1
|
Nho D, Lee R, Cho SY, Lee DG. How Should Cytomegalovirus Infection Be Managed in Allogeneic Hematopoietic Stem Cell Transplant Recipients? A Clinical Grand Round. Infect Chemother 2025; 57:38-44. [PMID: 40183653 PMCID: PMC11972914 DOI: 10.3947/ic.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/18/2025] [Indexed: 04/05/2025] Open
Abstract
Cytomegalovirus (CMV) is a significant concern for patients with allogeneic hematopoietic cell transplantation (allo-HCT). CMV management differs between institutions due to the lack of local guidelines. Here, we describe a case of refractory/resistant CMV infection treated using our institution's CMV management protocol. A 59-year-old woman who underwent allo-HCT was treated for CMV reactivation. Despite 3 months of valganciclovir administration, serum CMV level surged. CMV gene mutation test revealed a ganciclovir-resistant A594V mutation in the UL97 gene. Treatment was switched to foscarnet until the drug became unavailable nationwide. During the foscarnet shortage, cidofovir was used, leading to a decline in CMV levels when foscarnet was reintroduced and used for 2 months. Following allo-HCT, CMV prophylaxis with letermovir is crucial to prevent reactivation in seropositive recipients. CMV titers should be monitored frequently after allo-HCT. The cutoff value for preemptive therapy varies across institutions, with ganciclovir/valganciclovir usually administered as first-line therapy. Maribavir is an option in cases of ganciclovir/valganciclovir resistance or intolerance. CMV gene mutations should be examined in patients with suspected resistance after 2 weeks of appropriate treatment. This case was discussed at the Clinical Grand Round of the Annual Conference of the Korean Society of Infectious Diseases on November 2, 2023.
Collapse
Affiliation(s)
- Dukhee Nho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea
| | - Raeseok Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea
| | - Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.
| |
Collapse
|
2
|
Chen T, Huang T, Ye M, Shen J. Acid-Catalyzed, Metal- and Oxidant-Free C=C Bond Cleavage of Enaminones: One-Pot Synthesis of 3,4-Dihydroquinazolines. Molecules 2025; 30:350. [PMID: 39860220 PMCID: PMC11767836 DOI: 10.3390/molecules30020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, we present the HOAc-catalyzed selective cleavage of the C=C double bond of enaminones, enabling the formation of a new C-N bond and a new C=N bond for the one-pot synthesis of 2-substituted 3,4-dihydroquinazolines directly from ynones and 2-(aminomethyl)anilines. This method operates in ethanol under transition-metal-free and oxidant-free conditions, offering a sustainable and efficient approach for the synthesis of 3,4-dihydroquinazolines with broad functional group tolerance.
Collapse
Affiliation(s)
- Ting Chen
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
- Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen 361024, China
| | - Ting Huang
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
| | - Moudan Ye
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
| | - Jinhai Shen
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
- Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen 361024, China
| |
Collapse
|
3
|
Zhu VZ, Horton MB, Haeusler GM, Yong MK. The emergence of letermovir and maribavir drug-resistant mutations: from clinical trials to real-world studies. Curr Opin Infect Dis 2024; 37:536-546. [PMID: 39331647 DOI: 10.1097/qco.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
PURPOSE OF REVIEW Cytomegalovirus (CMV) infection is associated with severe clinical disease and high morbidity in immunocompromised hosts. Letermovir and maribavir, are two recently developed antiviral drugs used in the prevention and treatment of resistant and refractory CMV. Following the publication of landmark randomized trials and increased use, both clinical trial data and real-world experience has reported the development of antiviral drug resistance. The aim of this review was to comprehensively review the published literature on letermovir and maribavir drug resistance and to describe the clinical scenarios in which they may emerge. RECENT FINDINGS For letermovir, the most frequently detected resistance mutations occur in the UL56 gene (C325Y/W/F) and confer total resistance. Maribavir resistance mutations most often occur in the UL97 gene and resistance-associated variants (RAVs) T409M, H411Y, C480F have all been detected. The clinical context in which letermovir and maribavir resistance occurs include high viral loads at initiation, intensified immunosuppression, subtherapeutic drug exposure because of poor adherence, drug interactions, and inadequate central nervous system (CNS) penetration. Emergence of resistance mutations generally occurs within the first 3 months of initiation. SUMMARY The detection of letermovir and maribavir resistance mutations highlights an ongoing clinical challenge in the management of CMV.
Collapse
Affiliation(s)
- Violet Z Zhu
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
| | - Miles B Horton
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne
- Department of Medical Biology, The University of Melbourne
| | - Gabrielle M Haeusler
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
- Department of Infectious Diseases, The Royal Children's Hospital Melbourne
- Clinical Infections, Murdoch Childrens Research Institute
| | - Michelle K Yong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
4
|
Pham JH, Razonable RR. Management of resistant and refractory cytomegalovirus infections after transplantation. Expert Rev Anti Infect Ther 2024; 22:855-866. [PMID: 39225411 DOI: 10.1080/14787210.2024.2399647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a classic opportunistic infection in transplant recipients. Treatment-refractory CMV infections are of concern, with growing identification of strains that have developed genetic mutations which confer resistance to standard antiviral therapy. Resistant and refractory CMV infections are associated with worse patient outcomes, prolonged hospitalization, and increased healthcare costs. AREAS COVERED This article provides a comprehensive practical overview of resistant and refractory CMV infections in transplant recipients. We review the updated definitions for these infections, antiviral pharmacology, mechanisms of drug resistance, diagnostic workup, management strategies, and host-related factors including immune optimization. EXPERT OPINION Resistant and refractory CMV infections are a significant contributor to post-transplant morbidity and mortality. This is likely the result of a combination of prolonged antiviral exposure and active viral replication in the setting of intensive pharmacologic immunosuppression. Successful control of resistant and refractory infections in transplant recipients requires a combination of immunomodulatory optimization and appropriate antiviral drug choice with sufficient treatment duration.
Collapse
Affiliation(s)
- Justin H Pham
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Royston L, Papanicolaou GA, Neofytos D. Refractory/Resistant Cytomegalovirus Infection in Transplant Recipients: An Update. Viruses 2024; 16:1085. [PMID: 39066247 PMCID: PMC11281367 DOI: 10.3390/v16071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the significant progress made, CMV infection is one of the most frequent infectious complications in transplant recipients. CMV infections that become refractory or resistant (R/R) to the available antiviral drugs constitute a clinical challenge and are associated with increased morbidity and mortality. Novel anti-CMV therapies have been recently developed and introduced in clinical practice, which may improve the treatment of these infections. In this review, we summarize the treatment options for R/R CMV infections in adult hematopoietic cell transplant and solid organ transplant recipients, with a special focus on newly available antiviral agents with anti-CMV activity, including maribavir and letermovir.
Collapse
Affiliation(s)
- Léna Royston
- Division of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Genovefa A. Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Suetsugu K, Shigematsu T, Nakamura T, Hirota T, Ieiri I. Clinical Pharmacokinetics and Pharmacodynamics of Letermovir in Allogenic Hematopoietic Cell Transplantation. Clin Pharmacokinet 2024; 63:945-964. [PMID: 39012618 DOI: 10.1007/s40262-024-01392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
Letermovir is a newly developed antiviral agent used for the prophylaxis of human cytomegalovirus infections in patients undergoing allogeneic hematopoietic cell transplantation. This novel anti-cytomegalovirus drug, used for the prophylaxis of cytomegalovirus reactivation until approximately 200 days after transplantation, effectively reduces the risk of clinically significant cytomegalovirus infection. No human counterpart exists for the terminase complex; letermovir is virus specific and lacks some toxicities previously observed with other anti-cytomegalovirus drugs, such as cytopenia and nephrotoxicity. The absolute bioavailability of letermovir in healthy individuals is estimated to be 94% based on a population-pharmacokinetic analysis. In contrast, oral administration of letermovir to patients undergoing hematopoietic cell transplantation results in lower exposure than that in healthy individuals. Renal or hepatic impairment does not influence the intrinsic clearance of letermovir. Co-administration of letermovir may alter the plasma concentrations of other drugs, including itself, as it acts as a substrate and inhibitor/inducer of several drug-metabolizing enzymes and transporters. In particular, attention should be paid to the drug-drug interactions between letermovir and calcineurin inhibitors or azole antifungal agents, which are commonly used in patients undergoing hematopoietic cell transplantation. This article reviews and summarizes the clinical pharmacokinetics and pharmacodynamics of letermovir, focusing on patients undergoing hematopoietic cell transplantation, healthy individuals, and specific patient subsets.
Collapse
Affiliation(s)
- Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Shigematsu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiro Nakamura
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Piret J, Boivin G. Management of Cytomegalovirus Infections in the Era of the Novel Antiviral Players, Letermovir and Maribavir. Infect Dis Rep 2024; 16:65-82. [PMID: 38247977 PMCID: PMC10801527 DOI: 10.3390/idr16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cytomegalovirus (CMV) infections may increase morbidity and mortality in immunocompromised patients. Until recently, standard antiviral drugs against CMV were limited to viral DNA polymerase inhibitors (val)ganciclovir, foscarnet and cidofovir with a risk for cross-resistance. These drugs may also cause serious side effects. This narrative review provides an update on new antiviral agents that were approved for the prevention and treatment of CMV infections in transplant recipients. Letermovir was approved in 2017 for CMV prophylaxis in CMV-seropositive adults who received an allogeneic hematopoietic stem cell transplant. Maribavir followed four years later, with an indication in the treatment of adult and pediatric transplant patients with refractory/resistant CMV disease. The target of letermovir is the CMV terminase complex (constituted of pUL56, pUL89 and pUL51 subunits). Letermovir prevents the cleavage of viral DNA and its packaging into capsids. Maribavir is a pUL97 kinase inhibitor, which interferes with the assembly of capsids and the egress of virions from the nucleus. Both drugs have activity against most CMV strains resistant to standard drugs and exhibit favorable safety profiles. However, high-level resistance mutations may arise more rapidly in the UL56 gene under letermovir than low-grade resistance mutations. Some mutations emerging in the UL97 gene under maribavir can be cross-resistant with ganciclovir. Thus, letermovir and maribavir now extend the drug arsenal available for the management of CMV infections and their respective niches are currently defined.
Collapse
Affiliation(s)
| | - Guy Boivin
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
8
|
Iwaisako Y, Fujimuro M. The Terminase Complex of Each Human Herpesvirus. Biol Pharm Bull 2024; 47:912-916. [PMID: 38692868 DOI: 10.1248/bpb.b23-00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.
Collapse
Affiliation(s)
- Yuki Iwaisako
- Department of Cell Biology, Kyoto Pharmaceutical University
| | | |
Collapse
|
9
|
Chai Y, Zhang E, Cai Z, Xu D, Zhu C, Sun B. Isolation, synthesis and identification of degraded impurities in Letermovir. J Pharm Biomed Anal 2023; 236:115691. [PMID: 37703644 DOI: 10.1016/j.jpba.2023.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Letermovir is a cytomegalovirus inhibitor for cytomegalovirus infection a hematopoietic-cell transplantation. In the degradation test of Letermovir, five new impurities were detected at levels of ND ∼ 2.21 % (by oxide, thermal or photolytic). These impurities were synthesized directly, characterized and identified by HRMS NMR spectra and X-ray crystallography. Then co-injected with commercial products to confirm their retention times in HPLC. The possible formation pathways and synthetic methods of these impurities were discussed in details. Furthermore, the toxicological properties of impurities were evaluated by ACD/Percepta 14.52.0 (Build 3525) software.
Collapse
Affiliation(s)
- Yuzhu Chai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Nanjing Chia-Tai Tianqing Pharmaceutical Company, Nanjing 210046, PR China
| | - Erlong Zhang
- Nanjing Chia-Tai Tianqing Pharmaceutical Company, Nanjing 210046, PR China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Dan Xu
- Nanjing Chia-Tai Tianqing Pharmaceutical Company, Nanjing 210046, PR China
| | - Chunxia Zhu
- Nanjing Chia-Tai Tianqing Pharmaceutical Company, Nanjing 210046, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
10
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
11
|
Nho D, Lee R, Cho SY, Lee DG, Kim EJ, Park S, Lee SE, Cho BS, Kim YJ, Lee S, Kim HJ. Cytomegalovirus Infection after Allogeneic Hematopoietic Cell Transplantation under 100-Day Letermovir Prophylaxis: A Real-World 1-Year Follow-Up Study. Viruses 2023; 15:1884. [PMID: 37766290 PMCID: PMC10536589 DOI: 10.3390/v15091884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The prevention and management of cytomegalovirus (CMV) reactivation is important to improve the outcomes of allogeneic hematopoietic cell transplantation (allo-HCT) recipients. The aim of this study was to analyze real-world data regarding the incidence and characteristics of CMV infections until 1 year after allo-HCT under 100-day letermovir prophylaxis. A single-center retrospective study was conducted between November 2020 and October 2021. During the study period, 358 patients underwent allo-HCT, 306 of whom received letermovir prophylaxis. Cumulative incidence of clinically significant CMV infection (CS-CMVi) was 11.4%, 31.7%, and 36.9% at 14 weeks, 24 weeks, and 1 year post-HCT, respectively. Through multivariate analysis, the risk of CS-CMVi increased with graft-versus-host disease (GVHD) ≥ grade 2 (adjusted odds ratio 3.640 [2.036-6.510]; p < 0.001). One-year non-relapse mortality was significantly higher in letermovir breakthrough CS-CMVi patients than those with subclinical CMV reactivation who continued receiving letermovir (p = 0.002). There were 18 (15.9%) refractory CMV infection cases in this study population. In summary, letermovir prophylaxis is effective at preventing CS-CMVi until day 100, which increased after the cessation of letermovir. GVHD is still a significant risk factor in the era of letermovir prophylaxis. Further research is needed to establish individualized management strategies, especially in patients with significant GVHD or letermovir breakthrough CS-CMVi.
Collapse
Affiliation(s)
- Dukhee Nho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.N.); (R.L.); (D.-G.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Raeseok Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.N.); (R.L.); (D.-G.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.N.); (R.L.); (D.-G.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.N.); (R.L.); (D.-G.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Eun-Jin Kim
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Silvia Park
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Sung-Eun Lee
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Byung-Sik Cho
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Yoo-Jin Kim
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Seok Lee
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| | - Hee-Je Kim
- Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-J.K.); (S.P.); (S.-E.L.); (B.-S.C.); (Y.-J.K.); (S.L.); (H.-J.K.)
| |
Collapse
|
12
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Sourisseau M, Faure E, Béhal H, Chauvet P, Srour M, Capes A, Coiteux V, Magro L, Alfandari S, Alidjinou EK, Simon N, Vuotto F, Karam M, Faure K, Yakoub-Agha I, Beauvais D. The promising efficacy of a risk-based letermovir use strategy in CMV-positive allogeneic hematopoietic cell recipients. Blood Adv 2023; 7:856-865. [PMID: 36350752 PMCID: PMC9986711 DOI: 10.1182/bloodadvances.2022008667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Letermovir is the first approved drug for cytomegalovirus (CMV) infection prophylaxis in adult patients who are CMV positive undergoing allogeneic hematopoietic cell transplantation (allo-HCT). Because CMV infection risk varies from patient to patient, we evaluated whether a risk-based strategy could be effective. In this single-center study, all consecutive adult patients who were CMV positive and underwent allo-HCT between 2015 and 2021 were included. During period 1 (2015-2017), letermovir was not used, whereas during period 2 (2018-2021), letermovir was used in patients at high risk but not in patients at low risk, except in those receiving corticosteroids. In patients at high risk, the incidence of clinically significant CMV infection (csCMVi) in period 2 was lower than that in period 1 (P < .001) by week 14 (10.5% vs 51.6%) and week 24 (16.9% vs 52.7%). In patients at low risk, although only 28.6% of patients received letermovir in period 2, csCMVi incidence was also significantly lower (P = .003) by week 14 (7.9% vs 29.0%) and week 24 (11.2% vs 33.3%). Among patients at low risk who did not receive letermovir (n = 45), 23 patients (51.1%) experienced transient positive CMV DNA without csCMVi, whereas 17 patients (37.8%) experienced negative results. In both risk groups, the 2 periods were comparable for CMV disease, overall survival, progression-free survival, relapse, and nonrelapse mortality. We concluded that a risk-based strategy for letermovir use is an effective strategy which maintains the high efficacy of letermovir in patients at high risk but allows some patients at low risk to not use letermovir.
Collapse
Affiliation(s)
- Mathilde Sourisseau
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
| | - Emmanuel Faure
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
- U1019-UMR 9017-Center for Infection and Immunity of Lille, INSERM, Centre National de la Recherche Scientifique, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Hélène Béhal
- Department of Biostatistics, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, CHU Lille, University of Lille, Lille, France
| | - Paul Chauvet
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| | - Micha Srour
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| | | | | | | | - Serge Alfandari
- Infectious Disease Department, Gustave Dron Hospital, Tourcoing, France
| | | | - Nicolas Simon
- ULR 7365 – GRITA – Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University of Lille, Lille, France
| | - Fanny Vuotto
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
| | | | - Karine Faure
- Department of Infectious Disease, CHU Lille, University of Lille, Lille, France
- U1019-UMR 9017-Center for Infection and Immunity of Lille, INSERM, Centre National de la Recherche Scientifique, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Ibrahim Yakoub-Agha
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| | - David Beauvais
- Hematology Department, CHU Lille, Lille, France
- Infinite U1286, INSERM, University of Lille, Lille, France
| |
Collapse
|
14
|
Dwabe S, Hsiao M, Ali A, Rodman J, Savitala-Damerla L, Nazaretyan S, Kimberly Schiff NP, Tam E, Ladha A, Woan K, Chaudhary P, Yaghmour G. Real world experience: Examining outcomes using letermovir for CMV prophylaxis in high-risk allogeneic hematopoietic stem cell patients in the setting of using T-cell depletion as GVHD prophylaxis. Transpl Immunol 2023; 76:101769. [PMID: 36464218 DOI: 10.1016/j.trim.2022.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection significantly impacts the morbidity and mortality of patients undergoing allogeneic hematopoietic stem cell transplant (HSCT). Despite monitoring and pharmacologic prophylaxis with drugs such as valganciclovir or ganciclovir, rates of early CMV reactivation have continually persisted, contributing to increased rates of morbidity and mortality in allogeneic-HSCT patients. This study evaluates the outcomes of letermovir in preventing CMV reactivation and CMV-related complications in HSCT recipients with initiation of therapy at +21 days in high-risk patients. METHODS We retrospectively analyzed adult patients at University of Southern California (USC) Norris Cancer Hospital who received allogeneic-HSCT from 2018 to 2020 with subsequent serial CMV monitoring and treatment. CMV reactivation was determined in patients if they had clinically significant serum CMV viremia (viremia requiring treatment) or organ involvement by day+100. Primary endpoint assessed was day+100 rates of CMV reactivation. Secondary end-points included 1-year OS, 1-year RFS, and incidence of GVHD. Descriptive statistics were used to compare characteristics between groups used in this study, with a significance level of α = 0.05. RESULTS Between 2018 and 2020, 116 adult HSCT recipients were reviewed. 51% were male and 49% were female; donor sources consisted of 27% match related donor (MRD) 28% match-unrelated donor (MUD), and 45% haploidentical donor. Of the 116 patients, 92 were identified as high-risk for CMV reactivation. 71 patients received letermovir prophylaxis, and 21 patients received no prophylaxis. In high-risk patients, after adjusting for GVHD status and transplant type, patients that received letermovir had no statistically significant difference of having D + 100 CMV reactivation compared to patients that did not receive letermovir. 1.02 (95% CI: 0.35, 3.20) (p = 0.97). Moreover, there were no statistically significant difference observed between letermovir treatment and 1-year OS, 1-year RFS, and incidence of GVHD. CONCLUSION Patients in the high-risk letermovir group had outcomes that were comparable to the lower risk "non-letermovir" group. There was no significant difference in CMV D + 100 reactivation between high-risk patients who did not receive letermovir compared to the patients who did. While other studies have shown that early initiation of letermovir may be associated with improved outcomes, our study shows that the use of letermovir with initiation at 21 days may not necessarily translate to improved secondary outcomes such as overall survival. Further prospective studies evaluating the time of initiating therapy and outcomes are needed.
Collapse
Affiliation(s)
- Sami Dwabe
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Mindy Hsiao
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Amir Ali
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jack Rodman
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Lakshmi Savitala-Damerla
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Samvel Nazaretyan
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - N P Kimberly Schiff
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Eric Tam
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Abdulla Ladha
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Karrune Woan
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Preet Chaudhary
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - George Yaghmour
- University of Southern California, Keck School of Medicine, LA, Division of Hematology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Reed DR, Petroni GR, West M, Jones C, Alfaraj A, Williams PG, DeGregory K, Grose K, Monson S, Varadarajan I, Volodin L, Donowitz GR, Kindwall-Keller TL, Ballen KK. Prophylactic Pretransplant Ganciclovir to Reduce Cytomegalovirus Infection After Hematopoietic Stem Cell Transplantation. Hematol Oncol Stem Cell Ther 2023; 16:61-69. [PMID: 36634280 PMCID: PMC11956836 DOI: 10.1016/j.hemonc.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE/BACKGROUND Cytomegalovirus (CMV) reactivation remains a serious complication after allogeneic hematopoietic cell transplantation (HCT) occurring in approximately 60-70% of CMV-seropositive HCT recipients. CMV reactivation leads to adverse outcomes including end-organ damage, graft-versus-host disease, and graft failure. METHODS Ganciclovir was administered pretransplant at 5 mg/kg twice daily intravenously from the start of conditioning to Day T-2 to CMV-seropositive patients receiving their first allogeneic HCT. CMV DNA was monitored weekly until at least Day 100 posttransplant. RESULTS A total of 109 consecutive patients were treated, median age 57 (range 20-73) years. Of these, 36 (33%) patients had a CMV reactivation within the first 105 days posttransplant with a median time of reactivation of 52.5 (range 36-104) days posttransplant. The cumulative incidence of CMV reactivation at Day 105 posttransplant was 33.1% (95% confidence interval: 24.4-42.0). One patient developed CMV disease. CONCLUSION The use of pretransplant ganciclovir was associated with low incidence of CMV reactivation and disease. These data suggest that pretransplant ganciclovir with preemptive therapy for viral reactivation may be a useful strategy to reduce CMV reactivation. Future prospective trials are needed to compare strategies for CMV prophylaxis.
Collapse
Affiliation(s)
- Daniel R. Reed
- Section of Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Gina R. Petroni
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Melissa West
- Department of Pharmacy, University of Virginia, Charlottesville, VA, USA
| | - Caroline Jones
- Department of Pharmacy, University of Virginia, Charlottesville, VA, USA
| | - Abeer Alfaraj
- BayHealth Hematology/Oncology Associates, Delaware, PA, USA
| | - Paige G. Williams
- Division of Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Kathlene DeGregory
- Department of Pharmacy, University of Virginia, Charlottesville, VA, USA
| | - Kyle Grose
- Department of Pharmacy, University of Kansas, Kansas City, KS, USA
| | - Sandra Monson
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Indumathy Varadarajan
- Division of Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Leonid Volodin
- Division of Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Gerald R. Donowitz
- Department of Infectious Disease, University of Virginia, Charlottesville, VA, USA
| | | | - Karen K. Ballen
- Division of Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Huntjens DW, Dijkstra JA, Verwiel LN, Slijkhuis M, Elbers P, Welkers MRA, Veldkamp AI, Kuijvenhoven MA, de Leeuw DC, Abdullah-Koolmees H, Kuipers MT, Bartelink IH. Optimizing Antiviral Dosing for HSV and CMV Treatment in Immunocompromised Patients. Pharmaceutics 2023; 15:pharmaceutics15010163. [PMID: 36678792 PMCID: PMC9863155 DOI: 10.3390/pharmaceutics15010163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and cytomegalovirus (CMV) are DNA viruses that are common among humans. Severely immunocompromised patients are at increased risk of developing HSV or CMV disease due to a weakened immune system. Antiviral therapy can be challenging because these drugs have a narrow therapeutic window and show significant pharmacokinetic variability. Above that, immunocompromised patients have various comorbidities like impaired renal function and are exposed to polypharmacy. This scoping review discusses the current pharmacokinetic (PK) and pharmacodynamic (PD) knowledge of antiviral drugs for HSV and CMV treatment in immunocompromised patients. HSV and CMV treatment guidelines are discussed, and multiple treatment interventions are proposed: early detection of drug resistance; optimization of dose to target concentration by therapeutic drug monitoring (TDM) of nucleoside analogs; the introduction of new antiviral drugs; alternation between compounds with different toxicity profiles; and combinations of synergistic antiviral drugs. This research will also serve as guidance for future research, which should focus on prospective evaluation of the benefit of each of these interventions in randomized controlled trials.
Collapse
Affiliation(s)
- Daan W. Huntjens
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacob A. Dijkstra
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-444-3524
| | - Lisanne N. Verwiel
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Mirjam Slijkhuis
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Paul Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence (LCCI), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Science (ACS), Amsterdam Institute for Infection and Immunity (AII), Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Matthijs R. A. Welkers
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Agnes I. Veldkamp
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianne A. Kuijvenhoven
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C. de Leeuw
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Heshu Abdullah-Koolmees
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Postbus 85500, 3508 GA Utrecht, The Netherlands
- Clinical Pharmacy, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Maria T. Kuipers
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
17
|
Xiong J, He HT, Yang HY, Zeng ZG, Zhong CR, Shi H, Ouyang ML, Tao YY, Pang YL, Zhang YH, Hu B, Fu ZX, Miao XL, Zhu HL, Yao G. Synthesis of 4-Tetrazolyl-Substituted 3,4-Dihydroquinazoline Derivatives with Anticancer Activity via a One-Pot Sequential Ugi-Azide/Palladium-Catalyzed Azide-Isocyanide Cross-Coupling/Cyclization Reaction. J Org Chem 2022; 87:9488-9496. [PMID: 35881945 DOI: 10.1021/acs.joc.2c00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new one-pot preparation of 4-tetrazolyl-3,4-dihydroquinazolines has been reported. The Ugi-azide reactions of 2-azidobenzaldehydes, amines, trimethylsilyl azide, and isocyanides produced azide intermediates without separation, which were treated with isocyanides to give 4-tetrazolyl-3,4-dihydroquinazoline derivatives through a sequential Palladium-catalyzed azide-isocyanide cross-coupling/cyclization reaction in moderate to good yields. The biological evaluation demonstrated that compound 6c inhibited breast cancer cells well and displayed broad applications for synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Jun Xiong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Hui-Ting He
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - He-Yu Yang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Cheng-Ran Zhong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Hang Shi
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Meng-Ling Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Yuan-Yuan Tao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Yong-Long Pang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Yang-Hong Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Bo Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Zi-Xiang Fu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Xiao-Lei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Gang Yao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China
| |
Collapse
|
18
|
Piret J, Goyette N, Boivin G. In vitro activity of letermovir against human cytomegalovirus isolates with different drug susceptibility phenotypes. Antiviral Res 2022; 202:105328. [PMID: 35490740 DOI: 10.1016/j.antiviral.2022.105328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Letermovir (LTV) is approved for the prophylaxis of human cytomegalovirus (HCMV) infection in adult seropositive recipients of an allogeneic hematopoietic stem cell transplant. Here, we report on the in vitro activity of LTV against a large panel of clinical HCMV isolates and recombinant viruses with different drug susceptibility phenotypes to currently-approved DNA polymerase inhibitors or maribavir. No pre-existing mutations conferring resistance to LTV were detected by Sanger sequencing in clinical HCMV isolates susceptible or resistant to DNA polymerases inhibitors. The susceptibility of LTV against the different recombinant HCMV mutants with amino acid substitutions in the UL97 kinase or in the UL54 DNA polymerase was similar to that of the wild type virus. LTV was also effective against recombinant HCMV harboring UL97 mutations conferring resistance to maribavir.
Collapse
Affiliation(s)
- Jocelyne Piret
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | | | - Guy Boivin
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
19
|
Cytomegalovirus and other herpesviruses after hematopoietic cell and solid organ transplantation: From antiviral drugs to virus-specific T cells. Transpl Immunol 2022; 71:101539. [PMID: 35051589 DOI: 10.1016/j.trim.2022.101539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Herpesviruses can either cause primary infection or may get reactivated after both hematopoietic cell and solid organ transplantations. In general, viral infections increase post-transplant morbidity and mortality. Prophylactic, preemptive, or therapeutically administered antiviral drugs may be associated with serious side effects and may induce viral resistance. Virus-specific T cells represent a valuable addition to antiviral treatment, with high rates of response and minimal side effects. Even low numbers of virus-specific T cells manufactured by direct selection methods can reconstitute virus-specific immunity after transplantation and control viral replication. Virus-specific T cells belong to the advanced therapy medicinal products, and their production is regulated by appropriate legislation; also, strict safety regulations are required to minimize their side effects.
Collapse
|
20
|
Deka B, Suri M, Sarma S, Devi MV, Bora A, Sen T, Dihingia A, Pahari P, Singh AK. Potentiating the intracellular killing of Staphylococcus aureus by dihydroquinazoline analogues as NorA efflux pump inhibitor. Bioorg Med Chem 2021; 54:116580. [PMID: 34953341 DOI: 10.1016/j.bmc.2021.116580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is an emerging human pathogen that has become difficult to treat due to its high resistance against wide range of drugs. Emergence of drug resistant isolates has further convoluted the treatment process. Among different resistance mechanisms, efflux pump proteins play a central role and has made itself a direct approach for therapeutic exploration. To demarcate the role of dihydroquinazoline analogues as NorA efflux pump inhibitor in S. aureus1199B (NorA over producing) strain total seventeen analogues were synthesized and tested for their modulatory effects on norfloxacin and Etbr resistance. Further accumulation assays, bacterial time kill kinetics, cytotoxicity assay were also carried out. The intracellular killing ability of analogues, as EPI was determined using THP-1 monocytes. The binding interaction of analogues with NorA was also predicted. Dihydroquinazoline analogues notably reduced the MIC of norfloxacin and Etbr in S. aureus1199B. In addition to their very low toxicity, they showed high Etbr and norfloxacin accumulation respectively. Further effective over time log reduction in bacterial kill kinetics in presence of these analogues confirmed their role as NorA efflux pump inhibitor. FESEM analysis clearly depicted their effect on the cell surface morphology owing to its lyses. The most significant finding of this study was the ability of analogues to significantly reduce the intracellular S. aureus1199B in human THP-1 monocytes in presence of norfloxacin. Our study has shown for the first time the possibility of developing the dihydroquinazoline analogues as NorA efflux pump inhibitors for S. aureus and control its infection.
Collapse
Affiliation(s)
- Banani Deka
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinaly Suri
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moirangthem Veigyabati Devi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Bora
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjum Dihingia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallab Pahari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
22
|
Hahn F, Hamilton ST, Wangen C, Wild M, Kicuntod J, Brückner N, Follett JEL, Herrmann L, Kheimar A, Kaufer BB, Rawlinson WD, Tsogoeva SB, Marschall M. Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. Int J Mol Sci 2021; 22:12858. [PMID: 34884662 PMCID: PMC8657773 DOI: 10.3390/ijms222312858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.
Collapse
Affiliation(s)
- Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Stuart T. Hamilton
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, Schools of Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (S.T.H.); (J.E.L.F.); (W.D.R.)
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Nadine Brückner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| | - Jasmine E. L. Follett
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, Schools of Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (S.T.H.); (J.E.L.F.); (W.D.R.)
| | - Lars Herrmann
- Institute of Organic Chemistry I, FAU, 91058 Erlangen, Germany; (L.H.); (S.B.T.)
| | - Ahmed Kheimar
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (A.K.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (A.K.); (B.B.K.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, Schools of Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (S.T.H.); (J.E.L.F.); (W.D.R.)
| | - Svetlana B. Tsogoeva
- Institute of Organic Chemistry I, FAU, 91058 Erlangen, Germany; (L.H.); (S.B.T.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (M.W.); (J.K.); (N.B.)
| |
Collapse
|
23
|
Häge S, Büscher N, Pakulska V, Hahn F, Adrait A, Krauter S, Borst EM, Schlötzer-Schrehardt U, Couté Y, Plachter B, Marschall M. The Complex Regulatory Role of Cytomegalovirus Nuclear Egress Protein pUL50 in the Production of Infectious Virus. Cells 2021; 10:3119. [PMID: 34831342 PMCID: PMC8625744 DOI: 10.3390/cells10113119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
The regulation of the nucleocytoplasmic release of herpesviral capsids is defined by the process of nuclear egress. Due to their large size, nuclear capsids are unable to traverse via nuclear pores, so that herpesviruses evolved to develop a vesicular transport pathway mediating their transition through both leaflets of the nuclear membrane. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. Hereby, pUL50 serves as a multi-interacting determinant that recruits several viral and cellular factors by direct and indirect contacts. Recently, we generated an ORF-UL50-deleted recombinant HCMV in pUL50-complementing cells and obtained first indications of putative additional functions of pUL50. In this study, we produced purified ΔUL50 particles under both complementing (ΔUL50C) and non-complementing (ΔUL50N) conditions and performed a phenotypical characterization. Findings were as follows: (i) ΔUL50N particle preparations exhibited a clear replicative defect in qPCR-based infection kinetics compared to ΔUL50C particles; (ii) immuno-EM analysis of ΔUL50C did not reveal major changes in nuclear distribution of pUL53 and lamin A/C; (iii) mass spectrometry-based quantitative proteomics showed a large concordance of protein contents in the NIEP fractions of ΔUL50C and ΔUL50N particles, but virion fraction was close to the detection limit for ΔUL50N; (iv) confocal imaging of viral marker proteins of immediate early (IE) and later phases of ΔUL50N infection indicated a very low number of cells showing an onset of viral lytic protein expression; and, finally (v) quantitative measurements of encapsidated genomes provided evidence for a substantial reduction in the DNA contents in ΔUL50N compared to ΔUL50C particles. In summary, the results point to a complex and important regulatory role of the HCMV nuclear egress protein pUL50 in the maturation of infectious virus.
Collapse
Affiliation(s)
- Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Nicole Büscher
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.B.); (S.K.); (B.P.)
| | - Victoria Pakulska
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (V.P.); (A.A.); (Y.C.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Annie Adrait
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (V.P.); (A.A.); (Y.C.)
| | - Steffi Krauter
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.B.); (S.K.); (B.P.)
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School (MHH), 30625 Hannover, Germany;
| | | | - Yohann Couté
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (V.P.); (A.A.); (Y.C.)
| | - Bodo Plachter
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.B.); (S.K.); (B.P.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| |
Collapse
|
24
|
Imlay HN, Kaul DR. Letermovir and Maribavir for the Treatment and Prevention of Cytomegalovirus Infection in Solid Organ and Stem Cell Transplant Recipients. Clin Infect Dis 2021; 73:156-160. [PMID: 33197929 DOI: 10.1093/cid/ciaa1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Until recently, available drugs for cytomegalovirus (CMV) prevention and treatment in transplant patients included (val)ganciclovir, foscarnet, and cidofovir. Use of these drugs is limited by toxicity and the development of resistance. The 2017 approval of letermovir for prevention of CMV after stem cell transplant marked the first approval of an anti-CMV agent since 2003. The role of letermovir in treatment of established CMV infection or disease remains largely unstudied, although early reports suggest that a low barrier to resistance will likely limit efficacy as primary therapy for patients with refractory or resistant disease. The investigational agent maribavir has shown promise as preemptive treatment; in patients with refractory or resistant disease the emergence of resistance while on treatment has been observed and ongoing studies will define efficacy in this population. Both agents have unique mechanisms of action limiting cross resistance, and neither exhibit myelotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Hannah N Imlay
- University of Utah, Department of Internal Medicine, Division of Infectious Diseases, Salt Lake City, Utah, USA
| | - Daniel R Kaul
- University of Michigan, Department of Internal Medicine, Division of Infectious Diseases, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Didychuk AL, Gates SN, Gardner MR, Strong LM, Martin A, Glaunsinger BA. A pentameric protein ring with novel architecture is required for herpesviral packaging. eLife 2021; 10:e62261. [PMID: 33554858 PMCID: PMC7889075 DOI: 10.7554/elife.62261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Genome packaging in large double-stranded DNA viruses requires a powerful molecular motor to force the viral genome into nascent capsids, which involves essential accessory factors that are poorly understood. Here, we present structures of two such accessory factors from the oncogenic herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV; ORF68) and Epstein-Barr virus (EBV; BFLF1). These homologous proteins form highly similar homopentameric rings with a positively charged central channel that binds double-stranded DNA. Mutation of individual positively charged residues within but not outside the channel ablates DNA binding, and in the context of KSHV infection, these mutants fail to package the viral genome or produce progeny virions. Thus, we propose a model in which ORF68 facilitates the transfer of newly replicated viral genomes to the packaging motor.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Stephanie N Gates
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Matthew R Gardner
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Lisa M Strong
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
26
|
Wild M, Kicuntod J, Seyler L, Wangen C, Bertzbach LD, Conradie AM, Kaufer BB, Wagner S, Michel D, Eickhoff J, Tsogoeva SB, Bäuerle T, Hahn F, Marschall M. Combinatorial Drug Treatments Reveal Promising Anticytomegaloviral Profiles for Clinically Relevant Pharmaceutical Kinase Inhibitors (PKIs). Int J Mol Sci 2021; 22:ijms22020575. [PMID: 33430060 PMCID: PMC7826512 DOI: 10.3390/ijms22020575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a human pathogenic herpesvirus associated with a variety of clinical symptoms. Current antiviral therapy is not always effective, so that improved drug classes and drug-targeting strategies are needed. Particularly host-directed antivirals, including pharmaceutical kinase inhibitors (PKIs), may help to overcome problems of drug resistance. Here, we focused on utilizing a selection of clinically relevant PKIs and determined their anticytomegaloviral efficacies. Particularly, PKIs directed to host or viral cyclin-dependent kinases, i.e., abemaciclib, LDC4297 and maribavir, exerted promising profiles against human and murine cytomegaloviruses. The anti-HCMV in vitro activity of the approved anti-cancer drug abemaciclib was confirmed in vivo using our luciferase-based murine cytomegalovirus (MCMV) animal model in immunocompetent mice. To assess drug combinations, we applied the Bliss independence checkerboard and Loewe additivity fixed-dose assays in parallel. Results revealed that (i) both affirmative approaches provided valuable information on anti-CMV drug efficacies and interactions, (ii) the analyzed combinations comprised additive, synergistic or antagonistic drug interactions consistent with the drugs’ antiviral mode-of-action, (iii) the selected PKIs, especially LDC4297, showed promising inhibitory profiles, not only against HCMV but also other α-, β- and γ-herpesviruses, and specifically, (iv) the combination treatment with LDC4297 and maribavir revealed a strong synergism against HCMV, which might open doors towards novel clinical options in the near future. Taken together, this study highlights the potential of therapeutic drug combinations of current developmental/preclinical PKIs.
Collapse
Affiliation(s)
- Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Lisa Seyler
- Institute of Radiology, University Medical Center Erlangen, FAU, Palmsanlage 5, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Andelé M. Conradie
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Detlef Michel
- Institute for Virology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany;
| | - Svetlana B. Tsogoeva
- Institute of Organic Chemistry I, FAU, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, FAU, Palmsanlage 5, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
- Correspondence: ; Tel.: +49-9131-8526-089
| |
Collapse
|
27
|
Piret J, Boivin G. Antiviral Drugs Against Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:1-30. [PMID: 34258735 DOI: 10.1007/978-981-16-0267-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the nucleoside analogue, acyclovir, represented a milestone in the management of infections caused by herpes simplex virus and varicella-zoster virus. Ganciclovir, another nucleoside analogue, was then used for the management of systemic and organ-specific human cytomegalovirus diseases. The pyrophosphate analogue, foscarnet, and the nucleotide analogue, cidofovir, have been approved subsequently and constitute the second-line antiviral drugs. However, the viral DNA polymerase is the ultimate target of all these antiviral agents with a possible emergence of cross-resistance between these drugs. Recently, letermovir that targets the viral terminase complex was approved for the prophylaxis of human cytomegalovirus infections in hematopoietic stem cell transplant recipients. Other viral targets such as the protein kinase and the helicase-primase complex are also evaluated for the development of novel potent inhibitors against herpesviruses.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Laval University, Quebec City, QC, Canada.
| |
Collapse
|
28
|
Investigational Antiviral Therapy Models for the Prevention and Treatment of Congenital Cytomegalovirus Infection during Pregnancy. Antimicrob Agents Chemother 2020; 65:AAC.01627-20. [PMID: 33077661 DOI: 10.1128/aac.01627-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Congenital cytomegalovirus (HCMV) infection may cause significant fetal malformation, lifelong disease, and, in severe cases, fetal or neonatal death. Placental infection with HCMV is the major mechanism of mother-to-child transmission (MTCT) and fetal injury. Thus, any pharmaceutical antiviral interference to reduce viral load may reduce placental damage, MTCT, and fetal disease. However, there is currently no licensed HCMV antiviral for use during pregnancy. In this study, aciclovir and the HCMV-specific antivirals letermovir, maribavir, and cidofovir were compared with ganciclovir for antiviral effects in model systems of pregnancy, including first-trimester TEV-1 trophoblast cell cultures and third-trimester ex vivo placental explant histocultures. HCMV-infected trophoblasts at 7 days postinfection (dpi) showed an EC50 of 21 μM for aciclovir, 0.0007 μM for letermovir, 0.11 μM for maribavir, and 0.29 μM for cidofovir, relative to 0.42 μM for ganciclovir. Antivirals added at 10 μM showed no cytotoxic effects and did not affect trophoblast cell proliferation (P > 0.9999). Multiple-round HCMV replication measured at 7 dpi showed letermovir, maribavir, and cidofovir treatment inhibited immediate early, early, and true late viral protein expression as assayed on Western blots. Antiviral treatment of HCMV-infected placental explants showed significant inhibition (P < 0.05) of viral replication with letermovir (83.3%), maribavir (83.6%), cidofovir (89.3%), and ganciclovir (82.4%), but not aciclovir (P > 0.9999). In ex vivo model systems, recently trialed HCMV antivirals letermovir and maribavir were effective at inhibiting HCMV replication. They partly fulfil requirements for use as safe and effective therapeutics during pregnancy to control congenital HCMV. Clinical trials of these newer agents would assist assessment of their utility in pregnancy.
Collapse
|
29
|
Di Ciaccio PR, Avdic S, Sutrave G, Clancy L, Withers B, Blyth E, McLeod D, Gottlieb DJ. Successful treatment of CMV, EBV, and adenovirus tissue infection following HLA-mismatched allogeneic stem cell transplant using infusion of third-party T cells from multiple donors in addition to antivirals, rituximab, and surgery. Transpl Infect Dis 2020; 23:e13528. [PMID: 33236399 DOI: 10.1111/tid.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 11/28/2022]
Abstract
Viral infections, principally cytomegalovirus, Epstein Barr virus (EBV) and adenovirus, are a leading cause of morbidity and mortality after allogeneic stem cell transplantation. The use of systemic antivirals is limited by limited efficacy and organ toxicities. Inability to clear infection is exacerbated by transplant-related immunosuppression and prophylaxis or treatment of acute graft versus host disease. We report the first patient to clear three serious viral infections after stem cell transplant using third-party donor partially human leukocyte antigen (HLA) matched virus-specific cytotoxic T cells. The patient, a 53 year old female with transplanted for relapsed leukemia, with severe graft versus host disease received five T cell infusions from three separate donors that ultimately cleared serious systemic infections with cytomegalovirus and adenovirus, and an EBV-driven lymphoma. Systemic antivirals had resulted in failed clinical responses. Use of repeated infusions of partially HLA matched virus-specific T cells from banks containing cryopreserved cells should be strongly considered in transplant recipients with single or multiple refractory viral infections.
Collapse
Affiliation(s)
| | - Selmir Avdic
- Stem Cell Transplant and Cell Therapies Program, Westmead Hospital, Sydney, NSW, Australia
| | - Gaurav Sutrave
- Department of Haematology, Westmead Hospital, Sydney, NSW, Australia.,Stem Cell Transplant and Cell Therapies Program, Westmead Hospital, Sydney, NSW, Australia
| | - Leighton Clancy
- Stem Cell Transplant and Cell Therapies Program, Westmead Hospital, Sydney, NSW, Australia
| | - Barbara Withers
- Stem Cell Transplant and Cell Therapies Program, Westmead Hospital, Sydney, NSW, Australia
| | - Emily Blyth
- Department of Haematology, Westmead Hospital, Sydney, NSW, Australia.,Stem Cell Transplant and Cell Therapies Program, Westmead Hospital, Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - David J Gottlieb
- Department of Haematology, Westmead Hospital, Sydney, NSW, Australia.,Stem Cell Transplant and Cell Therapies Program, Westmead Hospital, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| |
Collapse
|
30
|
The Artemisinin-Derived Autofluorescent Compound BG95 Exerts Strong Anticytomegaloviral Activity Based on a Mitochondrial Targeting Mechanism. Int J Mol Sci 2020; 21:ijms21155578. [PMID: 32759737 PMCID: PMC7432203 DOI: 10.3390/ijms21155578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen associated with severe pathology. Current options of antiviral therapy only partly satisfy the needs of a well-tolerated long-term treatment/prophylaxis free from drug-induced viral resistance. Recently, we reported the strong antiviral properties in vitro and in vivo of the broad-spectrum anti-infective drug artesunate and its optimized derivatives. NF-κB signaling was described as a targeting mechanism and additional target proteins have recently been identified. Here, we analyzed the autofluorescent hybrid compound BG95, which could be utilized for intracellular visualization by confocal imaging and a tracking analysis in virus-infected primary human fibroblasts. As an important finding, BG95 accumulated in mitochondria visualized by anti-prohibitin and MitoTracker staining, and induced statistically significant changes of mitochondrial morphology, distinct from those induced by HCMV infection. Notably, mitochondrial membrane potential was found substantially reduced by BG95, an effect apparently counteracting efficient HCMV replication, which requires active mitochondria and upregulated energy levels. This finding was consistent with binding properties of artesunate-like compounds to mitochondrial proteins and thereby suggested a new mechanistic aspect. Combined, the present study underlines an important role of mitochondria in the multifaceted, host-directed antiviral mechanism of this drug class, postulating a new mitochondria-specific mode of protein targeting.
Collapse
|
31
|
Shigle TL, Handy VW, Chemaly RF. Letermovir and its role in the prevention of cytomegalovirus infection in seropositive patients receiving an allogeneic hematopoietic cell transplant. Ther Adv Hematol 2020; 11:2040620720937150. [PMID: 32637057 PMCID: PMC7318821 DOI: 10.1177/2040620720937150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation is one of the most common infections affecting allogeneic hematopoietic cell transplant recipients. Although available anti-CMV therapies have been evaluated for the prevention of CMV reactivation, their toxicity profile makes them unfavorable for use as primary prophylaxis; thus, they are routinely reserved for the treatment of CMV viremia or CMV end-organ disease. Pre-emptive CMV monitoring strategies have been widely accepted, and although they have been helpful in early detection, they have not affected the overall morbidity and mortality associated with CMV. Letermovir is a novel agent that was approved for primary prophylaxis in CMV-seropositive adult allogeneic hematopoietic cell transplant recipients. This review focuses on letermovir's novel mechanism; clinical trials supporting its United States Food and Drug Administration (FDA) approval and subsequent follow-up analyses; clinical considerations, with an emphasis on pharmacology; and lessons learned from solid organ transplant recipients, as well as potential future directions.
Collapse
Affiliation(s)
- Terri Lynn Shigle
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victoria Wehr Handy
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4000, USA
| |
Collapse
|
32
|
Ligat G, Muller C, Alain S, Hantz S. [The terminase complex, a relevant target for the treatment of HCMV infection]. Med Sci (Paris) 2020; 36:367-375. [PMID: 32356713 DOI: 10.1051/medsci/2020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important ubiquitous opportunistic pathogen that belongs to the betaherpesviridae. Primary HCMV infection is generally asymptomatic in immunocompetent individuals. In contrast, HCMV infection causes serious disease in immunocompromised patients and is the leading cause of congenital viral infection. Although they are effective, the use of conventional molecules is limited by the emergence of resistance and by their toxicity. New antivirals targeting other replication steps and inducing fewer adverse effects are therefore needed. During HCMV replication, DNA packaging is performed by the terminase complex, which cleaves DNA to package the virus genome into the capsid. With no counterpart in mammalian cells, these terminase proteins are ideal targets for highly specific antivirals. A new terminase inhibitor, letermovir, recently proved effective against HCMV in phase III clinical trials. However, its mechanism of action is unclear and it has no significant activity against other herpesvirus or non-human CMV.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France - Adresse actuelle : Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Clotilde Muller
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sophie Alain
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sébastien Hantz
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| |
Collapse
|
33
|
Wild M, Bertzbach LD, Tannig P, Wangen C, Müller R, Herrmann L, Fröhlich T, Tsogoeva SB, Kaufer BB, Marschall M, Hahn F. The trimeric artesunate derivative TF27 exerts strong anti-cytomegaloviral efficacy: Focus on prophylactic efficacy and oral treatment of immunocompetent mice. Antiviral Res 2020; 178:104788. [PMID: 32251769 DOI: 10.1016/j.antiviral.2020.104788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) causes serious and even life-threatening diseases, particularly upon congenital or post-transplant infection. Treatment of HCMV infections with currently available drugs targeting viral enzymes is often limited by severe side effects and the emergence of drug-resistant viruses. To avoid this problem, novel therapeutic options directed to host proteins involved in virus replication are being investigated. Recently, we described the pronounced antiherpesviral activity of the trimeric artesunate derivative TF27 at low nanomolar concentrations in vitro and in vivo. In the present study, we report first data on the prophylactic efficacy of TF27 against human and murine CMV and the oncogenic avian alphaherpesvirus Marek's disease virus (MDV). The main findings of this study are (i) a pronounced activity of the experimental drug TF27 against alpha- and betaherpesviruses in vitro upon prophylactic treatment and (ii) a therapeutic and prophylactic efficacy upon oral treatment in an immunocompetent mouse model. Moreover, our data highlight (iii) the tolerability of orally administered TF27 free of compound-associated adverse events and further confirm (iv) the suitability of cellular factors as primary antiviral targets. Thus, we provide evidence for therapeutic and prophylactic antiherpesviral efficacy of TF27 upon oral treatment in immunocompetent hosts and thereby underline its potential for future antiviral drug development.
Collapse
Affiliation(s)
- Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Luca D Bertzbach
- Institute of Virology, Freie Universität Berlin, Berlin, Germany.
| | - Pierre Tannig
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Regina Müller
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Lars Herrmann
- Institute of Organic Chemistry I, FAU, Erlangen, Germany.
| | - Tony Fröhlich
- Institute of Organic Chemistry I, FAU, Erlangen, Germany.
| | | | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW CMV DNA polymerase inhibitors such as ganciclovir and foscarnet have dramatically reduced the burden of CMV infection in the HCT recipient. However, their use is often limited by toxicities and resistance. Agents with novel mechanisms and favorable toxicity profiles are critically needed. We review recent developments in CMV antivirals and immune-based approaches to mitigating CMV infection. RECENT FINDINGS Letermovir, an inhibitor of the CMV terminase complex, was approved in 2017 for primary CMV prophylaxis in adult seropositive allogeneic HCT recipients. Maribavir, an inhibitor of the CMV UL97 kinase, is currently in two phase 3 treatment studies. Adoptive immunotherapy using third-party T cells has proven safe and effective in preliminary studies. Vaccine development continues, with several promising candidates currently under study. No longer limited to DNA polymerase inhibitors, the prevention and treatment of CMV infections in the HCT recipient is a rapidly evolving field which should translate into improvements in CMV-related outcomes.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail code L457, Portland, OR, 97239, USA.
| |
Collapse
|
35
|
Magyar CL, Wall TJ, Davies SB, Campbell MV, Barna HA, Smith SR, Savich CJ, Mosey RA. Triflic anhydride mediated synthesis of 3,4-dihydroquinazolines: a three-component one-pot tandem procedure. Org Biomol Chem 2020; 17:7995-8000. [PMID: 31408069 DOI: 10.1039/c9ob01596e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A one-pot three-component tandem reaction involving a key Pictet-Spengler-like annulation step has been developed, providing an efficient method for the synthesis of 3,4-dihydroquinazolines in moderate to good yields from amides, aldehydes, and amines. The multicomponent triflic anhydride mediated reaction tolerates the installation of numerous functional groups, affording extensive diversity about the heterocyclic scaffold.
Collapse
Affiliation(s)
- Christina L Magyar
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuan WY, Chen X, Liu NN, Wen YN, Yang B, Andrei G, Snoeck R, Xiang YH, Wu YW, Jiang Z, Schols D, Zhang ZY, Wu QP. Synthesis, Anti-Varicella-Zoster Virus and Anti-Cytomegalovirus Activity of 4,5-Disubstituted 1,2,3-(1H)-Triazoles. Med Chem 2019; 15:801-812. [PMID: 30411688 DOI: 10.2174/1573406414666181109095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Clinical drugs for herpesvirus exhibit high toxicity and suffer from significant drug resistance. The development of new, effective, and safe anti-herpesvirus agents with different mechanisms of action is greatly required. OBJECTIVE Novel inhibitors against herpesvirus with different mechanisms of action from that of clinical drugs. METHODS A series of novel 5-(benzylamino)-1H-1,2,3-triazole-4-carboxamides were efficiently synthesized and EC50 values against Human Cytomegalovirus (HCMV), Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) were evaluated in vitro. RESULTS Some compounds present antiviral activity. Compounds 5s and 5t are potent against both HCMV and VZV. Compounds 5m, 5n, 5s, and 5t show similar EC50 values against both TK+ and TK- VZV strains. CONCLUSION 5-(Benzylamino)-1H-1, 2,3-triazole-4-carboxamides are active against herpesviruses and their activity is remarkably affected by the nature and the position of substituents in the benzene ring. The results indicate that these derivatives are independent of the viral thymidine kinase (TK) for activation, which is indispensable for current drugs. Their mechanisms of action may differ from those of the clinic anti-herpesvirus drugs.
Collapse
Affiliation(s)
- Wei-Yuan Yuan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ning-Ning Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Ning Wen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Yu-Hong Xiang
- School of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yong-Wei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen Jiang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Zhuo-Yong Zhang
- School of Chemistry, Capital Normal University, Beijing 100048, China
| | - Qin-Pei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
37
|
Thaljeh LF, Rothschild JA, Naderi M, Coghill LM, Brown JM, Brylinski M. Hinge Region in DNA Packaging Terminase pUL15 of Herpes Simplex Virus: A Potential Allosteric Target for Antiviral Drugs. Biomolecules 2019; 9:biom9100603. [PMID: 31614784 PMCID: PMC6843332 DOI: 10.3390/biom9100603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022] Open
Abstract
Approximately 80% of adults are infected with a member of the herpesviridae family. Herpesviruses establish life-long latent infections within neurons, which may reactivate into lytic infections due to stress or immune suppression. There are nine human herpesviruses (HHV) posing health concerns from benign conditions to life threatening encephalitis, including cancers associated with viral infections. The current treatment options for most HHV conditions mainly include several nucleoside and nucleotide analogs targeting viral DNA polymerase. Although these drugs help manage infections, their common mechanism of action may lead to the development of drug resistance, which is particularly devastating in immunocompromised patients. Therefore, new classes of drugs directed against novel targets in HHVs are necessary to alleviate this issue. We analyzed the conservation rates of all proteins in herpes simplex virus 1 (HHV-1), a representative of the HHV family and one of the most common viruses infecting the human population. Furthermore, we generated a full-length structure model of the most conserved HHV-1 protein, the DNA packaging terminase pUL15. A series of computational analyses were performed on the model to identify ATP and DNA binding sites and characterize the dynamics of the protein. Our study indicates that proteins involved in HHV-1 DNA packaging and cleavage are amongst the most conserved gene products of HHVs. Since the packaging protein pUL15 is the most conserved among all HHV-1 gene products, the virus will have a lower chance of developing resistance to small molecules targeting pUL15. A subsequent analysis of the structure of pUL15 revealed distinct ATP and DNA binding domains and the elastic network model identifies a functionally important hinge region between the two domains of pUL15. The atomic information on the active and allosteric sites in the ATP- and DNA-bound model of pUL15 presented in this study can inform the structure-based drug discovery of a new class of drugs to treat a wide range of HHVs.
Collapse
Affiliation(s)
- Lana F Thaljeh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - J Ainsley Rothschild
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Lyndon M Coghill
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jeremy M Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
38
|
Chan S, Isbel NM, Hawley CM, Campbell SB, Campbell KL, Morrison M, Francis RS, Playford EG, Johnson DW. Infectious Complications Following Kidney Transplantation-A Focus on Hepatitis C Infection, Cytomegalovirus Infection and Novel Developments in the Gut Microbiota. ACTA ACUST UNITED AC 2019; 55:medicina55100672. [PMID: 31590269 PMCID: PMC6843315 DOI: 10.3390/medicina55100672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
The incidence of infectious complications, compared with the general population and the pre-transplant status of the recipient, increases substantially following kidney transplantation, causing significant morbidity and mortality. The potent immunosuppressive therapy given to prevent graft rejection in kidney transplant recipients results in an increased susceptibility to a wide range of opportunistic infections including bacterial, viral and fungal infections. Over the last five years, several advances have occurred that may have changed the burden of infectious complications in kidney transplant recipients. Due to the availability of direct-acting antivirals to manage donor-derived hepatitis C infection, this has opened the way for donors with hepatitis C infection to be considered in the donation process. In addition, there have been the development of medications targeting the growing burden of resistant cytomegalovirus, as well as the discovery of the potentially important role of the gastrointestinal microbiota in the pathogenesis of post-transplant infection. In this narrative review, we will discuss these three advances and their potential implications for clinical practice.
Collapse
Affiliation(s)
- Samuel Chan
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
- Correspondence: ; Tel.: +61-7-3176-5080
| | - Nicole M Isbel
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
| | - Scott B Campbell
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Katrina L Campbell
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Centre for Applied Health Economics, Menzies Research Institute, Griffith University, Brisbane, QLD 4102, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Ross S Francis
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - E Geoffrey Playford
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Infection Management Services, Department of Microbiology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
39
|
El Helou G, Razonable RR. Safety considerations with current and emerging antiviral therapies for cytomegalovirus infection in transplantation. Expert Opin Drug Saf 2019; 18:1017-1030. [PMID: 31478398 DOI: 10.1080/14740338.2019.1662787] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) is a major contributor of morbidity and mortality, and its management is essential for the successful outcome of solid organ and hematopoietic stem cell transplantation. Areas covered: This review discusses the safety profiles of currently available and emerging antiviral drugs and the other strategies for HCMV prevention and treatment after transplantation. Expert opinion: Strategies for management of HCMV rely largely on the use of antiviral agents that inhibit viral DNA polymerase (ganciclovir/valganciclovir, foscarnet, and cidofovir/brincidofovir) and viral terminase complex (letermovir), with different types and degrees of adverse effects. An investigational agent, maribavir, exerts its anti-CMV effect through UL97 inhibition, and its safety profile is under clinical evaluation. In choosing the antiviral medication to use, it is important to consider these safety profiles in addition to overall efficacy. In addition to antiviral drugs, reduction of immunosuppression is often generally needed in the management of HCMV infection, but with a potential risk of allograft rejection or graft-versus-host disease. The use of HCMV-specific or non-specific intravenous immunoglobulins remains debated, while adoptive HCMV-specific T cell therapy remains investigational, and associated with unique set of adverse effects.
Collapse
Affiliation(s)
- Guy El Helou
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
40
|
Komatsu TE, Hodowanec AC, Colberg-Poley AM, Pikis A, Singer ME, O'Rear JJ, Donaldson EF. In-depth genomic analyses identified novel letermovir resistance-associated substitutions in the cytomegalovirus UL56 and UL89 gene products. Antiviral Res 2019; 169:104549. [DOI: 10.1016/j.antiviral.2019.104549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
|
41
|
Gerna G, Lilleri D, Baldanti F. An overview of letermovir: a cytomegalovirus prophylactic option. Expert Opin Pharmacother 2019; 20:1429-1438. [PMID: 31282759 DOI: 10.1080/14656566.2019.1637418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) or human herpesvirus 5 (HHV-5) is a β-herpesvirus that causes widespread infection in nearly all members of the human population worldwide. Its persistence in humans after primary infection in a latent phase as well as a partial non-protective immune response is the basis for repeated re-activation/re-infection episodes occurring both in immunocompetent and immunocompromised subjects. In the latter patient populations, which include hematopoietic stem cell transplant (HSCT) recipients, HCMV reactivation episodes may be particularly severe, leading to both systemic and end-organ diseases. Since the 90s, at least four antiviral drugs targeting the DNA polymerase complex have been developed for the prevention and treatment of HCMV infections in transplant recipients, used as first-line (ganciclovir and valganciclovir) and second-line therapy (foscarnet and cidofovir). However, due to their toxicity and drug-resistance induction, new drugs with different targets were needed. Areas covered: In 2017, a new drug named letermovir (LTV), which targets the HCMV DNA terminase complex, was licensed for prophylaxis of HCMV infections in HSCT recipients. This is the focus of this review. Expert opinion: LTV safety and efficacy are promising. However, long-term adverse events and the emergence of drug-resistant HCMV strains must be investigated in extended clinical trials prior to drawing final conclusions.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, and Biotechnology Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Daniele Lilleri
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, and Biotechnology Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo , Pavia , Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia , Pavia , Italy
| |
Collapse
|
42
|
Role of letermovir for prevention of cytomegalovirus infection after allogeneic haematopoietic stem cell transplantation. Curr Opin Infect Dis 2019; 31:286-291. [PMID: 29746444 DOI: 10.1097/qco.0000000000000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Cytomegalovirus (CMV) infection is a common opportunistic infection after allogeneic haematopoietic stem cell transplantation (HSCT). CMV surveillance-preemptive therapy is the current preferred approach for preventing CMV disease after HSCT. In contrast, antiviral prophylaxis is not commonly used due to myelosuppressive effects of valganciclovir. In this article, the role of the newly approved antiviral compound, letermovir, is reviewed. RECENT FINDINGS Letermovir inhibits CMV by interfering viral terminase complex. In a phase 3 randomized placebo-controlled clinical study that enrolled 495 CMV-seropositive HSCT recipients, the primary end point of clinically significant CMV infection was significantly reduced by letermovir prophylaxis. Letermovir was well tolerated without risk of myelotoxicity and nephrotoxicity. Experimental in-vitro data suggest that letermovir may possess low genetic barrier to resistance. In prophylaxis trials, two breakthrough infections were reported due to selection of CMV UL56 V236M mutation. SUMMARY Letermovir is an important addition to the current strategies for CMV prevention after allogeneic HSCT. Its favourable efficacy and safety profile re-opens door for antiviral prophylaxis another first-line option, similar to CMV surveillance-preemptive therapy, for preventing CMV in allogeneic HSCT recipients.
Collapse
|
43
|
El Helou G, Razonable RR. Letermovir for the prevention of cytomegalovirus infection and disease in transplant recipients: an evidence-based review. Infect Drug Resist 2019; 12:1481-1491. [PMID: 31239725 PMCID: PMC6556539 DOI: 10.2147/idr.s180908] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) is a leading opportunistic infection in immune compromised patients, including allogeneic hematopoietic stem cell (HSCT) or solid organ transplant (SOT) recipients, where primary infection or reactivation is associated with increased morbidity and mortality. Antiviral drugs are the mainstay for the prevention of CMV infection and disease, most commonly with valganciclovir. However, valganciclovir use is often associated with adverse drug reactions, most notably leukopenia and neutropenia, and its widespread use has led to emergence of antiviral resistance. Foscarnet and cidofovir, however, are associated with nephrotoxicity. Letermovir, a novel CMV viral terminase inhibitor drug, was recently approved for CMV prophylaxis in allogeneic HSCT recipients. It has a favorable pharmacokinetic and tolerability profile. The aim of this paper is to review the evidence supporting the use of letermovir in allogeneic HSCT recipients, and how the drug impacts our contemporary clinical practice. In addition, we discuss the ongoing clinical trial of letermovir for the prevention of CMV in SOT recipients. The use of letermovir for treatment of CMV infection and disease is not yet approved. However, because of a unique mechanism of activity, we provide our perspective on the potential role of letermovir in the treatment of ganciclovir-resistant CMV infection and disease. Furthermore, drug-resistant CMV has emerged during use of letermovir for prophylaxis and treatment. Caution is advised on its use in order to preserve its therapeutic lifespan.
Collapse
Affiliation(s)
- Guy El Helou
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Ogawa M, Eto T. [Pharmacological and clinical effects of letermovir (Prevymis ®), a novel anti-human cytomegalovirus prophylactic drug]. Nihon Yakurigaku Zasshi 2019; 153:192-198. [PMID: 30971660 DOI: 10.1254/fpj.153.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Letermovir is an anti-human cytomegalovirus (HCMV) drug with a novel mechanism of action. Virological characterization and sequence analysis of resistant viruses indicate that the viral DNA terminase complex is the target of this compound. Unlike currently marketed anti-HCMV drugs, which act via inhibition of the viral DNA polymerase, the terminase inhibitor interferes with viral DNA cleavage and packaging of monomeric genome units into capsids. Letermovir has potent anti-HCMV activity, with 50% effective concentration of single-digit nanomolar against most clinical HCMV isolates in cell-culture models of infection. Besides its excellent in vitro inhibitory activity against laboratory and clinical HCMV isolates, letermovir exhibits activity against virus strains resistant to the currently approved anti-HCMV drugs. Letermovir is specific for human cytomegalovirus but lacks inhibitory activity against major pathogenic viruses including other Herpesviridae. In a xenograft mouse infection model, the 50% and 90% effective doses of the letermovir were 3 and 8 mg/kg/day, respectively. HCMV infection and disease in recipients of allogeneic hematopoietic stem cell transplant (HSCT) is a serious disease leading to significant morbidity and mortality. In the Phase 3 trial, the preventive effect of clinically significant HCMV infection by oral or intravenous administration of letermovir in allogeneic HSCT patients was confirmed, and letermovir was well tolerated with no suggestions of myelotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Masami Ogawa
- Non-clinical Development, Japan Development, MSD K.K
| | - Toshiko Eto
- Clinical Research, Japan Development, MSD K.K
| |
Collapse
|
45
|
Antiviral prophylaxis for cytomegalovirus infection in allogeneic hematopoietic cell transplantation. Blood Adv 2019; 2:2159-2175. [PMID: 30154125 DOI: 10.1182/bloodadvances.2018016493] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 01/07/2023] Open
Abstract
Patients treated with allogeneic hematopoietic cell transplantation (HCT) are at risk of cytomegalovirus (CMV) reactivation and disease, which results in increased morbidity and mortality. Although universal antiviral prophylaxis against CMV improves outcomes in solid organ transplant recipients, data have been conflicting regarding such prophylaxis in patients undergoing allogeneic HCT. We conducted a systematic review of randomized trials of prophylactic antivirals against CMV after allogeneic HCT to summarize the evolution of the field over the last 35 years and evaluate the prophylactic potential of antiviral agents against CMV after allogeneic HCT. Electronic databases were queried from database inception through 31 December 2017. For included studies, incidence of CMV infection and all-cause mortality were collected as primary outcomes; CMV disease incidence, use of preemptive therapy, and drug toxicities were collected as secondary outcomes. Nineteen clinical trials conducted between 1981 and 2017 involving a total of 4173 patients were included for review. Prophylactic strategies included use of acyclovir, valacyclovir, ganciclovir, maribavir, brincidofovir, and letermovir compared with placebo or a comparator antiviral. Fourteen trials that compared antiviral prophylaxis with placebo demonstrated overall effectiveness in reducing incidence of CMV infection (odds ratio [OR], 0.49; 95% confidence interval [CI], 0.42-0.58), CMV disease (OR, 0.56; 95% CI, 0.40-0.80), and use of preemptive therapy (OR, 0.51; 95% CI, 0.42-0.62; 6 trials); however, none demonstrated reduction in all-cause mortality (OR, 0.96; 95% CI, 0.78-1.18) except the phase 3 trial of letermovir (week-24 OR, 0.59; 95% CI, 0.38-0.98). Additional research is warranted to determine patient groups most likely to benefit from antiviral prophylaxis and its optimal deployment after allogeneic HCT.
Collapse
|
46
|
Use of Letermovir as Salvage Therapy for Drug-Resistant Cytomegalovirus Retinitis. Antimicrob Agents Chemother 2019; 63:AAC.02337-18. [PMID: 30642941 DOI: 10.1128/aac.02337-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Treatment options for drug-resistant cytomegalovirus (CMV) are limited. Letermovir is a novel antiviral recently approved for CMV prophylaxis following hematopoietic cell transplantation, but its efficacy in other settings is unknown. We recently used letermovir for salvage treatment in four solid organ transplant recipients with ganciclovir-resistant CMV retinitis. All patients improved clinically without known adverse drug events. However, three patients failed to maintain virologic suppression, including two patients who developed genotypically confirmed resistance to letermovir while on therapy.
Collapse
|
47
|
Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res 2019; 163:91-105. [PMID: 30690043 DOI: 10.1016/j.antiviral.2019.01.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/28/2023]
Abstract
The prevention and treatment of human cytomegalovirus (HCMV) infections is based on the use of antiviral agents that currently target the viral DNA polymerase and that may cause serious side effects. The search for novel inhibitors against HCMV infection led to the discovery of new molecular targets, the viral terminase complex and the viral pUL97 kinase. The most advanced compounds consist of letermovir (LMV) and maribavir (MBV). LMV inhibits the cleavage of viral DNA and its packaging into capsids by targeting the HCMV terminase complex. LMV is safe and well tolerated and exhibits pharmacokinetic properties that allow once daily dosing. LMV showed efficacy in a phase III prophylaxis study in hematopoietic stem cell transplant (HSCT) recipients seropositive for HCMV. LMV was recently approved under the trade name Prevymis™ for prophylaxis of HCMV infection in adult seropositive recipients of an allogeneic HSCT. Amino acid substitutions conferring resistance to LMV selected in vitro map primarily to the pUL56 and rarely to the pUL89 and pUL51 subunits of the HCMV terminase complex. MBV is an inhibitor of the viral pUL97 kinase activity and interferes with the morphogenesis and nuclear egress of nascent viral particles. MBV is safe and well tolerated and has an excellent oral bioavailability. MBV was effective for the treatment of HCMV infections (including those that are refractory or drug-resistant) in transplant recipients in two phase II studies and is further evaluated in two phase III trials. Mutations conferring resistance to MBV map to the UL97 gene and can cause cross-resistance to ganciclovir. MBV-resistant mutations also emerged in the UL27 gene in vitro and could compensate for the inhibition of pUL97 kinase activity by MBV. Thus, LMV and probably MBV will broaden the armamentarium of antiviral drugs available for the prevention and treatment of HCMV infections.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
48
|
In vitro comparison of currently available and investigational antiviral agents against pathogenic human double-stranded DNA viruses: A systematic literature review. Antiviral Res 2019; 163:50-58. [PMID: 30677427 DOI: 10.1016/j.antiviral.2019.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Double-stranded (ds) DNA virus infections often occur concomitantly in immunocompromised patients. We performed a systematic search of published in vitro activity for nine approved and investigational antivirals to understand the spectrum of in vitro activity against dsDNA viruses. METHODS A literature search was performed (PubMed and the WoS Core Collection) using keywords related to: 1) targeted approved/developmental antivirals (acyclovir, artesunate, brincidofovir, cidofovir, cyclopropavir (filociclovir), foscarnet, ganciclovir, letermovir, and maribavir); 2) pathogenic dsDNA viruses; 3) in vitro activity. We summarized data from 210 publications. RESULTS Activity against ≤3 viruses was documented for maribavir (cytomegalovirus, Epstein-Barr virus), and letermovir, while activity against > 3 viruses was shown for ganciclovir, cidofovir, acyclovir, foscarnet, cyclopropavir, artesunate, and brincidofovir. The EC50 values of brincidofovir were the lowest, ranging from 0.001 to 0.27 μM, for all viruses except papillomaviruses. The next most potent agents included cidofovir, ganciclovir, foscarnet, and acyclovir with EC50 values between 0.1 μM and >10 μM for cytomegalovirus, herpes simplex virus, and adenovirus. CONCLUSION Most of the identified antivirals had in vitro activity against more than one dsDNA virus. Brincidofovir and cidofovir have broad-spectrum activity, and brincidofovir has the lowest EC50 values. These findings could assist clinical practice and developmental research.
Collapse
|
49
|
Andronova VL. [Modern ethiotropic chemotherapy of human cytomegalovirus infection: clinical effectiveness, molecular mechanism of action, drug resistance, new trends and prospects. Part 2.]. Vopr Virusol 2019; 63:250-260. [PMID: 30641020 DOI: 10.18821/0507-4088-2018-63-6-250-260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022]
Abstract
A number of synthetic compounds, such as the nucleoside analog ganciclovir, its L-valine ester (a metabolic precursor of ganciclovir) and pyrophosphate analog foscarnet, are permitted for the treatment of HCMVrelated diseases in the WHO European Region. The viral DNA- polymerase is used by all these drugs as a biotarget. However, the usage of standard anti-CMV therapy is accompanied by severe side effects, as well as the development of drug resistance in the virus, mainly in conditions of immunodefciency. In this review, we focused on viral proteins of interest as new potential targets and their inhibitors, such as the inhibitor of human CMV terminology, lethermovir, which showed great activity in the third phase of clinical trials, inhibitors of viral cyclin-dependent kinase (maribavir, cyclopropavir) and a number of compounds exhibiting anti-HCMV-activity, undergoing only preclinical trials in the experiment. Inclusion of new anti-CMV agents that are active against GСV/PFA/CDV-resistant strains of CMV into standard prophylactic and therapeutic regimens, will allow to increase the effectiveness of anti-CMV therapy, including in cases when standard therapy is ineffective. Areas covered: the international databases such as A MEDLINE, PubMed, eLIBRARY.RU, ClinicalTrials.gov., etc. with the purpose of obtaining information on compounds showing selective action against the human cytomegalovirus, the most promising for the development of drugs.
Collapse
Affiliation(s)
- V L Andronova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| |
Collapse
|
50
|
Ligat G, Cazal R, Hantz S, Alain S. The human cytomegalovirus terminase complex as an antiviral target: a close-up view. FEMS Microbiol Rev 2018; 42:137-145. [PMID: 29361041 PMCID: PMC5972660 DOI: 10.1093/femsre/fuy004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 01/17/2018] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for life-threatening infections in immunocompromised individuals and can cause serious congenital malformations. Available antivirals target the viral polymerase but are subject to cross-resistance and toxicity. New antivirals targeting other replication steps and inducing fewer adverse effects are therefore needed. During HCMV replication, DNA maturation and packaging are performed by the terminase complex, which cleaves DNA to package the genome into the capsid. Identified in herpesviruses and bacteriophages, and with no counterpart in mammalian cells, these terminase proteins are ideal targets for highly specific antivirals. A new terminase inhibitor, letermovir, recently proved effective against HCMV in phase III clinical trials, but the mechanism of action is unclear. Letermovir has no significant activity against other herpesvirus or non-human CMV. This review focuses on the highly conserved mechanism of HCMV DNA-packaging and the potential of the terminase complex to serve as an antiviral target. We describe the intrinsic mechanism of DNA-packaging, highlighting the structure-function relationship of HCMV terminase complex components.
Collapse
Affiliation(s)
- G Ligat
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| | - R Cazal
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| | - S Hantz
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| | - S Alain
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| |
Collapse
|