1
|
Suliman M, Bishr AS, Aboshanab KM. Deciphering hygromycin B biosynthetic pathway and D-optimal design for production optimization. World J Microbiol Biotechnol 2025; 41:155. [PMID: 40289225 DOI: 10.1007/s11274-025-04364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Hygromycin B (HYG-B) is a 5-glycosylated 2-dexoystreptamine- aminoglycoside antibiotic-(2DOS-AGA) produced by Streptomyces hygroscopicus subspecies hygroscopicus NRRL ISP-5578 with broad-spectrum activity against many pathogenic bacteria, fungi and helminths. In the literature, limited studies are concerned with the biosynthetic pathway and different cultural conditions affecting the production of HYG-B. This study aimed to optimize key environmental conditions influencing its production as one-factor-at-a-time (OFAT) and as a statistical model of response surface D-optimal design (DOD). Moreover, the biosynthetic pathway of HYG-B in light of the identified genes/proteins of the HYG-B gene cluster was proposed and elucidated. The effect of culture media composition and incubation time were studied OFAT, and the results showed that both culture media 6 (CM6) and CM4 gave the highest specific productivity, 5.88 and 3.99 µg/mg, respectively, and 7 days as incubation time. So, using CM6 and 7 days incubation resulted in a sevenfold increase (190 µg/mL) compared to the original unoptimized condition (CM1 and 6 days incubation; 26.9 µg/mL). Three important factors-initial pH, incubation temperature, and agitation-were tested using a DOD quadratic model generating 20 experimental runs. An initial pH of 6.4, an incubation temperature, of 28 ℃, and agitation. of 295 rpm were predicted and experimentally verified, resulting in a 13-fold increase (371.5 µg/mL) compared to the unoptimized condition and a sevenfold increase compared to that obtained as OFAT. In conclusion, DOD design is an efficient tool for optimizing HYG-B. However, the optimized conditions should be scaled up in a bioreactor for industrial production of HYG-B by S. hygroscopicus NRRL ISP-5578.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Amr S Bishr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam 42300, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
2
|
Lambert GS, Maldonado RJK, Parent LJ. Role of the Psi Packaging Signal and Dimerization Initiation Sequence in the Organization of Rous Sarcoma Virus Gag-gRNA Co-Condensates. Viruses 2025; 17:97. [PMID: 39861886 PMCID: PMC11769450 DOI: 10.3390/v17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization. We observed that the psi (Ψ) packaging signal and the dimerization initiation sequence (DIS) had stabilizing effects on RSV Gag condensates, while RNAs lacking these features promoted or antagonized condensation, depending on local protein concentration and condensate architecture. An RNA containing Ψ, DIS, and the dimerization linkage structure (DLS) that is capable of stable dimer formation was observed to act as a bridge between RSV Gag condensates. These observations suggest additional, condensate-related roles for Gag-Ψ binding, gRNA dimerization, and Gag dimerization/multimerization in gRNA selection and packaging, representing a significant step forward in our understanding of how these interactions collectively facilitate efficient genome packaging.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (G.S.L.); (R.J.K.M.)
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Lafferty DJ, Robison TA, Gunadi A, Schafran PW, Gunn LH, Van Eck J, Li FW. Biolistics-mediated transformation of hornworts and its application to study pyrenoid protein localization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4760-4771. [PMID: 38779949 DOI: 10.1093/jxb/erae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Hornworts are a deeply diverged lineage of bryophytes and a sister lineage to mosses and liverworts. Hornworts have an array of unique features that can be leveraged to illuminate not only the early evolution of land plants, but also alternative paths for nitrogen and carbon assimilation via cyanobacterial symbiosis and a pyrenoid-based CO2-concentrating mechanism (CCM), respectively. Despite this, hornworts are one of the few plant lineages with limited available genetic tools. Here we report an efficient biolistics method for generating transient expression and stable transgenic lines in the model hornwort, Anthoceros agrestis. An average of 569 (±268) cells showed transient expression per bombardment, with green fluorescent protein expression observed within 48-72 h. A total of 81 stably transformed lines were recovered across three separate experiments, averaging six lines per bombardment. We followed the same method to transiently transform nine additional hornwort species, and obtained stable transformants from one. This method was further used to verify the localization of Rubisco and Rubisco activase in pyrenoids, which are central proteins for CCM function. Together, our biolistics approach offers key advantages over existing methods as it enables rapid transient expression and can be applied to widely diverse hornwort species.
Collapse
Affiliation(s)
| | - Tanner A Robison
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Laura H Gunn
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Song F, Birukou I, Bednarcik M, Young S. A UPLC-based activity assay method for aminoglycoside phosphotransferase 4-Ia (APH4): A Selectable marker of plant transformation. Enzyme Microb Technol 2024; 172:110344. [PMID: 37918205 DOI: 10.1016/j.enzmictec.2023.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
The aminoglycoside phosphotransferase 4-Ia (APH4) is a hygromycin B phosphotransferase and catalyzes the phosphorylation of the 4-hydroxyl group of the antibiotic hygromycin B, inactivating its antibiotic activity. Therefore, APH4 has utility as a selectable marker for transformation of many plant species. However, suitable methods to measure and quantify plants expressing APH4 enzymes are lacking because of technical challenges, associated with both specificity and sensitivity. Here we describe a highly specific and sensitive APH4 enzymatic activity assay by measuring the production of adenosine 5'-diphosphate (ADP) using ultra performance liquid chromatography (UPLC)-based method. The present assay enabled determination of enzymatic activity of APH4 over a concentration range from 0.05 to 0.8 μg APH4/ml. Method performance validation sample were examined at five concentrations in triplicate in six independent sessions. Average CVs of 5.1 % for intra-assay and 11.7 % for inter-assay over all samples were determined for precision, and 6.0 % was determined for accuracy. Additionally, the method was validated for use to determine APH4 enzymatic activity in both microbially produced and plant-derived samples.
Collapse
Affiliation(s)
- Feng Song
- Syngenta Crop Protection, LLC, 9 Davis Drive, RTP, NC 27709, USA.
| | - Ivan Birukou
- Syngenta Crop Protection, LLC, 9 Davis Drive, RTP, NC 27709, USA
| | - Mark Bednarcik
- Syngenta Crop Protection, LLC, 9 Davis Drive, RTP, NC 27709, USA
| | - Scott Young
- Syngenta Crop Protection, LLC, 9 Davis Drive, RTP, NC 27709, USA
| |
Collapse
|
5
|
Schwedt I, Schöne K, Eckert M, Pizzinato M, Winkler L, Knotkova B, Richts B, Hau JL, Steuber J, Mireles R, Noda-Garcia L, Fritz G, Mittelstädt C, Hertel R, Commichau FM. The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates. Environ Microbiol 2023; 25:3604-3622. [PMID: 37822042 DOI: 10.1111/1462-2920.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis.
Collapse
Affiliation(s)
- Inge Schwedt
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Kerstin Schöne
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Maike Eckert
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Manon Pizzinato
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Winkler
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Barbora Knotkova
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Björn Richts
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Jann-Louis Hau
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Julia Steuber
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Raul Mireles
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Günter Fritz
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
6
|
Schwedt I, Collignon M, Mittelstädt C, Giudici F, Rapp J, Meißner J, Link H, Hertel R, Commichau FM. Genomic adaptation of Burkholderia anthina to glyphosate uncovers a novel herbicide resistance mechanism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:727-739. [PMID: 37311711 PMCID: PMC10667639 DOI: 10.1111/1758-2229.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Glyphosate (GS) specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that converts phosphoenolpyruvate (PEP) and shikimate-3-phosphate to EPSP in the shikimate pathway of bacteria and other organisms. The inhibition of the EPSP synthase depletes the cell of the EPSP-derived aromatic amino acids as well as of folate and quinones. A variety of mechanisms (e.g., EPSP synthase modification) has been described that confer GS resistance to bacteria. Here, we show that the Burkholderia anthina strain DSM 16086 quickly evolves GS resistance by the acquisition of mutations in the ppsR gene. ppsR codes for the pyruvate/ortho-Pi dikinase PpsR that physically interacts and regulates the activity of the PEP synthetase PpsA. The mutational inactivation of ppsR causes an increase in the cellular PEP concentration, thereby abolishing the inhibition of the EPSP synthase by GS that competes with PEP for binding to the enzyme. Since the overexpression of the Escherichia coli ppsA gene in Bacillus subtilis and E. coli did not increase GS resistance in these organisms, the mutational inactivation of the ppsR gene resulting in PpsA overactivity is a GS resistance mechanism that is probably unique to B. anthina.
Collapse
Affiliation(s)
- Inge Schwedt
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- FG Molecular Microbiology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Madeline Collignon
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Florian Giudici
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of Tübingen, Bacterial MetabolomicsTübingenGermany
| | - Janek Meißner
- Department of General Microbiology, Institute for Microbiology and GeneticsUniversity of GoettingenGöttingenGermany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of Tübingen, Bacterial MetabolomicsTübingenGermany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- Department of Genomic and Applied Microbiology, Institute for Microbiology and GeneticsUniversity of GoettingenGöttingenGermany
| | - Fabian M. Commichau
- FG Synthetic Microbiology, Institute for BiotechnologyBTU Cottbus‐SenftenbergSenftenbergGermany
- FG Molecular Microbiology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
7
|
Xue Z, Quan S. Understanding the Stabilization Mechanism of a Thermostable Mutant of Hygromycin B Phosphotransferase by Protein Sector-Guided Dynamic Analysis. ACS OMEGA 2023; 8:25739-25748. [PMID: 37521677 PMCID: PMC10372938 DOI: 10.1021/acsomega.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023]
Abstract
Point mutations can exert beneficial effects on proteins, including stabilization. The stabilizing effects of mutations are typically attributed to changes in free energy and residue interactions. However, these explanations lack detail and physical insights, which hinder the mechanistic study of protein stabilization and prevent accurate computational prediction of stabilizing mutations. Here, we investigate the physical mechanism underlying the enhanced thermostability of a Hygromycin B phosphotransferase mutant, Hph5. We find that the unpredictable mutation A118V induces rotation of F199, allowing it to establish an aromatic-aromatic interaction with W235. In contrast, the predictable mutation T246A acts through static hydrophobic interactions within the protein core. These discoveries were accelerated by a residue-coevolution-based theory, which links mutational effects to stability-associated local structures, providing valuable guidance for mechanistic exploration. The established workflow will benefit the development of accurate stability prediction programs and can be used to mine a protein stability database for undiscovered physical mechanisms.
Collapse
Affiliation(s)
- Zixiao Xue
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing (SCICB), East
China University of Science and Technology, Shanghai 200237, China
| | - Shu Quan
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing (SCICB), East
China University of Science and Technology, Shanghai 200237, China
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China
| |
Collapse
|
8
|
EFSA Panel on Genetically Modified Organisms (GMO), Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Fernández A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagli DM, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Papadopoulou N, Raffaello T. Assessment of genetically modified cotton COT102 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-DE-2017-141). EFSA J 2023; 21:e08031. [PMID: 37377664 PMCID: PMC10291446 DOI: 10.2903/j.efsa.2023.8031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Vip3Aa19 and APH4 proteins as expressed in cotton COT102 and finds no evidence that the genetic modification would change the overall allergenicity of cotton COT102. In the context of this application, the consumption of food and feed from cotton COT102 does not represent a nutritional concern for humans and animals. The GMO Panel concludes that cotton COT102 is as safe as the non-GM comparator and non-GM cotton varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton COT102 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton COT102. The GMO Panel concludes that cotton COT102 is as safe as its non-GM comparator and the tested non-GM cotton varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
9
|
Kobercová E, Srba M, Fischer L. Sulfadiazine and phosphinothricin selection systems optimised for the transformation of tobacco BY-2 cells. PLANT CELL REPORTS 2023; 42:535-548. [PMID: 36609768 DOI: 10.1007/s00299-022-02975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
We extended the applicability of the BY-2 cell line as a model by introducing two new selection systems. Our protocol provides guidelines for optimising Basta selection in other recalcitrant models. Tobacco BY-2 cell line is the most commonly used cytological model in plant research. It is uniform, can be simply treated by chemicals, synchronised and easily transformed. However, only a few selection systems are available that complicate advanced studies using multiple stacked transgenes and extensive gene editing. In our work, we adopted for BY-2 cell line two other selection systems: sulfadiazine and phosphinothricin (PPT, an active ingredient of Basta herbicide). We show that sulfadiazine can be used in a wide range of concentrations. It is suitable for co-transformation and subsequent double selection with kanamycin or hygromycin, which are standardly used for BY-2 transformation. We also have domesticated the sulfadiazine resistance for the user-friendly GoldenBraid cloning system. Compared to sulfadiazine, establishing selection on phosphinothricin was considerably more challenging. It did not work in any concentration of PPT with standardly cultured cells. Since the selection is based on blocking glutamine synthetase and consequent ammonium toxicity and deficiency of assimilated nitrogen, we tried to manipulate nitrogen availability. We found that the PPT selection reliably works only with nitrogen-starved cells with reduced nitrate reserves that are selected on a medium without ammonium nitrate. Both these adjustments prevent the release of large amounts of ammonium, which can toxify the entire culture in the case of standardly cultured cells. Since high nitrogen reserves can be a common feature of in vitro cultures grown on MS media, nitrogen starvation could be a key step in establishing phosphinothricin resistance in other plant models.
Collapse
Affiliation(s)
- Eliška Kobercová
- Department of Experimental Plant Biology, Charles University Faculty of Science, Viničná 5, Prague 2, Czech Republic
| | - Miroslav Srba
- Department of Experimental Plant Biology, Charles University Faculty of Science, Viničná 5, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Charles University Faculty of Science, Viničná 5, Prague 2, Czech Republic.
| |
Collapse
|
10
|
Venken KJ, Matinyan N, Gonzalez Y, Dierick HA. Multiplexed Transgenic Selection and Counterselection Strategies to Expedite Genetic Manipulation Workflows Using Drosophila melanogaster. Curr Protoc 2023; 3:e652. [PMID: 36757287 PMCID: PMC9923875 DOI: 10.1002/cpz1.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We recently described a set of four selectable and two counterselectable markers that provide resistance and sensitivity, respectively, against their corresponding drugs using the model organism Drosophila melanogaster. The four selectable markers provide animals with resistance against G418 sulfate, puromycin HCl, blasticidin S, or hygromycin B, whereas the two counterselection markers make animals sensitive to ganciclovir/acyclovir or 5-fluorocytosine. Unlike classical phenotypic markers, whether visual or fluorescent, which require extensive screening of progeny of a genetic cross for desired genotypes, resistance and sensitivity markers eliminate this laborious procedure by directly selecting for, or counterselecting against, the desired genotypes. We demonstrated the usefulness of these markers with three applications: 1) generating dual transgenic animals for binary overexpression (e.g., GAL4/UAS) analysis in a single step through the process of co-injection, followed by co-selection resulting in co-transgenesis; 2) obtaining balancer chromosomes that are both selectable and counterselectable to manipulate crossing schemes for, or against, the presence of the modified balancer chromosome; and 3) making both selectable and fluorescently tagged P[acman] BAC transgenic animals for gene expression and proteomic analysis. Here, we describe detailed procedures for how to use these drug-based selection and counterselection markers in the fruit fly D. melanogaster when making dual transgenic animals for binary overexpression as an example. Dual transgenesis integrates site-specifically into two sites in the genome in a single step, namely both components of the binary GAL4/UAS overexpression system, via a G418 sulfate-selectable GAL4 transactivator plasmid and a blasticidin S-selectable UAS responder plasmid. The process involves co-injecting the two plasmids, followed by co-selection using G418 sulfate and blasticidin S, resulting in co-transgenesis of the two plasmids in the fly genome. We demonstrate the functionality of the procedure based on the expression pattern obtained after dual transgenesis of the two plasmids. We provide protocols on how to prepare drugged fly food vials, determine the effective drug concentration for markers used during transgenic selection and counterselection strategies, and prepare and confirm plasmid DNA for microinjection, followed by the microinjection procedure itself and setting up crossing schemes to isolate desired progeny through selection and/or counterselection. These protocols can be easily adapted to any combination of the six selectable and counterselectable markers we described or any new marker that is resistant or sensitive to a novel drug. Protocols on how to build plasmids by synthetic-assembly DNA cloning or modify plasmids by serial recombineering to perform a plethora of selection, counterselection, or any other genetic strategies are presented in two accompanying Current Protocols articles. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparing drugged fly food vials for transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 2: Determining the effective drug concentration for resistance and sensitivity markers used during transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 3: Preparing and confirming plasmid DNA for microinjection to perform transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 4: Microinjecting plasmid DNA into fly embryos to perform transgenic selection and counterselection strategies using D. melanogaster Basic Protocol 5: Crossing schemes to isolate desired progeny through transgenic selection and counterselection strategies using D. melanogaster.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute at The Robert and Janice McNair Foundation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nick Matinyan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yezabel Gonzalez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Herman A. Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Hertel R, Schöne K, Mittelstädt C, Meißner J, Zschoche N, Collignon M, Kohler C, Friedrich I, Schneider D, Hoppert M, Kuhn R, Schwedt I, Scholz P, Poehlein A, Martienssen M, Ischebeck T, Daniel R, Commichau FM. Characterization of glyphosate-resistant Burkholderia anthina and Burkholderia cenocepacia isolates from a commercial Roundup® solution. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:70-84. [PMID: 34786867 DOI: 10.1111/1758-2229.13022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Roundup® is the brand name for herbicide solutions containing glyphosate, which specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase of the shikimate pathway. The inhibition of the EPSP synthase causes plant death because EPSP is required for biosynthesis of aromatic amino acids. Glyphosate also inhibits the growth of archaea, bacteria, Apicomplexa, algae and fungi possessing an EPSP synthase. Here, we have characterized two glyphosate-resistant bacteria from a Roundup solution. Taxonomic classification revealed that the isolates 1CH1 and 2CH1 are Burkholderia anthina and Burkholderia cenocepacia strains respectively. Both isolates cannot utilize glyphosate as a source of phosphorus and synthesize glyphosate-sensitive EPSP synthase variants. Burkholderia. anthina 1CH1 and B. cenocepacia 2CH1 tolerate high levels of glyphosate because the herbicide is not taken up by the bacteria. Previously, it has been observed that the exposure of soil bacteria to herbicides like glyphosate promotes the development of antibiotic resistances. Antibiotic sensitivity testing revealed that the only the B. cenocepacia 2CH1 isolate showed increased resistance to a variety of antibiotics. Thus, the adaptation of B. anthina 1CH1 and B. cenocepacia 2CH1 to glyphosate did not generally increase the antibiotic resistance of both bacteria. However, our study confirms the genomic adaptability of bacteria belonging to the genus Burkholderia.
Collapse
Affiliation(s)
- Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Kerstin Schöne
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Janek Meißner
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Nick Zschoche
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Madeline Collignon
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Ines Friedrich
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Ramona Kuhn
- Chair of Biotechnology of Water Treatment, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Inge Schwedt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, Göttingen, 37077, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Marion Martienssen
- Chair of Biotechnology of Water Treatment, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, Göttingen, 37077, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
12
|
Hertel R, Gibhardt J, Martienssen M, Kuhn R, Commichau FM. Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol 2021; 23:2891-2905. [PMID: 33876549 DOI: 10.1111/1462-2920.15534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Glyphosate is a nonselective herbicide that kills weeds and other plants competing with crops. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, thereby depleting the cell of EPSP serving as a precursor for biosynthesis of aromatic amino acids. Glyphosate is considered to be toxicologically safe for animals and humans. Therefore, it became the most-important herbicide in agriculture. However, its intensive application in agriculture is a serious environmental issue because it may negatively affect the biodiversity. A few years after the discovery of the mode of action of glyphosate, it has been observed that bacteria evolve glyphosate resistance by acquiring mutations in the EPSP synthase gene, rendering the encoded enzyme less sensitive to the herbicide. The identification of glyphosate-resistant EPSP synthase variants paved the way for engineering crops tolerating increased amounts of the herbicide. This review intends to summarize the molecular mechanisms underlying glyphosate resistance in bacteria. Bacteria can evolve glyphosate resistance by (i) reducing glyphosate sensitivity or elevating production of the EPSP synthase, by (ii) degrading or (iii) detoxifying glyphosate and by (iv) decreasing the uptake or increasing the export of the herbicide. The variety of glyphosate resistance mechanisms illustrates the adaptability of bacteria to anthropogenic substances due to genomic alterations.
Collapse
Affiliation(s)
- Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Johannes Gibhardt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Marion Martienssen
- Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Ramona Kuhn
- Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
13
|
SCRaMbLE: A Study of Its Robustness and Challenges through Enhancement of Hygromycin B Resistance in a Semi-Synthetic Yeast. Bioengineering (Basel) 2021; 8:bioengineering8030042. [PMID: 33806931 PMCID: PMC8004914 DOI: 10.3390/bioengineering8030042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 11/21/2022] Open
Abstract
Recent advances in synthetic genomics launched the ambitious goal of generating the first synthetic designer eukaryote, based on the model organism Saccharomyces cerevisiae (Sc2.0). Excitingly, the Sc2.0 project is now nearing its completion and SCRaMbLE, an accelerated evolution tool implemented by the integration of symmetrical loxP sites (loxPSym) downstream of almost every non-essential gene, is arguably the most applicable synthetic genome-wide alteration to date. The SCRaMbLE system offers the capability to perform rapid genome diversification, providing huge potential for targeted strain improvement. Here we describe how SCRaMbLE can evolve a semi-synthetic yeast strain housing the synthetic chromosome II (synII) to generate hygromycin B resistant genotypes. Exploiting long-read nanopore sequencing, we show that all structural variations are due to recombination between loxP sites, with no off-target effects. We also highlight a phenomenon imposed on SCRaMbLE termed “essential raft”, where a fragment flanked by a pair of loxPSym sites can move within the genome but cannot be removed due to essentiality restrictions. Despite this, SCRaMbLE was able to explore the genomic space and produce alternative structural compositions that resulted in an increased hygromycin B resistance in the synII strain. We show that among the rearrangements generated via SCRaMbLE, deletions of YBR219C and YBR220C contribute to hygromycin B resistance phenotypes. However, the hygromycin B resistance provided by SCRaMbLEd genomes showed significant improvement when compared to corresponding single deletions, demonstrating the importance of the complex structural variations generated by SCRaMbLE to improve hygromycin B resistance. We anticipate that SCRaMbLE and its successors will be an invaluable tool to predict and evaluate the emergence of antibiotic resistance in yeast.
Collapse
|
14
|
Yu X, Wei H, Liu X, Liu D, Fan A, Su H. Enhanced resistance of Trichoderma harzianum LZDX-32-08 to hygromycin B induced by sea salt. Biotechnol Lett 2020; 43:213-222. [PMID: 32851464 DOI: 10.1007/s10529-020-02994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine the effect of sea salt on the resistance of Trichoderma harzianum LZDX-32-08 to hygromycin B and speculate the possible mechanisms involved via transcriptome analysis. RESULTS Sea salt addition in media to simulate marine environment significantly increased the tolerance of marine-derived fungus Trichoderma harzianum LZDX-32-08 to hygromycin B from 40 to 500 μg/ml. Meanwhile, sea salt addition also elicited the hygromycin B resistance of 5 other marine or terrestrial fungi. Transcriptomic analyses of T. harzianum cultivated on PDA, PDA supplemented with sea salt and PDA with both sea salt and hygromycin B revealed that genes coding for P-type ATPases, multidrug resistance related transporters and acetyltransferases were up-regulated, while genes coding for Ca2+/H+ antiporter and 1,3-glucosidase were down-regulated, indicating probable increased efflux and inactivation of hygromycin B as well as enhanced biofilm formation, which could jointly contribute to the drug resistance. CONCLUSIONS Marine environment or high ion concentration in the environment could be an importance inducer for antifungal resistance. Possible mechanisms and related key genes were proposed for understanding the molecular basis and overcoming this resistance.
Collapse
Affiliation(s)
- Xijia Yu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Huiling Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xianrui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People's Republic of China
| | - Aili Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, People's Republic of China
| |
Collapse
|
15
|
Induction of secondary metabolite production by hygromycin B and identification of the 1233A biosynthetic gene cluster with a self-resistance gene. J Antibiot (Tokyo) 2020; 73:475-479. [DOI: 10.1038/s41429-020-0295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/09/2022]
|
16
|
Rudakova NN, Alekseeva MG, Zakharevich NV, Mavletova DA, Danilenko VN. Aminoglycoside Phosphotransferase AphSR2 from Streptomyces rimosus ATCC 10970: Dependence of Antibiotic Resistance on Serine-Threonine Protein Kinases PkSR1 and PkSR2. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Liu G, Massel K, Tabet B, Godwin ID. Biolistic DNA Delivery and Its Applications in Sorghum bicolor. Methods Mol Biol 2020; 2124:197-215. [PMID: 32277455 DOI: 10.1007/978-1-0716-0356-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biolistic DNA delivery has been considered a universal tool for genetic manipulation to transfer exotic genes to cells or tissues due to its simplicity, versatility, and high efficiency. It has been a preferred method for investigating plant gene function in most monocot crops. The first transgenic sorghum plants were successfully regenerated through biolistic DNA delivery in 1993, with a relatively low transformation efficiency of 0.3%. Since then, tremendous progress has been made in recent years where the highest transformation efficiency was reported at 46.6%. Overall, the successful biolistic DNA delivery system is credited to three fundamental cornerstones: robust tissue culture system, effective gene expression in sorghum, and optimal parameters of DNA delivery. In this chapter, the history, application, and current development of biolistic DNA delivery in sorghum are reviewed, and the prospect of sorghum genetic engineering is discussed.
Collapse
Affiliation(s)
- Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Basam Tabet
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Ian D Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Takenoya M, Shimamura T, Yamanaka R, Adachi Y, Ito S, Sasaki Y, Nakamura A, Yajima S. Structural basis for the substrate recognition of aminoglycoside 7''-phosphotransferase-Ia from Streptomyces hygroscopicus. Acta Crystallogr F Struct Biol Commun 2019; 75:599-607. [PMID: 31475927 PMCID: PMC6718145 DOI: 10.1107/s2053230x19011105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 10/14/2023] Open
Abstract
Hygromycin B (HygB) is one of the aminoglycoside antibiotics, and it is widely used as a reagent in molecular-biology experiments. Two kinases are known to inactivate HygB through phosphorylation: aminoglycoside 7''-phosphotransferase-Ia [APH(7'')-Ia] from Streptomyces hygroscopicus and aminoglycoside 4-phosphotransferase-Ia [APH(4)-Ia] from Escherichia coli. They phosphorylate the hydroxyl groups at positions 7'' and 4 of the HygB molecule, respectively. Previously, the crystal structure of APH(4)-Ia was reported as a ternary complex with HygB and 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). To investigate the differences in the substrate-recognition mechanism between APH(7'')-Ia and APH(4)-Ia, the crystal structure of APH(7'')-Ia complexed with HygB is reported. The overall structure of APH(7'')-Ia is similar to those of other aminoglycoside phosphotransferases, including APH(4)-Ia, and consists of an N-terminal lobe (N-lobe) and a C-terminal lobe (C-lobe). The latter also comprises a core and a helical domain. Accordingly, the APH(7'')-Ia and APH(4)-Ia structures fit globally when the structures are superposed at three catalytically important conserved residues, His, Asp and Asn, in the Brenner motif, which is conserved in aminoglycoside phosphotransferases as well as in eukaryotic protein kinases. On the other hand, the phosphorylated hydroxyl groups of HygB in both structures come close to the Asp residue, and the HygB molecules in each structure lie in opposite directions. These molecules were held by the helical domain in the C-lobe, which exhibited structural differences between the two kinases. Furthermore, based on the crystal structures of APH(7'')-Ia and APH(4)-Ia, some mutated residues in their thermostable mutants reported previously were located at the same positions in the two enzymes.
Collapse
Affiliation(s)
- Mihoko Takenoya
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryuji Yamanaka
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuya Adachi
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
19
|
Vera Rodriguez A, Frey S, Görlich D. Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor. J Cell Biol 2019; 218:2006-2020. [PMID: 31023724 PMCID: PMC6548132 DOI: 10.1083/jcb.201812091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/07/2023] Open
Abstract
Cleavage of affinity tags by specific proteases can be exploited for highly selective affinity chromatography. The SUMO/SENP1 system is the most efficient for such application but fails in eukaryotic expression because it cross-reacts with endogenous proteases. Using a novel selection system, we have evolved the SUMOEu/SENP1Eu pair to orthogonality with the yeast and animal enzymes. SUMOEu fusions therefore remain stable in eukaryotic cells. Likewise, overexpressing a SENP1Eu protease is nontoxic in yeast. We have used the SUMOEu system in an affinity-capture-proteolytic-release approach to identify interactors of the yeast importin Pdr6/Kap122. This revealed not only further nuclear import substrates such as Ubc9, but also Pil1, Lsp1, eIF5A, and eEF2 as RanGTP-dependent binders and thus as export cargoes. We confirmed that Pdr6 functions as an exportin in vivo and depletes eIF5A and eEF2 from cell nuclei. Thus, Pdr6 is a bidirectional nuclear transport receptor (i.e., a biportin) that shuttles distinct sets of cargoes in opposite directions.
Collapse
Affiliation(s)
- Arturo Vera Rodriguez
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Steffen Frey
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
20
|
Wicke D, Schulz LM, Lentes S, Scholz P, Poehlein A, Gibhardt J, Daniel R, Ischebeck T, Commichau FM. Identification of the first glyphosate transporter by genomic adaptation. Environ Microbiol 2019; 21:1287-1305. [PMID: 30666812 DOI: 10.1111/1462-2920.14534] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/12/2023]
Abstract
The soil bacterium Bacillus subtilis can get into contact with growth-inhibiting substances, which may be of anthropogenic origin. Glyphosate is such a substance serving as a nonselective herbicide. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates an essential precursor for de novo synthesis of aromatic amino acids in plants, fungi, bacteria and archaea. Inhibition of the EPSP synthase by glyphosate results in depletion of the cellular levels of aromatic amino acids unless the environment provides them. Here, we have assessed the potential of B. subtilis to adapt to glyphosate at the genome level. In contrast to Escherichia coli, which evolves glyphosate resistance by elevating the production and decreasing the glyphosate sensitivity of the EPSP synthase, B. subtilis primarily inactivates the gltT gene encoding the high-affinity glutamate/aspartate symporter GltT. Further adaptation of the gltT mutants to glyphosate led to the inactivation of the gltP gene encoding the glutamate transporter GltP. Metabolome analyses confirmed that GltT is the major entryway of glyphosate into B. subtilis. GltP, the GltT homologue of E. coli also transports glyphosate into B. subtilis. Finally, we found that GltT is involved in uptake of the herbicide glufosinate, which inhibits the glutamine synthetase.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Lisa M Schulz
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Till Ischebeck
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| |
Collapse
|
21
|
Nichols NN, Hector RE, Frazer SE. Genetic transformation of Coniochaeta sp. 2T2.1, key fungal member of a lignocellulose-degrading microbial consortium. Biol Methods Protoc 2019; 4:bpz001. [PMID: 32395621 DOI: 10.1093/biomethods/bpz001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/15/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Coniochaeta sp. strain 2T2.1 is a key member of a microbial consortium that degrades lignocellulosic biomass. Due to its ecological niche and ability to also grow in pure culture on wheat straw, protocols for transformation and antibiotic selection of the strain were established. Hygromycin was found to be a reliable selectable transformation marker, and the mammalian codon-optimized green fluorescent protein was expressed and used to visualize fluorescence in transformed cells of strain 2T2.1.
Collapse
Affiliation(s)
- Nancy N Nichols
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Bioenergy Research Unit, Peoria, IL, USA
| | - Ronald E Hector
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Bioenergy Research Unit, Peoria, IL, USA
| | - Sarah E Frazer
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Bioenergy Research Unit, Peoria, IL, USA
| |
Collapse
|
22
|
Takacs CN, Kloos ZA, Scott M, Rosa PA, Jacobs-Wagner C. Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi. Appl Environ Microbiol 2018; 84:e01824-18. [PMID: 30315081 PMCID: PMC6275353 DOI: 10.1128/aem.01824-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022] Open
Abstract
Lyme disease is the most widely reported vector-borne disease in the United States. Its incidence is rapidly increasing, and disease symptoms can be debilitating. The need to understand the biology of the disease agent, the spirochete Borrelia burgdorferi, is thus evermore pressing. Despite important advances in B. burgdorferi genetics, the array of molecular tools available for use in this organism remains limited, especially for cell biological studies. Here, we adapt a palette of bright and mostly monomeric fluorescent proteins for versatile use and multicolor imaging in B. burgdorferi We also characterize two novel antibiotic selection markers and establish the feasibility of their use in conjunction with extant markers. Last, we describe a set of promoters of low and intermediate strengths that allow fine-tuning of gene expression levels. These molecular tools complement and expand current experimental capabilities in B. burgdorferi, which will facilitate future investigation of this important human pathogen. To showcase the usefulness of these reagents, we used them to investigate the subcellular localization of BB0323, a B. burgdorferi lipoprotein essential for survival in the host and vector environments. We show that BB0323 accumulates at the cell poles and future division sites of B. burgdorferi cells, highlighting the complex subcellular organization of this spirochete.IMPORTANCE Genetic manipulation of the Lyme disease spirochete B. burgdorferi remains cumbersome, despite significant progress in the field. The scarcity of molecular reagents available for use in this pathogen has slowed research efforts to study its unusual biology. Of interest, B. burgdorferi displays complex cellular organization features that have yet to be understood. These include an unusual morphology and a highly fragmented genome, both of which are likely to play important roles in the bacterium's transmission, infectivity, and persistence. Here, we complement and expand the array of molecular tools available for use in B. burgdorferi by generating and characterizing multiple fluorescent proteins, antibiotic selection markers, and promoters of varied strengths. These tools will facilitate investigations in this important human pathogen, as exemplified by the polar and midcell localization of the cell envelope regulator BB0323, which we uncovered using these reagents.
Collapse
Affiliation(s)
- Constantin N Takacs
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
| | - Zachary A Kloos
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Microbiology Program, Yale University, New Haven, Connecticut, USA
| | - Molly Scott
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale West Campus, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Kumar P, Nagarajan A, Uchil PD. Selective Agents for Stable Transfection. Cold Spring Harb Protoc 2018; 2018:2018/9/pdb.top096230. [PMID: 30181228 DOI: 10.1101/pdb.top096230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A stable cell line is generated when transfected DNA undergoes integration into a chromosome by nonhomologous recombination. Cells that stably express selectable (e.g., antibiotic-resistant) markers are also likely to have incorporated other DNA sequences. This phenomenon, in which physically unlinked genes are assembled into a single integrated array and expressed in the same transfected cell, is known as "cotransfection." Resistance to antibiotics has proven to be effective in selecting cotransfectants and, in some cases, as a driver for gene amplification.
Collapse
|
24
|
Beacham TA, Sweet JB, Allen MJ. Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Jaeger D, Hübner W, Huser T, Mussgnug JH, Kruse O. Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. J Biotechnol 2017; 249:10-15. [DOI: 10.1016/j.jbiotec.2017.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 01/22/2023]
|
26
|
Arnak R, Altun B, Tosato V, Bruschi CV. Multiple Antibiotic Resistance Plasmids Allow Scalable,
PCR-Mediated DNA Manipulation and Near-Zero Background Cloning. Food Technol Biotechnol 2016; 54:257-265. [PMID: 27956856 DOI: 10.17113/ftb.54.03.16.4230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have constructed two plasmids that can be used for cloning as templates for PCR- -based gene disruption, mutagenesis and the construction of DNA chromosome translocation cassettes. To our knowledge, these plasmids are the first vectors that confer resistance to ampicillin, kanamycin and hygromycin B in bacteria, and to geneticin (G418) and hygromycin B in Saccharomyces cerevisiae simultaneously. The option of simultaneously using up to three resistance markers provides a highly stringent control of recombinant selection and the almost complete elimination of background resistance, while unique restriction sites allow easy cloning of chosen genetic material. Moreover, we successfully used these new vectors as PCR templates for the induction of chromosome translocation in budding yeast by the bridge-induced translocation system. Cells in which translocation was induced carried chromosomal rearrangements as expected and exhibited resistance to both, G418 and hygromycin B. These features make our constructs very handy tools for many molecular biology applications.
Collapse
Affiliation(s)
- Remigiusz Arnak
- Yeast Molecular Genetics Laboratory, ICGEB, AREA Science Park, Padriciano 99, IT-34149 Trieste, Italy
| | - Burcin Altun
- Yeast Molecular Genetics Laboratory, ICGEB, AREA Science Park, Padriciano 99, IT-34149 Trieste, Italy
| | - Valentina Tosato
- Yeast Molecular Genetics Laboratory, ICGEB, AREA Science Park, Padriciano 99, IT-34149 Trieste, Italy
| | - Carlo V Bruschi
- Yeast Molecular Genetics Laboratory, ICGEB, AREA Science Park, Padriciano 99, IT-34149 Trieste, Italy
| |
Collapse
|
27
|
Directed Evolution for Thermostabilization of a Hygromycin B Phosphotransferase fromStreptomyces hygroscopicus. Biosci Biotechnol Biochem 2014; 77:2234-41. [DOI: 10.1271/bbb.130486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Kim YH, Ramakrishna S, Kim H, Kim JS. Enrichment of cells with TALEN-induced mutations using surrogate reporters. Methods 2014; 69:108-17. [PMID: 24780521 DOI: 10.1016/j.ymeth.2014.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 12/28/2022] Open
Abstract
Targeted gene knockout using engineered nucleases such as transcription activator like-effector nucleases (TALENs) is a gold standard for investigating the functions of a gene of interest. Although most TALENs can cleave chromosomal DNA efficiently, the activities of designed TALENs are not always high enough to allow the efficient derivation of cells containing TALEN-driven mutations. Thus, simple methods to enrich cells containing TALEN-directed mutations would facilitate the use of TALENs. Here we describe the enrichment of such cells using surrogate episomal reporters coupled with flow cytometric sorting, magnetic separation, or hygromycin selection.
Collapse
Affiliation(s)
- Young-Hoon Kim
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seoul, South Korea
| | - Hyongbum Kim
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seoul, South Korea.
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea; Department of Chemistry, Seoul National University, Seoul, South Korea.
| |
Collapse
|
29
|
Shi K, Caldwell SJ, Fong DH, Berghuis AM. Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance. Front Cell Infect Microbiol 2013; 3:22. [PMID: 23805415 PMCID: PMC3691515 DOI: 10.3389/fcimb.2013.00022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/04/2013] [Indexed: 01/10/2023] Open
Abstract
Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides ineffective. The most widely disseminated means of resistance to this class of antibiotics is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs). There are two principal strategies to overcoming the effects of AMEs. The first approach involves the design of novel aminoglycosides that can evade modification. Although this strategy has yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in the long term. The second approach entails the development of molecules that interfere with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Although such a molecule has yet to enter clinical development, the search for AME inhibitors has been greatly facilitated by the wealth of structural information amassed in recent years. In particular, aminoglycoside phosphotransferases or kinases (APHs) have been studied extensively and crystal structures of a number of APHs with diverse regiospecificity and substrate specificity have been elucidated. In this review, we present a comprehensive overview of the available APH structures and recent progress in APH inhibitor development, with a focus on the structure-guided strategies.
Collapse
Affiliation(s)
- Kun Shi
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
| | - Shane J. Caldwell
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
| | - Desiree H. Fong
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
| | - Albert M. Berghuis
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
- Department of Microbiology and Immunology, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
30
|
Iino D, Takakura Y, Fukano K, Sasaki Y, Hoshino T, Ohsawa K, Nakamura A, Yajima S. Crystal structures of the ternary complex of APH(4)-Ia/Hph with hygromycin B and an ATP analog using a thermostable mutant. J Struct Biol 2013; 183:76-85. [PMID: 23747390 DOI: 10.1016/j.jsb.2013.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 11/19/2022]
Abstract
Aminoglycoside 4-phosphotransferase-Ia (APH(4)-Ia)/Hygromycin B phosphotransferase (Hph) inactivates the aminoglycoside antibiotic hygromycin B (hygB) via phosphorylation. The crystal structure of the binary complex of APH(4)-Ia with hygB was recently reported. To characterize substrate recognition by the enzyme, we determined the crystal structure of the ternary complex of non-hydrolyzable ATP analog AMP-PNP and hygB with wild-type, thermostable Hph mutant Hph5, and apo-mutant enzyme forms. The comparison between the ternary complex and apo structures revealed that Hph undergoes domain movement upon binding of AMP-PNP and hygB. This was about half amount of the case of APH(9)-Ia. We also determined the crystal structures of mutants in which the conserved, catalytically important residues Asp198 and Asn203, and the non-conserved Asn202, were converted to Ala, revealing the importance of Asn202 for catalysis. Hph5 contains five amino acid substitutions that alter its thermostability by 16°C; its structure revealed that 4/5 mutations in Hph5 are located in the hydrophobic core and appear to increase thermostability by strengthening hydrophobic interactions.
Collapse
Affiliation(s)
- Daisuke Iino
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations. PLoS One 2013; 8:e56476. [PMID: 23441197 PMCID: PMC3575389 DOI: 10.1371/journal.pone.0056476] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
The ability to enrich cells with targeted mutations greatly facilitates the process of using engineered nucleases, including zinc-finger nucleases and transcription activator-like effector nucleases, to construct such cells. We previously used surrogate reporters to enrich cells containing nuclease-induced mutations via flow cytometry. This method is, however, limited by the availability of flow cytometers. Furthermore, sorted cells occasionally fail to form colonies after exposure to a strong laser and hydrostatic pressure. Here we describe two different types of novel reporters that enable mutant cell enrichment without the use of flow cytometers. We designed reporters that express H-2Kk, a surface antigen, and the hygromycin resistance protein (HygroR), respectively, when insertions or deletions are generated at the target sequences by the activity of engineered nucleases. After cotransfection of these reporters and the engineered nuclease-encoding plasmids, H-2Kk- and HygroR-expressing cells were isolated using magnetic separation and hygromycin treatment, respectively. We found that mutant cells were drastically enriched in the isolated cells, suggesting that these two reporters enable efficient enrichment of mutants. We propose that these two reporters will greatly facilitate the use of engineered nucleases in a wider range of biomedical research.
Collapse
|
32
|
Stogios PJ, Shakya T, Evdokimova E, Savchenko A, Wright GD. Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme. J Biol Chem 2010; 286:1966-75. [PMID: 21084294 DOI: 10.1074/jbc.m110.194266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.
Collapse
Affiliation(s)
- Peter J Stogios
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
33
|
Marker fusion tagging, a new method for production of chromosomally encoded fusion proteins. EUKARYOTIC CELL 2010; 9:827-30. [PMID: 20348390 DOI: 10.1128/ec.00386-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new gene-tagging method (marker fusion tagging [MFT]) is demonstrated for Neurospora crassa and Magnaporthe oryzae. Translational fusions between the hygromycin B resistance gene and various markers are inserted into genes of interest by homologous recombination to produce chromosomally encoded fusion proteins. This method can produce tags at any position and create deletion alleles that maintain N- and C-terminal sequences. We show the utility of MFT by producing enhanced green fluorescent protein (EGFP) tags in proteins localized to nuclei, spindle pole bodies, septal pore plugs, Woronin bodies, developing septa, and the endoplasmic reticulum.
Collapse
|
34
|
Enzymatic analysis of a thermostabilized mutant of an Escherichia coli hygromycin B phosphotransferase. Biosci Biotechnol Biochem 2008; 72:2467-71. [PMID: 18776672 DOI: 10.1271/bbb.80285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158-163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 degrees C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 degrees C of HPH to 53 and 58.8 degrees C respectively. Specific activities and steady-state kinetics measured at 25 degrees C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.
Collapse
|
35
|
Borovinskaya MA, Shoji S, Fredrick K, Cate JHD. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA (NEW YORK, N.Y.) 2008; 14:1590-9. [PMID: 18567815 PMCID: PMC2491480 DOI: 10.1261/rna.1076908] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/07/2008] [Indexed: 05/18/2023]
Abstract
Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S) ribosomal subunit of the 70S ribosome and induces a localized conformational change, in contrast to its effects observed in the structure of the isolated 30S ribosomal subunit in complex with the drug. The conformational change in the ribosome caused by hygromycin B binding differs from that induced by other aminoglycosides. Also, in contrast to other aminoglycosides, hygromycin B potently inhibits spontaneous reverse translocation of tRNAs and mRNA on the ribosome in vitro. These structural and biochemical results help to explain the unique mode of translation inhibition by hygromycin B.
Collapse
Affiliation(s)
- Maria A Borovinskaya
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
36
|
Martino E, Murat C, Vallino M, Bena A, Perotto S, Spanu P. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Curr Genet 2007; 52:65-75. [PMID: 17589849 DOI: 10.1007/s00294-007-0139-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/23/2007] [Accepted: 05/29/2007] [Indexed: 01/22/2023]
Abstract
Ericoid endomycorrhizal fungi form intracellular associations with the epidermal root cells of plants belonging to Ericales. In natural environments, these fungi increase the ability of their host plants to colonise soils polluted with toxic metals, although the underlying mechanisms are not clearly understood. Genetic transformation is a powerful tool to study the function of specific genes involved in the interaction of symbiotic fungi with the host plants and with the environment. Here, we investigated the possibility to genetically transform an ericoid endomycorrhizal strain. A metal tolerant mycorrhizal Oidiodendron maius strain isolated from a contaminated area was chosen to develop the transformation system. Two different protocols were used: protoplasts and Agrobacterium-mediated transformation. Stable transformants were obtained with both techniques. They remained competent for mycorrhizal formation and GFP-transformed fungi were visualised in planta. This is the first report of stable transformation of an ericoid endomycorrhizal fungus. The protocol set up could represent a good starting point for the identification of genes important in the ericoid mycorrhiza formation and in the understanding of how this symbiosis is established and functions. The success in the genetic transformation of this strain will allow us to better define its potential use in bioremediation strategies.
Collapse
Affiliation(s)
- Elena Martino
- Dipartimento di Biologia Vegetale dell'Università di Torino, Centre of Excellence for Plant and Microbial Biosensing (CEBIOVEM) and Istituto per la Protezione delle Piante del CNR, Sezione di Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res 2007; 16:261-80. [PMID: 17436060 DOI: 10.1007/s11248-007-9083-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 02/05/2007] [Indexed: 11/25/2022]
Abstract
Selectable marker gene systems are vital for the development of transgenic crops. Since the creation of the first transgenic plants in the early 1980s and their subsequent commercialization worldwide over almost an entire decade, antibiotic and herbicide resistance selectable marker gene systems have been an integral feature of plant genetic modification. Without them, creating transgenic crops is not feasible on purely economic and practical terms. These systems allow the relatively straightforward identification and selection of plants that have stably incorporated not only the marker genes but also genes of interest, for example herbicide tolerance and pest resistance. Bacterial antibiotic resistance genes are also crucial in molecular biology manipulations in the laboratory. An unprecedented debate has accompanied the development and commercialization of transgenic crops. Divergent policies and their implementation in the European Union on one hand and the rest of the world on the other (industrialized and developing countries alike), have resulted in disputes with serious consequences on agricultural policy, world trade and food security. A lot of research effort has been directed towards the development of marker-free transformation or systems to remove selectable markers. Such research has been in a large part motivated by perceived problems with antibiotic resistance selectable markers; however, it is not justified from a safety point of view. The aim of this review is to discuss in some detail the currently available scientific evidence that overwhelmingly argues for the safety of these marker gene systems. Our conclusion, supported by numerous studies, most of which are commissioned by some of the very parties that have taken a position against the use of antibiotic selectable marker gene systems, is that there is no scientific basis to argue against the use and presence of selectable marker genes as a class in transgenic plants.
Collapse
Affiliation(s)
- Koreen Ramessar
- Departament de Produccio Vegetal i Ciencia Forestal, Universitat de Lleida, Av. Alcalde Rovira Roure, 191, Lleida 25198, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Petersen W, Umbeck P, Hokanson K, Halsey M. Biosafety considerations for selectable and scorable markers used in cassava (Manihot esculentaCrantz) biotechnology. ACTA ACUST UNITED AC 2005; 4:89-102. [PMID: 16402664 DOI: 10.1051/ebr:2005016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cassava is an important subsistence crop grown only in the tropics, and represents a major source of calories for many people in developing countries. Improvements in the areas of resistance to insects and viral diseases, enhanced nutritional qualities, reduced cyanogenic content and modified starch characteristics are urgently needed. Traditional breeding is hampered by the nature of the crop, which has a high degree of heterozygosity, irregular flowering, and poor seed set. Biotechnology has the potential to enhance crop improvement efforts, and genetic engineering techniques for cassava have thus been developed over the past decade. Selectable and scorable markers are critical to efficient transformation technology, and must be evaluated for biosafety, as well as efficiency and cost-effectiveness. In order to facilitate research planning and regulatory submission, the literature on biosafety aspects of the selectable and scorable markers currently used in cassava biotechnology is surveyed. The source, mode of action and current use of each marker gene is described. The potential for toxicity, allergenicity, pleiotropic effects, horizontal gene transfer, and the impact of these on food or feed safety and environmental safety is evaluated. Based on extensive information, the selectable marker genes nptII, hpt, bar/pat, and manA, and the scorable marker gene uidA, all have little risk in terms of biosafety. These appear to represent the safest options for use in cassava biotechnology available at this time.
Collapse
|
39
|
Grimaldi B, de Raaf MA, Filetici P, Ottonello S, Ballario P. Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet 2005; 48:69-74. [PMID: 15868150 DOI: 10.1007/s00294-005-0579-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/11/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Mycorrhizal ascomycetes are ecologically and commercially important fungi that have proved impervious to genetic transformation so far. We report here on the successful transient transformation of Tuber borchii, an ectomycorrhizal ascomycete that colonizes a variety of trees and produces highly prized hypogeous fruitbodies known as "truffles". A hypervirulent Agrobacterium tumefaciens strain bearing the binary plasmid pBGgHg was used for transformation. The genes for hygromycin resistance and the enhanced green fluorescent protein (EGFP), both under the control of vector-borne promoters, were employed as selection markers. Patches of dark and fluorescent hyphae were observed upon fluorescence microscopic examination of hygromycin-resistant mycelia. The presence of EGFP was confirmed by both confocal microscopy and PCR analysis. The lack in the transformed mycelia of the DNA coding for kanamicin resistance (a trait encoded by a vector-borne gene located outside of the T-DNA region) indicates that Agrobacterium-mediated gene transfer correctly occurred in T. borchii.
Collapse
Affiliation(s)
- Benedetto Grimaldi
- Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma "La Sapienza", P. le Aldo Moro 5, Roma 00185, Italy
| | | | | | | | | |
Collapse
|
40
|
Opinion of the Scientific Panel on Genetically Modified Organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Pfister P, Risch M, Brodersen DE, Böttger EC. Role of 16S rRNA Helix 44 in Ribosomal Resistance to Hygromycin B. Antimicrob Agents Chemother 2003; 47:1496-502. [PMID: 12709313 PMCID: PMC153343 DOI: 10.1128/aac.47.5.1496-1502.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hygromycin B is an aminoglycoside antibiotic active against prokaryotic and eukaryotic ribosomes. Ribosomal alterations in bacteria conferring resistance to hygromycin B have not been described, prompting us to use a single rRNA allelic derivative of the gram-positive bacterium Mycobacterium smegmatis for investigation of the molecular mechanisms involved in ribosomal resistance to hygromycin B in eubacteria. Resistance mutations were found to localize exclusively in 16S rRNA. The mutations observed, i.e., 16S rRNA U1406C, C1496U, and U1498C (E. coli numbering), are in close proximity to the hygromycin B binding site located in conserved helix 44 of 16S rRNA. The 16S rRNA positions involved in hygromycin B resistance are highly conserved in all three domains of life, explaining the lack of specificity and general toxicity of hygromycin B.
Collapse
Affiliation(s)
- P Pfister
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8028 Zürich, Switzerland
| | | | | | | |
Collapse
|
42
|
Wang L, White RL, Vining LC. Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1091-1103. [PMID: 11932454 DOI: 10.1099/00221287-148-4-1091] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eight additional genes, jadX, O, P, Q, S, T, U and V, in the jad cluster of Streptomyces venezuelae ISP5230, were located immediately downstream of jadN by chromosome walking. Sequence analyses and comparisons implicated them in biosynthesis of the 2,6-dideoxysugar in jadomycin B. The genes were cloned in Escherichia coli, inactivated by inserting an apramycin resistance cassette with a promoter driving transcription of downstream genes, and transferred into Streptomyces venezuelae by intergeneric conjugation. Analysis by HPLC and NMR of intermediates accumulated by cultures of the insertionally inactivated Streptomyces venezuelae mutants indicated that jadO, P, Q, S, T, U and V mediate formation of the dideoxysugar moiety of jadomycin B and its attachment to the aglycone. Based on these results and sequence similarities to genes described in other species producing deoxysugar derivatives, a biosynthetic pathway is proposed in which the jadQ product (glucose-1-phosphate nucleotidyltransferase) activates glucose to its nucleotide diphosphate (NDP) derivative, and the jadT product (a 4,6-dehydratase) converts this to NDP-4-keto-6-deoxy-D-glucose. An NDP-hexose 2,3-dehydratase and an oxidoreductase, encoded by jadO and jadP, respectively, catalyse ensuing reactions that produce an NDP-2,6-dideoxy-D-threo-4-hexulose. The product of jadU (NDP-4-keto-2,6-dideoxy-5-epimerase) converts this intermediate to its L-erythro form and the jadV product (NDP-4-keto-2,6-dideoxyhexose 4-ketoreductase) reduces the keto group of the NDP-4-hexulose to give an activated form of the L-digitoxose moiety in jadomycin B. Finally, a glycosyltransferase encoded by jadS transfers the activated sugar to jadomycin aglycone. The function of jadX is unclear; the gene is not essential for jadomycin B biosynthesis, but its presence ensures complete conversion of the aglycone to the glycoside. The deduced amino acid sequence of a 612 bp ORF (jadR*) downstream of the dideoxysugar biosynthesis genes resembles many TetR-family transcriptional regulator sequences.
Collapse
Affiliation(s)
- Liru Wang
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - Robert L White
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J32
| | - Leo C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| |
Collapse
|
43
|
He J, Magarvey N, Piraee M, Vining LC. The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2817-2829. [PMID: 11577160 DOI: 10.1099/00221287-147-10-2817] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regions of the Streptomyces venezuelae ISP5230 chromosome flanking pabAB, an amino-deoxychorismate synthase gene needed for chloramphenicol (Cm) production, were examined for involvement in biosynthesis of the antibiotic. Three of four ORFs in the sequence downstream of pabAB resembled genes involved in the shikimate pathway. BLASTX searches of GenBank showed that the deduced amino acid sequences of ORF3 and ORF4 were similar to proteins encoded by monofunctional genes for chorismate mutase and prephenate dehydrogenase, respectively, while the sequence of the ORF5 product resembled deoxy-arabino-heptulosonate-7-phosphate (DAHP) synthase, the enzyme that initiates the shikimate pathway. A relationship to Cm biosynthesis was indicated by sequence similarities between the ORF6 product and membrane proteins associated with Cm export. BLASTX searches of GenBank for matches with the translated sequence of ORF1 in chromosomal DNA immediately upstream of pabAB did not detect products relevant to Cm biosynthesis. However, the presence of Cm biosynthesis genes in a 7.5 kb segment of the chromosome beyond ORF1 was inferred when conjugal transfer of the DNA into a blocked S. venezuelae mutant restored Cm production. Deletions in the 7.5 kb segment of the wild-type chromosome eliminated Cm production, confirming the presence of Cm biosynthesis genes in this region. Sequencing and analysis located five ORFs, one of which (ORF8) was deduced from BLAST searches of GenBank, and from characteristic motifs detected in alignments of its deduced amino acid sequence, to be a monomodular nonribosomal peptide synthetase. GenBank searches did not identify ORF7, but matched the translated sequences of ORFs 9, 10 and 11 with short-chain ketoreductases, the ATP-binding cassettes of ABC transporters, and coenzyme A ligases, respectively. As has been shown for ORF2, disrupting ORF3, ORF7, ORF8 or ORF9 blocked Cm production.
Collapse
Affiliation(s)
- J He
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - N Magarvey
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - M Piraee
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - L C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| |
Collapse
|
44
|
Elliot M, Damji F, Passantino R, Chater K, Leskiw B. The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol 1998; 180:1549-55. [PMID: 9515925 PMCID: PMC107056 DOI: 10.1128/jb.180.6.1549-1555.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The bld mutants of Streptomyces coelicolor A3(2) are blocked at the earliest stage of sporulation, the formation of aerial hyphae, and are pleiotropically defective in antibiotic production. Using a phage library of wild-type S. coelicolor DNA, we isolated a recombinant phage which restored both sporulation and antibiotic production to strains carrying the single known bldD mutation. Nucleotide sequence analysis of a 1.3-kb complementing subclone identified an open reading frame, designated bldD, encoding a translation product of 167 amino acid residues. Nucleotide sequence analysis of the bldD-containing fragment amplified from the chromosome of a bldD mutant strain revealed a point mutation changing a tyrosine residue at amino acid position 62 to a cysteine. Although a comparison of the BldD sequence to known proteins in the databases failed to show any strong similarities, analysis of the BldD sequence for secondary structural elements did reveal a putative helix-turn-helix, DNA recognition element near the C terminus of the protein. A comparison of bldD transcript levels in the bldD+ and bldD mutant strains using both Northern blot analysis and S1 nuclease protection studies showed vast overexpression of bldD transcripts in the mutant, suggesting that BldD negatively regulates its own synthesis. High-resolution S1 nuclease mapping identified the transcription start point as a G residue 63 nucleotides upstream from the bldD start codon and 7 nucleotides downstream from -10 and -35 sequences resembling E. coli-like streptomycete promoters.
Collapse
MESH Headings
- Amino Acid Sequence
- Anti-Bacterial Agents/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacteriophages/genetics
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Bacterial
- Cloning, Molecular
- Codon, Initiator
- Cysteine/genetics
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA-Binding Proteins
- Gene Expression
- Gene Library
- Genetic Complementation Test
- Molecular Sequence Data
- Open Reading Frames
- Plasmids
- Point Mutation
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Bacterial/analysis
- RNA, Bacterial/isolation & purification
- Recombination, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
- Spores, Bacterial/genetics
- Spores, Bacterial/physiology
- Streptomyces/genetics
- Streptomyces/metabolism
- Streptomyces/physiology
- Transcription Factors
- Transcription, Genetic
- Tyrosine/genetics
Collapse
Affiliation(s)
- M Elliot
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Thornewell SJ, Peery RB, Skatrud PL. Cloning and characterization of the gene encoding translation elongation factor 1 alpha from Aureobasidium pullulans. Gene X 1995; 162:105-10. [PMID: 7557396 DOI: 10.1016/0378-1119(95)00312-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The gene (TEF1) encoding translation elongation factor 1 alpha from the dimorphic fungus Aureobasidium pullulans (Ap) strain R106 has been cloned using Candida albicans TEF1 as a heterologous hybridization probe. Electrophoretic molecular karyotype/hybridization analysis of Ap revealed eight chromosomal bands and suggested that TEF1 resides on chromosome VI. Comparison of the genomic DNA sequence with the cDNA sequence of TEF1 verified the presence of three introns, the first one occurring five nucleotides from the start of translation. The deduced amino acid (aa) sequence encoded a protein consisting of 459 aa (49,663 Da) possessing high identity to a variety of TEF1-encoded proteins. A strong codon bias, similar to that observed in highly expressed yeast genes, was evident in A. pullulans TEF1. The ApTEF1 promoter region showed some sequence similarity to the well-studied TEF1 promoter from Saccharomyces cerevisiae, including a region from -23 to -11. This region exhibited high homology to a promoter upstream activating sequence (UAS) in S. cerevisiae. Such sequences have been shown to be essential promoter elements in genes coding for the highly expressed components of the yeast translation apparatus.
Collapse
Affiliation(s)
- S J Thornewell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
47
|
Sørensen MS, Duch M, Paludan K, Jørgensen P, Pedersen FS. Measurement of hygromycin B phosphotransferase activity in crude mammalian cell extracts by a simple dot-blot assay. Gene X 1992; 112:257-60. [PMID: 1313387 DOI: 10.1016/0378-1119(92)90386-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hygromycin B (Hy) resistance, encoded by the prokaryotic gene hph, is commonly used as a dominant selectable marker for gene transfer experiments in mammalian cells. We describe a simple, quantitative dot-blot assay for measuring the activity in crude mammalian cell extracts of Hy phosphotransferase, the product of the hph gene. The assay shows no cross interference with substrates for neomycin phosphotransferase II, the product of the commonly used marker gene neo; hph and neo may thus be useful as a set of two non-interfering selectable marker and reporter genes for gene transfer experiments in mammalian cells.
Collapse
Affiliation(s)
- M S Sørensen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Ventura L, Ramón D. Transformation ofAspergillus terreuswith the hygromycin B resistance marker fromEscherichia coli. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04863.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Giordano TJ, McAllister WT. Optimization of the hygromycin B resistance-conferring gene as a dominant selectable marker in mammalian cells. Gene 1990; 88:285-8. [PMID: 2161383 DOI: 10.1016/0378-1119(90)90045-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The HyR gene, conferring resistance to hygromycin B (Hy), has been modified for optimal expression in mammalian cells. Modifications to the HyR gene and its expression cassette include: (1) removal of all upstream start codons, (2) conversion of the region around the start codon to the consensus sequence associated with efficient translation initiation, and (3) removal of downstream splice donor and acceptor sequences. The resulting HyR gene is an efficient dominant selectable marker that is useful for studies requiring resistance from a low-copy-number gene driven by a promoter of moderate strength. The HyR gene was also tested for its compatibility with BPV vectors. Mouse C127 cells harboring pHyR-BPV plasmids exhibited properties of BPV-transformed cells and were resistant to toxic levels of Hy. The vectors were stable as episomes and present in high copy. The HyR gene thus joins the NmR (neo) gene as the only dominant selectable markers that are known to be compatible with BPV replication.
Collapse
Affiliation(s)
- T J Giordano
- Department of Microbiology and Immunology, Morse Institute for Molecular Biology, SUNY-Health Science Center, Brooklyn 11203-2098
| | | |
Collapse
|