1
|
Zhao Z, Zhu J, Zhou L, Sun N, Chang K, Hu X, Hu Y, Ren M, Cheng Y, Xu D, Xin H, Zhang C. Establishment of a hydrodynamic delivery system in ducks. Transgenic Res 2024; 33:35-46. [PMID: 38461212 DOI: 10.1007/s11248-024-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Chronic hepatitis B virus (HBV) poses a significant global health challenge as it can lead to acute or chronic liver disease and hepatocellular carcinoma (HCC). To establish a safety experimental model, a homolog of HBV-duck HBV (DHBV) is often used for HBV research. Hydrodynamic-based gene delivery (HGD) is an efficient method to introduce exogenous genes into the liver, making it suitable for basic research. In this study, a duck HGD system was first constructed by injecting the reporter plasmid pLIVE-SEAP via the ankle vein. The highest expression of SEAP occurred when ducks were injected with 5 µg/mL plasmid pLIVE-SEAP in 10% bodyweight volume of physiological saline for 6 s. To verify the distribution and expression of exogenous genes in multiple tissues, the relative level of foreign gene DNA and β-galactosidase staining of LacZ were evaluated, which showed the plasmids and their products were located mainly in the liver. Additionally, β-galactosidase staining and fluorescence imaging indicated the delivered exogenous genes could be expressed in a short time. Further, the application of the duck HGD model on DHBV treatment was investigated by transferring representative anti-HBV genes IFNα and IFNγ into DHBV-infected ducks. Delivery of plasmids expressing IFNα and IFNγ inhibited DHBV infection and we established a novel efficient HGD method in ducks, which could be useful for drug screening of new genes, mRNAs and proteins for anti-HBV treatment.
Collapse
Affiliation(s)
- Zhanji Zhao
- Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jiabing Zhu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lijian Zhou
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Nan Sun
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Kaile Chang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiaoyue Hu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Institute of Translational Medicine, Jiangxi Medical College,, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yuting Hu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Institute of Translational Medicine, Jiangxi Medical College,, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Mingzhi Ren
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yan Cheng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Derong Xu
- Institute of Translational Medicine, Jiangxi Medical College,, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Hongbo Xin
- Institute of Translational Medicine, Jiangxi Medical College,, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Chunbo Zhang
- Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Ministry of Education, Jiangxi Medical College, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
2
|
Duvoux C, Belli LS, Fung J, Angelico M, Buti M, Coilly A, Cortesi P, Durand F, Féray C, Fondevila C, Lebray P, Martini S, Nevens F, Polak WG, Rizzetto M, Volpes R, Zoulim F, Samuel D, Berenguer M. 2020 position statement and recommendations of the European Liver and Intestine Transplantation Association (ELITA): management of hepatitis B virus-related infection before and after liver transplantation. Aliment Pharmacol Ther 2021; 54:583-605. [PMID: 34287994 DOI: 10.1111/apt.16374] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prophylaxis of HBV recurrence is critical after liver transplantation in HBV patients. Despite new prophylactic schemes, most European LT centres persist on a conservative approach combining hepatitis B immunoglobulin (HBIG) and nucleos(t)ides analogues (NA). AIM This setting prompted the European Liver Intestine Transplantation Association (ELITA) to look for a consensus on the prevention of HBV recurrence. METHODS Based on a 4-round Delphi process, ELITA investigated 16 research questions and established 50 recommendations. RESULTS Prophylaxis should be driven according to 3 simplified risk groups: Low and high virological risk patients, with undetectable and detectable HBV DNA pre-LT, respectively, and special populations (HDV, HCC, poorly adherent patients). In low-risk patients, short-term (4 weeks) combination of third-generation NA+ HBIG, or third generation NA monotherapy can be considered as prophylactic options. In high-risk patients, HBIG can be discontinued once HBV DNA undetectable. Combined therapy for 1 year is advised. HBV-HCC patients should be treated according to their virological risk. In HDV/HBV patients, indefinite dual prophylaxis remains the gold standard. Full withdrawal of HBV prophylaxis following or not HBV vaccination should only be attempted in the setting of clinical trials. Organs from HBsAg+ve donors may be considered after assessment of risks, benefits, and patient consent. They should not be used if HDV is present. In poorly adherent patients, dual long-term prophylaxis is recommended. Budget impact analysis should be taken into account to drive prophylactic regimen. CONCLUSIONS These ELITA recommendations should stimulate a more rational and homogeneous approach to HBV prophylaxis across LT programs.
Collapse
|
3
|
A Global View to HBV Chronic Infection: Evolving Strategies for Diagnosis, Treatment and Prevention in Immunocompetent Individuals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183307. [PMID: 31505743 PMCID: PMC6766235 DOI: 10.3390/ijerph16183307] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B Virus (HBV) is a significant public health challenge. Around 250 million people live with chronic HBV infection. With a global approach to this issue, we focus on new perspective in diagnosis, management and prevention of HBV chronic infection. Precise diagnosis of HBV status is crucial to guide patient management. Although available drugs reduce the risk of liver disease progression, they are not able to definitely eradicate HBV, and new therapeutic options are urgently needed. Thus, prevention of HBV infection is still the most effective strategy to achieve the control of the disease. Key aspects of prevention programs include surveillance of viral hepatitis, screening programs and immunization strategies. In spite of the high success rate of licensed HBV vaccines, a need for improved vaccine persists, especially in order to provide coverage of current non-responders.
Collapse
|
4
|
Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov 2019; 18:827-844. [PMID: 31455905 DOI: 10.1038/s41573-019-0037-0] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a common cause of liver disease globally, with a disproportionately high burden in South-East Asia. Vaccines and nucleoside or nucleotide drugs are available and reduce both new infection rates and the development of liver disease in HBV-positive persons who adhere to long-term suppressive treatment. Although there is still considerable value in optimizing access to virus-suppressing regimens, the scientific and medical communities have embarked on a concerted journey to identify new antiviral drugs and immune interventions aimed at curing infection. The mechanisms and drug targets being explored are diverse; however, the field universally recognizes the importance of addressing the persistence of episomal covalently closed circular DNA, the existence of integrated HBV DNA in the host genome and the large antigen load, particularly of hepatitis B surface antigen. Another major challenge is to reinvigorate the exhausted immune response within the liver microenvironment. Ultimately, combinations of new drugs will be required to cure infection. Here we critically review the recent literature that describes the rationale for curative therapies and the resulting compounds that are being tested in clinical trials for hepatitis B.
Collapse
Affiliation(s)
- Gregory C Fanning
- Janssen Pharmaceuticals, China Research & Development, Shanghai, China.
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, INSERM U1052, Lyon University, Hospices Civils de Lyon, Lyon, France
| | - Jinlin Hou
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
5
|
Zoulim F, Lebossé F, Levrero M. Current treatments for chronic hepatitis B virus infections. Curr Opin Virol 2016; 18:109-16. [PMID: 27318098 DOI: 10.1016/j.coviro.2016.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022]
Abstract
Over 240 million people worldwide are chronically infected with hepatitis B virus (HBV) and although a prophylactic vaccine and effective antiviral therapies are available, no cure exists. Curative regimens are urgently needed because up to one million deaths per year are caused by HBV-related liver cancer and end-stage liver disease. HBV is an hepatotropic virus which belongs to the Hepadnaviridae family and replicates its DNA genome via a reverse transcriptase mechanism. Effective therapies have been developed for chronic hepatitis B (CHB) infection in the last two decades. They rely on the use of interferon alpha and its pegylated formulation, and on nucleos(t)ide analogs that inhibit viral polymerase activity. Their results are discussed in this review as well as future perspectives.
Collapse
Affiliation(s)
- Fabien Zoulim
- Cancer Research Center of Lyon (CRCL), Lyon 69008, France; INSERM, U1052, Lyon 69003, France; University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - Fanny Lebossé
- Cancer Research Center of Lyon (CRCL), Lyon 69008, France; INSERM, U1052, Lyon 69003, France; University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), Lyon 69008, France; INSERM, U1052, Lyon 69003, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France; DMISM and CLNS IIT Sapienza, Sapienza University Rome, 00161 Rome, Italy
| |
Collapse
|
6
|
Kumar R, Pérez-Del-Pulgar S, Testoni B, Lebossé F, Zoulim F. Clinical relevance of the study of hepatitis B virus covalently closed circular DNA. Liver Int 2016; 36 Suppl 1:72-7. [PMID: 26725901 DOI: 10.1111/liv.13001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) remains a public health concern with 240 million people affected worldwide. HBV is an hepadnavirus that replicates its genome in hepatocytes. One of the key steps of the viral life cycle is the formation of cccDNA - covalently closed circular DNA - in the nucleus, the equivalent of a viral mini-chromosome that acts as a template for subsequent virus replication. Current antiviral medications are not effective in eradicating cccDNA, which can persist in the infected liver even in the absence of detectable HBV DNA or HBsAg in the blood. cccDNA cannot be measured in serum, and few surrogate markers have been proposed. Persistent cccDNA has been associated with various clinical events, including viral reactivation induced by immunosuppressive therapies, HBV recurrence after liver transplantation and hepatocellular carcinoma (HCC). cccDNA remains the main target to achieve a cure of HBV infection, thus extensive efforts are being made to develop new antiviral concepts to degrade or silence cccDNA.
Collapse
Affiliation(s)
- Rajneesh Kumar
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS 5286, Lyon, France.,Lyon University, F-69100, Villeurbanne, France
| | - Sofía Pérez-Del-Pulgar
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS 5286, Lyon, France.,Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Barbara Testoni
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS 5286, Lyon, France.,Lyon University, F-69100, Villeurbanne, France
| | - Fanny Lebossé
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS 5286, Lyon, France.,Lyon University, F-69100, Villeurbanne, France.,Hepatology Department, Hospices Civils de Lyon, Lyon, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS 5286, Lyon, France.,Lyon University, F-69100, Villeurbanne, France.,Hepatology Department, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
7
|
Zoulim F, Durantel D. Antiviral therapies and prospects for a cure of chronic hepatitis B. Cold Spring Harb Perspect Med 2015; 5:5/4/a021501. [PMID: 25833942 DOI: 10.1101/cshperspect.a021501] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current therapies of chronic hepatitis B (CHB) remain limited to either pegylated interferon-α (Peg-IFN-α), or one of the five approved nucleoside analog (NA) treatments. Although viral suppression can be achieved in the majority of patients with high-barrier-to-resistance new-generation NAs (i.e., entecavir and tenofovir), HBsAg loss is achieved in only 10% of patients with both classes of drugs after a follow-up of 5 years. Attempts to improve the response by administering two different NAs or a combination of NA and Peg-IFN-α have been unsuccessful. Therefore, there is a renewed interest to investigate a number of steps in the hepatitis B virus (HBV) replication cycle and specific virus-host cell interactions as potential targets for new antivirals. Novel targets and compounds could readily be evaluated using both relevant in vitro and newly developed in vivo models of HBV infection. The addition of one or several new drugs to current regimens should offer the prospect of markedly improving the response to therapy, thus reducing the burden of drug resistance, as well as the incidence of cirrhosis and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - David Durantel
- INSERM U1052, Cancer Research Center of Lyon, University of Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
8
|
Yang HC, Kao JH. Persistence of hepatitis B virus covalently closed circular DNA in hepatocytes: molecular mechanisms and clinical significance. Emerg Microbes Infect 2014; 3:e64. [PMID: 26038757 PMCID: PMC4185362 DOI: 10.1038/emi.2014.64] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 02/06/2023]
Abstract
Covalently closed circular DNA (cccDNA) is the transcriptional template of hepatitis B virus (HBV). Extensive research over the past decades has unveiled the important role of cccDNA in the natural history and antiviral treatment of chronic HBV infection. cccDNA can persist in patients recovering from acute HBV infection for decades. This explains why HBV reactivation occasionally occurs in patients with resolved hepatitis B receiving intensive immunosuppressive agents. In addition, although advances in antiviral treatment dramatically improve the adverse outcomes of chronic hepatitis B (CHB), accumulating evidence demonstrates that current antiviral treatments alone, be they nucleos(t)ide analogs (NAs) or interferon (IFN), fail to cure most CHB patients because of the persistent cccDNA. NA suppresses HBV replication by directly inhibiting viral polymerase, while IFN enhances host immunity against HBV infection. Viral rebound often occurs after discontinuation of antiviral treatment. The loss of cccDNA can be induced by non-cytolytic destruction of cccDNA or immune-mediated killing of infected hepatocytes. It is known that NA has no direct effect on viral transcription or cccDNA stability. Therefore, the long half-life of hepatocytes leads to a very slow decline in cccDNA in patients under antiviral therapy. Novel antiviral agents targeting cccDNA or cccDNA-containing hepatocytes are thus required for curing chronic HBV infection.
Collapse
Affiliation(s)
- Hung-Chih Yang
- Department of Microbiology, National Taiwan University College of Medicine , Taipei 10002, Taiwan, China ; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine , Taipei 10002, Taiwan, China ; Department of Internal Medicine, National Taiwan University Hospital , Taipei 10002, Taiwan, China
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine , Taipei 10002, Taiwan, China ; Department of Internal Medicine, National Taiwan University Hospital , Taipei 10002, Taiwan, China ; Hepatitis Research Center, National Taiwan University Hospital , Taipei 10002, Taiwan, China ; Department of Medical Research, National Taiwan University Hospital , Taipei 10002, Taiwan, China
| |
Collapse
|
9
|
Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 2014; 147:48-64. [PMID: 24768844 DOI: 10.1053/j.gastro.2014.04.030] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/11/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023]
Abstract
Although there has been much research into the pathogenesis and treatment of hepatitis B virus (HBV) and hepatitis D virus (HDV) infections, we still do not completely understand how these pathogens enter hepatocytes. This is because in vitro infection studies have only been performed in primary human hepatocytes. Development of a polarizable, HBV-susceptible human hepatoma cell line and studies of primary hepatocytes from Tupaia belangeri have provided important insights into the viral and cellular factors involved in virus binding and infection. The large envelope (L) protein on the surface of HBV and HDV particles has many different functions and is required for virus entry. The L protein mediates attachment of virions to heparan sulfate proteoglycans on the surface of hepatocytes. The myristoylated N-terminal preS1 domain of the L protein subsequently binds to the sodium taurocholate cotransporting polypeptide (NTCP, encoded by SLC10A1), the recently identified bona fide receptor for HBV and HDV. The receptor functions of NTCP and virus entry are blocked, in vitro and in vivo, by Myrcludex B, a synthetic N-acylated preS1 lipopeptide. Currently, the only agents available to treat chronic HBV infection target the viral polymerase, and no selective therapies are available for HDV infection. It is therefore important to study the therapeutic potential of virus entry inhibitors, especially when combined with strategies to induce immune-mediated killing of infected hepatocytes.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany.
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabien Zoulim
- INSERM Unité 1052, Cancer Research Center of Lyon, Lyon University, Lyon, France
| |
Collapse
|
10
|
Qiu LP, Chen L, Chen KP. Antihepatitis B therapy: a review of current medications and novel small molecule inhibitors. Fundam Clin Pharmacol 2013; 28:364-81. [DOI: 10.1111/fcp.12053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 09/14/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Liang Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Ke-Ping Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| |
Collapse
|
11
|
Hagiwara S, Kudo M, Osaki Y, Matsuo H, Inuzuka T, Matsumoto A, Tanaka E, Sakurai T, Ueshima K, Inoue T, Yada N, Nishida N. Impact of peginterferon alpha-2b and entecavir hydrate combination therapy on persistent viral suppression in patients with chronic hepatitis B. J Med Virol 2013; 85:987-95. [PMID: 23588724 DOI: 10.1002/jmv.23564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2013] [Indexed: 01/12/2023]
Abstract
The ideal approach to treat chronic hepatitis B remains controversial. This pilot study aimed to evaluate the effectiveness of peginterferon (PEG-IFN) α-2b and entecavir hydrate (ETV) as a combination therapy for patients with chronic hepatitis B, particularly in the context of virological response and the reduction of intrahepatic covalently closed circular DNA (cccDNA). A total of 17 patients with hepatitis B virus (HBV) genotype C were enrolled in this study. All subjects were treated with this combination therapy for 48 weeks and observed for an additional 24 weeks. All patients underwent liver biopsy before and after the therapy period. Changes in cccDNA levels and liver histology were monitored between biopsies. Among the 11 patients who exhibited pre-therapy hepatitis B e antigen (HBeAg), 8 (73%) showed evidence of HBeAg seroconversion by the end of the follow-up period. Serum HBV DNA levels decreased by 5.2 and 3.3 log copies/ml (mean) by the end of the therapy and follow-up periods, respectively. In addition, intrahepatic cccDNA decreased significantly to 1.4 log copies/µg (mean) by the end of the therapy period. Among the 11 patients who did not experience viral relapse, only 2 (18%) exhibited high levels of cccDNA (>4.5 log copies/µg) by the end of the treatment period. In contrast, all relapsed subjects exhibited significantly higher levels of cccDNA than subjects who did not relapse (P = 0.027). The combination regimen is a promising approach to treat chronic hepatitis B and may achieve significant reduction in serum HBV DNA and intrahepatic cccDNA. Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zoulim F, Testoni B, Lebossé F. Kinetics of intrahepatic covalently closed circular DNA and serum hepatitis B surface antigen during antiviral therapy for chronic hepatitis B: lessons from experimental and clinical studies. Clin Gastroenterol Hepatol 2013; 11:1011-3. [PMID: 23602824 DOI: 10.1016/j.cgh.2013.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
|
13
|
Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013; 12:447-64. [PMID: 23722347 DOI: 10.1038/nrd4010] [Citation(s) in RCA: 859] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside analogues have been in clinical use for almost 50 years and have become cornerstones of treatment for patients with cancer or viral infections. The approval of several additional drugs over the past decade demonstrates that this family still possesses strong potential. Here, we review new nucleoside analogues and associated compounds that are currently in preclinical or clinical development for the treatment of cancer and viral infections, and that aim to provide increased response rates and reduced side effects. We also highlight the different approaches used in the development of these drugs and the potential of personalized therapy.
Collapse
|
14
|
Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. NATURE REVIEWS. DRUG DISCOVERY 2013. [PMID: 23722347 DOI: 10.1038/nrd4010]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside analogues have been in clinical use for almost 50 years and have become cornerstones of treatment for patients with cancer or viral infections. The approval of several additional drugs over the past decade demonstrates that this family still possesses strong potential. Here, we review new nucleoside analogues and associated compounds that are currently in preclinical or clinical development for the treatment of cancer and viral infections, and that aim to provide increased response rates and reduced side effects. We also highlight the different approaches used in the development of these drugs and the potential of personalized therapy.
Collapse
|
15
|
Saade F, Buronfosse T, Guerret S, Pradat P, Chevallier M, Zoulim F, Jamard C, Cova L. In vivo infectivity of liver extracts after resolution of hepadnaviral infection following therapy associating DNA vaccine and cytokine genes. J Viral Hepat 2013; 20:e56-65. [PMID: 23490390 DOI: 10.1111/jvh.12023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/24/2012] [Indexed: 12/19/2022]
Abstract
DNA-based vaccination appears of promise for chronic hepatitis B immunotherapy, although there is an urgent need to increase its efficacy. In this preclinical study, we evaluated the therapeutic benefit of cytokine (IL-2, IFN-γ) genes co-delivery with DNA vaccine targeting hepadnaviral proteins in the chronic duck hepatitis B virus (DHBV) infection model. Then, we investigated the persistence of replication-competent virus in the livers of apparently resolved animals. DHBV carriers received four injections of plasmids encoding DHBV envelope and core alone or co-delivered with duck IL-2 (DuIL-2) or duck IFN-γ (DuIFN-γ) plasmids. After long-term (8 months) follow-up, viral covalently closed circular (ccc) DNA was analysed in duck necropsy liver samples. Liver homogenates were also tested for in vivo infectivity in neonatal ducklings. Co-delivery of DuIFN-γ resulted in significantly lower mean viremia starting from week 21. Viral cccDNA was undetectable by conventional methods in the livers of 25% and 57% of animals co-immunized with DuIL-2 and DuIFN-γ, respectively. Interestingly, inoculation of liver homogenates from 7 such apparently resolved animals, exhibiting cccDNA undetectable in Southern blotting and DHBV expression undetectable or restricted to few hepatocytes, revealed that three liver homogenates transmitted high-titre viremia (3-5×10(10) vge/mL) to naïve animals. In conclusion, our results indicate that IFN-γ gene co-delivery considerably enhances immunotherapeutic efficacy of DNA vaccine targeting hepadnaviral proteins. Importantly, we also showed that livers exhibiting only minute amounts of hepadnaviral cccDNA could induce extremely high-titre infection, highlighting the caution that should be taken in occult hepatitis B patients to prevent HBV transmission in liver transplantation context.
Collapse
Affiliation(s)
- F Saade
- Université de Lyon, Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abdul F, Ndeboko B, Buronfosse T, Zoulim F, Kann M, Nielsen PE, Cova L. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide. PLoS One 2012; 7:e48721. [PMID: 23173037 PMCID: PMC3500254 DOI: 10.1371/journal.pone.0048721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/28/2012] [Indexed: 12/17/2022] Open
Abstract
Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)8 having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)8 peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)8 caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)8-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses.
Collapse
Affiliation(s)
- Fabien Abdul
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Bénédicte Ndeboko
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Thierry Buronfosse
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- VetAgro-Sup, Marcy l'Etoile, France
| | - Fabien Zoulim
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Michael Kann
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Lucyna Cova
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
17
|
Zoulim F. Are novel combination therapies needed for chronic hepatitis B? Antiviral Res 2012; 96:256-9. [PMID: 22999818 DOI: 10.1016/j.antiviral.2012.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/14/2023]
Abstract
The treatment of chronic hepatitis B remains limited to monotherapy with pegInterferon-alpha or one of 5 different nucleoside analogues (NUC). While viral suppression can be achieved in approximately 95% of patients with new-generation NUCs, the rate of HBeAg seroconversion ranges from only 20% with NUCs to 30% with pegInterferon-alpha. HBsAg loss is achieved in only 10% of patients with both classes of drugs after a follow-up of 5years. Attempts to improve the response by administering two different NUCs or a combination of NUC and pegInterferon-alpha have been unsuccessful. This situation has led researchers to investigate a number of steps in the HBV replication cycle as potential targets for new antiviral drugs. Novel targets and compounds could readily be evaluated in in vitro and in vivo models of HBV infection. The addition of one or more new drugs to the current regimen should offer the prospect of markedly improving the response to therapy, reducing the future burden of drug resistance, cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM U1052, UMR CNRS 5268, Cancer Research Center of Lyon, F-69003 Lyon, France.
| |
Collapse
|
18
|
Khawaja G, Buronfosse T, Jamard C, Abdul F, Guerret S, Zoulim F, Luxembourg A, Hannaman D, Evans CF, Hartmann D, Cova L. In vivo electroporation improves therapeutic potency of a DNA vaccine targeting hepadnaviral proteins. Virology 2012; 433:192-202. [PMID: 22921316 DOI: 10.1016/j.virol.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Chronic Disease
- DNA, Circular/genetics
- DNA, Circular/immunology
- Disease Models, Animal
- Ducks
- Electroporation
- Epitopes
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Immune Tolerance
- Immunity, Humoral
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/veterinary
- Viremia/virology
Collapse
|
19
|
Abstract
Chronic HBV infection remains a leading cause of serious liver disease and hepatocellular carcinoma in spite of the existence of an effective preventive vaccine. Although the actual antiviral treatments have greatly improved, they only rarely clear viral infection. In this regard, therapeutic DNA vaccination appears to have great promise to stimulate and restore the impaired immune responses in chronic HBV carriers. This review examines preclinical studies of preventive and therapeutic DNA vaccines in different animal models (mouse, woodchuck and duck) and the first clinical studies in chronically infected patients. We also focused on different approaches aimed at enhancing the effectiveness of DNA vaccines such as combination therapy with antiviral drugs and in vivo DNA electroporation.
Collapse
Affiliation(s)
- Lucyna Cova
- Université Claude Bernard Lyon 1, Inserm U1052, CRCL team 15, 151 cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
20
|
Yasunaka T, Takaki A, Yagi T, Iwasaki Y, Sadamori H, Koike K, Hirohata S, Tatsukawa M, Kawai D, Shiraha H, Miyake Y, Ikeda F, Kobashi H, Matsuda H, Shinoura S, Yoshida R, Satoh D, Utsumi M, Onishi T, Yamamoto K. Serum hepatitis B virus DNA before liver transplantation correlates with HBV reinfection rate even under successful low-dose hepatitis B immunoglobulin prophylaxis. Hepatol Int 2011; 5:918-926. [PMID: 21484119 PMCID: PMC3215874 DOI: 10.1007/s12072-011-9265-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/28/2011] [Indexed: 12/30/2022]
Abstract
PURPOSE The combination of hepatitis B immunoglobulin (HBIg) and nucleos(t)ide analogues has been accepted as the best treatment to control hepatitis B recurrence after orthotopic liver transplantation (OLT). However, the optimal dose of HBIg remains unclear. We have previously reported that high-dose HBIg in the early period followed by low-dose HBIg with nucleos(t)ide analogues offers reliable and cost-effective control of hepatitis B recurrence. The aim of this study was to investigate intrahepatic hepatitis B virus (HBV) reinfection status with our clinically successful protocol. METHODS We quantified levels of intrahepatic HBV covalently closed circular (ccc) deoxyribonucleic acid (DNA) and serum hepatitis B core-related antigen (HBcrAg), a new serological marker that can estimate intrahepatic cccDNA levels. Nucleos(t)ide analogues were administered in all cases. RESULTS No patients showed recurrence of hepatitis B surface antigen (HBsAg) or HBV-DNA. However, HBV, cccDNA, and HBcrAg were positive in 57% and 48% of patients after OLT, respectively. Pre-OLT serum HBV-DNA and HBcrAg levels correlated linearly with post-OLT cccDNA levels (r = 0.534, P < 0.05, and r = 0.634, P < 0.05, respectively). High serum HBV-DNA and HBcrAg levels, particularly with >3 log10 copies/mL and >4 log10 IU/mL, respectively, at the time of OLT, were associated with high levels of post-OLT cccDNA. Even with our successful protocol, nearly half of patients showed HBV reinfection. CONCLUSIONS Patients with high serum HBV-DNA and HBcrAg levels before OLT (particularly >3 log10 copies/mL and >4 log10 IU/mL, respectively) should be followed with care for HBV recurrence.
Collapse
Affiliation(s)
- Tetsuya Yasunaka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Hiroshi Sadamori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuko Koike
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Hirohata
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masashi Tatsukawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Kawai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Miyake
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fusao Ikeda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruhiko Kobashi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Matsuda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Susumu Shinoura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Satoh
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masashi Utsumi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teppei Onishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
|
22
|
Affiliation(s)
- Jonas J. Forsman
- Laboratory of Organic Chemistry, Åbo Akademi University, FI-20500 Åbo, Finland
| | - Reko Leino
- Laboratory of Organic Chemistry, Åbo Akademi University, FI-20500 Åbo, Finland
| |
Collapse
|
23
|
Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology 2009; 137:1593-608.e1-2. [PMID: 19737565 DOI: 10.1053/j.gastro.2009.08.063] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 02/07/2023]
Abstract
Patients with chronic hepatitis B (CHB) can be successfully treated using nucleos(t)ide analogs (NA), but drug-resistant hepatitis B virus (HBV) mutants frequently arise, leading to treatment failure and progression to liver disease. There has been much research into the mechanisms of resistance to NA and selection of these mutants. Five NA have been approved by the US Food and Drug Administration for treatment of CHB; it is unlikely that any more NA will be developed in the near future, so it is important to better understand mechanisms of cross-resistance (when a mutation that mediates resistance to one NA also confers resistance to another) and design more effective therapeutic strategies for these 5 agents. The genes that encode the polymerase and envelope proteins of HBV overlap, so resistance mutations in polymerase usually affect the hepatitis B surface antigen; these alterations affect infectivity, vaccine efficacy, pathogenesis of liver disease, and transmission throughout the population. Associations between HBV genotype and resistance phenotype have allowed cross-resistance profiles to be determined for many commonly detected mutants, so genotyping assays can be used to adapt therapy. Patients that experience virologic breakthrough or partial response to their primary therapy can often be successfully treated with a second NA, if this drug is given at early stages of these events. However, best strategies for preventing NA resistance include first-line use of the most potent antivirals with a high barrier to resistance. It is important to continue basic research into HBV replication and pathogenic mechanisms to identify new therapeutic targets, develop novel antiviral agents, design combination therapies that prevent drug resistance, and decrease the incidence of complications of CHB.
Collapse
|
24
|
Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009; 51:581-92. [PMID: 19616338 DOI: 10.1016/j.jhep.2009.05.022] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The template of hepatitis B virus (HBV) transcription, the covalently closed circular DNA (cccDNA), plays a key role in the life cycle of the virus and permits the persistence of infection. Novel molecular techniques have opened new possibilities to investigate the organization and the activity of the cccDNA minichromosome in vivo, and recent advances have started to shed light on the complexity of the mechanisms controlling cccDNA function. Nuclear cccDNA accumulates in hepatocyte nuclei as a stable minichromosome organized by histone and non-histone viral and cellular proteins. Identification of the molecular mechanisms regulating cccDNA stability and its transcriptional activity at the RNA, DNA and epigenetic levels in the course of chronic hepatitis B (CH-B) infection may reveal new potential therapeutic targets for anti-HBV drugs and hence assist in the design of strategies aimed at silencing and eventually depleting the cccDNA reservoir.
Collapse
Affiliation(s)
- Massimo Levrero
- Department of Internal Medicine, Sapienza University of Rome, Policlinico Umberto I, 0061 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Thermet A, Buronfosse T, Werle-Lapostolle B, Chevallier M, Pradat P, Trepo C, Zoulim F, Cova L. DNA vaccination in combination or not with lamivudine treatment breaks humoral immune tolerance and enhances cccDNA clearance in the duck model of chronic hepatitis B virus infection. J Gen Virol 2008; 89:1192-1201. [PMID: 18420797 DOI: 10.1099/vir.0.83583-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study used a duck hepatitis B virus (DHBV) model to evaluate whether a novel DNA vaccination protocol alone or associated with antiviral (lamivudine) treatment was able to clear the intrahepatic covalently closed, circular viral DNA (cccDNA) pool responsible for persistence of infection. DHBV carriers received DNA vaccine (on weeks 6, 10, 13, 14, 28 and 35) targeting the large envelope and/or core proteins alone or combined with lamivudine treatment (on weeks 1-8) or lamivudine monotherapy. After 10 months of follow-up, a dramatic decrease in viraemia and liver DHBV cccDNA (below 0.08 cccDNA copies per cell) was observed in 9/30 ducks (30 %) receiving DNA mono- or combination therapy, compared with 0/12 (0 %) from lamivudine monotherapy or the control groups, suggesting a significant antiviral effect of DNA immunization. However, association with the drug did not significantly improve DHBV DNA vaccine efficacy (33 % cccDNA clearance for the combination vs 27 % for DNA monotherapy), probably due to the low antiviral potency of lamivudine in the duck model. Seroconversion to anti-preS was observed in 6/9 (67 %) ducks showing cccDNA clearance, compared with 1/28 (3.6 %) without clearance, suggesting a significant correlation (P<0.001) between humoral response restoration and cccDNA elimination. Importantly, an early (weeks 10-12) drop in viraemia was observed in seroconverted animals, and virus replication did not rebound following the cessation of immunotherapy, indicating a sustained effect. This study provides the first evidence that therapeutic DNA vaccination is able to enhance hepadnaviral cccDNA clearance, which is tightly associated with a break in humoral immune tolerance. These results also highlight the importance of antiviral drug potency and an effective DNA immunization protocol for the design of therapeutic vaccines against chronic hepatitis B.
Collapse
Affiliation(s)
- Alexandre Thermet
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Thierry Buronfosse
- Ecole Nationale Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | | | | | - Pierre Pradat
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France
| | - Christian Trepo
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Fabien Zoulim
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Lucyna Cova
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| |
Collapse
|
26
|
Férir G, Kaptein S, Neyts J, De Clercq E. Antiviral treatment of chronic hepatitis B virus infections: the past, the present and the future. Rev Med Virol 2008; 18:19-34. [PMID: 17966115 DOI: 10.1002/rmv.554] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A decade ago, standard therapy against chronic hepatitis B virus infections only consisted of lamivudine or IFN-alpha. Treatment with lamivudine and IFN has been compounded by, respectively, the emergence of drug-resistant virus strains and the appearance of serious side effects. In the last 10 years, hepatitis B treatment has made much progress. Several treatments are now licensed for the treatment of patients with chronic hepatitis B and others are under development. Here, we provide an overview of the potential and mode of action of anti-HBV agents that are currently available, and/or may become available in the near future. Foremost among these newer compounds are adefovir dipivoxil, entecavir and telbivudine.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | | | | | | |
Collapse
|
27
|
Fournier C, Zoulim F. Antiviral therapy of chronic hepatitis B: prevention of drug resistance. Clin Liver Dis 2007; 11:869-92, ix. [PMID: 17981233 DOI: 10.1016/j.cld.2007.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emergence of viral resistance during treatment is becoming an important clinical issue for hepatitis B virus (HBV) antiviral therapy. Considerable progress has been achieved in the efficacy of treatment, with the development of new drugs that allow a sustained suppression of HBV replication, or at least maintain the viral load below a clinically relevant threshold. Although most drugs currently registered for the treatment of chronic hepatitis B are effective in suppressing viral load, long-term therapy is required to avoid viral reactivation and progression of liver disease. Because of the variability of the HBV genome, such long-term treatments are associated with the emergence of resistant viral strains, which may compromise the initial clinical benefit of the treatment.
Collapse
Affiliation(s)
- Claire Fournier
- Hospices Civils de Lyon, Hôtel Dieu, Service d'hépato-gastroentérologie, 69002 Lyon, France
| | | |
Collapse
|
28
|
Rizzetto M, Zoulim F. Viral Hepatitis. TEXTBOOK OF HEPATOLOGY 2007:819-956. [DOI: 10.1002/9780470691861.ch9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Wursthorn K, Lutgehetmann M, Dandri M, Volz T, Buggisch P, Zollner B, Longerich T, Schirmacher P, Metzler F, Zankel M, Fischer C, Currie G, Brosgart C, Petersen J. Peginterferon alpha-2b plus adefovir induce strong cccDNA decline and HBsAg reduction in patients with chronic hepatitis B. Hepatology 2006; 44:675-84. [PMID: 16941693 DOI: 10.1002/hep.21282] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is responsible for persistent infection of hepatocytes. The aim of this study was to determine changes in intrahepatic cccDNA in patients with chronic hepatitis B (CH-B) during 48 weeks of antiviral therapy and its correlation to virological, biochemical, and histological parameters. Twenty-six HBsAg-positive CH-B patients received combination treatment with pegylated interferon alpha-2b (peg-IFN) and adefovir dipivoxil (ADV) for 48 weeks. Paired liver biopsies from before and at the end of treatment were analyzed for intrahepatic HBV-DNA. Median serum HBV-DNA had decreased by -4.9 log10 copies/mL at the end of treatment and was undetectable in 13 individuals (54%). Median intrahepatic total HBV-DNA and cccDNA had decreased by -2.2 and -2.4 log10, respectively. Changes in intracellular HBV-DNA positively correlated with HBsAg serum reduction and were accompanied by a high number of serological responders. Eight of 15 HBeAg-positive patients lost HBeAg, and five developed anti-HBe antibodies during treatment. These eight patients exhibited lower cccDNA levels before and at the end of therapy than did patients without HBeAg loss. Four patients developed anti-HBs antibodies. ALT normalized in 11 patients. The number of HBs-antigen- and HBc-antigen-positive hepatocytes was significantly lower after treatment, suggesting the involvement of cytolytic mechanisms. In conclusion, combination therapy with peg-IFN and ADV led to marked decreases in serum HBV-DNA and intrahepatic cccDNA, which was significantly correlated with reduced HBsAg.
Collapse
Affiliation(s)
- Karsten Wursthorn
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zoulim F, Lucifora J. Hepatitis B virus drug resistance: mechanism and clinical implications for the prevention of treatment failure. Future Virol 2006. [DOI: 10.2217/17460794.1.3.361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide. Recently, the research efforts to identify new inhibitors enabled the development of antiviral agents to treat patients chronically infected by HBV. In clinical practice, the use of nucleoside analogs, which inhibit viral polymerase activity, induces suppression of viral replication accompanied by an improvement in biochemical and histological conditions in most patients. However, many clinical studies revealed the emergence of drug-resistant mutants during extended treatment. This review focuses on the mechanism of HBV drug-resistant mutant selection and on the clinical implications of HBV drug resistance for the prevention of treatment failure.
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM Unit 271, 151 cours Albert Thomas, 69003 Lyon, France
| | - Julie Lucifora
- INSERM Unit 271, 151 cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
31
|
Jacquard AC, Brunelle MN, Pichoud C, Durantel D, Carrouée-Durantel S, Trepo C, Zoulim F. In vitro characterization of the anti-hepatitis B virus activity and cross-resistance profile of 2',3'-dideoxy-3'-fluoroguanosine. Antimicrob Agents Chemother 2006; 50:955-61. [PMID: 16495257 PMCID: PMC1426422 DOI: 10.1128/aac.50.3.955-961.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fluorinated guanosine analog 2',3'-dideoxy-3'-fluoroguanosine (FLG) was shown to inhibit wild-type (wt) hepatitis B virus (HBV) replication in a human hepatoma cell line permanently expressing HBV. Experiments performed in the duck model of HBV infection also showed its in vivo antiviral activity. In this study, we investigated the mechanism of inhibition of FLG on HBV replication and its profile of antiviral activity against different HBV or duck hepatitis B virus (DHBV) drug-resistant mutants. We found that FLG-triphosphate inhibits weakly the priming of the reverse transcription compared to adefovir-diphosphate in a cell-free system assay allowing the expression of an enzymatically active DHBV reverse transcriptase. It inhibits more potently wt DHBV minus-strand DNA synthesis compared to lamivudine-triphosphate and shows a similar activity compared to adefovir-diphosphate. FLG-triphosphate was most likely a competitive inhibitor of dGTP incorporation and a DNA chain terminator. In Huh7 cells transiently transfected with different HBV constructs, FLG inhibited similarly the replication of wt, lamivudine-resistant, adefovir-resistant, and lamivudine-plus-adefovir-resistant HBV mutants. These results were consistent with those obtained in the DHBV polymerase assay using the same drug-resistant polymerase mutants. In conclusion, our data provide new insights in the mechanism of action of FLG-triphosphate on HBV replication and demonstrate its inhibitory activity on drug-resistant mutant reverse transcriptases in vitro. Furthermore, our results provide the rationale for further clinical evaluation of FLG in the treatment of drug-resistant virus infection and in the setting of combination therapy to prevent or delay drug resistance.
Collapse
Affiliation(s)
- A-C Jacquard
- INSERM U271, 151 Cours Albert Thomas, 69424 Lyon cedex 03, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Durantel D, Brunelle MN, Gros E, Carrouée-Durantel S, Pichoud C, Villet S, Trepo C, Zoulim F. Resistance of human hepatitis B virus to reverse transcriptase inhibitors: from genotypic to phenotypic testing. J Clin Virol 2006; 34 Suppl 1:S34-43. [PMID: 16461221 DOI: 10.1016/s1386-6532(05)80008-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The treatment of HBV infected patients with analogues of nucleos(t)ides, including lamivudine and adefovir dipivoxil, has significantly increased the rate of anti-HBe seroconversion and therefore reduced the impact of chronic hepatitis B (CHB) on liver disease. Altogether, these antivirals have offered novel options for the treatment of patients who did not respond to previous therapy with interferon alpha, the only available treatment against CHB until 1998. However, therapies using analogues of nucleos(t)ides have been confronted with viral resistances which are often associated to with worsening of liver disease. Drug resistance is conferred by the appearance of one or several mutations within the HBV polymerase gene. These mutations confer to the mutant viral population a phenotypic advantage over the wild-type pretherapeutic viral quasispecies, as they induce a reduction of drug susceptibility of mutant strains in vivo. This reduction of drug susceptibility can be as well measured in vitro, i.e in cell culture, using phenotypic assays. The detection of these mutations has become of crucial importance to better adapt clinical option to the virological status of the patient. Genotypic and more recently phenotypic assays have been developed and both assays can be used for drug resistance testing. Genotypic assay gives information about already characterized mutations associated with viral resistance, while phenotypic testing measures the overall drug susceptibility of patient-derived viral strains in cell culture. These assays are described and their potential use in the clinical setting is discussed.
Collapse
Affiliation(s)
- David Durantel
- INSERM Unit 271, 151 Cours Albert Thomas, 69424 Lyon Cedex 03, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The management of chronic hepatitis B (CHB) has improved dramatically over the last decade with the development of new drugs such as lamivudine and adefovir dipivoxil, in addition to the now standard interferon (IFN)-alpha therapy. These new drugs can achieve a significant reduction or inhibit replication of hepatitis B virus (HBV) DNA during therapy. However, in the majority of patients, particularly in those who are hepatitis B e antigen (HBeAg)-negative, the sustained off-therapy suppression of HBV DNA is rare. For this reason, several new antiviral and immunomodulatory agents are currently being evaluated. Among the immunomodulatory agents, pegylated IFNalpha (peginterferon-alpha) has been shown to be more effective for HBeAg-positive CHB than either lamivudine or standard IFNalpha monotherapy, particularly in those patients infected by HBV genotypes A and B. The new antivirals entecavir, tenofovir disoproxil fumarate and telbivudine exhibit a more potent viral inhibitory effect than the currently approved drugs (IFNs, lamivudine and adefovir dipivoxil). However, the emergence of viral resistance has been witnessed and this could be one of the major limitations to the clinical use of these new drugs, particularly during prolonged therapy. In HBeAg-negative patients it is more and more common for oral antiviral therapy to be administered for prolonged periods, as the sustained off-therapy response rates of short-term therapy are very low. Different studies are currently evaluating combination therapy, using lamivudine with adefovir dipivoxil or peginterferon-alpha with lamivudine; the preliminary results show virological responses no better than those achieved by monotherapy. However, as combination therapy is associated with a low likelihood of developing HBV drug resistance, this could result in a higher virological response during prolonged therapy. In the near future the most realistic therapeutic option for the majority of patients with CHB will be long-term use of these new, more potent antiviral drugs, if they can achieve good safety profiles while maintaining low resistance rates at affordable costs.
Collapse
Affiliation(s)
- Maria Buti
- Liver Unit, Hospital General Universitari Vall d'Hebron, Barcelona, Spain.
| | | |
Collapse
|
34
|
Brunelle MN, Jacquard AC, Pichoud C, Durantel D, Carrouée-Durantel S, Villeneuve JP, Trépo C, Zoulim F. Susceptibility to antivirals of a human HBV strain with mutations conferring resistance to both lamivudine and adefovir. Hepatology 2005; 41:1391-8. [PMID: 15915463 DOI: 10.1002/hep.20723] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mutations within the hepatitis B virus (HBV) polymerase gene conferring drug-resistance are selected during prolonged lamivudine (3TC) or adefovir dipivoxil (ADV) treatment. Because there is no other approved drug against HBV, treatments with 3TC or ADV are used either sequentially or in addition, depending on treatment response or failure. Considering the use of de novo or add-on 3TC+ADV bitherapy, we investigated the possibility of the emergence of an HBV strain harboring polymerase mutations conferring resistance to both 3TC (rtL180M+M204V) and ADV (rtN236T). We constructed the L180M+M204V+N236T mutant and determined its replication capacity and its susceptibility to different nucleos(t)ide analogs in transiently transfected hepatoma cell lines. The triple mutant replicates its genome in vitro, but less efficiently than either the wild-type (wt) HBV or L180M+M204V and N236T mutants. Phenotypic assays indicated that the L180M+M204V+N236T mutant is resistant to pyrimidine analogs (3TC, -FTC, beta-L-FD4C, L-FMAU). Compared with wt HBV, this mutant displays a 6-fold decreased susceptibility to ADV and entecavir and a 4-fold decreased susceptibility to tenofovir. Interferon alfa inhibited equally the replication of wt and L180M+M204V+N236T HBV. In conclusion, the combination of rtL180M+M204V and rtN236T mutations impairs HBV replication and confers resistance to both 3TC and ADV in vitro. These results suggest that the emergence of the triple mutant may be delayed and associated with viral resistance in patients treated with 3TC+ADV. However, other nucleos(t)ide analogs in development showed an antiviral activity against this multiresistant strain in vitro. This provides a rationale for the clinical evaluation of de novo combination therapies.
Collapse
Affiliation(s)
- Marie-Noëlle Brunelle
- INSERM U271, Laboratoire des virus hépatiques et pathologies associées, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zoulim F. Antiviral therapy of chronic hepatitis B: can we clear the virus and prevent drug resistance? Antivir Chem Chemother 2005; 15:299-305. [PMID: 15646643 DOI: 10.1177/095632020401500602] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antiviral therapy of chronic HBV infection remains a clinical challenge. Once this infection has been-established, the viral genome persists for life, either as an integrated genome or as episomal covalently closed circular DNA (cccDNA). The latter is the source of renewed viral replication in case of immune depression or after antiviral drug withdrawal. The mechanisms of clearance of infected cells involve CD8+ cell-mediated cytolytic and non-cytolytic pathways. Antiviral therapy, using nucleoside analogues that inhibit the viral polymerase, induces a slow depletion of intrahepatic cccDNA. The persistence of low-grade viral replication under antiviral therapy may then lead to the selection of drug-resistant mutants. New assays have been developed to study the functional consequences of these polymerase mutations in terms of replication capacity and drug susceptibility. Together with the development of new HBV polymerase inhibitors and novel immunostimulatory approaches, this should lead to the design and evaluation of rational treatment combinations for a better control of viral replication and prevention of drug resistance.
Collapse
|
36
|
Zoulim F. Combination of nucleoside analogues in the treatment of chronic hepatitis B virus infection: lesson from experimental models. J Antimicrob Chemother 2005; 55:608-11. [PMID: 15814602 DOI: 10.1093/jac/dki095] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Owing to the persistence of hepatitis B virus (HBV) and the selection of drug-resistant mutants, a new concept of antiviral therapy for chronic hepatitis B relies on the combination of nucleoside analogues. In experimental models of HBV infection, several key points concerning these combinations were addressed. (i) Is it possible to achieve a synergic antiviral effect with polymerase inhibitors? (ii) Is it possible to impact on intracellular viral covalently closed circular DNA? (iii) What is the impact of the cross-resistance patterns of the different nucleoside analogues? (iv) What is the effect of viral load suppression on the restoration of specific antiviral cellular responses? The clinical impact of these key issues is discussed in the perspective of new clinical trials.
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM U271, 151 Cours Albert Thomas, 69003 Lyon, France.
| |
Collapse
|
37
|
Affiliation(s)
- Fabien Zoulim
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France.
| |
Collapse
|
38
|
Robaczewska M, Narayan R, Seigneres B, Schorr O, Thermet A, Podhajska AJ, Trepo C, Zoulim F, Nielsen PE, Cova L. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA). J Hepatol 2005; 42:180-7. [PMID: 15664242 DOI: 10.1016/j.jhep.2004.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/17/2004] [Accepted: 10/04/2004] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT) and to compare their efficacy with phosphorothioate oligodeoxynucleotides (S-ODNs). METHODS The effect of two partly overlapping PNAs targeting epsilon and of analogous S-ODNs was tested in cell-free transcription and translation system for DHBV RT expression. In addition their antiviral effect was investigated in primary duck hepatocytes (PDH). RESULTS Both PNAs reproducibly inhibited DHBV RT in a dose-dependent manner with IC(50) of 10nM, whereas up to 600-fold higher concentration of S-ODNs was required for similar inhibition. The PNA targeting the bulge and upper stem of epsilon appeared as more efficient RT inhibitor than the PNA targeting only the bulge. Importantly, the inhibition was highly sequence-specific since double-mismatched PNA had no effect on the RT reaction. Moreover, in PDH the PNA coupled to Arg(7) cationic delivery peptide decreased DHBV replication. CONCLUSIONS We provide the first evidence that PNAs targeting the bulge and upper stem of epsilon can efficiently and in a sequence-specific manner inhibit DHBV RT.
Collapse
|
39
|
Murakami E, Ray AS, Schinazi RF, Anderson KS. Investigating the effects of stereochemistry on incorporation and removal of 5-fluorocytidine analogs by mitochondrial DNA polymerase gamma: comparison of d- and l-D4FC-TP. Antiviral Res 2004; 62:57-64. [PMID: 15026203 DOI: 10.1016/j.antiviral.2003.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 12/10/2003] [Indexed: 11/24/2022]
Abstract
Enantiomers of beta-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D/L-D4FC) are nucleoside analog reverse transcriptase inhibitors (NRTIs) currently under investigation as antiviral agents. One of the major problems of NRTIs is toxicity to mitochondria. It has been shown that mitochondrial toxicity of NRTIs can correlate with incorporation and removal of these compounds by mitochondrial DNA polymerase (Pol gamma). Mechanistic studies have shown that, if activated, NRTIs are incorporated more efficiently by HIV-1 reverse transcriptase (RT) and less efficiently by Pol gamma, the corresponding nucleosides are considered to be more selective. In the present study, in order to predict potential DNA Pol gamma-related mitochondrial toxicity of D- and L-D4FC, the incorporation and removal of the monophosphate form of these compounds by Pol gamma were studied using transient kinetic methods. Our cell-free results showed that Pol gamma incorporated the natural D-isomer significantly more efficiently than the unnatural L-isomer. However, the removal rates of these enantiomers from the chain-terminated primers were almost identical. While these results suggest that D-D4FC may present more mitochondrial toxicity than L-D4FC in cell-free assays, we have previously shown that HIV-1 RT prefers D-D4FC-TP as a substrate over the L-isomer, particularly in the case of mutant forms of RT associated with nucleoside drug resistance such as M184V. Since the effectiveness of NRTIs is a balance between efficiency of incorporation by wild-type and drug-resistant forms of HIV-1 RT and mitochondrial toxicity, our kinetic results suggest that both enantiomers may show promise as potential therapeutics.
Collapse
Affiliation(s)
- Eisuke Murakami
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
40
|
Abstract
To summarize, the future of chronic hepatitis B therapy seems to be the combination of different drugs. Ideally, the optimal drugs to combine would meet the following criteria: they should be orally applicable, they should have an excellent safety profile and the duration of therapy should limited. Currently, the drugs most likely to fulfill these criteria are the nucleoside analogs.
Collapse
Affiliation(s)
- Maria Buti
- Liver Unit, Hospital General Universitari Vall d'Hebron, Paseo Valle de Hebron 119, Barcelona 08035, Spain.
| | | |
Collapse
|
41
|
Lam W, Li Y, Liou JY, Dutschman GE, Cheng YC. Reverse transcriptase activity of hepatitis B virus (HBV) DNA polymerase within core capsid: interaction with deoxynucleoside triphosphates and anti-HBV L-deoxynucleoside analog triphosphates. Mol Pharmacol 2004; 65:400-6. [PMID: 14742682 DOI: 10.1124/mol.65.2.400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of L(-)SddC [beta-L-2',3'-dideoxy-3'-thiacytidine (lamivudine, 3TC)] for the treatment of Herpes B virus (HBV) infection is hindered by the emergence of drug-resistance associated with the L526M, L550V, and L526M/M550V mutations of the viral DNA polymerase (DP). The interactions of the anti-HBV compounds 2',3'-dideoxy-2',3'-didehydro-beta-L(-)-5-fluorode-oxycytidine and 2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil triphosphate with HBV DP and its L(-)SddC-associated mutants have not been studied. The e antigen-negative variant of HBV associated with the G1896A mutation in the precore region has a high prevalence. Its effect on HBV DP is unclear. Because HBV DNA synthesis occurs in the nucleocapsid, we examined the kinetics of the reverse transcriptase activity from wild-type (wt) and mutated DPs with the wt or G1896A-mutated RNA template in the nucleocapsid. The effects of this template mutation on the activities of these L-nucleoside triphosphates were also examined. Results indicated that these DP mutations increased the Km values of deoxy-NTPs and decreased the efficiencies (Vmax/Km) of DPs. The additional L526M mutation increased the efficiency of the M550V-mutated DP but no more than that of the L526M-mutated DP. The G1896A mutation had impacts on the interactions between different DPs and deoxy-NTPs, except dCTP. It also had different impacts on the actions of the L-nucleoside triphosphates toward DPs. The L526M and M550V mutations caused a greater decrease in the Vmax using the wt RNA template compared with the G1896A-mutated template. The L526M, M550V, and L526M/M550V mutations caused varying degrees of resistance to the different M-nucleoside triphosphates.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
42
|
Seignères B, Martin P, Werle B, Schorr O, Jamard C, Rimsky L, Trépo C, Zoulim F. Effects of pyrimidine and purine analog combinations in the duck hepatitis B virus infection model. Antimicrob Agents Chemother 2003; 47:1842-52. [PMID: 12760857 PMCID: PMC155836 DOI: 10.1128/aac.47.6.1842-1852.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To design new strategies of antiviral therapy for chronic hepatitis B, we have evaluated the antiviral activity of the combination of amdoxovir (DAPD), emtricitabine [(-)FTC], and clevudine (L-FMAU) in the duck hepatitis B virus (DHBV) model. Using their triphosphate (TP) derivatives in a cell-free system expressing a wild-type active DHBV reverse transcriptase (RT), the three dual combinations exhibited a greater additive inhibitory effect on viral minus-strand DNA synthesis than the single drugs, according to the Bliss independence model. Both dual combinations with DAPD TP were the most efficient while the triple combination increased the inhibitory effect on the DHBV RT activity in comparison with the dual association, however, without additive effect. Postinoculation treatment of experimentally infected primary duck hepatocytes showed that dual and triple combinations potently inhibited viral DNA synthesis during treatment but did not inhibit the reinitiation of viral DNA synthesis after treatment cessation. Preinoculation treatment with the same combinations exhibited antiviral effects on intracellular viral DNA replication, but it was unable to prevent the initial covalently closed circular DNA (cccDNA) formation. Short-term in vivo treatment in acutely infected ducklings showed that the dual combinations were more-potent inhibitors of virus production than the single treatments, with the L-FMAU and FTC combination being the most potent. A longer administration of L-FMAU and FTC for 4 weeks efficiently suppressed viremia and viral replication. However, no viral clearance from the liver was observed, suggesting that the enhanced antiviral effect of this combination was not sufficient for cccDNA suppression and HBV eradication from infected cells.
Collapse
|
43
|
Le Guerhier F, Thermet A, Guerret S, Chevallier M, Jamard C, Gibbs CS, Trépo C, Cova L, Zoulim F. Antiviral effect of adefovir in combination with a DNA vaccine in the duck hepatitis B virus infection model. J Hepatol 2003; 38:328-34. [PMID: 12586299 DOI: 10.1016/s0168-8278(02)00425-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Combination of antiviral drugs with immunotherapeutic approaches may be a promising approach for the treatment of chronic hepatitis B. We used the duck HBV (DHBV) infection model to evaluate the efficacy of the combination of adefovir with DNA-immunization by comparison with the respective monotherapies. METHODS Pekin ducks chronically infected with DHBV received adefovir treatment alone or in association with intramuscular immunization with a plasmid (pCI-preS/S) expressing the DHBV large envelope protein. Ducks immunized with pCI-preS/S plasmid alone and two control groups receiving empty plasmid injections or no treatment were followed in parallel. RESULTS All animals treated with adefovir showed a marked drop in viremia titers during drug administration, followed by a rebound of viral replication after drug withdrawal. Eight weeks after the third DNA boost, the median of viremia within the duck group receiving the combination therapy tended to be lower compared to that of the other groups. In addition, our results suggest a trend to an additive effect of adefovir and DNA vaccine since a 51% decrease in DHBV DNA was observed in autopsy liver samples from combination therapy group, whereas pCI-preS/S or adefovir monotherapies decreased intrahepatic viral DNA by 38 and 14%, respectively. This effect was sustained since it was observed 12 weeks after the end of therapy. CONCLUSIONS Our results suggest that combination of adefovir with DNA-vaccine may be able to induce a sustained antiviral effect in vivo.
Collapse
|
44
|
Zoulim F, Berthillon P, Guerhier FLE, Seigneres B, Germon S, Pichoud C, Cheng YC, Trepo C. Animal models for the study of HBV infection and the evaluation of new anti-HBV strategies. J Gastroenterol Hepatol 2002; 17 Suppl:S460-3. [PMID: 12534778 DOI: 10.1046/j.1440-1746.17.s4.10.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Our aim was to evaluate the anti-HBV activity of a novel L-nucleoside analog, 2',3'-dideoxy-2',3'-didehydro-beta-L-5-fluorocytidine (beta-L-Fd4C), in study models of HBV infection. METHOD Its mechanism of action was evaluated on the in vitro expressed duck HBV (DHBV) reverse transcriptase and in primary hepatocyte cultures of duck and human origin. The capacity of antiviral therapy to clear viral infection was analyzed in vivo in the duck and woodchuck models. RESULTS beta-L-Fd4C-TP exhibited a more potent inhibitory effect on the RT activity of the DHBV polymerase than other cytidine analogs (lamivudine-TP, ddC-TP, beta-L-FddC-TP). In primary duck hepatocyte cultures, beta-L-Fd4C exhibited a long-lasting inhibitory effect on viral DNA synthesis but could not clear viral cccDNA. In vivo treatment with beta-L-Fd4C in infected ducklings and woodchucks, induced a greater suppression of viremia and intrahepatic viral DNA synthesis than with lamivudine. However, covalently closed circular DNA persistence explained the relapse of viral replication after treatment withdrawal. Viral spread was strongly reduced in the case of early therapeutical intervention, but the number of infected cells did not decline when therapy was started during chronic infection. Liver histology analysis showed a decrease in the inflammatory activity of chronic hepatitis while no ultrastructural modification of liver cells was observed in electron microscopy studies. Furthermore, in human primary hepatocyte cultures, beta-L-Fd4C induced a significant inhibition of HBV DNA synthesis. CONCLUSION beta-L-Fd4C is a potent inhibitor of hepadnavirus RT and inhibits viral DNA synthesis in hepatocytes both in vitro and in vivo. These experimental studies allowed as to show that beta-L-Fd4C is a promising anti-HBV agent. Combination therapy should be evaluated to eradicate viral infection.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Ducks
- Hepadnaviridae Infections/drug therapy
- Hepadnaviridae Infections/physiopathology
- Hepatitis/drug therapy
- Hepatitis/physiopathology
- Hepatitis B Virus, Duck/drug effects
- Hepatitis B Virus, Duck/physiology
- Hepatitis B Virus, Woodchuck/drug effects
- Hepatitis B Virus, Woodchuck/physiology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/physiopathology
- Humans
- In Vitro Techniques
- Marmota
- RNA, Viral/drug effects
- RNA, Viral/physiology
- Reverse Transcriptase Inhibitors/therapeutic use
- Virus Replication/drug effects
- Virus Replication/physiology
- Zalcitabine/analogs & derivatives
- Zalcitabine/therapeutic use
Collapse
Affiliation(s)
- F Zoulim
- INSERM U271 and Liver Department, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Seignères B, Pichoud C, Martin P, Furman P, Trépo C, Zoulim F. Inhibitory activity of dioxolane purine analogs on wild-type and lamivudine-resistant mutants of hepadnaviruses. Hepatology 2002; 36:710-22. [PMID: 12198665 DOI: 10.1053/jhep.2002.35070] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To design combination strategies for chronic hepatitis B therapy, we evaluated in vitro the inhibitory activity of 4 nucleoside analogs, (-)FTC, L-FMAU, DXG, and DAPD, in comparison with lamivudine (3TC) and PMEA. In a cell-free assay for the expression of wild-type duck hepatitis B virus (DHBV) reverse transcriptase, DAPD-TP was found to be the most active on viral minus strand DNA synthesis, including the priming reaction, followed by 3TC-TP, (-)FTC-TP, and DXG-TP, whereas L-FMAU-TP was a weak inhibitor. In cell culture experiments, important differences in drug concentration allowing a 50% inhibition of viral replication or polymerase activity (IC50s) were observed depending on the cell type used, showing that antiviral effect of nucleoside analogs may depend on their intracellular metabolism. IC50s obtained for wild-type DHBV replication in primary duck hepatocytes were much lower than with DHBV transfected LMH cells. IC50s were also significantly lower in the 2.2.1.5 and HepG2 cells compared with HBV transfected HuH7 cells. Moreover, L-FMAU inhibited preferentially HBV plus strand DNA synthesis in these cell lines. The antiviral effect of these inhibitors was also evaluated against 3TC-resistant mutants of the DHBV and HBV polymerases. These mutants were found to be cross resistant to (-)FTC. By contrast, the double DHBV polymerase mutant was sensitive to DXG-TP and DAPD-TP. Moreover, both purine analogs remained active against DHBV and HBV 3TC-resistant mutants in transfected LMH and HepG2 cells, respectively. In conclusion, the unique mechanism of action of these new inhibitors warrants further evaluation in experimental models to determine their capacity to delay or prevent the selection of drug resistant mutants.
Collapse
|
46
|
Krishnan P, Liou JY, Cheng YC. Phosphorylation of pyrimidine L-deoxynucleoside analog diphosphates. Kinetics of phosphorylation and dephosphorylation of nucleoside analog diphosphates and triphosphates by 3-phosphoglycerate kinase. J Biol Chem 2002; 277:31593-600. [PMID: 12080078 DOI: 10.1074/jbc.m205115200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anticancer and antiviral D- and L-nucleoside analogs are phosphorylated stepwise in the cells to the pharmacologically active triphosphate metabolites. We recently reported that in the last step, L-deoxynucleoside analog diphosphates are phosphorylated by 3-phosphoglycerate kinase (PGK). To explain the preference of PGK for L- over D-deoxynucleoside analog diphosphates, the kinetics of their phosphorylation were compared with the dephosphorylation of the respective triphosphates using recombinant human PGK. The results attributed favorable phosphorylation of L-deoxynucleoside analog diphosphates by PGK to differences in k(cat), which were consequences of varied orientations of the sugar and diphosphates in the catalytic site of PGK. The amino acids involved in the catalytic reaction of PGK (including Glu(344), Lys(220), and Asn(337)) were therefore mutated. The impact of mutations on the phosphorylation of L- and D-deoxynucleoside analog diphosphates was different from those on dephosphorylation of the respective triphosphates. This suggested that the interactions of the nucleoside analogs with amino acids during the transition state are different in the phosphorylation and dephosphorylation reactions. Thus, reversible action of the enzyme may not involve the same configuration of the active site. Furthermore, the amino acid determinants of the action of PGK for L-deoxynucleotides were not the same as for the D-deoxynucleotides. This study also suggests the potential impact of nucleoside analog diphosphates and triphosphates on the multiple cellular functions of PGK, which may contribute to the action of the analogs.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
47
|
Gheit T, Sekkat S, Cova L, Chevallier M, Petit MA, Hantz O, Lesénéchal M, Benslimane A, Trépo C, Chemin I. Experimental transfection of Macaca sylvanus with cloned human hepatitis B virus. J Gen Virol 2002; 83:1645-1649. [PMID: 12075082 DOI: 10.1099/0022-1317-83-7-1645] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to the absence of easily accessible animal models for the study of hepatitis B virus (HBV), the possibility of using Macaca sylvanus, a monkey originating from Morocco, North Africa, was investigated. Three monkeys were intrahepatically inoculated with a replication-competent head-to-tail HBV DNA plasmid dimer construct. The HBV surface antigen and HBV DNA were detected prior to alanine aminotransferase elevation in the serum of two of three HBV-inoculated monkeys at day 2 post-transfection and persisted for several weeks. This indicates that transfected animals developed markers of HBV infection. In addition, electron microscopy of the serum 3 weeks post-transfection showed the presence of virus particles whose shape and size were similar to complete 42 nm HBV Dane particles. Histological examination of liver tissues also revealed pathological changes not observed in uninfected controls, which strongly suggested acute hepatitis. HBV DNA was also detected by PCR in these monkey livers. Taken together, these results indicate that HBV can successfully replicate in this model and that M. sylvanus could be a potentially useful new primate model for the study of HBV replication.
Collapse
Affiliation(s)
- Tarik Gheit
- Unité de recherche sur les virus des hépatites et pathologies associées, Institut national de la santé et de la recherche médicale 271, 69424 Lyon Cedex 03, France1
| | - Souad Sekkat
- Centre d'immunologie, Faculté de Médecine et Pharmacie, BP 9154, Casablanca, Morocco2
| | - Lucyna Cova
- Unité de recherche sur les virus des hépatites et pathologies associées, Institut national de la santé et de la recherche médicale 271, 69424 Lyon Cedex 03, France1
| | - Michèle Chevallier
- Laboratoire d'anatomie et de cytologie pathologiques, Laboratoire Marcel Mérieux, 69365 Lyon Cedex 07, France3
| | - Marie Anne Petit
- Unité de recherche sur les virus des hépatites et pathologies associées, Institut national de la santé et de la recherche médicale 271, 69424 Lyon Cedex 03, France1
| | - Olivier Hantz
- Unité de recherche sur les virus des hépatites et pathologies associées, Institut national de la santé et de la recherche médicale 271, 69424 Lyon Cedex 03, France1
| | | | - Abdallah Benslimane
- Centre d'immunologie, Faculté de Médecine et Pharmacie, BP 9154, Casablanca, Morocco2
| | - Christian Trépo
- Unité de recherche sur les virus des hépatites et pathologies associées, Institut national de la santé et de la recherche médicale 271, 69424 Lyon Cedex 03, France1
| | - Isabelle Chemin
- Unité de recherche sur les virus des hépatites et pathologies associées, Institut national de la santé et de la recherche médicale 271, 69424 Lyon Cedex 03, France1
| |
Collapse
|
48
|
Krishnan P, Fu Q, Lam W, Liou JY, Dutschman G, Cheng YC. Phosphorylation of pyrimidine deoxynucleoside analog diphosphates: selective phosphorylation of L-nucleoside analog diphosphates by 3-phosphoglycerate kinase. J Biol Chem 2002; 277:5453-9. [PMID: 11741981 DOI: 10.1074/jbc.m109025200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-Nucleoside analogs, which are in the natural configuration, as well as the L-nucleoside analogs, are clinically relevant antiviral and anticancer agents. Metabolism of L-nucleoside analog diphosphates to the triphosphates, however, remains unexplored. Studies with recombinant nm23-H1 and -H2 isoforms indicated that L-nucleoside analog diphosphates were not phosphorylated by their nucleoside diphosphate kinase (NDPK) activity. Therefore, roles of creatine kinase, 3-phosphoglycerate kinase, and pyruvate kinase were evaluated using preparations from commercial sources and human HepG2 cells. Phosphorylation of L-OddC, L-SddC, L-Fd4C, L-FMAU, and L-ddC were compared with D-deoxynucleoside analogs, AraC, dFdC, and D-FMAU, and D-dideoxynucleoside analogs, ddC and d4T. Results based on preparations from HepG2 cells showed that L-nucleoside analog diphosphates were selectively phosphorylated by 3-phosphoglycerate kinase, whereas, D-deoxynucleoside analog diphosphates were phosphorylated by NDPK. Interestingly, ddCDP and d4TDP were substrates for creatine kinase, but were not phosphorylated by NDPK. In conclusion, it is proposed that specificity of the phosphorylating enzymes toward the nucleoside analog diphosphates is dependent on the configuration of the analog (L or D) and the presence or absence of 3'-hydroxyl group in the sugar moiety. The enzymatic process of phosphorylation of L- and D-nucleoside analog diphosphates is different in cells.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
49
|
Delmas J, Schorr O, Jamard C, Gibbs C, Trépo C, Hantz O, Zoulim F. Inhibitory effect of adefovir on viral DNA synthesis and covalently closed circular DNA formation in duck hepatitis B virus-infected hepatocytes in vivo and in vitro. Antimicrob Agents Chemother 2002; 46:425-33. [PMID: 11796353 PMCID: PMC127044 DOI: 10.1128/aac.46.2.425-433.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The elimination of viral covalently closed circular DNA (CCC DNA) from the nucleus of infected hepatocytes is an obstacle to achieving sustained viral clearance during antiviral therapy of chronic hepatitis B virus (HBV) infection. The aim of our study was to determine whether treatment with adefovir, a new acyclic nucleoside phosphonate, the prodrug of which, adefovir dipivoxil, is in clinical evaluation, is able to suppress viral CCC DNA both in vitro and in vivo using the duck HBV (DHBV) model. First, the effect of adefovir on viral CCC DNA synthesis was examined with primary cultures of DHBV-infected fetal hepatocytes. Adefovir was administered for six consecutive days starting one day before or four days after DHBV inoculation. Dose-dependent inhibition of both virion release in culture supernatants and synthesis of intracellular viral DNA was observed. Although CCC DNA amplification was inhibited by adefovir, CCC DNA was not eliminated by antiviral treatment and the de novo formation of CCC DNA was not prevented by pretreatment of the cells. Next, preventive treatment of experimentally infected ducklings with lamivudine or adefovir revealed that both efficiently suppressed viremia and intrahepatic DNA. However, persistence of viral DNA even when detectable only by PCR was associated with a recurrence of viral replication following drug withdrawal. Taken together, our results demonstrate that adefovir is a potent inhibitor of DHBV replication that inhibits CCC DNA amplification but does not effectively prevent the formation of CCC DNA from incoming viral genomes.
Collapse
|
50
|
Abstract
Nucleoside analogues have been the cornerstone of antiviral therapy over the past thirty years and, currently, 16 commonly used antiviral drugs belong to this category. Although for long time it was believed that only D-nucleosides, possessing a 'natural' stereochemistry, could elicit biological activity, in the last decade this has been proven not to be true. 3TC, a L-nucleoside analogue, is one of the most effective anti-HIV and anti-hepatitis B virus drugs, and nine other L-nucleosides are currently undergoing clinical trials and/or preclinical studies as antiviral or antitumoral agents. This minireview summarizes some biological features and the current status of these promising L-nucleoside analogues.
Collapse
Affiliation(s)
- G Gumina
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|