1
|
Tobin EE, Collins JH, Marsan CB, Nadeau GT, Mori K, Lipzen A, Mondo S, Grigoriev IV, Young EM. Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938. Appl Microbiol Biotechnol 2024; 108:547. [PMID: 39731599 DOI: 10.1007/s00253-024-13379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X. dendrorhous is currently the sole biotechnologically relevant yeast in the Tremellomycete class-it produces large amounts of astaxanthin, especially under oxidative stress and exposure to light. Thus, we performed transcriptomics on X. dendrorhous under different wavelengths of light (red, green, blue, and ultraviolet) and oxidative stress. Differential gene expression analysis (DGE) revealed that terpenoid biosynthesis was primarily upregulated by light through crtI, while oxidative stress upregulated several genes in the pathway. Further gene ontology (GO) analysis revealed a complex survival response to ultraviolet (UV) where X. dendrorhous upregulates aromatic amino acid and tetraterpenoid biosynthesis and downregulates central carbon metabolism and respiration. The DGE data was also used to identify 26 constitutive and regulated genes, and then, putative promoters for each of the 26 genes were derived from the genome. Simultaneously, a modular cloning system for X. dendrorhous was developed, including integration sites, terminators, selection markers, and reporters. Each of the 26 putative promoters were integrated into the genome and characterized by luciferase assay in the dark and under UV light. The putative constitutive promoters were constitutive in the synthetic genetic context, but so were many of the putative regulated promoters. Notably, one putative promoter, derived from a hypothetical gene, showed ninefold activation upon UV exposure. Thus, this study reveals metabolic pathway regulation and develops a genetic parts collection for X. dendrorhous from transcriptomic data. Therefore, this study demonstrates that combining systems biology and synthetic biology into an omics-to-parts workflow can simultaneously provide useful biological insight and genetic tools for nonconventional microbes, particularly those without a related model organism. This approach can enhance current efforts to engineer diverse microbes. KEY POINTS: • Transcriptomics revealed further insights into the photobiology of X. dendrorhous, specifically metabolic nodes that are transcriptionally regulated by light. • A modular genetic part collection was developed, including 26 constitutive and regulated promoters derived from the transcriptomics of X. dendrorhous. • Omics-to-parts can be applied to nonconventional microbes for rapid "onboarding".
Collapse
Affiliation(s)
- Emma E Tobin
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Joseph H Collins
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Celeste B Marsan
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Gillian T Nadeau
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Kim Mori
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephen Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Eric M Young
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
2
|
Kot AM, Pobiega K, Kieliszek M, Michalak K, Błażejak S. Characteristic of new Phaffia rhodozyma yeast strains isolated from birch slime fluxes in Poland. Arch Microbiol 2024; 206:434. [PMID: 39412681 PMCID: PMC11485187 DOI: 10.1007/s00203-024-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Three new strains of Phaffia rhodozyma yeast have recently been isolated in Poland. The aim of this study was to phenotypically characterize these strains and to compare them with the properties of the reference strain. The potential for carotenoid biosynthesis in these strains was also determined, depending on temperature, carbon, and nitrogen sources in the medium. Phaffia rhodozyma yeasts were also identified by MALDI-TOF MS. There were minor differences in cell morphology among the strains. All strains reproduced asexually by budding and formed spherical chlamydospores. No ability for sexual reproduction was observed. Physiological tests showed minor variations between the reference strain and the isolates, likely due to the geographical specificity of the habitat from which they were originally isolated. Analysis of protein spectra showed that the tested yeast isolates had seven common peaks of different intensities, with masses at 2200, 2369, 3213, 3628, 3776, 3921, and 4710 m/z. Moreover, additional strain-dependent spectra were found. The amount of synthesized carotenoids varied with the carbon and nitrogen sources used, as well as the temperature. The best producer of carotenoids was the P. rhodozyma CMIFS 102 isolate.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland.
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, Lublin, 20-612, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| |
Collapse
|
3
|
Kot AM, Laszek P, Kieliszek M, Pobiega K, Błażejak S. Biotechnological potential of red yeast isolated from birch forests in Poland. Biotechnol Lett 2024; 46:641-669. [PMID: 38687405 PMCID: PMC11217099 DOI: 10.1007/s10529-024-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Paulina Laszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
4
|
Duo Saito RA, Moliné M, de Garcia V. Physiological characterization of polyextremotolerant yeasts from cold environments of Patagonia. Extremophiles 2024; 28:17. [PMID: 38342818 DOI: 10.1007/s00792-024-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 02/13/2024]
Abstract
Yeasts from cold environments have a wide range of strategies to prevent the negative effects of extreme conditions, including the production of metabolites of biotechnological interest. We investigated the growth profile and production of metabolites in yeast species isolated from cold environments. Thirty-eight strains were tested for their ability to grow at different temperatures (5-30 °C) and solute concentrations (3-12.5% NaCl and 50% glucose). All strains tested were able to grow at 5 °C, and 77% were able to grow with 5% NaCl at 18 °C. We were able to group strains based on different physicochemical/lifestyle profiles such as polyextremotolerant, osmotolerant, psychrotolerant, or psychrophilic. Five strains were selected to study biomass and metabolite production (glycerol, trehalose, ergosterol, and mycosporines). These analyses revealed that the accumulation pattern of trehalose and ergosterol was related to each lifestyle profile. Also, our findings would suggest that mycosporines does not have a role as an osmolyte. Non-conventional fermentative yeasts such as Phaffia tasmanica and Saccharomyces eubayanus may be of interest for trehalose production. This work contributes to the knowledge of non-conventional yeasts with biotechnological application from cold environments, including their growth profile, metabolites, and biomass production under different conditions.
Collapse
Affiliation(s)
- Rubí A Duo Saito
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Bariloche, Quintral, Argentina
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Bariloche, Quintral, Argentina
| | - Virginia de Garcia
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Neuquén, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Parra M, Libkind D, Hittinger CT, Álvarez L, Bellora N. Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation. Yeast 2023; 40:197-213. [PMID: 37114349 DOI: 10.1002/yea.3853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aureobasidium pullulans is a yeast-like fungus with remarkable phenotypic plasticity widely studied for its importance for the pharmaceutical and food industries. So far, genomic studies with strains from all over the world suggest they constitute a genetically unstructured population, with no association by habitat. However, the mechanisms by which this genome supports so many phenotypic permutations are still poorly understood. Recent works have shown the importance of sequencing yeast genomes from extreme environments to increase the repertoire of phenotypic diversity of unconventional yeasts. In this study, we present the genomic draft of A. pullulans strain from a Patagonian yeast diversity hotspot, re-evaluate its taxonomic classification based on taxogenomic approaches, and annotate its genome with high-depth transcriptomic data. Our analysis suggests this isolate could be considered a novel variant at an early stage of the speciation process. The discovery of divergent strains in a genomically homogeneous group, such as A. pullulans, can be valuable in understanding the evolution of the species. The identification and characterization of new variants will not only allow finding unique traits of biotechnological importance, but also optimize the choice of strains whose phenotypes will be characterized, providing new elements to explore questions about plasticity and adaptation.
Collapse
Affiliation(s)
- Micaela Parra
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucía Álvarez
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Nicolás Bellora
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
6
|
Sepúlveda D, Campusano S, Moliné M, Barahona S, Baeza M, Alcaíno J, Colabella F, Urzúa B, Libkind D, Cifuentes V. Unraveling the Molecular Basis of Mycosporine Biosynthesis in Fungi. Int J Mol Sci 2023; 24:ijms24065930. [PMID: 36983003 PMCID: PMC10057719 DOI: 10.3390/ijms24065930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The Phaffia rhodozyma UCD 67-385 genome harbors a 7873 bp cluster containing DDGS, OMT, and ATPG, encoding 2-desmethy-4-deoxygadusol synthase, O-methyl transferase, and ATP-grasp ligase, respectively, of the mycosporine glutaminol (MG) biosynthesis pathway. Homozygous deletion mutants of the entire cluster, single-gene mutants, and the Δddgs-/-;Δomt-/- and Δomt-/-;Δatpg-/- double-gene mutants did not produce mycosporines. However, Δatpg-/- accumulated the intermediate 4-deoxygadusol. Heterologous expression of the DDGS and OMT or DDGS, OMT, and ATPG cDNAs in Saccharomyces cerevisiae led to 4-deoxygadusol or MG production, respectively. Genetic integration of the complete cluster into the genome of the non-mycosporine-producing CBS 6938 wild-type strain resulted in a transgenic strain (CBS 6938_MYC) that produced MG and mycosporine glutaminol glucoside. These results indicate the function of DDGS, OMT, and ATPG in the mycosporine biosynthesis pathway. The transcription factor gene mutants Δmig1-/-, Δcyc8-/-, and Δopi1-/- showed upregulation, Δrox1-/- and Δskn7-/- showed downregulation, and Δtup6-/- and Δyap6-/- showed no effect on mycosporinogenesis in glucose-containing medium. Finally, comparative analysis of the cluster sequences in several P. rhodozyma strains and the four newly described species of the genus showed the phylogenetic relationship of the P. rhodozyma strains and their differentiation from the other species of the genus Phaffia.
Collapse
Affiliation(s)
- Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Sebastián Campusano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Martín Moliné
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | | | - Blanca Urzúa
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380492, Chile
| | - Diego Libkind
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
7
|
The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules 2022; 27:molecules27217167. [PMID: 36363994 PMCID: PMC9655540 DOI: 10.3390/molecules27217167] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
The current review provides an up-to-date analysis of scientific data on astaxanthin (ASX) sources and experimental studies on its health benefits as a potent antioxidant in the aging process. ASX is a liposoluble carotenoid nutrient and reddish-orange pigment, naturally synthesized by numerous microalgae, yeasts, and bacteria as secondary metabolites. Provides a reddish hue to redfish and shellfish flesh that feed on ASX-producing microorganisms. The microalga Haematococcus pluvialis is the most important source for its industrial bioproduction. Due to its strong antioxidant properties, numerous investigations reported that natural ASX is a more significant antioxidant agent than other antioxidants, such as vitamin C, vitamin E, and β-carotene. Furthermore, several data show that ASX possesses important nutraceutical applications and health benefits, especially in healthy aging processes. However, further studies are needed for a deeper understanding of the potential mechanisms through which ASX could lead to its effective role in the healthy aging process, such as supporting brain health and skin homeostasis. This review highlights the current investigations on the effective role of ASX in oxidative stress, aging mechanisms, skin physiology, and central nervous system functioning, and shows the potential clinical implications related to its consumption.
Collapse
|
8
|
Sandmann G. Generation of stable homozygous transformants of diploid yeasts such as Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2022; 106:4921-4927. [PMID: 35831455 PMCID: PMC9329418 DOI: 10.1007/s00253-022-12054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022]
Abstract
The nonconventional yeast Xanthophyllomyces dendrorhous is an established platform for genetic pathway modification. A genetic tool box is available and can be used extensively to select from for different engineering strategies. Due to the diploid nature of X. dendrorhous, genetic transformation typically results in heterozygous lines. They are genetically unstable and lose their phenotypes caused by mitotic recombination. In addition, targeted integration for inactivation of genes of the carotenoid pathway resulted in an intermediary phenotype of incomplete pathway disruption. This issue is the main scope of this review. It is illustrated by using genetic modification of the carotenoid pathway of X. dendrorhous as a model system with a focus on the demonstration of how to solve these problems by generation of homozygous lines. They can be selected from heterozygous transformants after spontaneous mitotic recombination and selection or after induced meiotic recombination. Corresponding methods of how to proceed including the initiation of a sexual cycle are described. The selected segregated lines are stable in fermenter cultures without the need of selection pressure. This is an essential requirement for any industrial application. KEY POINTS: • Genetic interventions of diploid yeasts result in heterozygous transformants that are unstable without selection pressure. • This is due to mitotic recombination leading to the elimination of inserted DNA. • Stable homozygous lines can be obtained and selected after either meiotic or mitotic recombination.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Institute for Molecular Biosciences, Department of Bio Sciences, Goethe University Frankfurt, Frankfurt/M, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
9
|
Čadež N, Bellora N, Ulloa R, Tome M, Petković H, Groenewald M, Hittinger CT, Libkind D. Hanseniaspora smithiae sp. nov., a Novel Apiculate Yeast Species From Patagonian Forests That Lacks the Typical Genomic Domestication Signatures for Fermentative Environments. Front Microbiol 2021; 12:679894. [PMID: 34367085 PMCID: PMC8334367 DOI: 10.3389/fmicb.2021.679894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
During a survey of Nothofagus trees and their parasitic fungi in Andean Patagonia (Argentina), genetically distinct strains of Hanseniaspora were obtained from the sugar-containing stromata of parasitic Cyttaria spp. Phylogenetic analyses based on the single-gene sequences (encoding rRNA and actin) or on conserved, single-copy, orthologous genes from genome sequence assemblies revealed that these strains represent a new species closely related to Hanseniaspora valbyensis. Additionally, delimitation of this novel species was supported by genetic distance calculations using overall genome relatedness indices (OGRI) between the novel taxon and its closest relatives. To better understand the mode of speciation in Hanseniaspora, we examined genes that were retained or lost in the novel species in comparison to its closest relatives. These analyses show that, during diversification, this novel species and its closest relatives, H. valbyensis and Hanseniaspora jakobsenii, lost mitochondrial and other genes involved in the generation of precursor metabolites and energy, which could explain their slower growth and higher ethanol yields under aerobic conditions. Similarly, Hanseniaspora mollemarum lost the ability to sporulate, along with genes that are involved in meiosis and mating. Based on these findings, a formal description of the novel yeast species Hanseniaspora smithiae sp. nov. is proposed, with CRUB 1602 H as the holotype.
Collapse
Affiliation(s)
- Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nicolas Bellora
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Bariloche, Argentina
| | - Ricardo Ulloa
- Laboratorio de Bioprocesos, Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Neuquén, Argentina
| | - Miha Tome
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hrvoje Petković
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
10
|
David-Palma M, Libkind D, Brito PH, Silva M, Bellora N, Coelho MA, Heitman J, Gonçalves P, Sampaio JP. The Untapped Australasian Diversity of Astaxanthin-Producing Yeasts with Biotechnological Potential- Phaffia australis sp. nov. and Phaffia tasmanica sp. nov. Microorganisms 2020; 8:E1651. [PMID: 33114402 PMCID: PMC7692969 DOI: 10.3390/microorganisms8111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 01/28/2023] Open
Abstract
Phaffia is an orange-colored basidiomycetous yeast genus of the order Cystofilobasidiales that contains a single species, P. rhodozyma. This species is the only fungus known to produce the economically relevant carotenoid astaxanthin. Although Phaffia was originally found in the Northern hemisphere, its diversity in the southern part of the globe has been shown to be much greater. Here we analyze the genomes of two Australasian lineages that are markedly distinct from P. rhodozyma. The two divergent lineages were investigated within a comprehensive phylogenomic study of representatives of the Cystofilobasidiales that supported the recognition of two novel Phaffia species, for which we propose the names of P. australis sp. nov. and P. tasmanica sp. nov. Comparative genomics and other analyses confirmed that the two new species have the typical Phaffia hallmark-the six genes necessary for the biosynthesis of astaxanthin could be retrieved from the draft genome sequences, and this carotenoid was detected in culture extracts. In addition, the organization of the mating-type (MAT) loci is similar to that of P. rhodozyma, with synteny throughout most regions. Moreover, cases of trans-specific polymorphism involving pheromone receptor genes and pheromone precursor proteins in the three Phaffia species, together with their shared homothallism, provide additional support for their classification in a single genus.
Collapse
Affiliation(s)
- Márcia David-Palma
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC)—CONICET/Universidad Nacional del Comahue, Bariloche, Rio Negro 8400, Argentina; (D.L.); (N.B.)
| | - Patrícia H. Brito
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| | - Margarida Silva
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC)—CONICET/Universidad Nacional del Comahue, Bariloche, Rio Negro 8400, Argentina; (D.L.); (N.B.)
| | - Marco A. Coelho
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Paula Gonçalves
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| | - José Paulo Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| |
Collapse
|
11
|
Libkind D, Čadež N, Opulente DA, Langdon QK, Rosa CA, Sampaio JP, Gonçalves P, Hittinger CT, Lachance MA. Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences. FEMS Yeast Res 2020; 20:5876348. [DOI: 10.1093/femsyr/foaa042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
ABSTRACT
In recent years, ‘multi-omic’ sciences have affected all aspects of fundamental and applied biological research. Yeast taxonomists, though somewhat timidly, have begun to incorporate complete genomic sequences into the description of novel taxa, taking advantage of these powerful data to calculate more reliable genetic distances, construct more robust phylogenies, correlate genotype with phenotype and even reveal cryptic sexual behaviors. However, the use of genomic data in formal yeast species descriptions is far from widespread. The present review examines published examples of genome-based species descriptions of yeasts, highlights relevant bioinformatic approaches, provides recommendations for new users and discusses some of the challenges facing the genome-based systematics of yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET / Universidad Nacional del Comahue, Bariloche, Argentina
| | - N Čadež
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - C A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270–901, Brazil
| | - J P Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - P Gonçalves
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - M A Lachance
- Department of Biology, University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|
12
|
Čadež N, Bellora N, Ulloa R, Hittinger CT, Libkind D. Genomic content of a novel yeast species Hanseniaspora gamundiae sp. nov. from fungal stromata (Cyttaria) associated with a unique fermented beverage in Andean Patagonia, Argentina. PLoS One 2019; 14:e0210792. [PMID: 30699175 PMCID: PMC6353571 DOI: 10.1371/journal.pone.0210792] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
A novel yeast species was isolated from the sugar-rich stromata of Cyttaria hariotii collected from two different Nothofagus tree species in the Andean forests of Patagonia, Argentina. Phylogenetic analyses of the concatenated sequence of the rRNA gene sequences and the protein-coding genes for actin and translational elongation factor-1α indicated that the novel species belongs to the genus Hanseniaspora. De novo genome assembly of the strain CRUB 1928T yielded a 10.2-Mbp genome assembly predicted to encode 4452 protein-coding genes. The genome sequence data were compared to the genomes of other Hanseniaspora species using three different methods, an alignment-free distance measure, Kr, and two model-based estimations of DNA-DNA homology values, of which all provided indicative values to delineate species of Hanseniaspora. Given its potential role in a rare indigenous alcoholic beverage in which yeasts ferment sugars extracted from the stromata of Cytarria sp., we searched for the genes that may suggest adaptation of novel Hanseniaspora species to fermenting communities. The SSU1-like gene encoding a sulfite efflux pump, which, among Hanseniaspora, is present only in close relatives to the new species, was detected and analyzed, suggesting that this gene might be one factor that characterizes this novel species. We also discuss several candidate genes that likely underlie the physiological traits used for traditional taxonomic identification. Based on these results, a novel yeast species with the name Hanseniaspora gamundiae sp. nov. is proposed with CRUB 1928T (ex-types: ZIM 2545T = NRRL Y-63793T = PYCC 7262T; MycoBank number MB 824091) as the type strain. Furthermore, we propose the transfer of the Kloeckera species, K. hatyaiensis, K. lindneri and K. taiwanica to the genus Hanseniaspora as Hanseniaspora hatyaiensis comb. nov. (MB 828569), Hanseniaspora lindneri comb. nov. (MB 828566) and Hanseniaspora taiwanica comb. nov. (MB 828567).
Collapse
Affiliation(s)
- Neža Čadež
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Nicolas Bellora
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medio-ambiente, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Ricardo Ulloa
- Laboratorio de Bioprocesos, Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Neuquén, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medio-ambiente, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
13
|
Metabarcoding analysis of the fungal biodiversity associated with Castaño Overa Glacier – Mount Tronador, Patagonia, Argentina. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Eizaguirre JI, Peris D, Rodríguez ME, Lopes CA, De Los Ríos P, Hittinger CT, Libkind D. Phylogeography of the wild Lager-brewing ancestor (Saccharomyces eubayanus) in Patagonia. Environ Microbiol 2018; 20:3732-3743. [PMID: 30105823 DOI: 10.1111/1462-2920.14375] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/06/2018] [Indexed: 11/28/2022]
Abstract
Saccharomyces eubayanus is the close relative of the Lager-brewing yeast and was firstly found in North Patagonia associated with Nothofagus trees. In recent years additional strains were found in North America, Asia and New Zealand, and genomic analyses showed the existence of two main populations of this yeast, both of them present in Patagonia. Here, we performed the most comprehensive study of S. eubayanus in Patagonia natural environments (400 samples) and confirmed that this region has the highest isolation success rate for this species described worldwide (more than 10-fold). The genetic characterization of 200 isolates (COX2, DCR1, intFR) revealed five geographically structured subpopulations. We hypothesized that marine ingressions and glaciations, which shaped the Patagonian landscape, contributed on population differentiation. The first large screening of fermentation performance of 60 wild S. eubayanus strains indicated which subpopulations would be more suitable for beer production.
Collapse
Affiliation(s)
- Juan I Eizaguirre
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Valencia, Spain
| | - María E Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | - Christian A Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| |
Collapse
|
15
|
Molecular and Phenotypic Characterization of Metschnikowia pulcherrima Strains from Douro Wine Region. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Libkind D, Moliné M, Colabella F. Isolation and Selection of New Astaxanthin-Producing Strains of Phaffia rhodozyma. Methods Mol Biol 2018; 1852:297-310. [PMID: 30109639 DOI: 10.1007/978-1-4939-8742-9_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astaxanthin is a xanthophyll pigment of high economic value for its use as a feeding component in aquaculture. Phaffia rhodozyma (Xanthophyllomyces dendrorhous) is a basidiomycetous fungi able to synthesize astaxanthin as its major carotenoid, the only known yeast species bearing the capability to produce this type of carotenoid and the only tremellomycetes with biotechnological application. Recently, the habitat and intraspecific variability of this species have been found to be wider than previously expected, encouraging the search for new wild strains with potential biotechnological applications. Here we describe effective procedures for isolation of P. rhodozyma from environmental samples, accurate identification of the strains, analysis of their astaxanthin content, and proper conservation of the isolates.
Collapse
Affiliation(s)
- Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC, UNComahue-CONICET, Bariloche, Argentina.
| | - Martín Moliné
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC, UNComahue-CONICET, Bariloche, Argentina
| | - Fernando Colabella
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC, UNComahue-CONICET, Bariloche, Argentina
| |
Collapse
|
17
|
Bellora N, Moliné M, David-Palma M, Coelho MA, Hittinger CT, Sampaio JP, Gonçalves P, Libkind D. Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics 2016; 17:901. [PMID: 27829365 PMCID: PMC5103461 DOI: 10.1186/s12864-016-3244-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918T, the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strain CBS 6938). Photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed. RESULTS Both genomes had ca. 19 Mb and 6000 protein coding genes, similar to CBS 6938. Compared to other fungal genomes P. rhodozyma strains and other Cystofilobasidiales have the highest number of intron-containing genes and highest number of introns per gene. The Patagonian strain showed 4.4 % of nucleotide sequence divergence compared to the European strains which differed from each other by only 0.073 %. All known genes related to the synthesis of astaxanthin were annotated. A hitherto unknown gene cluster potentially responsible for photoprotection (mycosporines) was found in the newly sequenced P. rhodozyma strains but was absent in the non-mycosporinogenic strain CBS 6938. A broad battery of enzymes that act as scavengers of free radical oxygen species were detected, including catalases and superoxide dismutases (SODs). Additionally, genes involved in sexual reproduction were found and annotated. CONCLUSIONS A draft genome sequence of the type strain of P. rhodozyma is now available, and comparison with that of the Patagonian population suggests the latter deserves to be assigned to a distinct variety. An unexpected genetic trait regarding high occurrence of introns in P. rhodozyma and other Cystofilobasidiales was revealed. New genomic insights into fungal homothallism were also provided. The genetic basis of several additional photoprotective and antioxidant strategies were described, indicating that P. rhodozyma is one of the fungi most well-equipped to cope with environmental oxidative stress, a factor that has probably contributed to shaping its genome.
Collapse
Affiliation(s)
- Nicolás Bellora
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Martín Moliné
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Márcia David-Palma
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - José P Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina.
| |
Collapse
|
18
|
PCR-based method for the rapid identification of astaxanthin-accumulating yeasts (Phaffia spp.). Rev Argent Microbiol 2016; 48:15-20. [PMID: 26922472 DOI: 10.1016/j.ram.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/23/2022] Open
Abstract
It has been recently found that the natural distribution, habitat, and genetic diversity of astaxanthin-producing yeasts (i.e. Phaffia rhodozyma, synonym Xanthophyllomyces dendrorhous) is much greater than previously thought. P. rhodozyma is biotechnologically exploited due to its ability to produce the carotenoid pigment astaxanthin and thus, it is used as a natural source of this pigment for aquaculture. P. rhodozyma was also capable of synthesizing the potent UVB sunscreen mycosporine-glutaminol-glucoside (MGG). Therefore, further environmental studies are needed to elucidate its ecological aspects and detect new potential strains for the production of astaxanthin and MGG. However, obtaining new isolates of P. rhodozyma and related species is not always easy due to its low abundance and the presence of other sympatric and pigmented yeasts. In this work we report a successful development of a species-specific primer which has the ability to quickly and accurately detecting isolates representing all known lineages of the genus Phaffia (including novel species of the genus) and excluding closely related taxa. For this purpose, a primer of 20 nucleotides (called PhR) was designed to be used in combination with universal primers ITS3 and NL4 in a multiplex amplification. The proposed method has the sensitivity and specificity required for the precise detection of new isolates, and therefore represents an important tool for the environmental search for novel astaxanthin-producing yeasts.
Collapse
|
19
|
Kurtzman CP, Mateo RQ, Kolecka A, Theelen B, Robert V, Boekhout T. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res 2015; 15:fov050. [PMID: 26136514 DOI: 10.1093/femsyr/fov050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Detection, identification and classification of yeasts have undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences is leading to a major revision of yeast systematics that will result in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules are presented in the recently implemented International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed, as will use of phylogeny for prediction of biotechnological applications.
Collapse
Affiliation(s)
- Cletus P Kurtzman
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Raquel Quintilla Mateo
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Anna Kolecka
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Bart Theelen
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Vincent Robert
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| |
Collapse
|
20
|
Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Microbiol Biotechnol 2015; 31:517-26. [PMID: 25643668 PMCID: PMC4333312 DOI: 10.1007/s11274-015-1808-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
Antarctic microorganisms have developed different strategies to live in their environments, including modifications to their membrane components to regulate fluidity and the production of photoprotective metabolites such as carotenoids. Three yeast colonies (ANCH01, ANCH06 and ANCH08) were isolated from soil samples collected at King George Island, which according to their rDNA sequence analyses, were determined to be Xanthophyllomyces dendrorhous. This yeast is of biotechnological interest, because it can synthesize astaxanthin as its main carotenoid, which is a powerful antioxidant pigment used in aquaculture. Then, the aim of this work was to characterize the ANCH isolates at their molecular and phenotypic level. The isolates did not display any differences in their rDNA and COX1 gene nucleotide sequences. However, ANCH01 produces approximately sixfold more astaxanthin than other wild type strains. Moreover, even though ANCH06 and ANCH08 produce astaxanthin, their main carotenoid was β-carotene. In contrast to other X. dendrorhous strains, the ANCH isolates did not produce mycosporines. Finally, the ANCH isolates had a higher proportion of polyunsaturated fatty acids than other wild type strains. In conclusion, the reported X. dendrorhous isolates are phenotypically different from other wild type strains, including characteristics that could make them more resistant and better able to inhabit their original habitat, which may also have biotechnological potential.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| |
Collapse
|
21
|
Ramírez-Castrillón M, Mendes SDC, Inostroza-Ponta M, Valente P. (GTG)5 MSP-PCR fingerprinting as a technique for discrimination of wine associated yeasts? PLoS One 2014; 9:e105870. [PMID: 25171185 PMCID: PMC4149466 DOI: 10.1371/journal.pone.0105870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
In microbiology, identification of all isolates by sequencing is still unfeasible in small research laboratories. Therefore, many yeast diversity studies follow a screening procedure consisting of clustering the yeast isolates using MSP-PCR fingerprinting, followed by identification of one or a few selected representatives of each cluster by sequencing. Although this procedure has been widely applied in the literature, it has not been properly validated. We evaluated a standardized protocol using MSP-PCR fingerprinting with the primers (GTG)5 and M13 for the discrimination of wine associated yeasts in South Brazil. Two datasets were used: yeasts isolated from bottled wines and vineyard environments. We compared the discriminatory power of both primers in a subset of 16 strains, choosing the primer (GTG)5 for further evaluation. Afterwards, we applied this technique to 245 strains, and compared the results with the identification obtained by partial sequencing of the LSU rRNA gene, considered as the gold standard. An array matrix was constructed for each dataset and used as input for clustering with two methods (hierarchical dendrograms and QAPGrid layout). For both yeast datasets, unrelated species were clustered in the same group. The sensitivity score of (GTG)5 MSP-PCR fingerprinting was high, but specificity was low. As a conclusion, the yeast diversity inferred in several previous studies may have been underestimated and some isolates were probably misidentified due to the compliance to this screening procedure.
Collapse
Affiliation(s)
- Mauricio Ramírez-Castrillón
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, Brazil
| | - Sandra Denise Camargo Mendes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, Brazil
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Laboratório de Análises de Vinhos e Derivados, Estação Experimental de Videira, Campo Experimental, Videira, Brazil
| | - Mario Inostroza-Ponta
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Patricia Valente
- Departamento de Microbiologia, Imunologia e Parasitologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|
22
|
David-Palma M, Libkind D, Sampaio JP. Global distribution, diversity hot spots and niche transitions of an astaxanthin-producing eukaryotic microbe. Mol Ecol 2014; 23:921-32. [DOI: 10.1111/mec.12642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Márcia David-Palma
- Departamento de Ciências da Vida; Faculdade de Ciências e Tecnologia; Centro de Recursos Microbiológicos (CREM); Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología; Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA); CONICET - UNComahue; Quintral 1250 (8400), Bariloche Argentina
| | - José Paulo Sampaio
- Departamento de Ciências da Vida; Faculdade de Ciências e Tecnologia; Centro de Recursos Microbiológicos (CREM); Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| |
Collapse
|
23
|
de Boer L. Biotechnological production of colorants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 143:51-89. [PMID: 24037500 DOI: 10.1007/10_2013_241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The color of food and drinks is important, as it is associated with freshness and taste. Despite that natural colorants are more expensive to produce, less stable to heat and light, and less consistent in color range, natural colorants have been gaining market share in recent years. The background is that artificial colorants are often associated with negative health aspects. Considerable progress has been made towards the fermentative production of some colorants. Because colorant biosynthesis is under close metabolic control, extensive strain and process development are needed in order to establish an economical production process. Another approach is the synthesis of colors by means of biotransformation of adequate precursors. Algae represent a promising group of microorganisms that have shown a high potential for the production of different colorants, and dedicated fermentation and downstream technologies have been developed. This chapter reviews the available information with respect to these approaches.
Collapse
Affiliation(s)
- Lex de Boer
- Department of Food and Technology, Groen Agro Control B.V, Distributieweg 1, 2645, EG, Delfgauw, The Netherlands,
| |
Collapse
|
24
|
Tognetti C, Moliné M, van Broock M, Libkind D. Favored isolation and rapid identification of the astaxanthin-producing yeastXanthophyllomyces dendrorhous(Phaffia rhodozyma) from environmental samples. J Basic Microbiol 2013; 53:766-72. [DOI: 10.1002/jobm.201200274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/25/2012] [Indexed: 01/26/2023]
Affiliation(s)
- Celia Tognetti
- Laboratorio de Microbiología Aplicada y Biotecnología; INIBIOMA, UNComahue-CONICET; Bariloche, Río Negro Argentina
| | - Martín Moliné
- Laboratorio de Microbiología Aplicada y Biotecnología; INIBIOMA, UNComahue-CONICET; Bariloche, Río Negro Argentina
| | - María van Broock
- Laboratorio de Microbiología Aplicada y Biotecnología; INIBIOMA, UNComahue-CONICET; Bariloche, Río Negro Argentina
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología; INIBIOMA, UNComahue-CONICET; Bariloche, Río Negro Argentina
| |
Collapse
|
25
|
Libkind D, Moliné M, Tognetti C. Isolation and selection of new astaxanthin producing strains of Xanthophyllomyces dendrorhous. Methods Mol Biol 2012; 898:183-94. [PMID: 22711126 DOI: 10.1007/978-1-61779-918-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Astaxanthin is a xanthophyll pigment of high economic value for its use as a feeding component in aquaculture. Xanthophyllomyces dendrorhous is a basidiomycetous fungi able to synthesize astaxanthin as its major carotenoid, and the only known yeast species bearing the capability to produce this type of carotenoid. Recently, the habitat and intraspecific variability of this species have been found to be wider than previously expected, encouraging the search for new wild strains with potential biotechnological applications. Here we describe effective procedures for isolation of X. dendrorhous from environmental samples, accurate identification of the strains, analysis of their astaxanthin content, and proper conservation of the isolates.
Collapse
Affiliation(s)
- Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología Bariloche, INIBIOMA (CONICET-Universidad del COMAHUE), San Carlos de Bariloche, Río Negro, Argentina.
| | | | | |
Collapse
|
26
|
Baeza M, Bravo N, Sanhueza M, Flores O, Villarreal P, Cifuentes V. Molecular characterization of totiviruses in Xanthophyllomyces dendrorhous. Virol J 2012; 9:140. [PMID: 22838956 PMCID: PMC3561658 DOI: 10.1186/1743-422x-9-140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 07/17/2012] [Indexed: 12/12/2022] Open
Abstract
Background Occurrence of extrachromosomal dsRNA elements has been described in the red-yeast Xanthophyllomyces dendrorhous, with numbers and sizes that are highly variable among strains with different geographical origin. The studies concerning to the encapsidation in viral-like particles and dsRNA-curing have suggested that some dsRNAs are helper viruses, while others are satellite viruses. However, the nucleotide sequences and functions of these dsRNAs are still unknown. In this work, the nucleotide sequences of four dsRNAs of the strain UCD 67–385 of X. dendrorhous were determined, and their identities and genome structures are proposed. Based on this molecular data, the dsRNAs of different strains of X. dendrorhous were analyzed. Results The complete sequences of L1, L2, S1 and S2 dsRNAs of X. dendrorhous UCD 67–385 were determined, finding two sequences for L1 dsRNA (L1A and L1B). Several ORFs were uncovered in both S1 and S2 dsRNAs, but no homologies were found for any of them when compared to the database. Instead, two ORFs were identified in each L1A, L1B and L2 dsRNAs, whose deduced amino acid sequences were homologous with a major capsid protein (5’-ORF) and a RNA-dependent RNA polymerase (3’-ORF) belonging to the Totiviridae family. The genome structures of these dsRNAs are characteristic of Totiviruses, with two overlapped ORFs (the 3’-ORF in the −1 frame with respect to the 5’-ORF), with a slippery site and a pseudoknot in the overlapped regions. These structures are essential for the synthesis of the viral polymerase as a fusion protein with the viral capsid protein through −1 ribosomal frameshifting. In the RNase protection analysis, all the dsRNAs in the four analyzed X. dendrorhous strains were protected from enzymatic digestion. The RT-PCR analysis revealed that, similar to strain UCD 67–385, the L1A and L1B dsRNAs coexist in the strains VKM Y-2059, UCD 67–202 and VKM Y-2786. Furthermore, determinations of the relative amounts of L1 dsRNAs using two-step RT-qPCR revealed a 40-fold increment of the ratio L1A/L1B in the S2 dsRNA-cured strain compared to its parental strain. Conclusions Three totiviruses, named as XdV-L1A, XdV-L1B and XdV-L2, were identified in the strain UCD 67–385 of X. dendrorhous. The viruses XdV-L1A and XdV-L1B were also found in other three X. dendrorhous strains. Our results suggest that the smaller dsRNAs (named XdRm-S1 and XdRm-S2) of strain UCD 67–385 are satellite viruses, and particularly that XdRm-S2 is a satellite of XdV-L1A.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Laboratorio de Genética, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
27
|
Kachalkin AV, Yurkov AM. Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov. Antonie van Leeuwenhoek 2012; 102:29-43. [PMID: 22331450 DOI: 10.1007/s10482-012-9710-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/03/2012] [Indexed: 11/30/2022]
Abstract
The effects of the temperature-moisture factors on the phylloplane yeast communities inhabiting Sphagnum mosses were studied along the transition from a boreal forest to a swamp biotope at the Central Forest State Biosphere Reserve (Tver region, Russia). We tested the hypothesis that microclimatic parameters affect yeast community composition and structure even on a rather small spatial scale. Using a conventional plating technique we isolated and identified by molecular methods a total of 15 species of yeasts. Total yeast counts and species richness values did not depend on environmental factors, although yeast community composition and structure did. On average, Sphagnum in the swamp biotope supported a more evenly structured yeast community. Relative abundance of ascomycetous yeasts was significantly higher on swamp moss. Rhodotorula mucilaginosa dominated in the spruce forest and Cryptococcus magnus was more abundant in the swamp. Our study confirmed the low occurrence of tremellaceous yeasts in the Sphagnum phyllosphere. Of the few isolated ascomycetous yeast and yeast-like species, some were differentiated from hitherto known species in physiological tests and phylogenetic analyses. We describe one of them as Candida sphagnicola and designate KBP Y-3887(T) (=CBS 11774(T) = VKPM Y-3566(T) = MUCL 53590(T)) as the type strain. The new species was registered in MycoBank under MB 563443.
Collapse
Affiliation(s)
- Aleksey V Kachalkin
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russia.
| | | |
Collapse
|
28
|
Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 2011; 108:14539-44. [PMID: 21873232 DOI: 10.1073/pnas.1105430108] [Citation(s) in RCA: 442] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement.
Collapse
|
29
|
Libkind D, Moline M, van Broock M. Production of the UVB-absorbing compound mycosporine-glutaminol-glucoside by Xanthophyllomyces dendrorhous (Phaffia rhodozyma). FEMS Yeast Res 2010; 11:52-9. [DOI: 10.1111/j.1567-1364.2010.00688.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Rodríguez-Sáiz M, de la Fuente JL, Barredo JL. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 2010; 88:645-58. [PMID: 20711573 DOI: 10.1007/s00253-010-2814-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).
Collapse
Affiliation(s)
- Marta Rodríguez-Sáiz
- R&D Biology, Antibióticos S.A., Avenida de Antibióticos 59-61, 24009 León, Spain
| | | | | |
Collapse
|
31
|
de García V, Brizzio S, Libkind D, Rosa CA, van Broock M. Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. Int J Syst Evol Microbiol 2010; 60:1693-1696. [DOI: 10.1099/ijs.0.015974-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight strains of a novel yeast species were isolated from tree saps of ‘Coihue’ (Nothofagus dombeyi, Nothofagaceae) and glacial meltwater (Castaño Overo River) in the Nahuel Huapi National Park, Patagonia, Argentina. The sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that this novel yeast species belongs to the Wickerhamomyces genus (Order Saccharomycetales, Family Wickerhamomycetaceae). The closest related species were Candida ponderosae and Wickerhamomyces chambardii. Wickerhamomyces patagonicus sp. nov. is proposed to accommodate these novel strains, with the type strain CRUB 1724T (=CBS 11398T =JCM 16381T).
Collapse
Affiliation(s)
- Virginia de García
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Argentina
| | - Silvia Brizzio
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Argentina
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Argentina
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - María van Broock
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Argentina
| |
Collapse
|
32
|
Baeza M, Sanhueza M, Flores O, Oviedo V, Libkind D, Cifuentes V. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas. Virol J 2009; 6:160. [PMID: 19814805 PMCID: PMC2764699 DOI: 10.1186/1743-422x-6-160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. RESULTS Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, while the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. CONCLUSION The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in X. dendrorhous.
Collapse
Affiliation(s)
- Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Sanhueza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Oriana Flores
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Oviedo
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología. Bariloche, Río Negro, Argentina
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Crestani J, Fontes Landell M, Faganello J, Henning Vainstein M, Simpson Vishniac H, Valente P. Cryptococcus terrestris sp. nov., a tremellaceous, anamorphic yeast phylogenetically related to Cryptococcus flavescens. Int J Syst Evol Microbiol 2009; 59:631-6. [PMID: 19244451 DOI: 10.1099/ijs.0.001800-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus terrestris sp. nov. (Basidiomycota, Agaricomycotina, Tremellomycetes, Tremellales) is typified by CJDX4 Y23(T) (=CBS 10810(T) =NRRL Y-48451(T)), isolated from forest soil in Oklahoma, USA. This species is most readily identified by the sequence of the D1/D2 domain region of the 26S rDNA and ITS (internal transcribed spacer) region. Additional strains from Oklahoma (C107DX4 Y11 =CBS 10813 =NRRL Y-48452) and Brazil (Ep11c =CBS 10812 =NRRL Y-48454; 56e =CBS 10811 =NRRL Y-48453) either had identical sequences or differed minimally. C. terrestris differs physiologically from the most closely related species, Cryptococcus flavescens, by the weak or delayed assimilation of ribose and salicin, and differs from Cryptococcus aureus by the utilization of nitrate and nitrite and growth in vitamin-free medium.
Collapse
Affiliation(s)
- Juliana Crestani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Weber RW, Becerra J, Silva MJ, Davoli P. An unusual Xanthophyllomyces strain from leaves of Eucalyptus globulus in Chile. ACTA ACUST UNITED AC 2008; 112:861-7. [DOI: 10.1016/j.mycres.2007.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 11/06/2007] [Accepted: 11/29/2007] [Indexed: 11/28/2022]
|
35
|
Libkind D, Moliné M, de García V, Fontenla S, van Broock M. Characterization of a novel South American population of the astaxanthin producing yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). J Ind Microbiol Biotechnol 2007; 35:151-8. [PMID: 18000694 DOI: 10.1007/s10295-007-0275-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
A novel population of the biotechnologically important yeast Xanthophyllomyces dendrorhous, the sexual stage of Phaffia rhodozyma, has been recently isolated for the first time in the southern Hemisphere (Patagonia, Argentina). The aim of the present work was to phenotypically and genotypically characterize two representative strains of this new population, and assess such strains as a potential biotechnological source of astaxanthin, fatty acids and extracellular enzymes. Minor variations were found in physiological tests. PCR fingerprinting studies (MSP-PCR) showed the main differences between X. dendrorhous Patagonian and Type strains. Patagonian strains accumulated a xanthophyll-like pigment, which was identified as astaxanthin. These strains showed low fatty acids content (mainly polyunsaturated fatty acids) and, of a total of six extracellular enzymes tested, only produced amylase. Genetic differences between Patagonian and collection X. dendrorhous strains could be explained by geographic isolation and habitat specificity.
Collapse
Affiliation(s)
- Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Universidad Nacional del Comahue, Centro Regional Universitario Bariloche, CONICET, Bariloche, Río Negro, Argentina.
| | | | | | | | | |
Collapse
|
36
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|