1
|
Jones S, Briantais P, Von Simson C, De Meyrignac E, Poincelot L, Rigaut D. Treatment of giardiasis in dogs: field clinical study to confirm the efficacy, safety, and acceptance of a metronidazole-based flavored oral suspension. Parasit Vectors 2025; 18:169. [PMID: 40355903 PMCID: PMC12067763 DOI: 10.1186/s13071-025-06797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Giardia duodenalis is a prevalent gastrointestinal parasite in dogs, causing diarrhea, vomiting, and weight loss. Metronidazole is a common treatment for this infection. This study aimed to evaluate the efficacy, safety, and acceptance of a flavored liquid metronidazole oral suspension in treating G. duodenalis in naturally infected dogs. METHODS A double-masked, vehicle-controlled, randomized, multi-center clinical field trial was conducted. Client-owned dogs with confirmed G. duodenalis infections were enrolled and randomized into AYRADIA-treated and control groups. The AYRADIA group received the metronidazole suspension at 0.2 ml/kg twice daily for 5 days, while the control group received a flavored vehicle suspension without metronidazole. Fecal samples were collected before and after treatment to assess G. duodenalis cyst counts. Clinical examinations and owner assessments were also performed to evaluate safety and treatment acceptance. RESULTS The study enrolled 180 dogs, with 129 included in the efficacy analysis. AYRADIA treatment resulted in a 99.92% reduction in G. duodenalis cyst counts, significantly higher than the reduction in the control group. Adverse events were similar between both groups (10%), mainly consisting of diarrhea and vomiting. The treatment was readily accepted by 99% of dogs. CONCLUSIONS AYRADIA, administered at 0.2 ml/kg twice daily for 5 days, is highly effective in treating G. duodenalis infections in dogs. The treatment demonstrated a positive safety profile and excellent acceptance. This flavored oral suspension offers a valuable and convenient option for veterinarians managing giardiasis in dogs.
Collapse
Affiliation(s)
- Sloane Jones
- Virbac Corporation, 1301 Solana Boulevard, Westlake, TX, 76262, USA
| | | | | | | | | | | |
Collapse
|
2
|
Chakrabarty A, Dutta D, Baidya M, Dutta A, Das AK, Ghosh SK. Metronidazole Activation by a Deeply Entangled Dimeric Malic Enzyme in Entamoeba histolytica. Pathogens 2025; 14:277. [PMID: 40137762 PMCID: PMC11944484 DOI: 10.3390/pathogens14030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Metronidazole is the preferred drug for treating amoebiasis caused by Entamoeba histolytica. Its antiamoebic activity is primarily attributed to activation by various reductases. This study reports an alternative activation pathway in E. histolytica mediated by the decarboxylating malic enzyme. Functional characterization of this NADPH-dependent enzyme reveals that it is secreted into the extracellular milieu and may play a role in E. histolytica adhesion to human enteric cells. Structural analysis of the E. histolytica malic enzyme (EhME) demonstrates that the protein forms a strict dimer, with the protomers interlocked by a unique knot structure formed by two polypeptide chains. This distinctive structural feature closely aligns EhME with its prokaryotic counterparts. In conclusion, our findings reveal that E. histolytica harbors a deeply entangled dimeric malic enzyme that contributes to metronidazole susceptibility, sharing structural similarities with bacterial malic enzymes.
Collapse
Affiliation(s)
- Arindam Chakrabarty
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| | - Mithu Baidya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu and Kashmir 181221, India;
| | - Anirudha Dutta
- Department of Biological Sciences, Adamas University, Kolkata 700126, India;
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Sudip K. Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
3
|
Cun WY, Keller PA, Pyne SG. Current and Ongoing Developments in Targeting Clostridioides difficile Infection and Recurrence. Microorganisms 2024; 12:1206. [PMID: 38930588 PMCID: PMC11205563 DOI: 10.3390/microorganisms12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacterial pathogen that causes severe gastrointestinal infection in humans. This review provides background information on C. difficile infection and the pathogenesis and toxigenicity of C. difficile. The risk factors, causes, and the problem of recurrence of disease and current therapeutic treatments are also discussed. Recent therapeutic developments are reviewed including small molecules that inhibit toxin formation, disrupt the cell membrane, inhibit the sporulation process, and activate the host immune system in cells. Other treatments discussed include faecal microbiota treatment, antibody-based immunotherapies, probiotics, vaccines, and violet-blue light disinfection.
Collapse
Affiliation(s)
- Wendy Y. Cun
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | | | - Stephen G. Pyne
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
4
|
Paichitrojjana A, Chalermchai T. Comparison of in vitro Killing Effect of Thai Herbal Essential Oils, Tea Tree Oil, and Metronidazole 0.75% versus Ivermectin 1% on Demodex folliculorum. Clin Cosmet Investig Dermatol 2023; 16:1279-1286. [PMID: 37228784 PMCID: PMC10202699 DOI: 10.2147/ccid.s414737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Background Abnormal proliferation of Demodex mites causes a skin disorder called demodicosis and has been linked to rosacea. The development of alternative therapy against Demodex mites is currently required. The ability to kill Demodex mites of Thai herbal essential oils has never been explored. This study aimed to study and compare the in vitro killing effect of Thai herbal essential oils, tea tree oil, and metronidazole 0.75% with ivermectin 1% on D. folliculorum. Materials and Methods D. folliculorum mites were collected from the wastes of diagnostic standardized skin surface biopsy samples of demodicosis and rosacea patients for the trial. The microscopic evaluation started immediately after the mites were exposed to immersion oil (negative control), Thai herbal essential oils, tea tree oil, metronidazole 0.75%, and ivermectin 1% (positive control). The survival times of ten mites from each test agent were compared. Results The efficacy of Thai herbal essential oils and other test agents can be arranged in order as follows: lemongrass oil > sweet basil oil > clove oil > tea tree oil > lesser galangal oil > ginger oil, kaffir lime oil, peppermint oil > citronella oil > galangal oil > cajeput oil > ivermectin 1% > metronidazole 0.75%. Conclusion This current study demonstrated the in vitro killing efficacy on D. folliculorum: Thai herbal essential oils, Tea tree oil > ivermectin 1% > metronidazole 0.75%. Thai herbal essential oils have the potential to be an adjuvant or alternative therapy against Demodex mites. Further in vivo studies are necessary to determine the treatment efficacy and side effects.
Collapse
Affiliation(s)
- Anon Paichitrojjana
- School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok, Thailand
| | - Thep Chalermchai
- School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok, Thailand
| |
Collapse
|
5
|
Carvalho-de-Araújo AD, Carvalho-Kelly LF, Meyer-Fernandes JR. Anaerobic energy metabolism in human microaerophile parasites. Exp Parasitol 2023; 247:108492. [PMID: 36841468 DOI: 10.1016/j.exppara.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Mucosal-associated parasites, such as Giardia intestinalis, Entamoeba histolytica, and Trichomonas vaginalis, have significant clinical relevance. The pathologies associated with infection by these parasites are among those with the highest incidence of gastroenteritis (giardiasis and amoebiasis) and sexually transmitted infections (trichomoniasis). The treatment of these diseases is based on drugs that act on the anaerobic metabolism of these parasites, such as nitroimidazole and benzimidazole derivatives. One interesting feature of parasites is their ability to produce ATP under anaerobic conditions. Due to the absence of enzymes capable of producing ATP under anaerobic conditions in the vertebrate host, they have become interesting therapeutic targets. This review discusses anaerobic energy metabolism in mucosal-associated parasites, focusing on the anaerobic metabolism of pyruvate, the importance of these enzymes as therapeutic targets, and the importance of treating their infections.
Collapse
Affiliation(s)
- Ayra Diandra Carvalho-de-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco H, 2 andar, sala 13. Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Luiz Fernando Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco H, 2 andar, sala 13. Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco H, 2 andar, sala 13. Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil; Instituto Nacional de Ciência a Tecnologia em Biologia Estrutural e Bioimagem (INCTBEB), Cidade Universitária, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Chudzicka-Strugała I, Gołębiewska I, Brudecki G, Elamin W, Zwoździak B. Demodicosis in Different Age Groups and Alternative Treatment Options-A Review. J Clin Med 2023; 12:jcm12041649. [PMID: 36836184 PMCID: PMC9961532 DOI: 10.3390/jcm12041649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Infestation with Demodex mites is a common occurrence, especially in adults and the elderly. More recent attention has been paid to the presence of Demodex spp. mites in children, even ones without comorbidities. It causes both dermatological and ophthalmological problems. The presence of Demodex spp. is often asymptomatic, thus it is suggested to include parasitological investigation tests in dermatological diagnostics, in addition to bacteriological analysis. Literature reports show that Demodex spp. are related to the pathogenesis of numerous dermatoses, including rosacea or demodicosis gravis, and common eye pathologies reported by patients such as dry eye syndrome or ocular surface inflammatory conditions, such as blepharitis, chalazia, Meibomian gland dysfunction, and keratitis. Treatment of patients is a challenge and is usually prolonged, therefore it is important to carefully diagnose and properly select the therapy regimen for the treatment to be successful, and with minimal side effects, especially for young patients. Apart from the use of essential oils, research is ongoing for new alternative preparations active against Demodex sp. Our review was focused on the analysis of the current literature data on the available agents in the treatment of demodicosis in adults and children.
Collapse
Affiliation(s)
- Izabela Chudzicka-Strugała
- Department of Medical Microbiology, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznan, Poland
| | - Iwona Gołębiewska
- Earth and Life Institute (ELI), Université Catholique de Louvain, Croix du Sud 2, 1348 Louvain-La-Neuve, Belgium
- Correspondence:
| | - Grzegorz Brudecki
- Group 42 (Healthcare), Masdar City, Abu Dhabi P.O. Box 112778, United Arab Emirates
| | - Wael Elamin
- Group 42 (Healthcare), Masdar City, Abu Dhabi P.O. Box 112778, United Arab Emirates
| | - Barbara Zwoździak
- Department of Medical Microbiology, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznan, Poland
| |
Collapse
|
7
|
Hsu HM, Yang YY, Huang YH, Chu CH, Tu TJ, Wu YT, Chiang CJ, Yang SB, Hsu DK, Liu FT, Tai JH. Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates. PLoS Negl Trop Dis 2023; 17:e0011016. [PMID: 36595499 PMCID: PMC9810166 DOI: 10.1371/journal.pntd.0011016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection.
Collapse
Affiliation(s)
- Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Yen-Yu Yang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Huang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Tu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Ting Wu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Chu-Jen Chiang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Shi-Bing Yang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Fu-Tong Liu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Jung-Hsiang Tai
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
The Impact of a Pharmacist-Led Intravenous to Oral Switch of Metronidazole: A Before-and-After Study. Antibiotics (Basel) 2022; 11:antibiotics11101303. [PMID: 36289961 PMCID: PMC9598063 DOI: 10.3390/antibiotics11101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background. Intravenous (IV) to oral switch (IVOS) of antibiotics can reduce the length of hospitalisation, risk of IV catheter complications, and hospital costs. Pharmacists can play an instrumental role in implementing an IVOS initiative. The aim of this study is to evaluate the impact of pharmacist-led IVOS of metronidazole. (2) Method. This was an observational study conducted in a New Zealand hospital. During a 3-month intervention period, pharmacists identified patients receiving IV metronidazole; then initiated an IVOS for patients who met the criteria. The comparator groups were patients who were not switched by pharmacists in the post-intervention (post-IVOS) group, or patients treated with either IV or oral metronidazole prior to the intervention (pre-IVOS). Primary outcome measures were switch rate and duration of IV metronidazole treatment. Secondary outcome measures were readmission and/or repeat surgery within 90 days of discharge and the length of hospital stay. (3) Results. In total, 203 patients were included: 100 in the pre-IVOS and 103 in the post-IVOS groups. Pharmacists switched 63/93 (67.7%) of eligible patients to oral metronidazole in the post-IVOS period. Only 9/89 (10.1%) of IVOS eligible patients were switched in the pre-IVOS group. In the post-IVOS group, the mean duration of IV metronidazole treatment in patients switched by pharmacists was shorter than in those who were not switched by pharmacists (2.5 ± 2.8 days vs. 4.8 ± 5.9 days, p = 0.012). No significant difference was found in readmission or repeat surgery within 90 days of discharge for patients switched by pharmacists versus patients who were not switched by pharmacists. (4) Conclusion. Our data have demonstrated successful implementation of the hospital-approved pharmacist-led IVOS service.
Collapse
|
9
|
Gut commensal bacteria enhance pathogenesis of a tumorigenic murine retrovirus. Cell Rep 2022; 40:111341. [PMID: 36103821 DOI: 10.1016/j.celrep.2022.111341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The influence of the microbiota on viral transmission and replication is well appreciated. However, its impact on retroviral pathogenesis outside of transmission/replication control remains unknown. Using murine leukemia virus (MuLV), we found that some commensal bacteria promoted the development of leukemia induced by this retrovirus. The promotion of leukemia development by commensals is due to suppression of the adaptive immune response through upregulation of several negative regulators of immunity. These negative regulators include Serpinb9b and Rnf128, which are associated with a poor prognosis of some spontaneous human cancers. Upregulation of Serpinb9b is mediated by sensing of bacteria by the NOD1/NOD2/RIPK2 pathway. This work describes a mechanism by which the microbiota enhances tumorigenesis within gut-distant organs and points at potential targets for cancer therapy.
Collapse
|
10
|
Behrouz S, Soltani Rad MN, Ganji Z, Behrouz M, Zarenezhad E, Agholi M. Design, synthesis, antigiardial and in silico assessments of novel propargylamines containing nitroimidazole core. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Bruna RE, Casal A, Bercovich B, Gramajo H, Rodríguez E, García Véscovi E. A natural product from Streptomyces targets PhoP and exerts antivirulence action against Salmonella enterica. J Antimicrob Chemother 2022; 77:3050-3063. [PMID: 35972206 DOI: 10.1093/jac/dkac278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The overprescription and misuse of classical antimicrobial compounds to treat gastrointestinal or systemic salmonellosis have been accelerating the surge of antibiotic-recalcitrant bacterial populations, posing a major public health challenge. Therefore, alternative therapeutic approaches to treat Salmonella infections are urgently required. OBJECTIVES To identify and characterize actinobacterial secreted compounds with inhibitory properties against the Salmonella enterica PhoP/PhoQ signal transduction system, crucial for virulence regulation. METHODS The methodology was based on a combination of the measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes and bioguided assays to screen for bioactive inhibitory metabolites present in culture supernatants obtained from a collection of actinobacterial isolates. Analogues of azomycin were used to analyse the functional groups required for the detected bioactivity and Salmonella mutants and complemented strains helped to dissect the azomycin mechanism of action. The tetrazolium dye colorimetric assay was used to investigate azomycin potential cytotoxicity on cultured macrophages. Salmonella intramacrophage replication capacity upon azomycin treatment was assessed using the gentamicin protection assay. RESULTS Sublethal concentrations of azomycin, a nitroheterocyclic compound naturally produced by Streptomyces eurocidicus, repressed the Salmonella PhoP/PhoQ system activity by targeting PhoP and inhibiting its transcriptional activity in a PhoQ- and aspartate phosphorylation-independent manner. Sublethal, non-cytotoxic concentrations of azomycin prevented Salmonella intramacrophage replication. CONCLUSIONS Azomycin selectively inhibits the activity of the Salmonella virulence regulator PhoP, a new activity described for this nitroheterocyclic compound that can be repurposed to develop novel anti-Salmonella therapeutic approaches.
Collapse
Affiliation(s)
- Roberto E Bruna
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Alejo Casal
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Bárbara Bercovich
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Eduardo Rodríguez
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
12
|
Oliveira A, Araújo A, Rodrigues LC, Silva CS, Reis RL, Neves NM, Leão P, Martins A. Metronidazole Delivery Nanosystem Able To Reduce the Pathogenicity of Bacteria in Colorectal Infection. Biomacromolecules 2022; 23:2415-2427. [PMID: 35623028 PMCID: PMC9774670 DOI: 10.1021/acs.biomac.2c00186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metronidazole (MTZ) is a drug potentially used for the treatment of intestinal infections, namely, the ones caused by colorectal surgery. The traditional routes of administration decrease its local effectiveness and present off-site effects. To circumvent such limitations, herein a drug delivery system (DDS) based on MTZ-loaded nanoparticles (NPs) immobilized at the surface of electrospun fibrous meshes is proposed. MTZ at different concentrations (1, 2, 5, and 10 mg mL-1) was loaded into chitosan-sodium tripolyphosphate NPs. The MTZ loaded into NPs at the highest concentration showed a quick release in the first 12 h, followed by a gradual release. This DDS was not toxic to human colonic cells. When tested against different bacterial strains, a significant reduction of Escherichia coli and Staphylococcus aureus was observed, but no effect was found against Enterococcus faecalis. Therefore, this DDS offers high potential to locally prevent the occurrence of infections after colorectal anastomosis.
Collapse
Affiliation(s)
- Ana Oliveira
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables & Biomimetics of University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering &
Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial
da Gandra, Barco, Guimarães 4805-017 Portugal,Life
and Health Sciences Research Institute (ICVS), School of Medicine,
University of Minho, Campus of Gualtar, Braga 4710-057, Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ana Araújo
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables & Biomimetics of University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering &
Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial
da Gandra, Barco, Guimarães 4805-017 Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Luísa C. Rodrigues
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables & Biomimetics of University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering &
Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial
da Gandra, Barco, Guimarães 4805-017 Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Catarina S. Silva
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables & Biomimetics of University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering &
Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial
da Gandra, Barco, Guimarães 4805-017 Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables & Biomimetics of University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering &
Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial
da Gandra, Barco, Guimarães 4805-017 Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables & Biomimetics of University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering &
Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial
da Gandra, Barco, Guimarães 4805-017 Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Pedro Leão
- Life
and Health Sciences Research Institute (ICVS), School of Medicine,
University of Minho, Campus of Gualtar, Braga 4710-057, Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Albino Martins
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables & Biomimetics of University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering &
Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial
da Gandra, Barco, Guimarães 4805-017 Portugal,ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal,
| |
Collapse
|
13
|
Prieto Cárdenas LS, Arias Soler KA, Nossa González DL, Rozo Núñez WE, Cárdenas-Chaparro A, Duchowicz PR, Gómez Castaño JA. In Silico Antiprotozoal Evaluation of 1,4-Naphthoquinone Derivatives against Chagas and Leishmaniasis Diseases Using QSAR, Molecular Docking, and ADME Approaches. Pharmaceuticals (Basel) 2022; 15:687. [PMID: 35745607 PMCID: PMC9228275 DOI: 10.3390/ph15060687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Chagas and leishmaniasis are two neglected diseases considered as public health problems worldwide, for which there is no effective, low-cost, and low-toxicity treatment for the host. Naphthoquinones are ligands with redox properties involved in oxidative biological processes with a wide variety of activities, including antiparasitic. In this work, in silico methods of quantitative structure-activity relationship (QSAR), molecular docking, and calculation of ADME (absorption, distribution, metabolism, and excretion) properties were used to evaluate naphthoquinone derivatives with unknown antiprotozoal activity. QSAR models were developed for predicting antiparasitic activity against Trypanosoma cruzi, Leishmania amazonensis, and Leishmania infatum, as well as the QSAR model for toxicity activity. Most of the evaluated ligands presented high antiparasitic activity. According to the docking results, the family of triazole derivatives presented the best affinity with the different macromolecular targets. The ADME results showed that most of the evaluated compounds present adequate conditions to be administered orally. Naphthoquinone derivatives show good biological activity results, depending on the substituents attached to the quinone ring, and perhaps the potential to be converted into drugs or starting molecules.
Collapse
Affiliation(s)
- Lina S. Prieto Cárdenas
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Avenida Central del Norte, Tunja 050030, Colombia; (L.S.P.C.); (K.A.A.S.); (D.L.N.G.); (W.E.R.N.); (A.C.-C.)
| | - Karen A. Arias Soler
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Avenida Central del Norte, Tunja 050030, Colombia; (L.S.P.C.); (K.A.A.S.); (D.L.N.G.); (W.E.R.N.); (A.C.-C.)
| | - Diana L. Nossa González
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Avenida Central del Norte, Tunja 050030, Colombia; (L.S.P.C.); (K.A.A.S.); (D.L.N.G.); (W.E.R.N.); (A.C.-C.)
| | - Wilson E. Rozo Núñez
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Avenida Central del Norte, Tunja 050030, Colombia; (L.S.P.C.); (K.A.A.S.); (D.L.N.G.); (W.E.R.N.); (A.C.-C.)
| | - Agobardo Cárdenas-Chaparro
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Avenida Central del Norte, Tunja 050030, Colombia; (L.S.P.C.); (K.A.A.S.); (D.L.N.G.); (W.E.R.N.); (A.C.-C.)
| | - Pablo R. Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, (CONICET—Universidad Nacional de La Plata), Diagonal 113 y Calle 64, C.C. 16, Sucursal 4, La Plata 1900, Argentina;
| | - Jovanny A. Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Avenida Central del Norte, Tunja 050030, Colombia; (L.S.P.C.); (K.A.A.S.); (D.L.N.G.); (W.E.R.N.); (A.C.-C.)
| |
Collapse
|
14
|
Electrochemical Detection of Metronidazole Using Silver Nanoparticle-Modified Carbon Paste Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00722-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Benchimol M, de Souza W. Giardia intestinalis and its Endomembrane System. J Eukaryot Microbiol 2022; 69:e12893. [PMID: 35148450 DOI: 10.1111/jeu.12893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Giardia intestinalis has unique characteristics, even in the absence of certain organelles. For instance, Golgi and mitochondria are not found. On the other hand, there is a network of peripheral vacuoles (PVs) and mitosomes. The endoplasmic reticulum (ER), nuclear membrane, peroxisomes, and lipid bodies are present. The peripheral vacuole system seems to play several simultaneous roles. It is involved in the endocytic activity of the trophozoite but also has characteristics of early and late endosomes and even lysosomes, establishing a connection with the ER. Some of the PVs contain small vesicles, acting as multivesicular bodies, including the release of exosomes. The mitosomes are surrounded by two membranes, divide during mitosis, and are distributed throughout the cell. They do not contain DNA, enzymes involved in the citric acid cycle, respiratory chain, or ATP synthesis. However, they contain the iron-sulfur complex and transporters as TOM and TIM. Some mitosomes are linked to flagellar axonemes through a fibrillar connection. During encystation, two types of larger cytoplasmic vesicles appear. One originating from the ER contains the cyst wall proteins. Another contains carbohydrates. Both migrate to the cell periphery and fuse with plasma membrane secreting their contents to give rise to the cell wall.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro Duque de Caxias, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Marques J, Martin D, Amado AM, Lysenko V, Osório N, Batista de Carvalho LAE, Marques MPM, Barroca MJ, Moreira da Silva A. Novel Insights into Corema album Berries: Vibrational Profile and Biological Activity. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091761. [PMID: 34579295 PMCID: PMC8470319 DOI: 10.3390/plants10091761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 05/04/2023]
Abstract
This study reports an evaluation of the biological properties of the edible berries from Corema album, an endemic shrub of the Portuguese coastline, aiming at its use as a nutraceutical. Different methanolic extracts were obtained from the pulp and seed of fresh berries: pulp extract, seed residue, and seed oil (extracted and characterized for the first time). For each of these, the antioxidant activity was assessed, by different methods, as well as the antimicrobial ability. Overall, the seeds were shown to be the most nutraceutical part of the berry since they showed higher antioxidant activity, while the pulp extract displayed a significant antimicrobial capacity against several clinically relevant bacterial strains. Furthermore, the extracts were fully characterized by complementary infrared and Raman spectroscopy, revealing the presence of phenolic acids, polysaccharides, sugars, and triterpenoids in the pulp, high content of unsaturated fatty acids in the seed oil, and significant amounts of phenolics and carotenoids in the seed residue. These results pave the way for a reliable correlation between chemical composition and biological activity, in edible fruit samples.
Collapse
Affiliation(s)
- Joana Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Correspondence:
| | - Daniel Martin
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
| | - Ana M. Amado
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
| | - Viktoriya Lysenko
- College of Health Technology of Coimbra, Polytechnic Institute of Coimbra, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
| | - Nádia Osório
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- College of Health Technology of Coimbra, Polytechnic Institute of Coimbra, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
| | - Luís A. E. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
| | - Maria Paula M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Maria João Barroca
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Aida Moreira da Silva
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
17
|
Guglielmo BJ. Metronidazole Neurotoxicity: Suspicions Confirmed. Clin Infect Dis 2021; 72:2101-2102. [PMID: 32266372 DOI: 10.1093/cid/ciaa400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- B Joseph Guglielmo
- School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Szentmihályi K, Süle K, Egresi A, Blázovics A, May Z. Metronidazole does not show direct antioxidant activity in in vitro global systems. Heliyon 2021; 7:e06902. [PMID: 33997416 PMCID: PMC8100078 DOI: 10.1016/j.heliyon.2021.e06902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 11/15/2022] Open
Abstract
Metronidazole has been widely used topically and systemically for more than 50 years but data on its antioxidant properties are still incomplete, unclear and contradictory. Its antioxidant properties are primarily hypothesized based on in vivo results, therefore, studies have been performed to determine whether metronidazole has antioxidant activity in vitro. We used so-called global spectrophotometric and luminometric methods. Fe3+/Fe2+-reducing ability, hydrogen donor activity, hydroxyl radical scavenging property and lipid peroxidation inhibitory activity were investigated. Under the condition used, metronidazole has negligible iron-reducing ability and hydrogen donor activity. The hydroxyl radical scavenging capacity cannot be demonstrated. It acts as a pro-oxidant in the H2O2/.OH-microperoxidase-luminol system, but it can inhibit the induced lipid peroxidation. According to our results, metronidazole has not shown antioxidant activity in vitro but can affect redox homeostasis by a ROS-independent mechanism due to its non-direct antioxidant properties.
Collapse
Affiliation(s)
- Klára Szentmihályi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary
- Corresponding author.
| | - Krisztina Süle
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary
- Semmelweis University Institute of Pharmacognosy, H-1026 Budapest, Üllői út 26, Hungary
| | - Anna Egresi
- Semmelweis University Institute of Pharmacognosy, H-1026 Budapest, Üllői út 26, Hungary
- 2nd. Department of Internal Medicine Semmelweis University, H-1088 Budapest, Szentkirályi utca 46, Hungary
| | - Anna Blázovics
- Semmelweis University Department of Surgical Research and Techniques, The Heart and Vascular Center, 1089 Budapest, Nagyvárad tér 4, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary
| |
Collapse
|
19
|
Thomas C, Gwenin CD. The Role of Nitroreductases in Resistance to Nitroimidazoles. BIOLOGY 2021; 10:388. [PMID: 34062712 PMCID: PMC8147198 DOI: 10.3390/biology10050388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
Antimicrobial resistance is a major challenge facing modern medicine, with an estimated 700,000 people dying annually and a global cost in excess of $100 trillion. This has led to an increased need to develop new, effective treatments. This review focuses on nitroimidazoles, which have seen a resurgence in interest due to their broad spectrum of activity against anaerobic Gram-negative and Gram-positive bacteria. The role of nitroreductases is to activate the antimicrobial by reducing the nitro group. A decrease in the activity of nitroreductases is associated with resistance. This review will discuss the resistance mechanisms of different disease organisms, including Mycobacterium tuberculosis, Helicobacter pylori and Staphylococcus aureus, and how these impact the effectiveness of specific nitroimidazoles. Perspectives in the field of nitroimidazole drug development are also summarised.
Collapse
Affiliation(s)
- Carol Thomas
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Christopher D. Gwenin
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
20
|
Duru CE, Duru IA, García BAA, Enenebeaku UE. Computational Modeling of the Activity of Metronidazole against EhGα1 of Entamoeba histolytica Enhanced by its Copper and Zinc Complexes. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00245-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Light Stability, Pro-Apoptotic and Genotoxic Properties of Silver (I) Complexes of Metronidazole and 4-Hydroxymethylpyridine against Pancreatic Cancer Cells In Vitro. Cancers (Basel) 2020; 12:cancers12123848. [PMID: 33419296 PMCID: PMC7767315 DOI: 10.3390/cancers12123848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Antimicrobial properties of silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine are well recognized. However, little is known about its anticancer activity toward human pancreatic cancer cells. Our in vitro study revealed that silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine induced pancreatic cancer cells death associated with genotoxic and proapoptotic properties. In turn, the stability of active substances is of crucial importance because it determines the efficacy and applicability in clinical use. Therefore, we also evaluated photostability of silver (I) nitrate and its complexes with metronidazole and 4- hydroxymethylpyridine. Our results showed that studied complexes are more photochemically stable than silver salts, which makes them better candidates for clinical therapy. Abstract Antimicrobial properties of silver (I) ion and its complexes are well recognized. However, recent studies suggest that both silver (I) ion and its complexes possess anticancer activity associated with oxidative stress-induced apoptosis of various cancer cells. In this study, we aimed to investigate whether silver nitrate and its complexes with metronidazole and 4-hydroxymethylpyridine exert anticancer action against human pancreatic cancer cell lines (PANC-1 and 1.2B4). In the study, we compared decomposition speed for silver complexes under the influence of daylight and UV-A (ultraviolet-A) rays. We employed the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide) assay to evaluate the cytotoxicity and the alkaline comet assay to determine genotoxicity of silver nitrate and its complexes. Flow cytometry and the Annexin V-FITC/PI apoptosis detection kit were used to detect the apoptosis of human pancreatic cancer cells. We found a dose dependent decrease of both pancreatic cancer cell line viability after exposure to silver nitrate and its complexes. The flow cytometry analysis confirmed that cell death occurred mainly via apoptosis. We also documented that the studied compounds induced DNA damage. Metronidazole and 4-hydroxymethylpyridine alone did not significantly affect viability and level of DNA damage of pancreatic cancer cell lines. Complex compounds showed better stability than AgNO3, which decomposed slower than when exposed to light. UV-A significantly influences the speed of silver salt decomposition reaction. To conclude, obtained data demonstrated that silver nitrate and its complexes exerted anticancer action against human pancreatic cancer cells.
Collapse
|
23
|
Metronidazole-conjugates: A comprehensive review of recent developments towards synthesis and medicinal perspective. Eur J Med Chem 2020; 210:112994. [PMID: 33234343 DOI: 10.1016/j.ejmech.2020.112994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nitroimidazoles based compounds remain a hot topic of research in medicinal chemistry due to their numerous biological activities. Moreover, many clinical candidates based on this chemical core have been reported to be valuable in the treatment of human diseases. Metronidazole (MTZ) derived conjugates demonstrated a potential application in medicinal chemistry research over the last decade. In this review, we summarize the synthesis, key structure-activity-relationship (SAR) and associated biological activities such as antimicrobial, anticancer, antidiabetic, anti-inflammatory, anti-HIV and anti-parasitic (Anti-trichomonas, antileishmanial, antiamoebic and anti-giardial) of explored MTZ-conjugates. The molecular docking analysis is also presented simultaneously, which will assist in developing an understanding towards designing of new MTZ-conjugates for target-based drug discovery against multiple disease areas.
Collapse
|
24
|
Dos Santos WM, Aromataris E, Secoli SR, Matuoka JY. Cost-effectiveness of antimicrobial treatment for inpatients with carbapenem-resistant Klebsiella pneumoniae infection: a systematic review of economic evidence. ACTA ACUST UNITED AC 2020; 17:2417-2451. [PMID: 31821188 DOI: 10.11124/jbisrir-d-18-00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The objective of this review was to evaluate the cost-effectiveness of antimicrobial therapy for patients with carbapenem-resistant Klebsiella pneumoniae infection. INTRODUCTION Among the main multi-resistant microorganisms, carbapenem-resistant K. pneumoniae is responsible for the mortality of 40% of patients following 30 days of infection. Treatment for carbapenem-resistant K. pneumoniae infection entails the use of high-cost antimicrobials. Inappropriate use of antimicrobials can increase the cost of treatment fourfold. This review aimed to evaluate the cost-effectiveness of antimicrobial therapy treatment for patients with carbapenem-resistant K. pneumoniae infection to better inform decision making in hospital services. INCLUSION CRITERIA The review included studies on participants 18 years or over with carbapenem-resistant K. pneumoniae infection who had undergone antimicrobial therapy in hospital and acute care services. Studies that compared the cost-effectiveness of different antimicrobial therapy for carbapenem-resistant K. pneumoniae infection were included. Outcome measures were cost per unit of effect expressed in clinical outcome units; this included cost per avoided death, cost per prevention of sepsis and cost per duration of stay. Economic studies with a cost-effectiveness design were considered, as well as modeling studies. METHODS A three-step search strategy was utilized to locate studies published in English, Spanish or Portuguese, with no date restrictions. Two independent reviewers screened titles and abstracts and the full texts of potentially relevant studies for eligibility. Methodological quality was assessed by two independent reviewers using the JBI critical appraisal checklist for economic evaluations. Data were extracted from included studies using the standardized JBI data extraction tool. Data were synthesized using narrative, tables and the JBI Dominance Ranking Matrix. RESULTS This review identified eight studies that evaluated the cost-effectiveness of different treatments for carbapenem-resistant K. pneumoniae infection. The results of this study demonstrated that there was no gold standard treatment for carbapenem-resistant K. pneumoniae infection, hence treatment was generally directed by colonization pressure and resistance profiles. Furthermore, due to the moderate quality and limited number of studies, there was high uncertainty of the values of the cost-effectiveness ratio. CONCLUSIONS Ofloxacin appears to be the most cost-effective treatment; however, conclusions are limited due to the small number and low quality of studies.
Collapse
Affiliation(s)
- Wendel Mombaque Dos Santos
- School of Nursing, University of São Paulo, São Paulo, Brazil.,The Brazilian Centre for Evidence-based Healthcare: a Joanna Briggs Institute Centre of Excellence
| | - Edoardo Aromataris
- Joanna Briggs Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Silvia Regina Secoli
- School of Nursing, University of São Paulo, São Paulo, Brazil.,The Brazilian Centre for Evidence-based Healthcare: a Joanna Briggs Institute Centre of Excellence
| | - Jessica Yumi Matuoka
- School of Nursing, University of São Paulo, São Paulo, Brazil.,The Brazilian Centre for Evidence-based Healthcare: a Joanna Briggs Institute Centre of Excellence
| |
Collapse
|
25
|
Ersoy M, Tiranti V, Zeviani M. Ethylmalonic encephalopathy: Clinical course and therapy response in an uncommon mild case with a severe ETHE1 mutation. Mol Genet Metab Rep 2020; 25:100641. [PMID: 32923369 PMCID: PMC7476058 DOI: 10.1016/j.ymgmr.2020.100641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Ethylmalonic encephalopathy (EE) is a rare metabolic disorder caused by dysfunction of ETHE1 protein, a mitochondrial dioxygenase involved in hydrogen sulfide (H2S) detoxification. EE is usually a fatal disease with a severe clinical course mainly associated with developmental delay and regression, recurrent petechiae, orthostatic acrocyanosis, and chronic diarrhoea. Treatment includes antioxidants, antibiotics that lower H2S levels and antispastic medications, which are not curative. The mutations causing absence of the ETHE1 protein, as is the case for the described patient, usually entail a severe fatal phenotype. Although there are rare reported cases with mild clinical findings, the mechanism leading to these milder cases is also unclear. Here, we describe an 11-year-old boy with an ETHE1 gene mutation who has no neurocognitive impairment but chronic diarrhoea, which is controlled by oral medical treatment, and progressive spastic paraparesis that responded to Achilles tendon lengthening.
Collapse
Key Words
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- CAT, cysteine aminotransferase
- CBS, cystathionine β-synthase
- CSE, cystathionine γ-lyase
- EE, ethylmalonic encephalopathy
- EMA, ethylmalonic acid
- ETHE1 gene
- GSH, glutathione
- H2S
- H2S, hydrogen sulfide
- H2SO3, persulfide
- MTZ, metronidazole
- Mild course
- NAC, N-acetylcysteine
- SCAD, short-chain acyl-CoA dehydrogenase
- SDO, sulfur dioxygenase
- SQR, sulfide quinone oxidoreductase
- SUOX, sulfite oxidase
- TST, thiosulfate sulfur transferase
- Therapy response
- UQ, quinone
- cIII, complex III
- cIV, complex IV
Collapse
Affiliation(s)
- Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, Health Sciences University, Bakirkoy Dr. Sadi Konuk Research and Education Hospital, Istanbul, Turkey
| | - Valeria Tiranti
- Molecular Pathogenesis of Mitochondrial Disorders Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Zeviani
- The Clinical School, University of Padova Department of Neurosciences Veneto Institute of Molecular Medicine Via Orus 2, Padova, Italy
| |
Collapse
|
26
|
Lukáč M, Pisárčik M, Garajová M, Mrva M, Dušeková A, Vrták A, Horáková R, Horváth B, Devínsky F. Synthesis, Surface Activity, and Biological Activities of Phosphonium and Metronidazole Salts. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Miloš Lukáč
- Department of Chemical Theory of Drugs, Faculty of Pharmacy Comenius University Kalinčiakova 8 Bratislava SK‐83232 Slovakia
| | - Martin Pisárčik
- Department of Chemical Theory of Drugs, Faculty of Pharmacy Comenius University Kalinčiakova 8 Bratislava SK‐83232 Slovakia
| | - Mária Garajová
- Department of Zoology, Faculty of Natural Sciences Comenius University Mlynská dolina Ilkovičova 6 Bratislava SK‐84215 Slovakia
| | - Martin Mrva
- Department of Zoology, Faculty of Natural Sciences Comenius University Mlynská dolina Ilkovičova 6 Bratislava SK‐84215 Slovakia
| | - Aneta Dušeková
- Department of Zoology, Faculty of Natural Sciences Comenius University Mlynská dolina Ilkovičova 6 Bratislava SK‐84215 Slovakia
| | - Andrej Vrták
- Department of Chemical Theory of Drugs, Faculty of Pharmacy Comenius University Kalinčiakova 8 Bratislava SK‐83232 Slovakia
| | - Renáta Horáková
- Department of Chemical Theory of Drugs, Faculty of Pharmacy Comenius University Kalinčiakova 8 Bratislava SK‐83232 Slovakia
| | - Branislav Horváth
- NMR laboratory, Faculty of Pharmacy Comenius University Odbojárov 10 Bratislava SK‐83232 Slovakia
| | - Ferdinand Devínsky
- Faculty of Pharmacy Comenius University Odbojárov 10 Bratislava SK‐83232 Slovakia
| |
Collapse
|
27
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
28
|
Hernández-Ayala LF, Toledano-Magaña Y, Ortiz-Frade L, Flores-Alamo M, Galindo-Murillo R, Reina M, García-Ramos JC, Ruiz-Azuara L. Heteroleptic Ni II complexes: Synthesis, structural characterization, computational studies and amoebicidal activity evaluation. J Inorg Biochem 2020; 206:111043. [PMID: 32109662 DOI: 10.1016/j.jinorgbio.2020.111043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 11/19/2022]
Abstract
In this work, we present the synthesis, characterization, electrochemical studies, DFT calculations, and in vitro amoebicidal effect of seven new heteroleptic NiII coordination compounds. The crystal structures of [H2(pdto)](NO3)2 and [Ni(pdto)(NO3)]PF6 are presented, pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine. The rest of the compounds have general formulae: [Ni(pdto)(NN)](PF6) where N-N = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (44dmbpy), 5,5'-dimethyl-2,2'-bipyridine (55dmbpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (47dmphen) and 5,6-dimethyl-1,10-phenanthroline (56dmphen). The size of NN ligand and its substituents modulate the compound electronic features and influence their antiproliferative efficiency against Entamoeba histolytica. 56dmphen derivative, shows the biggest molar volume and presents a powerful amoebicidal activity (IC50 = 1.2 μM), being seven times more effective than the first-line drug for human amoebiasis metronidazole. Also, increases the reactive oxygen species concentration within the trophozoites. This could be the trigger of the E. histolytica growth inhibition. The antiparasitic effect is described using NiII electron density, molar volume, estimated by DFT, as well as the experimental redox potential and diffusion coefficients. In general, amoebicidal efficiency is directly proportional to the increment of the molar volume and decreases when the redox potential becomes more positive.
Collapse
Affiliation(s)
- Luis Felipe Hernández-Ayala
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Yanis Toledano-Magaña
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Luis Ortiz-Frade
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Sanfandila, Querétaro, Mexico
| | - Marcos Flores-Alamo
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Rodrigo Galindo-Murillo
- College of Pharmacy, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Juan Carlos García-Ramos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, Mexico.
| |
Collapse
|
29
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
30
|
Wu JS, Shlian DG, Palmer JH, Upmacis RK. Crystal structure of hexa-μ-chlorido-μ 4-oxido-tetra-kis-{[1-(2-hy-droxy-eth-yl)-2-methyl-5-nitro-1 H-imidazole-κ N 3]copper(II)} containing short NO 2⋯NO 2 contacts. Acta Crystallogr E Crystallogr Commun 2019; 75:1057-1060. [PMID: 31392024 PMCID: PMC6659319 DOI: 10.1107/s2056989019008570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/16/2019] [Indexed: 11/11/2022]
Abstract
The title tetra-nuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O-(MET)4] [MET is 1-(2-hy-droxy-eth-yl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetra-hedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetra-hedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitro-gen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal-bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitro-gen atoms. The extended structure displays O-H⋯O hydrogen bonding, as well as unusual short O⋯N inter-actions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent mol-ecules was removed using the SQUEEZE procedure [Spek (2015 ▸). Acta Cryst. C71, 9-16] in PLATON [Spek (2009 ▸). Acta Cryst. D65, 148-155].
Collapse
Affiliation(s)
- Ja-Shin Wu
- Department of Chemistry & Physical Sciences, Pace University, New York, NY 10038, USA
| | - Daniel G. Shlian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Joshua H. Palmer
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Rita K. Upmacis
- Dept. of Chemistry & Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
31
|
Rufino-González Y, Ponce-Macotela M, García-Ramos JC, Martínez-Gordillo MN, Galindo-Murillo R, González-Maciel A, Reynoso-Robles R, Tovar-Tovar A, Flores-Alamo M, Toledano-Magaña Y, Ruiz-Azuara L. Antigiardiasic activity of Cu(II) coordination compounds: Redox imbalance and membrane damage after a short exposure time. J Inorg Biochem 2019; 195:83-90. [DOI: 10.1016/j.jinorgbio.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/09/2023]
|
32
|
In Vitro Susceptibility to Metronidazole of Tritrichomonas foetus Bovine Isolates from Argentina. Acta Parasitol 2019; 64:232-235. [PMID: 30783992 DOI: 10.2478/s11686-019-00031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/03/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tritrichomonas foetus is the etiologic agent of the sexually transmitted disease Bovine Trichomonosis (BT). In Argentina, BT is endemic and represents a relevant health problem that causes reproductive inefficiency in cattle and large economic losses. Metronidazole is the drug of choice in the treatment of BT. Treatment has been associated with a temporary resolution of the clinical signs but is not able to control the disease. In recent years, the apparition of in vivo and in vitro aerobic and anaerobic resistance leading to ineffective treatments has been reported. AIMS Thus, the aim of the present study was to explore the susceptibility of six different isolates of T. foetus under aerobic (AC) and anaerobic (ANC) conditions. RESULTS AND DISCUSSION Six isolates of T. foetus were obtained from samples of preputial smegma of bovine origin. Values of minimum lethal concentration and minimum inhibitory concentration were higher than those observed in other works and represent current data in Argentina and provide information to establish new treatment protocols.
Collapse
|
33
|
Baldinger E, Sirotkin I, Zeng WM, Rizzo J, Murphy E, Martinez C, Frontera AT. Acute Encephalopathy Following Hyperbaric Oxygen Therapy in a Patient on Metronidazole. Fed Pract 2019; 36:166-169. [PMID: 31138968 PMCID: PMC6503914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This case describes a patient who presented to the emergency department for an acute onset of encephalopathy following hyperbaric oxygen treatment and antibiotic therapy for radiation-induced osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Esther Baldinger
- is a Staff Neurologist; and are Neuroradiologists; and is Chief of Neurology; all at C.W. Bill Young VA Medical Center in Bay Pines, Florida. and are Medical Students; Igor Sirotkin is Assistant Professor of Radiology; and Esther Baldinger and Alfred Frontera are Associate Professors of Neurology; all at University of Central Florida College of Medicine in Orlando. Igor Sirotkin is an Assistant Professor and Carlos Martinez is an Associate Professor of Radiology, both at the University of South Florida College of Medicine in Tampa
| | - Igor Sirotkin
- is a Staff Neurologist; and are Neuroradiologists; and is Chief of Neurology; all at C.W. Bill Young VA Medical Center in Bay Pines, Florida. and are Medical Students; Igor Sirotkin is Assistant Professor of Radiology; and Esther Baldinger and Alfred Frontera are Associate Professors of Neurology; all at University of Central Florida College of Medicine in Orlando. Igor Sirotkin is an Assistant Professor and Carlos Martinez is an Associate Professor of Radiology, both at the University of South Florida College of Medicine in Tampa
| | - Waylon M Zeng
- is a Staff Neurologist; and are Neuroradiologists; and is Chief of Neurology; all at C.W. Bill Young VA Medical Center in Bay Pines, Florida. and are Medical Students; Igor Sirotkin is Assistant Professor of Radiology; and Esther Baldinger and Alfred Frontera are Associate Professors of Neurology; all at University of Central Florida College of Medicine in Orlando. Igor Sirotkin is an Assistant Professor and Carlos Martinez is an Associate Professor of Radiology, both at the University of South Florida College of Medicine in Tampa
| | - Jennifer Rizzo
- is a Staff Neurologist; and are Neuroradiologists; and is Chief of Neurology; all at C.W. Bill Young VA Medical Center in Bay Pines, Florida. and are Medical Students; Igor Sirotkin is Assistant Professor of Radiology; and Esther Baldinger and Alfred Frontera are Associate Professors of Neurology; all at University of Central Florida College of Medicine in Orlando. Igor Sirotkin is an Assistant Professor and Carlos Martinez is an Associate Professor of Radiology, both at the University of South Florida College of Medicine in Tampa
| | - Elizabeth Murphy
- is a Staff Neurologist; and are Neuroradiologists; and is Chief of Neurology; all at C.W. Bill Young VA Medical Center in Bay Pines, Florida. and are Medical Students; Igor Sirotkin is Assistant Professor of Radiology; and Esther Baldinger and Alfred Frontera are Associate Professors of Neurology; all at University of Central Florida College of Medicine in Orlando. Igor Sirotkin is an Assistant Professor and Carlos Martinez is an Associate Professor of Radiology, both at the University of South Florida College of Medicine in Tampa
| | - Carlos Martinez
- is a Staff Neurologist; and are Neuroradiologists; and is Chief of Neurology; all at C.W. Bill Young VA Medical Center in Bay Pines, Florida. and are Medical Students; Igor Sirotkin is Assistant Professor of Radiology; and Esther Baldinger and Alfred Frontera are Associate Professors of Neurology; all at University of Central Florida College of Medicine in Orlando. Igor Sirotkin is an Assistant Professor and Carlos Martinez is an Associate Professor of Radiology, both at the University of South Florida College of Medicine in Tampa
| | - Alfred T Frontera
- is a Staff Neurologist; and are Neuroradiologists; and is Chief of Neurology; all at C.W. Bill Young VA Medical Center in Bay Pines, Florida. and are Medical Students; Igor Sirotkin is Assistant Professor of Radiology; and Esther Baldinger and Alfred Frontera are Associate Professors of Neurology; all at University of Central Florida College of Medicine in Orlando. Igor Sirotkin is an Assistant Professor and Carlos Martinez is an Associate Professor of Radiology, both at the University of South Florida College of Medicine in Tampa
| |
Collapse
|
34
|
Flow cytometry evaluation of in vitro susceptibility of bovine isolates of Tritrichomonas foetus to metronidazole. Vet Parasitol 2019; 267:84-89. [PMID: 30878091 DOI: 10.1016/j.vetpar.2019.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/02/2019] [Accepted: 02/09/2019] [Indexed: 11/23/2022]
Abstract
Bovine Trichomonosis, an endemic sexually transmitted disease in countries with extensive livestock and natural service, represents one of the most common causes of reproductive failure. 5-nitroimidazoles and their derivatives are used for its treatment, mainly metronidazole (Mz). The emergence of resistance mechanisms adopted by the parasites against the drug and failure of the treatments suggest the need to investigate susceptibility and obtain current values. The available information of in vitro susceptibility of these drugs comes from the use of a diversity of methodologies and criteria, especially observation of the mobility of the parasite under the optical microscope to evaluate its viability. These techniques are arduous and time consuming and lead to a subjective assessment dependent on the operator, the methodology used, and the morphology adopted by the protozoan. In this sense, flow cytometry has proven to be a fast and efficient method to evaluate viability in other protozoa. The aim of this study was to evaluate the in vitro susceptibility of six bovine isolates of Tritrichomonas foetus to Mz in aerobic (AC) and anaerobic (ANC) conditions by means of the calculation of the 50% inhibitory concentration (IC50), by flow cytometry, and also to analyze minimum lethal concentration (MLC) by means of recovery tests post-treatment in vitro. IC50 values ranged from 1.06 to 1.25 μM in ANC and from 1.44 to 3.03 μM in AC, these being the only ones reported at 48 h for these protozoa. With respect to MLC at 48 h, the results were from 3.67 to 7.35 μM in ANC, and from 7.35 to 14.7 μM for AC, where two isolates (Tf0 and Tf2) for AC and one (Tf2) for ANC showed higher values than those described in the literature. Flow cytometry has proven to be an effective, rapid and objective methodology and very useful in susceptibility tests. The data obtained through these tests allow us to describe the susceptibility exhibited by these protozoa, this being valuable information when establishing dosages in Mz treatments.
Collapse
|
35
|
Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J Antimicrob Chemother 2019; 73:265-279. [PMID: 29077920 DOI: 10.1093/jac/dkx351] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metronidazole, a nitroimidazole, remains a front-line choice for treatment of infections related to inflammatory disorders of the gastrointestinal tract including colitis linked to Clostridium difficile. Despite >60 years of research, the metabolism of metronidazole and associated cytotoxicity is not definitively characterized. Nitroimidazoles are prodrugs that are reductively activated (the nitro group is reduced) under low oxygen tension, leading to imidazole fragmentation and cytotoxicity. It remains unclear if nitroimidazole reduction (activation) contributes to the cytotoxicity profile, or whether subsequent fragmentation of the imidazole ring and formed metabolites alone mediate cytotoxicity. A molecular mechanism underpinning high level (>256 mg/L) bacterial resistance to metronidazole also remains elusive. Considering the widespread use of metronidazole and other nitroimidazoles, this review was undertaken to emphasize the structure-cytotoxicity profile of the numerous metabolites of metronidazole in human and murine models and to examine conflicting reports regarding metabolite-DNA interactions. An alternative hypothesis, that DNA synthesis and repair of existing DNA is indirectly inhibited by metronidazole is proposed. Prokaryotic metabolism of metronidazole is detailed to discuss new resistance mechanisms. Additionally, the review contextualizes the history and current use of metronidazole, rates of metronidazole resistance including metronidazole MDR as well as the biosynthesis of azomycin, the natural precursor of metronidazole. Changes in the gastrointestinal microbiome and the host after metronidazole administration are also reviewed. Finally, novel nitroimidazoles and new antibiotic strategies are discussed.
Collapse
Affiliation(s)
- Simon A Dingsdag
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| | - Neil Hunter
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| |
Collapse
|
36
|
Stancil SL, Pearce RE, Tyndale RF, Kearns GL, Vyhlidal CA, Leeder JS, Abdel-Rahman S. Evaluating metronidazole as a novel, safe CYP2A6 phenotyping probe in healthy adults. Br J Clin Pharmacol 2019; 85:960-969. [PMID: 30706508 DOI: 10.1111/bcp.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/18/2023] Open
Abstract
AIMS CYP2A6 is a genetically polymorphic enzyme resulting in differential substrate metabolism and health behaviours. Current phenotyping probes for CYP2A6 exhibit limitations related to procurement (deuterated cotinine), toxicity (coumarin), specificity (caffeine) and age-appropriate administration (nicotine, NIC). In vitro, CYP2A6 selectively forms 2-hydroxymetronidazole (2HM) from metronidazole (MTZ). The purpose of this study was to evaluate MTZ as a CYP2A6 phenotyping probe drug in healthy adults against the well-established method of measuring trans-3-hydroxycotinine (3HC)/cotinine (COT). METHODS A randomized, cross-over, pharmacokinetic study was completed in 16 healthy, nonsmoking adults. Separated by a washout period of at least 2 weeks, MTZ 500 mg and NIC gum 2 mg were administered and plasma was sampled over 48 hours and 8 hours, respectively. Correlations of plasma metabolite/parent ratios (2HM/MTZ; 3HC/COT) were assessed by Pearson coefficient. CYP2A6 genotyping was conducted and incorporated as a variable of plasma ratio response. RESULTS Correlations between the plasma ratio 2HM/MTZ and 3HC/COT were ≥ 0.9 at multiple time points (P < 0.001), demonstrating a wide window during which 2HM/MTZ can be queried post-MTZ dose. CYP2A6 genotype had significant impacts on both MTZ and NIC phenotyping ratios with decreased activity predicted phenotypes demonstrating 2HM/MTZ ratios ≤58% and 3HC/COT ratios ≤56% compared with extensive activity predicted phenotypes at all time points examined in the study (P < 0.05). No adverse events were reported in the MTZ arm while 38% (n = 6) of participants reported mild adverse events in the NIC arm. CONCLUSIONS Metronidazole via 2HM/MTZ performed well as a novel, safe phenotyping probe for CYP2A6 in healthy adults.
Collapse
Affiliation(s)
- Stephani L Stancil
- Division of Adolescent Medicine, Children's Mercy Kansas City, MO, USA.,Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Division of Pharmacology & Toxicology, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, USA
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory L Kearns
- Arkansas Children's Research Institute and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carrie A Vyhlidal
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| |
Collapse
|
37
|
Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe 2019; 55:40-53. [DOI: 10.1016/j.anaerobe.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
|
38
|
Soltani Rad M, Behrouz S, Mohammadtaghi-Nezhad J, Zarenezhad E, Agholi M. Silica-tethered cuprous acetophenone thiosemicarbazone (STCATSC) as a novel hybrid nano-catalyst for highly efficient synthesis of new 1,2,3-triazolyl-based metronidazole hybrid analogues having potent antigiardial activity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mohammad Navid Soltani Rad
- Medicinal Chemistry Research Laboratory, Department of Chemistry; Shiraz University of Technology; Shiraz 71555-313 Iran
| | - Somayeh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry; Shiraz University of Technology; Shiraz 71555-313 Iran
| | - Javad Mohammadtaghi-Nezhad
- Medicinal Chemistry Research Laboratory, Department of Chemistry; Shiraz University of Technology; Shiraz 71555-313 Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, School of Medicine; Fasa University of Medical Sciences; Fasa Iran
| | - Mahmoud Agholi
- Noncommunicable Diseases Research Center, School of Medicine; Fasa University of Medical Sciences; Fasa Iran
| |
Collapse
|
39
|
Pramanik PK, Alam MN, Roy Chowdhury D, Chakraborti T. Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. J Glob Antimicrob Resist 2019; 18:1-11. [PMID: 30685461 DOI: 10.1016/j.jgar.2019.01.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Nowadays, drug resistance in parasites is considered to be one of the foremost concerns in health and disease management. It is interconnected worldwide and undermines the health of millions of people, threatening to grow worse. Unfortunately, it does not receive serious attention from every corner of society. Consequently, drug resistance in parasites is gradually complicating and challenging the treatment of parasitic diseases. In this context, we have dedicated ourselves to review the incidence of drug resistance in the protozoan parasites Plasmodium, Leishmania, Trypanosoma, Entamoeba and Toxoplasma gondii. Moreover, understanding the role of ATP-binding cassette (ABC) transporters in drug resistance is essential in the control of parasitic diseases. Therefore, we also focused on the involvement of ABC transporters in drug resistance, which will be a superior approach to find ways for better regulation of diseases caused by parasitic infections.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Md Nur Alam
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dibyapriya Roy Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
40
|
Abstract
As we learn more and more about the classes of organisms that infect humans, we are discovering that many organisms, including pathogenic organisms, may have a complex relationship with humans in which infection seldom results in the production disease. In some cases, infection may be just one biological event that occurs during a multievent process that develops sequentially, over time, and involves genetic and environmental factors that may vary among individuals. Consequently, the role of infectious organisms in the development of human disease may not meet all of the criteria normally required to determine when an organism can be called the cause of a disease. This chapter reviews the expanding role of infections in the development of human disease. We discuss prion diseases of humans, a fascinating example of an infectious disease-causing agent that is not a living organism. We also discuss the diseases of unknown etiology for which infectious organisms may play a role. In addition, this chapter reviews some of the misconceptions and recurring errors associated with the classification of infectious diseases that have led to misdiagnoses and have impeded our understanding of the role of organisms in the development of human diseases.
Collapse
|
41
|
Lagunas-Rangel FA, Bermúdez-Cruz RM. Epigenetics in the early divergent eukaryotic Giardia duodenalis: An update. Biochimie 2019; 156:123-128. [DOI: 10.1016/j.biochi.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022]
|
42
|
Ordoñez-Quiroz A, Ortega-Pierres MG, Bazán-Tejeda ML, Bermúdez-Cruz RM. DNA damage induced by metronidazole in Giardia duodenalis triggers a DNA homologous recombination response. Exp Parasitol 2018; 194:24-31. [PMID: 30237050 DOI: 10.1016/j.exppara.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/14/2018] [Accepted: 09/15/2018] [Indexed: 01/29/2023]
Abstract
The mechanisms underlying metronidazole (MTZ) resistance in Giardia duodenalis have been associated with decreased activity of the enzymes implicated in its activation including nitroductase-1, thioredoxin reductase and pyruvate-ferredoxin oxidoreductase (PFOR). MTZ activation generates radicals that can form adducts with proteins such as thioredoxin reductase and α- and -β giardins as well as DNA damage resulting in trophozoite's death. The damage induced in DNA requires a straight forward response that may allow parasite survival. Here, we studied changes in histone H2A phosphorylation to evaluate the DNA repair response pathway after induction of double strand break (DSB) by MTZ in Giardia DNA. Our results showed that the DNA repair mechanisms after exposure of Giardia trophozoites to MTZ, involved a homologous recombination pathway. We observed a significant increase in the expression level of proteins GdDMC1B, which carries out Rad51 role in G. duodenalis, and GdMre11, after 12 h of exposure to 3.2 μM MTZ. This increase was concomitant with the generation of DSB in the DNA of trophozoites treated MTZ. Altogether, these results suggest that MTZ-induced DNA damage in Giardia triggers the DNA homologous recombination repair (DHRR) pathway, which may contribute to the parasite survival in the presence of MTZ.
Collapse
Affiliation(s)
- Angel Ordoñez-Quiroz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - M Guadalupe Ortega-Pierres
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - María Luisa Bazán-Tejeda
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - Rosa M Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico.
| |
Collapse
|
43
|
Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol 2018; 3:1063-1073. [PMID: 30127495 PMCID: PMC6787116 DOI: 10.1038/s41564-018-0217-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
Abstract
The dynamics of antimicrobial resistance (AMR) in developing countries are poorly understood, especially in community settings, due to a sparsity of data on AMR prevalence and genetics. We used a combination of phenotyping, genomics and antimicrobial usage data to investigate patterns of AMR amongst atypical enteropathogenic Escherichia coli (aEPEC) strains isolated from children younger than five years old in seven developing countries (four in sub-Saharan Africa and three in South Asia) over a three-year period. We detected high rates of AMR, with 65% of isolates displaying resistance to three or more drug classes. Whole-genome sequencing revealed a diversity of known genetic mechanisms for AMR that accounted for >95% of phenotypic resistance, with comparable rates amongst aEPEC strains associated with diarrhoea or asymptomatic carriage. Genetic determinants of AMR were associated with the geographic location of isolates, not E. coli lineage, and AMR genes were frequently co-located, potentially enabling the acquisition of multi-drug resistance in a single step. Comparison of AMR with antimicrobial usage data showed that the prevalence of resistance to fluoroquinolones and third-generation cephalosporins was correlated with usage, which was higher in South Asia than in Africa. This study provides much-needed insights into the frequency and mechanisms of AMR in intestinal E. coli in children living in community settings in developing countries.
Collapse
Affiliation(s)
- Danielle J Ingle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Myron M Levine
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karen L Kotloff
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Roy M Robins-Browne
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
44
|
Stancil SL, van Haandel L, Abdel-Rahman S, Pearce RE. Development of a UPLC-MS/MS method for quantitation of metronidazole and 2-hydroxy metronidazole in human plasma and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:272-278. [DOI: 10.1016/j.jchromb.2018.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
|
45
|
Tedesco D, Thapa M, Chin CY, Ge Y, Gong M, Li J, Gumber S, Speck P, Elrod EJ, Burd EM, Kitchens WH, Magliocca JF, Adams AB, Weiss DS, Mohamadzadeh M, Grakoui A. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease. Gastroenterology 2018; 154:2178-2193. [PMID: 29454797 PMCID: PMC5985208 DOI: 10.1053/j.gastro.2018.02.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Variants at the ABCB4 or MDR2 locus, which encodes a biliary transport protein, are associated with a spectrum of cholestatic liver diseases. Exacerbation of liver disease has been linked to increased hepatic levels of interleukin (IL) 17, yet the mechanisms of this increase are not understood. We studied mice with disruption of Mdr2 to determine how defects in liver and alteration in the microbiota contribute to production of IL17 by intrahepatic γδ T cells. METHODS We performed studies with Mdr2-/- and littermate FVB/NJ (control) mice. IL17 was measured in serum samples by an enzyme-linked immunosorbent assay. Mice were injected with neutralizing antibodies against the γδ T-cell receptor (TCR; anti-γδ TCR) or mouse IL17A (anti-IL17A). Livers were collected and bacteria were identified in homogenates by culture procedures; TCRγδ+ cells were isolated by flow cytometry. Fecal samples were collected from mice and analyzed by 16S ribosomal DNA sequencing. Cells were stimulated with antibodies or bacteria, and cytokine production was measured. We obtained tissues from 10 patients undergoing liver transplantation for primary sclerosing cholangitis or chronic hepatitis C virus infection. Tissues were analyzed for cytokine production by γδ TCR+ cells. RESULTS Mdr2-/- mice had collagen deposition around hepatic bile ducts and periportal-bridging fibrosis with influx of inflammatory cells and increased serum levels of IL17 compared with control mice. Administration of anti-IL17A reduced hepatic fibrosis. Livers from Mdr2-/- mice had increased numbers of IL17A+ γδTCR+ cells-particularly of IL17A+ Vγ6Jγ1 γδ TCR+ cells. Fecal samples from Mdr2-/- mice were enriched in Lactobacillus, and liver tissues were enriched in Lactobacillus gasseri compared with control mice. Mdr2-/- mice also had increased intestinal permeability. The γδ TCR+ cells isolated from Mdr2-/- livers produced IL17 in response to heat-killed L gasseri. Intraperitoneal injection of control mice with L gasseri led to increased serum levels of IL17 and liver infiltration by inflammatory cells; injection of these mice with anti-γδ TCR reduced serum level of IL17. Intravenous injections of Mdr2-/- mice with anti-γδ TCR reduced fibrosis; liver levels of IL17, and inflammatory cells; and serum levels of IL17. γδTCR+ cells isolated from livers of patients with primary sclerosing cholangitis, but not hepatitis C virus infection, produced IL17. CONCLUSIONS In Mdr2-/- mice, we found development of liver fibrosis and inflammation to require hepatic activation of γδ TCR+ cells and production of IL17 mediated by exposure to L gasseri. This pathway appears to contribute to development of cholestatic liver disease in patients.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Adult
- Aged
- Animals
- Bile Ducts/cytology
- Bile Ducts/immunology
- Bile Ducts/microbiology
- Cells, Cultured
- Cholangitis, Sclerosing/microbiology
- Cholangitis, Sclerosing/pathology
- Cholangitis, Sclerosing/surgery
- Cholestasis/immunology
- Cholestasis/microbiology
- Cholestasis/pathology
- Cholestasis/surgery
- Disease Models, Animal
- End Stage Liver Disease/microbiology
- End Stage Liver Disease/pathology
- End Stage Liver Disease/surgery
- Female
- Gastrointestinal Microbiome
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/surgery
- Hepatitis C, Chronic/virology
- Humans
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/blood
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Intraepithelial Lymphocytes/metabolism
- Lactobacillus gasseri/immunology
- Liver/cytology
- Liver/immunology
- Liver/microbiology
- Liver/pathology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/microbiology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/surgery
- Liver Transplantation
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Receptors, Antigen, T-Cell, gamma-delta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Young Adult
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Dana Tedesco
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Manoj Thapa
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Chui Yoke Chin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory Antibiotic Resistance Center, Atlanta, Georgia
| | - Yong Ge
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Minghao Gong
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jing Li
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Sanjeev Gumber
- Division of Pathology and Laboratory Medicine, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Patrick Speck
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth J Elrod
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Eileen M Burd
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory Antibiotic Resistance Center, Atlanta, Georgia; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - William H Kitchens
- Department of Surgery, Transplant, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph F Magliocca
- Department of Surgery, Transplant, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew B Adams
- Department of Surgery, Transplant, Emory University School of Medicine, Atlanta, Georgia
| | - David S Weiss
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory Antibiotic Resistance Center, Atlanta, Georgia
| | - Mansour Mohamadzadeh
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida; Division of Hepatology, Gastroenterology, and Nutrition; University of Florida, Gainesville, Florida
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
46
|
Abstract
BACKGROUND Giardia intestinalis is microaerophilic diarrhoea-causing protozoan common in countries with suboptimal sanitation. Standard treatment is with nitroimidazoles, but a growing number of refractory cases is being reported. Treatment failure has become increasingly prevalent in travellers who contract giardiasis in Asia. Clinicians are increasingly falling back on second-line and less well-known drugs to treat giardiasis. AIMS To review nitroimidazole-refractory G. intestinalis infection, examine the current efficacy of standard therapeutic agents, consider potential resistance mechanisms which could cause treatment failure and describe the practical aspects of managing this emerging clinical problem. SOURCES A PubMed search was conducted using combinations of the following terms: refractory, Giardia, giardiasis, resistance and treatment. Articles on the pharmacotherapy, drug resistance mechanisms and use of alternative agents in nitroimidazole-refractory giardiasis were reviewed. CONTENT We review the standard drugs for giardiasis, including their efficacy in initial treatment, mode of action and documented in vitro and in vivo drug resistance. We assess the efficacy of alternative drugs in nitroimidazole-refractory disease. Existing data suggest a potential advantage of combination treatment. IMPLICATIONS An optimal treatment strategy for refractory giardiasis has still to be determined, so there is no standard treatment regimen for nitroimidazole-refractory giardiasis. Further work on drug resistance mechanisms and the use of drug combinations in this condition is a priority.
Collapse
|
47
|
Click Chemistry-Facilitated Structural Diversification of Nitrothiazoles, Nitrofurans, and Nitropyrroles Enhances Antimicrobial Activity against Giardia lamblia. Antimicrob Agents Chemother 2017; 61:AAC.02397-16. [PMID: 28396548 DOI: 10.1128/aac.02397-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents.
Collapse
|
48
|
Ang CW, Jarrad AM, Cooper MA, Blaskovich MAT. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J Med Chem 2017; 60:7636-7657. [PMID: 28463485 DOI: 10.1021/acs.jmedchem.7b00143] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Infectious diseases claim millions of lives every year, but with the advent of drug resistance, therapeutic options to treat infections are inadequate. There is now an urgent need to develop new and effective treatments. Nitroimidazoles are a class of antimicrobial drugs that have remarkable broad spectrum activity against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. While nitroimidazoles were discovered in the 1950s, there has been renewed interest in their therapeutic potential, particularly for the treatment of parasitic infections and tuberculosis. In this review, we summarize different classes of nitroimidazoles that have been described in the literature in the past five years, from approved drugs and clinical candidates to examples undergoing preclinical or early stage development. The relatively "nonspecific" mode of action and resistance mechanisms of nitromidazoles are discussed, and contemporary strategies to facilitate nitroimidazole drug development are highlighted.
Collapse
Affiliation(s)
- Chee Wei Ang
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Angie M Jarrad
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Matthew A Cooper
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Mark A T Blaskovich
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| |
Collapse
|
49
|
Affiliation(s)
- J Colt Cowdell
- Mayo School of Graduate Medical Education, Jacksonville, FL
| | - M Caroline Burton
- Division of Hospital Internal Medicine, Mayo Clinic, Jacksonville, FL
| | - Dana Harris
- Division of Community Internal Medicine, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Keri Holmes-Maybank
- Division of Hospital Medicine, General Internal Medicine and Geriatrics, Medical University of South Carolina, Charleston, SC
| | - Brian J Harte
- Department of Hospital Medicine, Cleveland Clinic, Cleveland, OH
| | | |
Collapse
|
50
|
Ansell BRE, Baker L, Emery SJ, McConville MJ, Svärd SG, Gasser RB, Jex AR. Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines. Front Microbiol 2017; 8:398. [PMID: 28367140 PMCID: PMC5355454 DOI: 10.3389/fmicb.2017.00398] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Giardia duodenalis is an intestinal parasite that causes 200-300 million episodes of diarrhoea annually. Metronidazole (Mtz) is a front-line anti-giardial, but treatment failure is common and clinical resistance has been demonstrated. Mtz is thought to be activated within the parasite by oxidoreductase enzymes, and to kill by causing oxidative damage. In G. duodenalis, Mtz resistance involves active and passive mechanisms. Relatively low activity of iron-sulfur binding proteins, namely pyruvate:ferredoxin oxidoreductase (PFOR), ferredoxins, and nitroreductase-1, enable resistant cells to passively avoid Mtz activation. Additionally, low expression of oxygen-detoxification enzymes can allow passive (non-enzymatic) Mtz detoxification via futile redox cycling. In contrast, active resistance mechanisms include complete enzymatic detoxification of the pro-drug by nitroreductase-2 and enhanced repair of oxidized biomolecules via thioredoxin-dependent antioxidant enzymes. Molecular resistance mechanisms may be largely founded on reversible transcriptional changes, as some resistant lines revert to drug sensitivity during drug-free culture in vitro, or passage through the life cycle. To comprehensively characterize these changes, we undertook strand-specific RNA sequencing of three laboratory-derived Mtz-resistant lines, 106-2ID10, 713-M3, and WB-M3, and compared transcription relative to their susceptible parents. Common up-regulated genes encoded variant-specific surface proteins (VSPs), a high cysteine membrane protein, calcium and zinc channels, a Mad-2 cell cycle regulator and a putative fatty acid α-oxidase. Down-regulated genes included nitroreductase-1, putative chromate and quinone reductases, and numerous genes that act proximal to PFOR. Transcriptional changes in 106-2ID10 diverged from those in 713-r and WB-r (r ≤ 0.2), which were more similar to each other (r = 0.47). In 106-2ID10, a nonsense mutation in nitroreductase-1 transcripts could enhance passive resistance whereas increased transcription of nitroreductase-2, and a MATE transmembrane pump system, suggest active drug detoxification and efflux, respectively. By contrast, transcriptional changes in 713-M3 and WB-M3 indicated a higher oxidative stress load, attributed to Mtz- and oxygen-derived radicals, respectively. Quantitative comparisons of orthologous gene transcription between Mtz-resistant G. duodenalis and Trichomonas vaginalis, a closely related parasite, revealed changes in transcripts encoding peroxidases, heat shock proteins, and FMN-binding oxidoreductases, as prominent correlates of resistance. This work provides deep insight into Mtz-resistant G. duodenalis, and illuminates resistance-associated features across parasitic species.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Samantha J. Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala UniversityUppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| |
Collapse
|