase (RT) in CRF01_AE than subtype B HIV-1 (|Z value| ≥ 3), including five known drug resistance-associated sites (238, 118, 179, 103, and 40). However, only the polymorphism at site 75 was associated with TF (|Z value| ≥ 3). The mutation rate at 14 sites increased significantly at TF time point compared to baseline, with the most common DRMs comprising G190S/C, K65R, K101E/N/Q, M184 V/I, and V179D/I/A/T/E, ranging from 66.7 to 45.2%. Moreover, two unknown mutations (V75 L and L228R) increased by 19.0 and 11.9% respectively, and they were under positive selection (Ka/Ks > 1, log odds ratio [LOD] > 2) and were associated with several other DRMs (cKa/Ks > 1, LOD > 2). Deep sequencing of longitudinal plasma samples showed that L228R occurred simultaneously or followed the appearance of Y181C. CONCLUSION The high levels of natural polymorphisms in CRF01_AE had little impact on treatment outcomes. The findings regarding potential new CRF01_AE-specific minor DRMs indicate the need for more studies on the drug resistance phenotype of CRF01_AE.
Collapse
Affiliation(s)
- Zesong Sun
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Jinming Ouyang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
26
|
Santerre M, Wang Y, Arjona S, Allen C, Sawaya BE. Differential Contribution of HIV-1 Subtypes B and C to Neurological Disorders: Mechanisms and Possible Treatments. AIDS Rev 2019; 21:76-83. [PMID: 31332398 DOI: 10.24875/aidsrev.19000051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the introduction of combinatory antiretroviral therapy, patients infected with human immunodeficiency virus type 1 (HIV-1) can live much longer than before. However, the identification of HIV-associated neurocognitive disorder (HAND), especially HIV-associated dementia in 15-20% of patients infected with HIV-1, indicates additional complexity. These disorders turn out to be subtype dependent. Recently, many studies are ongoing trying to understand how the virus induces neuronal injury which could lead to neurological dysfunction. Most of these studies are focusing on the HIV-1 release of proteins such as Tat. However, the exact role of these proteins and their involvement in neuronal degeneration remains unidentified; this is especially true since viral proteins from different HIV-1 subtypes differ in their ability to cause neuronal damage. This review describes the role of different HIV-1 subtypes, identifies probable pathways involved in neuronal damage, the contribution of different HIV-1 subtypes to the progression of HAND, and potential treatments for HAND.
Collapse
Affiliation(s)
- Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Ying Wang
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Sterling Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Charles Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Bassel E Sawaya
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Wang Y, De Clercq E, Li G. Current and emerging non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment. Expert Opin Drug Metab Toxicol 2019; 15:813-829. [PMID: 31556749 DOI: 10.1080/17425255.2019.1673367] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are essential components of highly active antiretroviral therapy against HIV-1 infections. Here, we provide a comprehensive overview of approved and emerging NNRTIs. Areas covered: This review covers the latest trend of NNRTIs regarding their pharmacodynamics, pharmacokinetics, mechanisms of drug action, drug resistance as well as new applications such as two-drug regimens and long-acting formulations. Expert opinion: Since the first NNRTI, nevirapine, was approved in 1996, antiviral drug discovery led to the approval of seven NNRTIs, including nevirapine, delavirdine (discontinued), etravirine, elsulfavirine, efavirenz, rilpivirine, and doravirine. The latter three compounds with favorable pharmacodynamic profiles and minimal adverse effects are often combined with one integrase inhibitor or two NRTIs in once-daily fixed-dose tablets. NNRTI-anchored regimens have been approved as initial therapies in treatment-naïve patients (efficacy: 72% to 86%) or maintaining therapies in virologically-suppressed patients (efficacy: 91% to 95%). Future development of NNRTIs includes: (i) better resistance and cross-resistance profiles; (ii) reduction of drug burden by optimizing two-drug or three-drug combinations; and (iii) improvement of patient adherence by novel long-acting formulations with weekly or monthly administration. Overall, NNRTIs play an important role in the management of HIV-1 infections, especially in resource-limited countries.
Collapse
Affiliation(s)
- Yali Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University , Changsha , Hunan , China
| | - Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research , Leuven , Belgium
| | - Guangdi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University , Changsha , Hunan , China
| |
Collapse
|
28
|
Njenda DT, Aralaguppe SG, Singh K, Rao R, Sönnerborg A, Sarafianos SG, Neogi U. Antiretroviral potency of 4'-ethnyl-2'-fluoro-2'-deoxyadenosine, tenofovir alafenamide and second-generation NNRTIs across diverse HIV-1 subtypes. J Antimicrob Chemother 2019; 73:2721-2728. [PMID: 30053052 DOI: 10.1093/jac/dky256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 01/21/2023] Open
Abstract
Objectives 4'-Ethnyl-2'-fluoro-2'-deoxyadenosine (EFdA) is a novel translocation-defective reverse transcriptase inhibitor. We investigated the virological and biochemical inhibitory potentials of EFdA against a broad spectrum of subtype-specific chimeric viruses and compared it with tenofovir alafenamide, nevirapine, efavirenz, rilpivirine and etravirine. Methods pNL4.3 chimeric viruses encoding gag-pol from treatment-naive patients (n = 24) and therapy-failure patients (n = 3) and a panel of reverse transcriptase inhibitor-resistant strains (n = 7) were used to compare the potency of reverse transcriptase inhibitor drugs. The phenotypic drug susceptibility assay was performed using TZM-bl cells. In vitro inhibition assays were done using patient-derived reverse transcriptase. IC50 values of NNRTIs were calculated using a PicoGreen-based spectrophotometric assay. Steady-state kinetics were used to determine the apparent binding affinity (Km.dNTP) of triphosphate form of EFdA (EFdA-TP) and dATP. Results Among the chimeric treatment-naive viruses, EFdA had an ex vivo antiretroviral activity [median (IQR) EC50 = 1.4 nM (0.6-2.1 nM)] comparable to that of tenofovir alafenamide [1.6 nM (0.5-3.6 nM)]. Subtype-specific differences were found for etravirine (P = 0.004) and rilpivirine (P = 0.017), where HIV-1C had the highest EC50 values. EFdA had a greater comparative efficiency [calculated by dividing the efficiency of monophosphate form of EFdA (EFdA-MP) incorporation (kcat.EFdA-TP/Km.EFdA-TP) over the efficiency of dATP incorporation (kcat.dATP/Km.dATP)] compared with the natural substrate dATP, with a fold change of between 1.6 and 3.2. Ex vivo analysis on reverse transcriptase inhibitor-resistant strains showed EFdA to have a higher potency. Despite the presence of rilpivirine DRMs, some non-B strains showed hypersusceptibility to rilpivirine. Conclusions Our combined virological and biochemical data suggest that EFdA inhibits both WT and reverse transcriptase inhibitor-resistant viruses efficiently in a subtype-independent manner. In contrast, HIV-1C is least susceptible to etravirine and rilpivirine.
Collapse
Affiliation(s)
- Duncan T Njenda
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shambhu G Aralaguppe
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kamalendra Singh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Rohit Rao
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
29
|
Frey KM, Tabassum T. Current structure-based methods for designing non-nucleoside reverse transcriptase inhibitors. Future Virol 2019. [DOI: 10.2217/fvl-2019-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2019, structure-based methods continue to guide the design of novel antiretroviral therapies targeting HIV reverse transcriptase. This Review summarizes key findings from reverse transcriptase–non-nucleoside reverse transcriptase inhibitor analog crystal structure complexes reported from 2015 to 2019. Results from the literature and structure analysis have informed new ideas for structure-guided non-nucleoside reverse transcriptase inhibitor drug design.
Collapse
Affiliation(s)
- Kathleen M Frey
- Fairleigh Dickinson University, Division of Pharmaceutical Sciences, School of Pharmacy & Health Sciences, 230 Park Avenue, M-SP1-01, Florham Park, NJ 07932, USA
| | - Tasnim Tabassum
- Long Island University, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
30
|
Penrose KJ, Brumme CJ, Scoulos-Hanson M, Hamanishi K, Gordon K, Viana RV, Wallis CL, Harrigan PR, Mellors JW, Parikh UM. Frequent cross-resistance to rilpivirine among subtype C HIV-1 from first-line antiretroviral therapy failures in South Africa. Antivir Chem Chemother 2019; 26:2040206618762985. [PMID: 29566538 PMCID: PMC5890541 DOI: 10.1177/2040206618762985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Rilpivirine (TMC278LA) is a promising drug for pre-exposure prophylaxis of HIV-1 because of its sub-nanomolar potency and long-acting formulation; however, increasing transmission of non-nucleoside reverse transcriptase inhibitor-resistant HIV-1 with potential cross-resistance to rilpivirine could reduce its preventive efficacy. This study investigated rilpivirine cross-resistance among recombinant subtype C HIV-1 derived from 100 individuals failing on first-line non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy in South Africa whose samples were sent for routine HIV-1 drug resistance testing to Lancet Laboratories (Johannesburg, South Africa). Methods Plasma samples were selected from individuals with HIV-1 RNA > 10,000 copies/ml and ≥1 non-nucleoside reverse transcriptase inhibitor-resistance mutation in reverse transcriptase. Recombinant HIV-1LAI-containing bulk-cloned full-length reverse transcriptase sequences from plasma were assayed for susceptibility to nevirapine (NVP), efavirenz (EFV) and rilpivirine in TZM-bl cells. Fold-change (FC) decreases in drug susceptibility were calculated against a mean IC50 from 12 subtype C HIV-1 samples from treatment-naïve individuals in South Africa. Cross-resistance was evaluated based on biological cutoffs established for rilpivirine (2.5-FC) and the effect of mutation combinations on rilpivirine phenotype. Results Of the 100 samples from individuals on failing antiretroviral therapy, 69 had 2.5- to 75-fold decreased susceptibility to rilpivirine and 11 had >75-fold resistance. Rilpivirine resistance was strongly associated with K103N especially in combination with other rilpivirine-associated mutations. Conclusion The frequently observed cross-resistance of HIV-1 suggests that the preventive efficacy of TMC278LA pre-exposure prophylaxis could be compromised by transmission of HIV-1 from individuals with failure of first-line non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy.
Collapse
Affiliation(s)
- Kerri J Penrose
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chanson J Brumme
- 2 Laboratory Program, 198129 British Columbia Centre for Excellence in HIV/AIDS , Vancouver, British Columbia, Canada
| | - Maritsa Scoulos-Hanson
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen Hamanishi
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelley Gordon
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raquel V Viana
- 3 Specialty Molecular Division, BARC-SA and Lancet Laboratories, Johannesburg, South Africa
| | - Carole L Wallis
- 3 Specialty Molecular Division, BARC-SA and Lancet Laboratories, Johannesburg, South Africa
| | - P Richard Harrigan
- 2 Laboratory Program, 198129 British Columbia Centre for Excellence in HIV/AIDS , Vancouver, British Columbia, Canada
| | - John W Mellors
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Urvi M Parikh
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Ntshangase S, Mdanda S, Naicker T, Kruger HG, Govender T, Baijnath S. Rilpivirine as a potential candidate for the treatment of HIV-associated neurocognitive disorders (HAND). J Mol Histol 2019; 50:295-303. [PMID: 31011919 DOI: 10.1007/s10735-019-09826-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
As the HIV epidemic continues to contribute to global morbidity and mortality, the prevalence of HIV-associated neurological disorders (HAND) also continues to be a major concern in infected individuals, despite the widespread use of combination antiretroviral therapy. Therefore, current antiretroviral drugs should be able to reach therapeutic levels in the brain for the treatment of HAND. The brain distribution of the next-generation non-nucleoside reverse transcriptase inhibitor, rilpivirine (RPV) was investigated in healthy female Sprague-Dawley (SD) rats. The presented study involves the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) to estimate the concentrations of RPV in plasma and brain homogenate samples. The use of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provided regional spatial distribution of RPV in brain tissue sections. The localization of RPV was found to be relatively high in the hypothalamus, thalamus and corpus callosum, brain regions known to be associated with neurodegeneration during HAND (including the cerebral cortex). This study has shown that RPV has an excellent blood-brain barrier penetrability. Thus, in combination with other antiretroviral drugs, better central nervous system (CNS) protection against HAND can possibly be achieved.
Collapse
Affiliation(s)
- Sphamandla Ntshangase
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-block, 6th floor, Room E1-06-016, Durban, South Africa
| | - Sipho Mdanda
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-block, 6th floor, Room E1-06-016, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-block, 6th floor, Room E1-06-016, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-block, 6th floor, Room E1-06-016, Durban, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-block, 6th floor, Room E1-06-016, Durban, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-block, 6th floor, Room E1-06-016, Durban, South Africa.
| |
Collapse
|
32
|
Pribut N, Basson AE, van Otterlo WAL, Liotta DC, Pelly SC. Aryl Substituted Benzimidazolones as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. ACS Med Chem Lett 2019; 10:196-202. [PMID: 30783503 DOI: 10.1021/acsmedchemlett.8b00549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of HIV as the etiological agent of AIDS, the virus has infected millions of people each year. Fortunately, with the use of HAART, viremia can be suppressed to below detectable levels in the infected individuals, which significantly improves their quality of life and prevents the onset of AIDS. However, HAART is not curative and issues relating to adherence and drug resistance may lead to the re-emergence of viremia, the development of AIDS, and ultimately death. To address a pressing need for the development of new and efficacious antiretroviral agents with activity against viruses bearing prevalent resistant mutations, we have designed two generations of benzimidazolone derivatives as HIV non-nucleoside reverse transcriptase inhibitors. The first generation benzimidazolone inhibitors were found to be potent inhibitors of wild-type HIV reverse transcriptase but were ineffective in the presence of common resistance mutations such as K103N and Y181C. A second generation benzimidazolone inhibitor (compound 42) not only showed inhibitory activity against wild-type HIV but also remained active against HIV containing the K103N, Y181C, and K103N/Y181C drug resistance mutations.
Collapse
Affiliation(s)
- Nicole Pribut
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, 7602 Matieland, Western Cape South Africa
| | - Adriaan E. Basson
- School of Pathology, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Parktown, JHB, Private Bag 3, WITS 2050, South Africa
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, 7602 Matieland, Western Cape South Africa
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen C. Pelly
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
33
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
34
|
Chander S, Tang CR, Penta A, Wang P, Bhagwat DP, Vanthuyne N, Albalat M, Patel P, Sankpal S, Zheng YT, Sankaranarayanan M. Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. Bioorg Chem 2018; 79:212-222. [DOI: 10.1016/j.bioorg.2018.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 02/08/2023]
|
35
|
Yang Y, Kang D, Nguyen LA, Smithline ZB, Pannecouque C, Zhan P, Liu X, Steitz TA. Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2- d]pyrimidine non-nucleoside inhibitors. eLife 2018; 7:e36340. [PMID: 30044217 PMCID: PMC6080946 DOI: 10.7554/elife.36340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at ~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor-binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.
Collapse
Affiliation(s)
- Yang Yang
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Laura A Nguyen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Zachary B Smithline
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Thomas A Steitz
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
- Department of ChemistryYale UniversityNew HavenUnited States
| |
Collapse
|
36
|
Murnane PM, Strehlau R, Shiau S, Patel F, Mbete N, Hunt G, Abrams EJ, Coovadia A, Kuhn L. Switching to Efavirenz Versus Remaining on Ritonavir-boosted Lopinavir in Human Immunodeficiency Virus-infected Children Exposed to Nevirapine: Long-term Outcomes of a Randomized Trial. Clin Infect Dis 2018; 65:477-485. [PMID: 28419200 DOI: 10.1093/cid/cix335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Background We previously demonstrated the noninferiority of switching to efavirenz (EFV) versus remaining on ritonavir-boosted lopinavir (LPV/r) for virologic control in children infected with human immunodeficiency virus (HIV) and exposed to nevirapine (NVP) for prevention of mother-to-child transmission. Here we assess outcomes up to 4 years post-randomization. Methods From 2010-2013, 298 NVP-exposed HIV-infected children ≥3 years of age were randomized to switch to EFV or remain on LPV/r in Johannesburg, South Africa (Clinicaltrials.gov NCT01146873). After trial completion, participants were invited to enroll into observational follow-up. We compared HIV RNA levels, CD4 counts and percentages, lipids, and growth across groups through four years post-randomization. Results HIV RNA levels 51-1000 copies/mL were less frequently observed in the EFV group than the LPV/r group (odds ratio [OR] 0.67, 95% confidence interval [CI]: 0.51-0.88, P = .004), as was HIV RNA >1000 copies/mL (OR 0.52 95% CI: 0.28-0.98, P = .04). The probability of confirmed HIV RNA >1000 copies/mL by 48 months was 0.07 and 0.12 in the EFV and LPV/r groups, respectively (P = .21). Children randomized to EFV had a reduced risk of elevated total cholesterol (OR 0.45 95% CI: 0.27-0.75, P = .002) and a reduced risk of abnormal triglycerides (OR 0.42, 95% CI 0.29-0.62, P < .001). Conclusions Our results indicate that the benefits of switching virologically suppressed NVP-exposed HIV-infected children ≥3 years of age from LPV/r to EFV are sustained long-term. This approach has several advantages, including improved palatability, reduced metabolic toxicity, simplified cotreatment for tuberculosis, and preservation of second line options. Clinical Trials Registration NCT01146873.
Collapse
Affiliation(s)
- Pamela M Murnane
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York.,Center for AIDS Prevention Studies, Department of Medicine, University of California, San Francisco.,Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Renate Strehlau
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Shiau
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York.,Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Faeezah Patel
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ndileke Mbete
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gillian Hunt
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Elaine J Abrams
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York.,ICAP, Mailman School of Public Health.,Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York
| | - Ashraf Coovadia
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York.,Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
37
|
Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors. J Mol Graph Model 2018; 79:133-139. [DOI: 10.1016/j.jmgm.2017.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
|
38
|
Abstract
As treatment options coalesce around a smaller number of antiretroviral drugs (ARVs), data are emerging on the drug resistance mutations (DRMs) selected by the most widely used ARVs and on the impact of these DRMs on ARV susceptibility and virological response to first- and later-line treatment regimens. Recent studies have described the DRMs that emerge in patients receiving tenofovir prodrugs, the nonnucleoside reverse transcriptase inhibitors efavirenz and rilpivirine, ritonavir-boosted lopinavir, and the integrase inhibitors raltegravir and elvitegravir. Several small studies have described DRMs that emerge in patients receiving dolutegravir.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine
| |
Collapse
|
39
|
In Vitro Cross-Resistance Profiles of Rilpivirine, Dapivirine, and MIV-150, Nonnucleoside Reverse Transcriptase Inhibitor Microbicides in Clinical Development for the Prevention of HIV-1 Infection. Antimicrob Agents Chemother 2017; 61:AAC.00277-17. [PMID: 28507107 DOI: 10.1128/aac.00277-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/06/2017] [Indexed: 01/12/2023] Open
Abstract
Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C.
Collapse
|
40
|
Saravanan S, Kausalya B, Gomathi S, Sivamalar S, Pachamuthu B, Selvamuthu P, Pradeep A, Sunil S, Mothi SN, Smith DM, kantor R. Etravirine and Rilpivirine Drug Resistance Among HIV-1 Subtype C Infected Children Failing Non-Nucleoside Reverse Transcriptase Inhibitor-Based Regimens in South India. AIDS Res Hum Retroviruses 2017; 33:567-574. [PMID: 27869478 DOI: 10.1089/aid.2016.0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have analyzed reverse transcriptase (RT) region of HIV-1 pol gene from 97 HIV-infected children who were identified as failing first-line therapy that included first-generation non-nucleoside RT inhibitors (Nevirapine and Efavirenz) for at least 6 months. We found that 54% and 65% of the children had genotypically predicted resistance to second-generation non-nucleoside RT inhibitors drugs Etravirine (ETR) and Rilpivirine, respectively. These cross-resistance mutations may compromise future NNRTI-based regimens, especially in resource-limited settings. To complement these investigations, we also analyzed the sequences in Stanford database, Monogram weighted score, and DUET weighted score algorithms for ETR susceptibility and found almost perfect agreement between the three algorithms in predicting ETR susceptibility from genotypic data.
Collapse
Affiliation(s)
- Shanmugam Saravanan
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Bagavathi Kausalya
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Selvamurthi Gomathi
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | | | | | | | - Amrose Pradeep
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Solomon Sunil
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Davey M. Smith
- University of California, San Diego, San Diego, California
| | | |
Collapse
|
41
|
Frequent Cross-Resistance to Dapivirine in HIV-1 Subtype C-Infected Individuals after First-Line Antiretroviral Therapy Failure in South Africa. Antimicrob Agents Chemother 2017; 61:AAC.01805-16. [PMID: 27895013 DOI: 10.1128/aac.01805-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC50) from 12 recombinant subtype C HIV-1LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC50s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring.
Collapse
|
42
|
Saladini F, Vicenti I. Role of phenotypic investigation in the era of routine genotypic HIV-1 drug resistance testing. Future Virol 2016. [DOI: 10.2217/fvl-2016-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistance can seriously compromise HIV type-1 therapy and decrease therapeutic options. Resistance testing is highly recommended to guide treatment decisions and drug activity can be accurately predicted in the clinical setting through genotypic assays. While phenotypic systems are not suitable for monitoring drug resistance in routine laboratory practice, genotyping can misclassify unusual or complex mutational patterns, particularly with recently approved antivirals. In addition, phenotypic assays remain fundamental for characterizing candidate antiretroviral compounds. This review aims to discuss how phenotypic assays contributed to and still play a role in understanding the mechanisms of resistance of both licensed and investigational HIV type-1 inhibitors.
Collapse
Affiliation(s)
- Francesco Saladini
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| |
Collapse
|
43
|
Jorgensen WL. Computer-aided discovery of anti-HIV agents. Bioorg Med Chem 2016; 24:4768-4778. [PMID: 27485603 PMCID: PMC5114837 DOI: 10.1016/j.bmc.2016.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
A review is provided on efforts in our laboratory over the last decade to discover anti-HIV agents. The work has focused on computer-aided design and synthesis of non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) with collaborative efforts on biological assaying and protein crystallography. Numerous design issues were successfully addressed including the need for potency against a wide range of viral variants, good aqueous solubility, and avoidance of electrophilic substructures. Computational methods including docking, de novo design, and free-energy perturbation (FEP) calculations made essential contributions. The result is novel NNRTIs with picomolar and low-nanomolar activities against wild-type HIV-1 and key variants that also show much improved solubility and lower cytotoxicity than recently approved drugs in the class.
Collapse
Affiliation(s)
- William L Jorgensen
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States.
| |
Collapse
|
44
|
Boender TS, Kityo CM, Boerma RS, Hamers RL, Ondoa P, Wellington M, Siwale M, Nankya I, Kaudha E, Akanmu AS, Botes ME, Steegen K, Calis JCJ, Rinke de Wit TF, Sigaloff KCE. Accumulation of HIV-1 drug resistance after continued virological failure on first-line ART in adults and children in sub-Saharan Africa. J Antimicrob Chemother 2016; 71:2918-27. [PMID: 27342546 DOI: 10.1093/jac/dkw218] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Limited availability of viral load (VL) monitoring in HIV treatment programmes in sub-Saharan Africa can delay switching to second-line ART, leading to the accumulation of drug resistance mutations (DRMs). The objective of this study was to evaluate the accumulation of resistance to reverse transcriptase inhibitors after continued virological failure on first-line ART, among adults and children in sub-Saharan Africa. METHODS HIV-1-positive adults and children on an NNRTI-based first-line ART were included. Retrospective VL and, if VL ≥1000 copies/mL, pol genotypic testing was performed. Among participants with continued virological failure (≥2 VL ≥1000 copies/mL), drug resistance was evaluated. RESULTS At first virological failure, DRM(s) were detected in 87% of participants: K103N (38.7%), G190A (21.8%), Y181C (20.2%), V106M (8.4%), K101E (8.4%), any E138 (7.6%) and V108I (7.6%) associated with NNRTIs, and M184V (69.7%), any thymidine analogue mutation (9.2%), K65R (5.9%) and K70R (5.0%) associated with NRTIs. New DRMs accumulated with an average rate of 1.45 (SD 2.07) DRM per year; 0.62 (SD 1.11) NNRTI DRMs and 0.84 (SD 1.38) NRTI DRMs per year, respectively. The predicted susceptibility declined significantly after continued virological failure for all reverse transcriptase inhibitors (all P < 0.001). Acquired drug resistance patterns were similar in adults and children. CONCLUSIONS Patterns of drug resistance after virological failure on first-line ART are similar in adults and children in sub-Saharan Africa. Improved VL monitoring to prevent accumulation of mutations, and new drug classes to construct fully active regimens, are required.
Collapse
Affiliation(s)
- T Sonia Boender
- Amsterdam Institute for Global Health and Development, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands Global Child Health Group, Emma Children's Hospital/Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ragna S Boerma
- Amsterdam Institute for Global Health and Development, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands Global Child Health Group, Emma Children's Hospital/Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Raph L Hamers
- Amsterdam Institute for Global Health and Development, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Pascale Ondoa
- Amsterdam Institute for Global Health and Development, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | - Alani Sulaimon Akanmu
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Lagos, Nigeria
| | | | - Kim Steegen
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Job C J Calis
- Global Child Health Group, Emma Children's Hospital/Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands Department of Pediatric Intensive Care, Emma Children's Hospital/Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Tobias F Rinke de Wit
- Amsterdam Institute for Global Health and Development, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Kim C E Sigaloff
- Amsterdam Institute for Global Health and Development, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Hayashida T, Hachiya A, Ode H, Nishijima T, Tsuchiya K, Sugiura W, Takiguchi M, Oka S, Gatanaga H. Rilpivirine resistance mutation E138K in HIV-1 reverse transcriptase predisposed by prevalent polymorphic mutations. J Antimicrob Chemother 2016; 71:2760-6. [PMID: 27330069 DOI: 10.1093/jac/dkw224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/11/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rilpivirine is listed as a recommended or alternative key drug in the current ART guidelines. E138K in HIV-1 reverse transcriptase (RT) is a primary mutation in resistance to rilpivirine, although in vitro experiments showed it confers only <3-fold resistance. An unidentified mechanism could amplify resistance to rilpivirine conferred by E138K. OBJECTIVES The objective of this study was to reveal the mechanism amplifying rilpivirine resistance conferred by E138K. PATIENTS AND METHODS HIV-1 RT sequences were compared in patients who failed rilpivirine-containing ART virologically. The effects of mutations commonly identified with E138K on rilpivirine susceptibility were analysed by using recombinant HIV-1 variants. RESULTS Rilpivirine-containing ART was introduced in 162 HIV-1-infected patients at the outpatient clinic of the AIDS Clinical Center (National Center for Global Health and Medicine, Tokyo, Japan) between May 2012 and June 2015. Virological treatment failure occurred in six of these patients. E138K emerged in three patients while other rilpivirine resistance mutations emerged in the other three patients. I135T/L were identified in only three patients with E138K and existed before the introduction of rilpivirine-containing ART. Analysis of recombinant HIV-1 variants indicated that E138K conferred low-level rilpivirine resistance and that coexistence of I135T/L with E138K amplified the resistance. CONCLUSIONS I135T/L, escape mutations from HLA-B*51/52-restricted cytotoxic T lymphocytes, which are prevalent in Japan, may predispose HIV-1 to harbour E138K upon failure of rilpivirine-containing ART. The mutation patterns of drug resistance may vary due to baseline polymorphic mutations.
Collapse
Affiliation(s)
- Tsunefusa Hayashida
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takeshi Nishijima
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
46
|
Brites C, Pinto-Neto L, Medeiros M, Nunes E, Sprinz E, Carvalho M. Extensive variation in drug-resistance mutational profile of Brazilian patients failing antiretroviral therapy in five large Brazilian cities. Braz J Infect Dis 2016; 20:323-9. [PMID: 27291892 PMCID: PMC9427579 DOI: 10.1016/j.bjid.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/21/2015] [Accepted: 03/30/2016] [Indexed: 02/06/2023] Open
Abstract
Background Development of drug-resistance mutations is the main cause of failure in antiretroviral therapy. In Brazil, there is scarce information on resistance pattern for patients failing antiretroviral therapy. Objectives To define the HIV mutational profile associated with drug resistance in Brazilian patients from 5 large cities, after first, second or further failures to antiretroviral therapy. Methods We reviewed genotyping results of 1520 patients failing therapy in five Brazilian cities. Frequency of mutations, mean number of active drugs, viral susceptibility to each antiretrovirals drug, and regional differences were assessed. Results Mean time of antiretrovirals use was 22.7 ± 41.1 months. Mean pre-genotyping viral load was 4.2 ± 0.8 log (2.1 ± 2.0 after switching antiretrovirals). Mean number of remaining active drugs was 9.4, 9.0, and 7.9 after 1st, 2nd, and 3rd failure, respectively. We detected regional variations in drug susceptibility: while BA and RS showed the highest (∼40%) resistance level to ATV/r, FPV/r and LPV/r, in the remaining cities it was around half of this rate. We detected 90% efavirenz/nevirapine resistance in SP, only 45% in RS, and levels between 25% and 30% in the other cities. Regarding NRTI, we found a similar pattern, with RJ presenting the highest, and CE the lowest susceptibility rates for all NRTI. Zidovudine resistance was detected in only 3% of patients in RJ, against 45–65% in the other cities. RJ and RS showed 3% resistance to tenofovir, while in CE it reached 55%. DRV/r (89–97%) and etravirine (61–85%) were the most active drugs, but again, with a wide variation across cities. Conclusions The resistance mutational profile of Brazilian patients failing antiretroviral therapy is quite variable, depending on the city where patients were tested. This variation likely reflects distinctive choice of antiretrovirals drugs to initiate therapy, adherence to specific drugs, or circulating HIV-1 strains. Overall, etravirine and DRV/r remain as the most active drugs.
Collapse
Affiliation(s)
- Carlos Brites
- Fundação Bahiana de Infectologia (FBaI), Salvador, BA, Brazil; Universidade Federal da Bahia (UFBA), Laboratório de Pesquisa em Infectologia (LAPI), Salvador, BA, Brazil.
| | - Lauro Pinto-Neto
- Escola de Ciências da Saúde da Santa Casa de Vitoria, Vitória, ES, Brazil
| | | | - Estevão Nunes
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brazil
| | - Eduardo Sprinz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
47
|
Clutter DS, Rojas Sánchez P, Rhee SY, Shafer RW. Genetic Variability of HIV-1 for Drug Resistance Assay Development. Viruses 2016; 8:v8020048. [PMID: 26875985 PMCID: PMC4776203 DOI: 10.3390/v8020048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
A hybridization-based point-of-care (POC) assay for HIV-1 drug resistance would be useful in low- and middle-income countries (LMICs) where resistance testing is not routinely available. The major obstacle in developing such an assay is the extreme genetic variability of HIV-1. We analyzed 27,203 reverse transcriptase (RT) sequences from the Stanford HIV Drug Resistance Database originating from six LMIC regions. We characterized the variability in a 27-nucleotide window surrounding six clinically important drug resistance mutations (DRMs) at positions 65, 103, 106, 181, 184, and 190. The number of distinct codons at each DRM position ranged from four at position 184 to 11 at position 190. Depending on the mutation, between 11 and 15 of the 24 flanking nucleotide positions were variable. Nonetheless, most flanking sequences differed from a core set of 10 flanking sequences by just one or two nucleotides. Flanking sequence variability was also lower in each LMIC region compared with overall variability in all regions. We also describe an online program that we developed to perform similar analyses for mutations at any position in RT, protease, or integrase.
Collapse
Affiliation(s)
- Dana S Clutter
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, L-134, Stanford, CA 94035, USA.
| | - Patricia Rojas Sánchez
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid 28034, Spain.
| | - Soo-Yon Rhee
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, L-134, Stanford, CA 94035, USA.
| | - Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, L-134, Stanford, CA 94035, USA.
| |
Collapse
|
48
|
Penrose KJ, Parikh UM, Hamanishi KA, Else L, Back D, Boffito M, Jackson A, Mellors JW. Selection of Rilpivirine-Resistant HIV-1 in a Seroconverter From the SSAT 040 Trial Who Received the 300-mg Dose of Long-Acting Rilpivirine (TMC278LA). J Infect Dis 2015; 213:1013-7. [PMID: 26563240 DOI: 10.1093/infdis/jiv528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
The injectable long-acting formulation of rilpivirine (TMC278LA) is a promising preexposure prophylaxis (PrEP) candidate for prevention of human immunodeficiency virus type 1 (HIV-1) infection. We evaluated HIV-1 in plasma obtained from an unexpected seroconverter in the 300-mg arm of the SSAT040 TMC278LA pharmacokinetic study for rilpivirine (RPV) resistance. Infection with wild-type HIV-1 was confirmed on day 84 after TMC278LA injection, and the K101E mutation was detected on day 115. Plasma-derived HIV-1 clones containing K101E had 4-fold increased resistance to RPV and 4-8-fold increased cross-resistance to etravirine, nevirapine, and efavirenz compared with wild type HIV-1 plasma-derived clones from the same individual. This case is a unique instance of infection with wild-type HIV-1 and subsequent selection of resistant virus by persistent exposure to long-acting PrEP.
Collapse
Affiliation(s)
- Kerri J Penrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Kristen A Hamanishi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Laura Else
- Liverpool Bioanalytical Facility, Department of Molecular and Clinical Pharmacology, University of Liverpool
| | - David Back
- Liverpool Bioanalytical Facility, Department of Molecular and Clinical Pharmacology, University of Liverpool
| | - Marta Boffito
- Department of HIV/Genito-Urinary Medicine, St. Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Akil Jackson
- Department of HIV/Genito-Urinary Medicine, St. Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|
49
|
Coovadia A, Abrams EJ, Strehlau R, Shiau S, Pinillos F, Martens L, Patel F, Hunt G, Tsai WY, Kuhn L. Efavirenz-Based Antiretroviral Therapy Among Nevirapine-Exposed HIV-Infected Children in South Africa: A Randomized Clinical Trial. JAMA 2015; 314:1808-17. [PMID: 26529159 PMCID: PMC4655876 DOI: 10.1001/jama.2015.13631] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE Advantages of using efavirenz as part of treatment for children infected with human immunodeficiency virus (HIV) include once-daily dosing, simplification of co-treatment for tuberculosis, preservation of ritonavir-boosted lopinavir for second-line treatment, and harmonization of adult and pediatric treatment regimens. However, there have been concerns about possible reduced viral efficacy of efavirenz in children exposed to nevirapine for prevention of mother-to-child transmission. OBJECTIVE To evaluate whether nevirapine-exposed children achieving initial viral suppression with ritonavir-boosted lopinavir-based therapy can transition to efavirenz-based therapy without risk of viral failure. DESIGN, SETTING, AND PARTICIPANTS Randomized, open-label noninferiority trial conducted at Rahima Moosa Mother and Child Hospital, Johannesburg, South Africa, from June 2010 to December 2013, enrolling 300 HIV-infected children exposed to nevirapine for prevention of mother-to-child transmission who were aged 3 years or older and had plasma HIV RNA of less than 50 copies/mL during ritonavir-boosted lopinavir-based therapy; 298 were randomized and 292 (98%) were followed up to 48 weeks after randomization. INTERVENTIONS Participants were randomly assigned to switch to efavirenz-based therapy (n = 150) or continue ritonavir-boosted lopinavir-based therapy (n = 148). MAIN OUTCOMES AND MEASURES Risk difference between groups in (1) viral rebound (ie, ≥1 HIV RNA measurement of >50 copies/mL) and (2) viral failure (ie, confirmed HIV RNA >1000 copies/mL) with a noninferiority bound of -0.10. Immunologic and clinical responses were secondary end points. RESULTS The Kaplan-Meier probability of viral rebound by 48 weeks was 0.176 (n = 26) in the efavirenz group and 0.284 (n = 42) in the ritonavir-boosted lopinavir group. Probabilities of viral failure were 0.027 (n = 4) in the efavirenz group and 0.020 (n = 3) in the ritonavir-boosted lopinavir group. The risk difference for viral rebound was 0.107 (1-sided 95% CI, 0.028 to ∞) and for viral failure was -0.007 (1-sided 95% CI, -0.036 to ∞). We rejected the null hypothesis that efavirenz is inferior to ritonavir-boosted lopinavir (P < .001) for both end points. By 48 weeks, CD4 cell percentage was 2.88% (95% CI, 1.26%-4.49%) higher in the efavirenz group than in the ritonavir-boosted lopinavir group. CONCLUSIONS AND RELEVANCE Among HIV-infected children exposed to nevirapine for prevention of mother-to-child transmission and with initial viral suppression with ritonavir-boosted lopinavir-based therapy, switching to efavirenz-based therapy compared with continuing ritonavir-boosted lopinavir-based therapy did not result in significantly higher rates of viral rebound or viral failure. This therapeutic approach may offer advantages in children such as these. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01146873.
Collapse
Affiliation(s)
- Ashraf Coovadia
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Elaine J. Abrams
- ICAP, Mailman School of Public Health, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Renate Strehlau
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Shiau
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Francoise Pinillos
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leigh Martens
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Faeezah Patel
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gillian Hunt
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Wei-Yann Tsai
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Louise Kuhn
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
50
|
Neogi U, Häggblom A, Singh K, Rogers LC, Rao SD, Amogne W, Schülter E, Zazzi M, Arnold E, Sarafianos SG, Sönnerborg A. Factors influencing the efficacy of rilpivirine in HIV-1 subtype C in low- and middle-income countries. J Antimicrob Chemother 2015; 71:367-71. [PMID: 26518047 DOI: 10.1093/jac/dkv359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/02/2015] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The use of the NNRTI rilpivirine in low- and middle-income countries (LMICs) is under debate. The main objective of this study was to provide further clinical insights and biochemical evidence on the usefulness of rilpivirine in LMICs. PATIENTS AND METHODS Rilpivirine resistance was assessed in 5340 therapy-naive and 13,750 first-generation NNRTI-failed patients from Europe and therapy-naive HIV-1 subtype C (HIV-1C)-infected individuals from India (n = 617) and Ethiopia (n = 127). Rilpivirine inhibition and binding affinity assays were performed using patient-derived HIV-1C reverse transcriptases (RTs). RESULTS Primary rilpivirine resistance was rare, but the proportion of patients with >100,000 HIV-1 RNA copies/mL pre-ART was high in patients from India and Ethiopia, limiting the usefulness of rilpivirine as a first-line drug in LMICs. In patients failing first-line NNRTI treatments, cross-resistance patterns suggested that 73% of the patients could benefit from switching to rilpivirine-based therapy. In vitro inhibition assays showed ∼ 2-fold higher rilpivirine IC50 for HIV-1C RT than HIV-1B RT. Pre-steady-state determination of rilpivirine-binding affinities revealed 3.7-fold lower rilpivirine binding to HIV-1C than HIV-1B RT. Structural analysis indicated that naturally occurring polymorphisms close to the NNRTI-binding pocket may reduce rilpivirine binding, leading to lower susceptibility of HIV-1C to rilpivirine. CONCLUSIONS Our clinical and biochemical findings indicate that the usefulness of rilpivirine has limitations in HIV-1C-dominated epidemics in LMICs, but the drug could still be beneficial in patients failing first-line therapy if genotypic resistance testing is performed.
Collapse
Affiliation(s)
- Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden
| | - Amanda Häggblom
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Kamalendra Singh
- Departments of Molecular Microbiology & Immunology and Biochemistry, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Leonard C Rogers
- Departments of Molecular Microbiology & Immunology and Biochemistry, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Shwetha D Rao
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden
| | | | - Eugen Schülter
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Stefan G Sarafianos
- Departments of Molecular Microbiology & Immunology and Biochemistry, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|