1
|
Pryor JC, Nieva C, Talley NJ, Eslick GD, Duncanson K, Burns GL, Hoedt EC, Keely S. Microbial-derived peptidases are altered in celiac disease, non-celiac gluten sensitivity, and functional dyspepsia: a systematic review and re-analysis of the duodenal microbiome. Gut Microbes 2025; 17:2500063. [PMID: 40346812 PMCID: PMC12068744 DOI: 10.1080/19490976.2025.2500063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/20/2025] [Accepted: 04/25/2025] [Indexed: 05/12/2025] Open
Abstract
Dietary gluten triggers symptoms in patients with gluten-related disorders (GRDs) including celiac disease (CeD), non-celiac gluten sensitivity (NCGS), and subsets of patients with functional dyspepsia (FD). The gastrointestinal microbiota is altered in these patients when compared to healthy individuals. As the microbiota is crucial for the hydrolysis of gluten, we hypothesized that the capacity of the microbiota to digest gluten is reduced in these conditions. We systematically reviewed and re-analyzed published datasets to compare gastrointestinal microbiomes of GRD patients and identify signals explaining gluten responses. A systematic search of five databases was conducted to identify studies where the microbiota of CeD, NCGS, or FD patients was analyzed by 16S rRNA amplicon or shotgun metagenomic sequencing and compared to control populations. Where available, raw duodenal microbiota sequence data were re-analyzed with a consistent bioinformatic pipeline. Thirty articles met the inclusion criteria for this systematic review. Microbiota diversity metrics were not impacted by the diseases; however, genera including Streptococcus, Neisseria, and Lactobacillus were commonly altered in GRD patients. Re-analysis of duodenal 16S rRNA data was possible for five included articles but did not identify any consistent differentially abundant taxa. Predicted functional analysis of the microbiome revealed that peptidases including aminopeptidase, proline iminopeptidase, and Xaa-Pro dipeptidase are altered in CeD, NCGS, and FD, respectively. These microbial-derived peptidases hydrolyze bonds in proline-rich gluten peptides. While the gastrointestinal microbiota in patients with GRDs differ from controls, no distinct phenotype links them. However, alterations to the predicted functional capacity of the microbiome to produce gluten-hydrolyzing enzymes suggest that inappropriate digestion of gluten by the microbiome impacts host responses to dietary gluten in these conditions. These findings have implications for therapeutic management of GRDs, as treatment with gluten-degrading enzymes or tailored probiotics could improve disease outcomes by enhancing gluten digestion into non-reactive peptides.
Collapse
Affiliation(s)
- Jennifer C. Pryor
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Cheenie Nieva
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nicholas J. Talley
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Guy D. Eslick
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Kerith Duncanson
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L. Burns
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C. Hoedt
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon Keely
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Barreto Pinilla CM, Guzman Escudero F, Maria Spadoti L, Brandelli A, Torres Silva E Alves A. Genetic and enzymatic profiling reveals aminopeptidase potential of Lactobacillus acidophilus ItalPN270. FEMS Microbiol Lett 2025; 372:fnaf028. [PMID: 40037606 DOI: 10.1093/femsle/fnaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Lactobacillus acidophilus strains are considered probiotics and have several industrial applications, including their use as non-starter cultures in fermented milk products. However, their biotechnological potential was partially explored. This work investigated the potential peptidase activity of Lactobacillus acidophilus ItalPN270, by mining their whole genome for genetically encoded peptidases and a comparative in vitro analysis of aminopeptidase activity and lytic behavior. The results showed that the assembled bacterial genome comprised one circular chromosome (1 964 524 bp) with 34.57% GC content, and 1906 protein-coding sequences (CDSs). Analysis of the genome sequence of ItalPN270 revealed the presence of 25 genes that encode peptidases with different specificities. The ItalPN270 presented higher values of aminopeptidase activity in vitro, regarding the six enzymatic substrates evaluated, showing values of total aminopeptidase activity 4-fold higher, as compared with an L. paracasei and L. helveticus strains, and notable high activity of pepA, pepL, and pepX. Moreover, the strain ItalPN270 showed an autolysis profile defined by 63.4% of lysis in the first 5 days with low variations after 40 days at 13°C. Thus, our results indicated that strain L. acidophilus ItalPN270 is a potential source of peptidases for different applications, including as adjunct bacteria for improving cheese ripening.
Collapse
Affiliation(s)
| | | | - Leila Maria Spadoti
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), 13070-178 Campinas, São Paulo, Brazil
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, Brazil
| | - Adriana Torres Silva E Alves
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), 13070-178 Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Nikoloudaki O, Celano G, Polo A, Cappello C, Granehäll L, Costantini A, Vacca M, Speckmann B, Di Cagno R, Francavilla R, De Angelis M, Gobbetti M. Novel probiotic preparation with in vivo gluten-degrading activity and potential modulatory effects on the gut microbiota. Microbiol Spectr 2024; 12:e0352423. [PMID: 38860826 PMCID: PMC11218521 DOI: 10.1128/spectrum.03524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
UNLABELLED Gluten possesses unique properties that render it only partially digestible. Consequently, it exerts detrimental effects on a part of the worldwide population who are afflicted with celiac disease (1%) or related disorders (5%), particularly due to the potential for cross-contamination even when adhering to a gluten-free diet (GFD). Finding solutions to break down gluten during digestion has a high nutritional and social impact. Here, a randomized double-blind placebo-controlled in vivo challenge investigated the gluten-degrading activity of a novel probiotic preparation comprising lactobacilli and their cytoplasmic extracts, Bacillus sp., and bacterial protease. In our clinical trial, we collected feces from 70 healthy volunteers at specific time intervals. Probiotic/placebo administration lasted 32 days, followed by 10 days of wash-out. After preliminary GFD to eliminate residual gluten from feces, increasing amounts of gluten (50 mg-10 g) were administered, each one for 4 consecutive days. Compared to placebo, the feces of volunteers fed with probiotics showed much lower amounts of residual gluten, mainly with increased intakes. Probiotics also regulate the intestinal microbial communities, improving the abundance of genera pivotal to maintaining homeostasis. Quantitative PCR confirmed that all probiotics persisted during the intervention, some also during wash-out. Probiotics promoted a fecal metabolome with potential immunomodulating activity, mainly related to derivatives of branched-chain amino acids and short-chain fatty acids. IMPORTANCE The untapped potential of gluten-degrading bacteria and their application in addressing the recognized limitations of gluten-related disorder management and the ongoing risk of cross-contamination even when people follow a gluten-free diet (GFD) emphasizes the significance of the work. Because gluten, a common protein found in many cereals, must be strictly avoided to stop autoimmune reactions and related health problems, celiac disease and gluten sensitivity present difficult hurdles. However, because of the hidden presence of gluten in many food products and the constant danger of cross-contamination during food preparation and processing, total avoidance is frequently challenging. Our study presents a novel probiotic preparation suitable for people suffering from gluten-related disorders during GFD and for healthy individuals because it enhances gluten digestion and promotes gut microbiota functionality.
Collapse
Affiliation(s)
- Olga Nikoloudaki
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claudia Cappello
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Lena Granehäll
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alice Costantini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine-Pediatric Section, University of Bari Aldo Moro, Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
4
|
Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: a metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024; 16:2305716. [PMID: 38300741 PMCID: PMC10841028 DOI: 10.1080/19490976.2024.2305716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ana Rodriguez Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
5
|
Zolnikova O, Dzhakhaya N, Bueverova E, Sedova A, Kurbatova A, Kryuchkova K, Butkova T, Izotov A, Kulikova L, Yurku K, Chekulaev P, Zaborova V. The Contribution of the Intestinal Microbiota to the Celiac Disease Pathogenesis along with the Effectiveness of Probiotic Therapy. Microorganisms 2023; 11:2848. [PMID: 38137992 PMCID: PMC10745538 DOI: 10.3390/microorganisms11122848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The development of many human disorders, including celiac disease (CD), is thought to be influenced by the microbiota of the gastrointestinal tract and its metabolites, according to current research. This study's goal was to provide a concise summary of the information on the contribution of the intestinal microbiota to the CD pathogenesis, which was actively addressed while examining the reported pathogenesis of celiac disease (CD). We assumed that a change in gluten tolerance is formed under the influence of a number of different factors, including genetic predisposition and environmental factors. In related investigations, researchers have paid increasing attention to the study of disturbances in the composition of the intestinal microbiota and its functional activity in CD. A key finding of our review is that the intestinal microbiota has gluten-degrading properties, which, in turn, may have a protective effect on the development of CD. The intestinal microbiota contributes to maintaining the integrity of the intestinal barrier, preventing the formation of a "leaky" intestine. On the contrary, a change in the composition of the microbiota can act as a significant link in the pathogenesis of gluten intolerance and exacerbate the course of the disease. The possibility of modulating the composition of the microbiota by prescribing probiotic preparations is being considered. The effectiveness of the use of probiotics containing Lactobacillus and Bifidobacterium bacteria in experimental and clinical studies as a preventive and therapeutic agent has been documented.
Collapse
Affiliation(s)
- Oxana Zolnikova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Natiya Dzhakhaya
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Elena Bueverova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Alla Sedova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Anastasia Kurbatova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Kira Kryuchkova
- Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana Butkova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Alexander Izotov
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Ludmila Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kseniya Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia;
| | - Pavel Chekulaev
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Victoria Zaborova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| |
Collapse
|
6
|
Khan A, Li S, Han H, Jin WL, Ling Z, Ji J, Iram S, Liu P, Xiao S, Salama ES, Li X. A gluten degrading probiotic Bacillus subtilis LZU-GM relieve adverse effect of gluten additive food and balances gut microbiota in mice. Food Res Int 2023; 170:112960. [PMID: 37316006 DOI: 10.1016/j.foodres.2023.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Gluten accumulation damages the proximal small intestine and causes celiac disease (CeD) which has not been effectively treated except by using a gluten-free diet. In this study, strain Bacillus subtilis LZU-GM was isolated from Pakistani traditional fermented sourdough and could degrade 73.7% of gluten in 24 h in vitro. Strain LZU-GM was employed for practical application to investigate gluten degradation in mice models. The results showed that strain LZU-GM was colonized in mice and the survival rate was around 0.95 % (P < 0.0001). The gluten degradation was 3-fold higher in the small intestine of the strain LZU-GM treated mice group remaining 1511.96 ng/mL of gluten peptides than the untreated mice group (6500.38 ng/mL). Immunochemical analysis showed that gluten-treated mice established positive antigliadin antibodies (AGA) in serum (IgA, IgG, and anti-TG2 antibodies) as compared to the strain LZU-GM treatment group. Furthermore, the number of IFN-γ, TNF-α, IL-10, and COX-2 cells decrease in the lamina propria of the strain LZU-GM treatment group (P < 0.0001). Microbial community bar plot analysis showed that Lactobacillus, Dubosiella, and Enterococcus genera were restored and stabilized in the LZU-GM treatment group while Blautia and Ruminococcus were found lower. The oral gavage of probiotic strain LZU-GM might be useful for gluten metabolism in the intestine during digestion and would be a long-term dietary treatment for CeD management.
Collapse
Affiliation(s)
- Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Shazia Iram
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China.
| |
Collapse
|
7
|
Effect of thermal processing and fermentation with Chinese traditional starters on characteristics and allergenicity of wheat matrix. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Arora K, Tlais AZA, Augustin G, Grano D, Filannino P, Gobbetti M, Di Cagno R. Physicochemical, nutritional, and functional characterization of gluten-free ingredients and their impact on the bread texture. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Alkin NA, Pokrovskaya YS, Belozerskii MA, Kurakov AV, Belyakova GA, Dunaevskii YE. On the Presence of Gluten-Cleaving Activity in Sodiomyces alkalinus and S. magadiensis Strains. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:1-8. [PMID: 37186043 DOI: 10.1134/s0012496622700144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/17/2023]
Abstract
Special enzymes are necessary for producing gluten-free foods, and specific proteolytic enzymes with gluten-degrading activity may be used as oral treatments for celiac disease. Enzymes of the kind were sought, identified, and preliminarily characterized in two strains of the alkaliphilic microscopic fungi Sodiomyces alkalinus and S. magadiensis. Post-glutamine cleaving activity was for the first time observed in the strains along with proline-cleaving activities of dipeptidyl peptidase 4 (DPP4) and proline aminopeptidase (PAP), allowing efficient hydrolysis of both proline/glutamine-rich gluten peptides and whole gluten. The optimal pH and pH-dependent stability were determined for the peptidases in question. All of the enzymes shown to cleave the prolyne/glutamine-containing bonds were assigned to the serine peptidase group and were found to be stable in moderately acidic and alkaline conditions. Owing to their activities, the peptidases are promising as tools to produce gluten-free foods and to design diets for gluten-intolerant patients.
Collapse
Affiliation(s)
- N A Alkin
- Biological Faculty, Moscow State University, 119234, Moscow, Russia.
| | - Yu S Pokrovskaya
- Biological Faculty, Moscow State University, 119234, Moscow, Russia
| | - M A Belozerskii
- Belozerskii Institute of Physicochemical Biology, Moscow State University, 119992, Moscow, Russia.
| | - A V Kurakov
- Biological Faculty, Moscow State University, 119234, Moscow, Russia.
| | - G A Belyakova
- Biological Faculty, Moscow State University, 119234, Moscow, Russia
| | - Ya E Dunaevskii
- Belozerskii Institute of Physicochemical Biology, Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
10
|
Ribet L, Dessalles R, Lesens C, Brusselaers N, Durand-Dubief M. Nutritional benefits of sourdoughs: A systematic review. Adv Nutr 2023; 14:22-29. [PMID: 36811591 PMCID: PMC10103004 DOI: 10.1016/j.advnut.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Food fermentation using sourdough-i.e., consortia of lactic bacteria and yeasts-is increasingly considered among the public as a natural transformation yielding nutritional benefits; however, it is unclear whether its alleged properties are validated by science. The aim of this study was to systematically review the clinical evidence related to the effect of sourdough bread on health. Bibliographic searches were performed in 2 different databases (The Lens and PubMed) up to February 2022. Eligible studies were randomized controlled trials involving adults, healthy or not, given any type of sourdough bread compared with those given any type of yeast bread. A total of 573 articles were retrieved and investigated, of which 25 clinical trials met the inclusion criteria. The 25 clinical trials included a total of 542 individuals. The main outcomes investigated in the retrieved studies were glucose response (N = 15), appetite (N = 3), gastrointestinal markers (N = 5), and cardiovascular markers (N = 2). Overall, it is currently difficult to establish a clear consensus with regards to the beneficial effects of sourdough per se on health when compared with other types of bread because a variety of factors, such as the microbial composition of sourdough, fermentation parameters, cereals, and flour types potentially influence the nutritional properties of bread. Nonetheless, in studies using specific strains and fermentation conditions, significant improvements were observed in parameters related to glycemic response, satiety, or gastrointestinal comfort after bread ingestion. The reviewed data suggest that sourdough has great potential to produce a variety of functional foods; however, its complex and dynamic ecosystem requires further standardization to conclude its clinical health benefits.
Collapse
Affiliation(s)
- Léa Ribet
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | | | - Corinne Lesens
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium; Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden; Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mickaël Durand-Dubief
- Discovery & Front End Innovation, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France.
| |
Collapse
|
11
|
Characterization of the recombinant PepX peptidase from Lactobacillus fermentum and its effect on gliadin protein hydrolysis in vitro. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Chen Q, Yang C, Zhang Z, Wang Z, Chen Y, Rossi V, Chen W, Xin M, Su Z, Du J, Guo W, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. Unprocessed wheat γ-gliadin reduces gluten accumulation associated with the endoplasmic reticulum stress and elevated cell death. THE NEW PHYTOLOGIST 2022; 236:146-164. [PMID: 35714031 PMCID: PMC9544600 DOI: 10.1111/nph.18316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/07/2022] [Indexed: 06/02/2023]
Abstract
Along with increasing demands for high yield, elite processing quality and improved nutrient value in wheat, concerns have emerged around the effects of gluten in wheat-based foods on human health. However, knowledge of the mechanisms regulating gluten accumulation remains largely unexplored. Here we report the identification and characterization of a wheat low gluten protein 1 (lgp1) mutant that shows extremely low levels of gliadins and glutenins. The lgp1 mutation in a single γ-gliadin gene causes defective signal peptide cleavage, resulting in the accumulation of an excessive amount of unprocessed γ-gliadin and a reduced level of gluten, which alters the endoplasmic reticulum (ER) structure, forms the autophagosome-like structures, leads to the delivery of seed storage proteins to the extracellular space and causes a reduction in starch biosynthesis. Physiologically, these effects trigger ER stress and cell death. This study unravels a unique mechanism that unprocessed γ-gliadin reduces gluten accumulation associated with ER stress and elevated cell death in wheat. Moreover, the reduced gluten level in the lgp1 mutant makes it a good candidate for specific diets for patients with diabetes or kidney diease.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Changfeng Yang
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhaoheng Zhang
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zihao Wang
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yongming Chen
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial CropsI‐24126BergamoItaly
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| |
Collapse
|
13
|
Costantini A, Da Ros A, Nikoloudaki O, Montemurro M, Di Cagno R, Genot B, Gobbetti M, Giuseppe Rizzello C. How cereal flours, starters, enzymes, and process parameters affect the in vitro digestibility of sourdough bread. Food Res Int 2022; 159:111614. [DOI: 10.1016/j.foodres.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
|
14
|
Actinidin reduces gluten-derived immunogenic peptides reaching the small intestine in an in vitro semi-dynamic gastrointestinal tract digestion model. Food Res Int 2022; 159:111560. [DOI: 10.1016/j.foodres.2022.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
|
15
|
Boukid F. The realm of plant proteins with focus on their application in developing new bakery products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:101-136. [PMID: 35595392 DOI: 10.1016/bs.afnr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant proteins are spreading due to growing environmental, health and ethical concerns related to animal proteins. Proteins deriving from cereals, oilseeds, and pulses are witnessing a sharp growth showing a wide spectrum of applications from meat and fish analogues to infant formulations. Bakery products are one of the biggest markets of alternative protein applications for functional and nutritional motives. Fortifying bakery products with proteins can secure a better amino-acids profile and a higher protein intake. Conventional plant proteins (i.e., wheat and soy) dominate the bakery industry, but emerging sources (i.e., pea, chickpea, and faba) are also gaining traction. Each protein brings specific functional properties and nutritional value. Therefore, this chapter gives an overview of the main features of plant proteins and discusses their impact on the quality of bakery products.
Collapse
Affiliation(s)
- Fatma Boukid
- Food Safety and Functionality Programme, Food Industry Area, Institute of Agriculture and Food Research and Technology (IRTA), Monells, Catalonia, Spain.
| |
Collapse
|
16
|
A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022; 11:foods11030319. [PMID: 35159469 PMCID: PMC8834264 DOI: 10.3390/foods11030319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Bread is a food that is commonly recognized as a very convenient type of food, but it is also easily prone to microbial attack. As a result of bread spoilage, a significant economic loss occurs to both consumers and producers. For years, the bakery industry has sought to identify treatments that make bread safe and with an extended shelf-life to address this economic and safety concern, including replacing harmful chemical preservatives. New frontiers, on the other hand, have recently been explored. Alternative methods of bread preservation, such as microbial fermentation, utilization of plant and animal derivatives, nanofibers, and other innovative technologies, have yielded promising results. This review summarizes numerous research findings regarding the bio-preservation of bread and suggests potential applications of these techniques. Among these techniques, microbial fermentation using lactic acid bacteria strains and yeast has drawn significant interest nowadays because of their outstanding antifungal activity and shelf-life extending capacity. For example, bread slices with Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5 inhibited fungal development for up to 21 days with the lowest contamination score. Moreover, various essential oils and plant extracts, such as lemongrass oil and garlic extracts, demonstrated promising results in reducing fungal growth on bread and other bakery products. In addition, different emerging bio-preservation strategies such as the utilization of whey, nanofibers, active packaging, and modified atmospheric packaging have gained considerable interest in recent days.
Collapse
|
17
|
Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cereal products are staple foods highly appreciated and consumed worldwide. Nonetheless, due to the presence of gluten proteins, and other co-existing compounds such as amylase-trypsin inhibitors and fermentable short-chain carbohydrates in those products, their preference by consumers has substantially decreased. Gluten affects the small gut of people with celiac disease, triggering a gut inflammation condition via auto-immune response, causing a cascade of health disorders. Amylase-trypsin inhibitors and fermentable short-chain carbohydrate compounds that co-exists with gluten in the cereal-based foods matrix have been associated with several gastrointestinal symptoms in non-celiac gluten sensitivity. Since the symptoms are somewhat overlapped, the relation between celiac disease and irritable bowel syndrome has recently received marked interest by researchers. Sourdough fermentation is one of the oldest ways of bread leavening, by lactic acid bacteria and yeasts population, converting cereal flour into attractive, tastier, and more digestible end-products. Lactic acid bacteria acidification in situ is a key factor to activate several cereal enzymes as well as the synthesis of microbial active metabolites, to positively influence the nutritional/functional and health-promoting benefits of the derived products. This review aims to explore and highlight the potential of sourdough fermentation in the Food Science and Technology field.
Collapse
|
18
|
Dunaevsky YE, Tereshchenkova VF, Belozersky MA, Filippova IY, Oppert B, Elpidina EN. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics 2021; 13:1603. [PMID: 34683896 PMCID: PMC8541236 DOI: 10.3390/pharmaceutics13101603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
To date, there is no effective treatment for celiac disease (CD, gluten enteropathy), an autoimmune disease caused by gluten-containing food. Celiac patients are supported by a strict gluten-free diet (GFD). However, in some cases GFD does not negate gluten-induced symptoms. Many patients with CD, despite following such a diet, retain symptoms of active disease due to high sensitivity even to traces of gluten. In addition, strict adherence to GFD reduces the quality of life of patients, as often it is difficult to maintain in a professional or social environment. Various pharmacological treatments are being developed to complement GFD. One promising treatment is enzyme therapy, involving the intake of peptidases with food to digest immunogenic gluten peptides that are resistant to hydrolysis due to a high prevalence of proline and glutamine amino acids. This narrative review considers the features of the main proline/glutamine-rich proteins of cereals and the conditions that cause the symptoms of CD. In addition, we evaluate information about peptidases from various sources that can effectively break down these proteins and their immunogenic peptides, and analyze data on their activity and preliminary clinical trials. Thus far, the data suggest that enzyme therapy alone is not sufficient for the treatment of CD but can be used as a pharmacological supplement to GFD.
Collapse
Affiliation(s)
- Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | | | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | - Irina Y. Filippova
- Chemical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.F.T.); (I.Y.F.)
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| |
Collapse
|
19
|
Characterization of Bacillus cereus AFA01 Capable of Degrading Gluten and Celiac-Immunotoxic Peptides. Foods 2021; 10:foods10081725. [PMID: 34441503 PMCID: PMC8392533 DOI: 10.3390/foods10081725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Wheat gluten elicits a pro-inflammatory immune response in patients with celiac disease. The only effective therapy for this disease is a life-long gluten-free diet. Gluten detoxification using glutenases is an alternative approach. A key step is to identify useful glutenases or glutenase-producing organisms. This study investigated the gluten-degrading activity of three Bacillus cereus strains using gluten, gliadin, and highly immunotoxic 33- and 13-mer gliadin peptides. The strain AFA01 was grown on four culture media for obtaining the optimum gluten degradation. Complete genome sequencing was performed to predict genes of enzymes with potential glutenase activity. The results showed that the three B. cereus strains can hydrolyze gluten, immunotoxic peptides, and gliadin even at pH 2.0. AFA01 was the most effective strain in degrading the 33-mer peptide into fractions containing less than nine amino acid residues, the minimum peptide to induce celiac responses. Moreover, growth on starch casein broth promoted AFA01 to degrade immunotoxic peptides. PepP, PepX, and PepI may be responsible for the hydrolysis of immunotoxic peptides. On the basis of the potential of gluten degradation, AFA01 or its derived enzymes may be the best option for further research regarding the elimination of gluten toxicity.
Collapse
|
20
|
El Mecherfi KE, Lupi R, Cherkaoui M, Albuquerque MAC, Todorov SD, Tranquet O, Klingebiel C, Rogniaux H, Denery-Papini S, Onno B, de Melo Franco BDG, Larré C. Fermentation of Gluten by Lactococcus lactis LLGKC18 Reduces its Antigenicity and Allergenicity. Probiotics Antimicrob Proteins 2021; 14:779-791. [PMID: 34081268 DOI: 10.1007/s12602-021-09808-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Wheat is a worldwide staple food, yet some people suffer from strong immunological reactions after ingesting wheat-based products. Lactic acid bacteria (LAB) constitute a promising approach to reduce wheat allergenicity because of their proteolytic system. In this study, 172 LAB strains were screened for their proteolytic activity on gluten proteins and α-amylase inhibitors (ATIs) by SDS-PAGE and RP-HPLC. Gliadins, glutenins, and ATI antigenicity and allergenicity were assessed by Western blot/Dot blot and by degranulation assay using RBL-SX38 cells. The screening resulted in selecting 9 high gluten proteolytic strains belonging to two species: Enterococcus faecalis and Lactococcus lactis. Proteomic analysis showed that one of selected strains, Lc. lactis LLGKC18, caused degradation of the main gluten allergenic proteins. A significant decrease of the gliadins, glutenins, and ATI antigenicity was observed after fermentation of gluten by Lc. lactis LLGKC18, regardless the antibody used in the tests. Also, the allergenicity as measured by the RBL-SX38 cell degranulation test was significantly reduced. These results indicate that Lc. lactis LLGKC18 gluten fermentation can be deeply explored for its capability to hydrolyze the epitopes responsible for wheat allergy.
Collapse
Affiliation(s)
- Kamel-Eddine El Mecherfi
- INRAE UR1268 BIA, Rue de la Géraudière, BP 71627, 44316, Nantes, France.,Applied Molecular Genetics Department, USTO Mohamed BOUDIAF University, Oran, Algeria
| | - Roberta Lupi
- INRAE UR1268 BIA, Rue de la Géraudière, BP 71627, 44316, Nantes, France
| | - Mehdi Cherkaoui
- INRAE UR1268 BIA, Rue de la Géraudière, BP 71627, 44316, Nantes, France
| | - Marcela A C Albuquerque
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Svetoslav Dimitrov Todorov
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.,ProBacLab, Handong Global University, Pohang, Republic of Korea
| | - Olivier Tranquet
- INRAE UR1268 BIA, Rue de la Géraudière, BP 71627, 44316, Nantes, France
| | | | - Hélène Rogniaux
- INRAE UR1268 BIA, Rue de la Géraudière, BP 71627, 44316, Nantes, France
| | | | - Bernard Onno
- Food Microbiology Laboratory ONIRIS, Nantes, France
| | | | - Colette Larré
- INRAE UR1268 BIA, Rue de la Géraudière, BP 71627, 44316, Nantes, France.
| |
Collapse
|
21
|
Reale A, Di Stasio L, Di Renzo T, De Caro S, Ferranti P, Picariello G, Addeo F, Mamone G. Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chem 2021; 359:129955. [PMID: 34010753 DOI: 10.1016/j.foodchem.2021.129955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the dynamics of proteolysis during dough fermentation started with different lactic acid bacteria species, through the identification of intermediate and small-sized peptides generated during fermentation. Single-strain cultures of Levilactobacillus brevis, Fructilactobacillus sanfranciscensis, Companilactobacillus alimentarius, and Leuconostoc pseudomesenteroides were assayed as sourdough starters. Assays were carried out at lab-scale for 48 h of fermentation, using both unstarted and yeast-leavened dough as controls. Physicochemical and microbiological analyses were combined with peptidomic and proteomic profiling, identifying several hundreds of peptides mainly released from the water-soluble wheat proteins, including β-amylase, triticin, and serpins. Both α- and γ-gliadins were hydrolyzed, though only at the N-terminal domain, while the central protein region - encrypting celiac disease epitopes- remained unaffected. The bacterial-mediated consumption of sugars and the concomitant hydrolysis of starch degrading β-amylase could underlie improved digestibility and several nutritionally beneficial effects of sourdough baked products.
Collapse
Affiliation(s)
- Anna Reale
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Salvatore De Caro
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Francesco Addeo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| |
Collapse
|
22
|
Fu W, Liu C, Meng X, Tao S, Xue W. Co-culture fermentation of Pediococcus acidilactici XZ31 and yeast for enhanced degradation of wheat allergens. Int J Food Microbiol 2021; 347:109190. [PMID: 33836445 DOI: 10.1016/j.ijfoodmicro.2021.109190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Previous researchers have shown the potential of sourdough and isolated lactic acid bacteria in reducing wheat allergens. As the interactions of lactic acid bacteria with yeast is a key event in sourdough fermentation, we wished to investigate how yeast affects metabolism of lactic acid bacteria, thereby affecting protein degradation and antigenic response. In this study, three strains isolated from sourdough were selected for dough fermentation, namely Pediococcus acidilactici XZ31, Saccharomyces cerevisiae JM1 and Torulaspora delbrueckii JM4. The changes in dough protein during the fermentation process were studied. Protein degradation and antigenic response in dough inoculated with Pediococcus acidilactici XZ31 monoculture and co-culture with yeast were mainly evaluated by SDS-PAGE, immunoblotting, ELISA and Liquid chromatography-tandem mass spectrometry assay. The whole-genome transcriptomic changes in Pediococcus acidilactici XZ31 were also investigated by RNA sequencing. The results showed that water/salt soluble protein and Tri a 28/19 allergens content significantly decreased after 24 h fermentation. Co-culture fermentation accelerated the degradation of protein, and reduced the allergen content to a greater extent. RNA-sequencing analysis further demonstrated that the presence of yeast could promote protein metabolism in Pediococcus acidilactici XZ31 for a certain period of time. These results revealed a synergistic effect between Pediococcus acidilactici XZ31 and yeast degrading wheat allergens, and suggested the potential use of the multi-strain leavening agent for producing hypoallergenic wheat products.
Collapse
Affiliation(s)
- Wenhui Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chenglong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Meng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
De Angelis M, Siragusa S, Vacca M, Di Cagno R, Cristofori F, Schwarm M, Pelzer S, Flügel M, Speckmann B, Francavilla R, Gobbetti M. Selection of Gut-Resistant Bacteria and Construction of Microbial Consortia for Improving Gluten Digestion under Simulated Gastrointestinal Conditions. Nutrients 2021; 13:992. [PMID: 33808622 PMCID: PMC8003469 DOI: 10.3390/nu13030992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED This work aimed to define the microbial consortia that are able to digest gluten into non-toxic and non-immunogenic peptides in the human gastrointestinal tract. METHODS 131 out of 504 tested Bacillus and lactic acid bacteria, specifically Bacillus (64), lactobacilli (63), Pediococcus (1), and Weissella (3), showed strong gastrointestinal resistance and were selected for their PepN, PepI, PepX, PepO, and PepP activities toward synthetic substrates. Based on multivariate analysis, 24 strains were clearly distinct from the other tested strains based on having the highest enzymatic activities. As estimated by RP-HPLC and nano-ESI-MS/MS, 6 cytoplasmic extracts out of 24 selected strains showed the ability to hydrolyze immunogenic epitopes, specifically 57-68 of α9-gliadin, 62-75 of A-gliadin, 134-153 of γ-gliadin, and 57-89 (33-mer) of α2-gliadin. Live and lysed cells of selected strains were combined into different microbial consortia for hydrolyzing gluten under gastrointestinal conditions. Commercial proteolytic enzymes (Aspergillusoryzae E1, Aspergillusniger E2, Bacillussubtilis Veron HPP, and Veron PS proteases) were also added to each microbial consortium. Consortium activity was evaluated by ELISA tests, RP-HPLC-nano-ESI-MS/MS, and duodenal explants from celiac disease patients. RESULTS two microbial consortia (Consortium 4: Lactiplantibacillus (Lp.) plantarum DSM33363 and DSM33364, Lacticaseibacillus (Lc.) paracasei DSM33373, Bacillussubtilis DSM33298, and Bacilluspumilus DSM33301; and Consortium 16: Lp. plantarum DSM33363 and DSM33364, Lc. paracasei DSM33373, Limosilactobacillusreuteri DSM33374, Bacillusmegaterium DSM33300, B.pumilus DSM33297 and DSM33355), containing commercial enzymes, were able to hydrolyze gluten to non-toxic and non-immunogenic peptides under gastrointestinal conditions. CONCLUSIONS the results of this study provide evidence that selected microbial consortia could potentially improve the digestion of gluten in gluten-sensitive patients by hydrolyzing the immunogenic peptides during gastrointestinal digestion.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (S.S.); (M.V.)
| | - Sonya Siragusa
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (S.S.); (M.V.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (S.S.); (M.V.)
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy;
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine-Pediatric Section, University of Bari Aldo Moro, Ospedale Pediatrico Giovanni XXIII, 70125 Bari, Italy; (F.C.); (R.F.)
| | - Michael Schwarm
- Evonik Operations GmbH, 63457 Hanau-Wolfgang, Germany; (M.S.); (S.P.); (M.F.); (B.S.)
| | - Stefan Pelzer
- Evonik Operations GmbH, 63457 Hanau-Wolfgang, Germany; (M.S.); (S.P.); (M.F.); (B.S.)
| | - Monika Flügel
- Evonik Operations GmbH, 63457 Hanau-Wolfgang, Germany; (M.S.); (S.P.); (M.F.); (B.S.)
| | - Bodo Speckmann
- Evonik Operations GmbH, 63457 Hanau-Wolfgang, Germany; (M.S.); (S.P.); (M.F.); (B.S.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine-Pediatric Section, University of Bari Aldo Moro, Ospedale Pediatrico Giovanni XXIII, 70125 Bari, Italy; (F.C.); (R.F.)
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy;
| |
Collapse
|
24
|
Menezes LAA, De Marco I, Neves Oliveira Dos Santos N, Costa Nunes C, Leite Cartabiano CE, Molognoni L, Pereira GVDM, Daguer H, De Dea Lindner J. Reducing FODMAPs and improving bread quality using type II sourdough with selected starter cultures. Int J Food Sci Nutr 2021; 72:912-922. [PMID: 33653200 DOI: 10.1080/09637486.2021.1892603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study focussed on lactic acid bacteria (LAB) screening for sourdough type II elaboration and evaluating the effects of sourdough fermentation in bread making, focussing mainly on reducing FODMAPs. After a technological performance screening, six strains (Levilactobacillus brevis, Weissella minor, Lactiplantibacillus plantarum, Leuconostoc citreum, Limosilactobacillus fermentum, and Companilactobacillus farciminis) were selected for sourdough preparation. Total titratable acidity, pH, specific volume, and enumeration of microorganisms were carried out on sourdoughs, doughs, and breads. Breads were subjected to texture profile and colour analysis, moulds and yeast enumeration, and total fructans (main group of FODMAPs) quantification. Breads produced with sourdough showed a significant reduction of fructans, greater acidity, volume, and better performance during storage when compared to fermentation using only baker's yeast. Including specific cultures as starters in sourdough reduced fructans content by >92%, thereby producing a low FODMAP bread suitable for Irritable Bowel Syndrome patients with improved nutritional and technological properties.
Collapse
Affiliation(s)
| | - Ivan De Marco
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Catharina Costa Nunes
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Luciano Molognoni
- Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), São José, SC, Brazil.,Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC, Brazil
| | - Gilberto V de Melo Pereira
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Heitor Daguer
- Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), São José, SC, Brazil
| | - Juliano De Dea Lindner
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
25
|
Suter DAI, Békés F. Who is to blame for the increasing prevalence of dietary sensitivity to wheat? CEREAL RESEARCH COMMUNICATIONS 2021; 49:1-19. [DOI: 10.1007/s42976-020-00114-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 01/05/2025]
|
26
|
Pilolli R, De Angelis M, Lamonaca A, De Angelis E, Rizzello CG, Siragusa S, Gadaleta A, Mamone G, Monaci L. Prototype Gluten-Free Breads from Processed Durum Wheat: Use of Monovarietal Flours and Implications for Gluten Detoxification Strategies. Nutrients 2020; 12:E3824. [PMID: 33327648 PMCID: PMC7765144 DOI: 10.3390/nu12123824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
In this investigation, we reported the production of prototype breads from the processed flours of three specific Triticum turgidum wheat genotypes that were selected in our previous investigation for their potential low toxic/immunogenic activity for celiac disease (CD) patients. The flours were subjected to sourdough fermentation with a mixture of selected Lactobacillus strains, and in presence of fungal endoproteases. The breads were characterized by R5 competitive enzyme linked immunosorbent assay in order to quantify the residual gluten, and the differential efficacy in gluten degradation was assessed. In particular, two of them were classified as gluten-free (<20 ppm) and very low-gluten content (<100 ppm) breads, respectively, whereas the third monovarietal prototype retained a gluten content that was well above the safety threshold prescribed for direct consumption by CD patients. In order to investigate such a genotype-dependent efficiency of the detoxification method applied, an advanced proteomic characterization by high-resolution tandem mass spectrometry was performed. Notably, to the best of our knowledge, this is the first proteomic investigation which benefitted, for protein identification, from the full sequencing of the Triticum turgidum ssp. durum genome. The differences of the proteins' primary structures affecting their susceptibility to hydrolysis were investigated. As a confirmation of the previous immunoassay-based results, two out of the three breads made with the processed flours presented an exhaustive degradation of the epitopic sequences that are relevant for CD immune stimulatory activity. The list of the detected epitopes was analyzed and critically discussed in light of their susceptibility to the detoxification strategy applied. Finally, in-vitro experiments of human gastroduodenal digestion were carried out in order to assess, in-silico, the toxicity risk of the prototype breads under investigation for direct consumption by CD patients. This approach allowed us to confirm the total degradation of the epitopic sequences upon gastro-duodenal digestion.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Sonya Siragusa
- Department of Soil, Plant and Food Science, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (M.D.A.); (C.G.R.); (S.S.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (A.L.); (E.D.A.); (L.M.)
| |
Collapse
|
27
|
Cristofori F, Francavilla R, Capobianco D, Dargenio VN, Filardo S, Mastromarino P. Bacterial-Based Strategies to Hydrolyze Gluten Peptides and Protect Intestinal Mucosa. Front Immunol 2020; 11:567801. [PMID: 33224137 PMCID: PMC7669986 DOI: 10.3389/fimmu.2020.567801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Gluten is a mixture of proteins highly resistant to hydrolysis, resulting in the emergence of toxic peptides responsible for gluten-related disorders. Currently, a gluten-free diet (GFD) is the unique proven therapy for celiac disease (CD). Several research groups and pharmaceutical companies are developing new nondietetic therapeutic strategies for CD. Probiotics are viable microorganisms thought to have a healthy effect on the host. The proteolytic mechanism of lactic acid bacteria comprises an extracellular serine protease, di- and oligopeptide-specific transport systems, and several intracellular peptidases that might affect gluten degradation. Therefore, probiotic supplementation is an attractive therapy because of its possible anti-inflammatory and immunomodulatory properties. Several studies have been performed to assess the effectiveness of various specific probiotic strains, showing positive effects on immune-modulation (inhibition of pro-inflammatory cytokine TNF-α) restoring gut microbiota and decrease of immunogenic peptides. The present review aims to summarize the current knowledge on the ability of probiotic strain (single or mixtures) to digest gliadin peptides in vitro and to modulate the inflammatory response in the gut.
Collapse
Affiliation(s)
- Fernanda Cristofori
- Interdisciplinary Department of Medicine—Pediatric Section, Università di Bari Aldo Moro, Bari, Italy
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine—Pediatric Section, Università di Bari Aldo Moro, Bari, Italy
| | - Daniela Capobianco
- Department of Public Health and Infectious Disease, Università La Sapienza di Roma, Rome, Italy
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine—Pediatric Section, Università di Bari Aldo Moro, Bari, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Disease, Università La Sapienza di Roma, Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Disease, Università La Sapienza di Roma, Rome, Italy
| |
Collapse
|
28
|
|
29
|
Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L. acidophilus 5e2 and A. niger. Catalysts 2020. [DOI: 10.3390/catal10080923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wheat storage proteins and products of their hydrolysis may cause coeliac sprue in genetically predisposed individuals with high expression of main histocompatibility complex HLA-DQ2 or DQ8, since by consuming wheat, they become exposed to proline- (P) and glutamine (Q)-rich gluten. In bread-making, the hydrolysis of gliadins and coeliac-toxic peptides occurs with varied efficiency depending on the fermentation pH and temperature. Degradation of gliadins catalysed by Lactobacillus acidophilus 5e2 peptidases and a commercial prolyl endopeptidase synthesised by A. niger, carried out at pH 4.0 and 37 °C, reduces the gliadin concentration over 110-fold and decreases the relative immunoreactivity of the hydrolysate to 0.9% of its initial value. Hydrolysis of coeliac-toxic peptides: LGQQQPFPPQQPY (P1) and PQPQLPYPQPQLP (P2) under the same conditions occurs with the highest efficiency, reaching 99.8 ± 0.0% and 97.5 ± 0.1%, respectively. The relative immunoreactivity of peptides P1 and P2 was 0.8 ± 0.0% and 3.2 ± 0.0%, respectively. A mixture of peptidases from L. acidophilus 5e2 and A. niger may be used in wheat sourdough fermentation to reduce the time needed for degradation of proteins and products of their hydrolysis.
Collapse
|
30
|
Gayathri D, Ramesha A. Gluten‑hydrolyzing probiotics: An emerging therapy for patients with celiac disease (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2020. [DOI: 10.3892/wasj.2020.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Devaraja Gayathri
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| | - Alurappa Ramesha
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| |
Collapse
|
31
|
Rashmi BS, Gayathri D, Vasudha M, Prashantkumar CS, Swamy CT, Sunil KS, Somaraja PK, Prakash P. Gluten hydrolyzing activity of Bacillus spp isolated from sourdough. Microb Cell Fact 2020; 19:130. [PMID: 32532261 PMCID: PMC7291523 DOI: 10.1186/s12934-020-01388-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Celiac disease is an intestinal chronic disorder with multifactorial etiology resulting in small intestinal mucosal injuries and malabsorption. In genetically predisposed individuals with HLA DQ2/DQ8 molecules, the gluten domains rich in glutamine and proline present gluten domains to gluten reactive CD4+ T cells causing injury to the intestine. In the present experimental design, the indigenous bacteria from wheat samples were studied for their gluten hydrolyzing functionality. RESULTS Proteolytic activity of Bacillus spp. was confirmed spectrophotometrically and studied extensively on gliadin-derived synthetic enzymatic substrates, natural gliadin mixture, and synthetic highly immunogenic 33-mer peptide. The degradation of 33-mer peptide and the cleavage specificities of the selected isolates were analyzed by tandem mass spectrometry. The gluten content of the sourdough fermented by the chosen bacterial isolates was determined by R5 antibody based competitive ELISA. All the tested isolates efficiently hydrolyzed Z-YPQ-pNA, Z-QQP-pNA, Z-PPF-pNA, and Z-PFP-pNA and also cleaved 33-mer immunogenic peptide extensively. The gluten content of wheat sourdough was found to be below 110 mg/kg. CONCLUSION It has been inferred that four Bacillus spp especially GS 188 could be useful in developing gluten-reduced wheat food product for celiac disease prone individuals.
Collapse
Affiliation(s)
| | - Devaraja Gayathri
- Department of Microbiology, Davangere University, Davangere, Karnataka, 577002, India.
| | - Mahanthesh Vasudha
- Department of Microbiology, Davangere University, Davangere, Karnataka, 577002, India
| | | | | | - Kumar S Sunil
- Department of Microbiology, Davangere University, Davangere, Karnataka, 577002, India
| | | | - Patil Prakash
- SDM Research Institute for Biomedical Sciences (SDMRIBS), Shri Dharmasthala Manjunatheshwara University, Manjushree Nagar, Dharwad, Karnataka, 580 009, India
- Central Research Laboratory, K S Hegde Medical Academy, Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
32
|
Screening of Lactic Acid Bacteria and Yeasts from Sourdough as Starter Cultures for Reduced Allergenicity Wheat Products. Foods 2020; 9:foods9060751. [PMID: 32517155 PMCID: PMC7353608 DOI: 10.3390/foods9060751] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/27/2023] Open
Abstract
Previous researchers have shown the potential of sourdough or related lactic acid bacteria in reducing wheat allergens. However, there are no mixed or single cultures for producing reduced allergenicity wheat products. In this study, twelve strains of lactic acid bacteria and yeast isolated from sourdough were evaluated for their ability to hydrolyze proteins and ferment dough. Strain Pediococcus acidilacticiXZ31 showed higher proteolytic activity on both casein and wheat protein substrates, and had strong ability to reduce wheat protein allergenicity. The tested Saccharomyces and non-Saccharomyces showed limited proteolysis. Strains Torulaspora delbrueckii JM1 and Saccharomyces cerevisiae JM4 demonstrated a higher capacity to ferment dough compared to other yeasts. These strains may be applied as starters for the preparation of reduced allergenicity wheat products.
Collapse
|
33
|
Francavilla R, Cristofori F, Vacca M, Barone M, De Angelis M. Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert Rev Gastroenterol Hepatol 2020; 14:323-333. [PMID: 32216476 DOI: 10.1080/17474124.2020.1745630] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Celiac Disease (CD) is an autoimmune enteropathy caused by exposure to gluten in genetically predisposed people. While gluten is the main driving force in CD, evidence has shown that microbiota might be involved in the pathogenesis, development, and clinical presentation of CD. Microbiota manipulation may modify its functional capacity and may be crucial for setting-up potential preventive or therapeutic application. Moreover, probiotics are an excellent source of endopeptidases for digesting gluten. AREAS COVERED In this narrative review we illustrate all the recent scientific discoveries in this field including CD pathogenetic mechanism where gut microbiota might be involved and possible use of probiotics in CD prevention and treatment. EXPERT OPINION In the future, probiotics could be used as an add-on medication for strengthening/facilitating the gluten-free diet (GFD) and improving symptoms; the prospect of using it for therapeutic purposes is to be sought in a more distant future.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro , Bari, Italy
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro , Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro , Bari, Italy
| | - Michele Barone
- Department of Emergency and Organ Transplantation, Section of Gastroenterology, University "Aldo Moro" , Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro , Bari, Italy
| |
Collapse
|
34
|
Giorgi A, Cerrone R, Capobianco D, Filardo S, Mancini P, Zanni F, Fanelli S, Mastromarino P, Mosca L. A Probiotic Preparation Hydrolyzes Gliadin and Protects Intestinal Cells from the Toxicity of Pro-Inflammatory Peptides. Nutrients 2020; 12:nu12020495. [PMID: 32075195 PMCID: PMC7071319 DOI: 10.3390/nu12020495] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy caused by an intolerance to gluten proteins. It has been hypothesized that probiotic bacteria may exert beneficial effects by modulating inflammatory processes and by sustaining peptide hydrolysis at the intestinal level. This study aims at evaluating the capacity of a probiotic mixture (two different strains of lactobacilli and three of bifidobacteria) to hydrolyze gluten peptides following simulated gastrointestinal digestion of gliadin (PT-gliadin). The capacity of bacterial hydrolysates to counteract the toxic effects of gliadin-derived peptides in Caco-2 cells was also assessed. The protein and peptide mixtures, untreated or proteolyzed with the probiotic preparation, were analyzed before and after each proteolytic step with different techniques (SDS-PAGE, reverse phase HPLC, filtration on different molecular cut-off membranes). These experiments demonstrated that PT-gliadin can be further digested by bacteria into lower molecular weight peptides. PT-gliadin, untreated or digested with the probiotics, was then used to evaluate oxidative stress, IL-6 cytokine production and expression of tight junctions’ proteins—such as occludin and zonulin—in Caco-2 cells. PT-gliadin induced IL-6 production and modulation and redistribution of zonulin and occludin, while digestion with the probiotic strains reversed these effects. Our data indicate that this probiotic mixture may exert a protective role in CD.
Collapse
Affiliation(s)
- Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (A.G.); (R.C.); (F.Z.); (S.F.)
| | - Rugiada Cerrone
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (A.G.); (R.C.); (F.Z.); (S.F.)
| | - Daniela Capobianco
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Roma, 00185 Rome, Italy; (D.C.); (S.F.); (P.M.)
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Roma, 00185 Rome, Italy; (D.C.); (S.F.); (P.M.)
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Roma, 00161 Rome, Italy;
| | - Flavia Zanni
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (A.G.); (R.C.); (F.Z.); (S.F.)
| | - Sergio Fanelli
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (A.G.); (R.C.); (F.Z.); (S.F.)
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Roma, 00185 Rome, Italy; (D.C.); (S.F.); (P.M.)
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (A.G.); (R.C.); (F.Z.); (S.F.)
- Correspondence: ; Tel.: +39-064-9910-987
| |
Collapse
|
35
|
Menezes L, Sardaro MS, Duarte R, Mazzon R, Neviani E, Gatti M, De Dea Lindner J. Sourdough bacterial dynamics revealed by metagenomic analysis in Brazil. Food Microbiol 2020; 85:103302. [DOI: 10.1016/j.fm.2019.103302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
|
36
|
Jayawardana IA, Montoya CA, McNabb WC, Boland MJ. Possibility of minimizing gluten intolerance by co-consumption of some fruits – A case for positive food synergy? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Carrizo SL, de Moreno de LeBlanc A, LeBlanc JG, Rollán GC. Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Res Int 2019; 127:108735. [PMID: 31882084 DOI: 10.1016/j.foodres.2019.108735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
In recent years, quinoa (Chenopodium quinoa Willd), an ancestral crop of the Andean region of South America, has gained worldwide attention due to its high nutritional value. This grain is a good source of several vitamins and minerals; however, their bioavailability is decreased by the presence of antinutritional factors such as phytic acid. These compounds can be reduced using lactic acid bacteria (LAB), that have a GRAS (Generally Recognized as Safe) status and have traditionally been associated with food fermentation due to their biosynthetic capacity and metabolic versatility. The objective of this study was to evaluate the effectiveness of a pasta made with quinoa sourdough fermented by L. plantarum strains producing vitamins B2 and B9 and phytase to prevent vitamins and minerals deficiency using an in vivo mouse model. The results showed that the pasta fermented with the mixed culture containing L. plantarum CRL 2107 + L. plantarum CRL 1964 present increased B2 and B9 levels in mice blood. Likewise, higher concentrations of P, Ca+2, Fe+2, Mg+2 (18.75, 10.70, 0.37, 4.85 mg/dL, respectively) were determined with respect to the deficient group (DG) (9.85, 9.90, 0.26, 3.34 mg/dL, respectively). Hematological studies showed an increase in hemoglobin (14.4 ± 0.6 g/dL), and hematocrit (Htc, 47.0 ± 0.6%) values, compared to the DG (Hb: 12.6 ± 0.5 g/dL, Hto: 39.9 ± 1.1%). Furthermore, histological evaluations of the intestines showed an increase of the small intestine villi length in this latter group. The results allow us to conclude that bio-enrichment of quinoa pasta using LAB could be a novel strategy to increase vitamin and minerals bioavailability in cereal/pseudocereal - derived foods.
Collapse
Affiliation(s)
- Silvana L Carrizo
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000), San Miguel de Tucumán, Argentina
| | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000), San Miguel de Tucumán, Argentina
| | - Graciela C Rollán
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000), San Miguel de Tucumán, Argentina.
| |
Collapse
|
38
|
Ojennus DD, Bratt NJ, Jones KL, Juers DH. Structural characterization of a prolyl aminodipeptidase (PepX) from Lactobacillus helveticus. Acta Crystallogr F Struct Biol Commun 2019; 75:625-633. [PMID: 31584010 PMCID: PMC6777133 DOI: 10.1107/s2053230x19011774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/26/2019] [Indexed: 01/25/2023] Open
Abstract
Prolyl aminodipeptidase (PepX) is an enzyme that hydrolyzes peptide bonds from the N-terminus of substrates when the penultimate amino-acid residue is a proline. Prolyl peptidases are of particular interest owing to their ability to hydrolyze food allergens that contain a high percentage of proline residues. PepX from Lactobacillus helveticus was cloned and expressed in Escherichia coli as an N-terminally His-tagged recombinant construct and was crystallized by hanging-drop vapor diffusion in a phosphate buffer using PEG 3350 as a precipitant. The structure was determined at 2.0 Å resolution by molecular replacement using the structure of PepX from Lactococcus lactis (PDB entry 1lns) as the starting model. Notable differences between the L. helveticus PepX structure and PDB entry 1lns include a cysteine instead of a phenylalanine at the substrate-binding site in the position which confers exopeptidase activity and the presence of a calcium ion coordinated by a calcium-binding motif with the consensus sequence DX(DN)XDG.
Collapse
Affiliation(s)
- Deanna Dahlke Ojennus
- Department of Chemistry, Whitworth University, 300 West Hawthorne Road, Spokane, WA 99251, USA
| | - Nicholas J. Bratt
- Department of Chemistry, Whitworth University, 300 West Hawthorne Road, Spokane, WA 99251, USA
| | - Kent L. Jones
- Department of Mathematics and Computer Science, Whitworth University, 300 West Hawthorne Road, Spokane, WA 99251, USA
| | - Douglas H. Juers
- Department of Physics and Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99632, USA
| |
Collapse
|
39
|
Hamid A, Mallick SA, Moni G, Sachin G, Haq MRU. Amelioration in gliadin antigenicity and maintenance of viscoelastic properties of wheat ( Triticum aestivum L.) cultivars with mixed probiotic fermentation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4282-4295. [PMID: 31477999 PMCID: PMC6706494 DOI: 10.1007/s13197-019-03898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023]
Abstract
Sourdough fermentation of twenty wheat cultivars was carried out using mixed probiotic culture (Lactobacillus acidophilus UNI, Lactobacillus brevis LR/5 and Lactobacillus plantarum ATCC 8014). The gliadin antigenicity was expressed in terms of its content in twenty different wheat cultivars. The gliadin proteins were characterized by SDS-PAGE and structural changes analyzed on FTIR spectrophotometer. Moreover, changes in the viscoelastic character of fermented and non-fermented dough were studied by rheometry. The results showed a remarkable reduction in antigenicity by 60% (average) in all wheat cultivars on sourdough fermentation. This reduction may be due to the synergistic effect of protease secretion by mixed lactobacilli, responsible for gliadin degradation. These changes in gliadins by mixed culture proteolysis were confirmed on SDS-PAGE on observing new gliadin-derived low molecular weight peptides. The results were further validated by FTIR spectroscopy where structural changes of gliadins were analyzed in the fermented dough. The rheological data indicated a higher storage modulus (G') compared to loss modulus (G″) in both control and fermented flour of all wheat cultivars, however, with a lower efficacy in sourdoughs. The present study thus establishes that mixed culture sourdough fermentation decreases the antigenic potential of gliadins without any change in the rheology and thereby maintaining the baking or viscoelastic properties of the wheat flour.
Collapse
Affiliation(s)
- Asima Hamid
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - S. A. Mallick
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - Gupta Moni
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - Gupta Sachin
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha, Jammu and Kashmir India
| | - Mohammad Raies Ul Haq
- Department of Biochemistry, Cluster University Srinagar, Srinagar, Jammu and Kashmir India
| |
Collapse
|
40
|
Rollán GC, Gerez CL, LeBlanc JG. Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Front Nutr 2019; 6:98. [PMID: 31334241 PMCID: PMC6617224 DOI: 10.3389/fnut.2019.00098] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
One of the greatest challenges is to reduce malnutrition worldwide while promoting sustainable agricultural and food systems. This is a daunting task due to the constant growth of the population and the increasing demands by consumers for functional foods with higher nutritional values. Cereal grains are the most important dietary energy source globally; wheat, rice, and maize currently provide about half of the dietary energy source of humankind. In addition, the increase of celiac patients worldwide has motivated the development of gluten-free foods using alternative flour types to wheat such as rice, corn, cassava, soybean, and pseudocereals (amaranth, quinoa, and buckwheat). Amaranth and quinoa have been cultivated since ancient times and were two of the major crops of the Pre-Colombian cultures in Latin- America. In recent years and due to their well-known high nutritional value and potential health benefits, these pseudocereals have received much attention as ideal candidates for gluten-free products. The importance of exploiting these grains for the elaboration of healthy and nutritious foods has forced food producers to develop novel adequate strategies for their processing. Fermentation is one of the most antique and economical methods of producing and preserving foods and can be easily employed for cereal processing. The nutritional and functional quality of pseudocereals can be improved by fermentation using Lactic Acid Bacteria (LAB). This review provides an overview on pseudocereal fermentation by LAB emphasizing the capacity of these bacteria to decrease antinutritional factors such as phytic acid, increase the functional value of phytochemicals such as phenolic compounds, and produce nutritional ingredients such as B-group vitamins. The numerous beneficial effects of lactic fermentation of pseudocereals can be exploited to design novel and healthier foods or grain ingredients destined to general population and especially to patients with coeliac disease.
Collapse
Affiliation(s)
- Graciela C. Rollán
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, San Miguel de Tucumán, Argentina
| | | | | |
Collapse
|
41
|
Tereshchenkova VF, Klyachko EV, Benevolensky SV, Belozersky MA, Dunaevsky YE, Filippova IY, Elpidina EN. Preparation and Purification of Recombinant Dipeptidyl Peptidase 4 from Tenebrio molitor. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Iskierko Z, Sharma PS, Noworyta KR, Borowicz P, Cieplak M, Kutner W, Bossi AM. Selective PQQPFPQQ Gluten Epitope Chemical Sensor with a Molecularly Imprinted Polymer Recognition Unit and an Extended-Gate Field-Effect Transistor Transduction Unit. Anal Chem 2019; 91:4537-4543. [DOI: 10.1021/acs.analchem.8b05557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zofia Iskierko
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof R. Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Science, Cardinal Stefan Wyszynski University in Warsaw, Warsaw 01-815, Poland
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
43
|
Martinez M, Gómez-Cabellos S, Giménez MJ, Barro F, Diaz I, Diaz-Mendoza M. Plant Proteases: From Key Enzymes in Germination to Allies for Fighting Human Gluten-Related Disorders. FRONTIERS IN PLANT SCIENCE 2019; 10:721. [PMID: 31191594 PMCID: PMC6548828 DOI: 10.3389/fpls.2019.00721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/16/2019] [Indexed: 05/15/2023]
Abstract
Plant proteases play a crucial role in many different biological processes along the plant life cycle. One of the most determinant stages in which proteases are key protagonists is the plant germination through the hydrolysis and mobilization of other proteins accumulated in seeds and cereal grains. The most represented proteases in charge of this are the cysteine proteases group, including the C1A family known as papain-like and the C13 family also called legumains. In cereal species such as wheat, oat or rye, gluten is a very complex mixture of grain storage proteins, which may affect the health of sensitive consumers like celiac patients. Since gluten proteins are suitable targets for plant proteases, the knowledge of the proteases involved in storage protein mobilization could be employed to manipulate the amount of gluten in the grain. Some proteases have been previously found to exhibit promising properties for their application in the degradation of known toxic peptides from gluten. To explore the variability in gluten-degrading capacities, we have now analyzed the degradation of gluten from different wheat cultivars using several cysteine proteases from barley. The wide variability showed highlights the possibility to select the protease with the highest potential to alter grain composition reducing the gluten content. Consequently, new avenues could be explored combining genetic manipulation of proteolytic processes with silencing techniques to be used as biotechnological tools against gluten-related disorders.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sara Gómez-Cabellos
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
| | - María José Giménez
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (IAS-CSIC), Córdoba, Spain
| | - Francisco Barro
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (IAS-CSIC), Córdoba, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Campus Montegancedo UPM, Madrid, Spain
- *Correspondence: Mercedes Diaz-Mendoza,
| |
Collapse
|
44
|
Boukid F, Prandi B, Vittadini E, Francia E, Sforza S. Tracking celiac disease-triggering peptides and whole wheat flour quality as function of germination kinetics. Food Res Int 2018; 112:345-352. [PMID: 30131145 DOI: 10.1016/j.foodres.2018.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023]
Abstract
Germination is already a well-accepted process by consumers with many products made from sprouted seeds or containing limited amounts of flour form sprouted grains. The present work aimed assessing the usefulness of germination in reducing gluten peptides associated with celiac disease, at the same time evaluating some technological features of the obtained germinated wheat. In the first part of the work, celiac disease (CD)-triggering peptides were tracked as a function of germination kinetics (from day 1 to day 6). Using simulated gastrointestinal digestion and liquid chromatography coupled to mass spectrometry, ten celiac disease triggering peptides were identified: seven peptides presumably involved in the adaptive immune response (TI) and three peptides mainly involved in the innate immune response (TT). All the identified peptides belonged to gliadins. TI track pattern showed three phases: the first two days displayed a significant degradation, a stability phase was observed from day 3 to day 5, and finally a drastic reduction occurred on the 6th day. For TT peptides, important degradation was exclusively observed at the 6th day. In the second part, some techno-functional features of germinated whole wheat flour were assessed to estimate its potential as an alternative to conventional flour. Functionality comparison of the non-germinated versus germinated flours revealed that germination significantly influenced solvents retention capacities as well as swelling and solubility. Thus, with a reduced amount of celiac disease triggering peptides, but also with different technological behavior compared to traditional wheat flour.
Collapse
Affiliation(s)
- Fatma Boukid
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Barbara Prandi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Department of Human Sciences and Promotion of Quality of Life, Telematic University San Raffaele Roma, via Val Cannuta, 247 Rome, Italy.
| | - Elena Vittadini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Stefano Sforza
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| |
Collapse
|
45
|
Olivares M, Schüppel V, Hassan AM, Beaumont M, Neyrinck AM, Bindels LB, Benítez-Páez A, Sanz Y, Haller D, Holzer P, Delzenne NM. The Potential Role of the Dipeptidyl Peptidase-4-Like Activity From the Gut Microbiota on the Host Health. Front Microbiol 2018; 9:1900. [PMID: 30186247 PMCID: PMC6113382 DOI: 10.3389/fmicb.2018.01900] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022] Open
Abstract
The Dipeptidyl peptidase-4 (DPP-4) activity influences metabolic, behavioral and intestinal disorders through the cleavage of key hormones and peptides. Some studies describe the existence of human DPP-4 homologs in commensal bacteria, for instance in Prevotella or Lactobacillus. However, the role of the gut microbiota as a source of DPP-4-like activity has never been investigated. Through the comparison of the DPP-4 activity in the cecal content of germ-free mice (GFM) and gnotobiotic mice colonized with the gut microbiota of a healthy subject, we bring the proof of concept that a significant DPP-4-like activity occurs in the microbiota. By analyzing the existing literature, we propose that DPP-4-like activity encoded by the intestinal microbiome could constitute a novel mechanism to modulate protein digestion as well as host metabolism and behavior.
Collapse
Affiliation(s)
- Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Valentina Schüppel
- ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany.,Chair of Nutrition and Immunology, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Pharmacology Section, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Martin Beaumont
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany.,Chair of Nutrition and Immunology, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Pharmacology Section, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
46
|
Stressler T, Eisele T, Ewert J, Kranz B, Fischer L. Proving the synergistic effect of Alcalase, PepX and PepN during casein hydrolysis by complete degradation of the released opioid precursor peptide VYPFPGPIPN. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3140-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Brzozowski B. Impact of food processing and simulated gastrointestinal digestion on gliadin immunoreactivity in rolls. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3363-3375. [PMID: 29277903 DOI: 10.1002/jsfa.8847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND The enzymatic modification of wheat proteins during dough fermentation and its digestion as supported by peptidases of microbiological origin can result in the degradation of important peptides in the pathogenesis of coeliac disease. However, baking bread and the high temperature associated with this could change the physicochemical and immunological properties of proteins. Thermal changes in the spatial structure of proteins and their hydrolysis can lead to a masking or degrading of immunoreactive peptides. RESULTS The addition of prolyl endopeptidase (PEP), comprising peptidases isolated from Lactobacillus acidophilus 5e2 (LA) or transglutaminase (TG) in the course of fermentation, decreases its immunoreactivity by 83.9%, 51.9% and 18.5%, respectively. An analysis of the fractional composition of gliadins revealed that γ- and ω-gliadins are the proteins most susceptible to enzymatic modification. Hydrolysis of wheat storage proteins with PEP and LA reduces the content of αβ-, γ- and ω-gliadins by 13.7%, 60.2% and 41.9% for PEP and by 22.1%, 43.5% and 36.9% for LA, respectively. Cross-linking of proteins with TG or their hydrolysis by PEP and LA peptidases during the process of forming wheat dough, followed by digesting bread samples with PEP and LA peptidases, decreases the immunoreactivity of bread hydrolysates from 2.4% to 0.02%. The content of peptide detected in polypeptide sequences is 263.4 ± 3.3, 30.9 ± 1.5 and 7.9 ± 0.4 mg kg-1 in samples of hydrolysates of bread digested with PEP, as produced from dough modified by TG, PEP and LA, respectively. CONCLUSION Enzymatic pre-modification of proteins during the process of dough fermentation decreases their immunoreactive potential, such that fewer peptides recognised by R5 antibodies are released during the digestion process from the bread matrix. Immunoreactive peptides are degraded more effectively when digestive enzymes are supported by the addition of PEP. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bartosz Brzozowski
- Department of Food Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
48
|
Boukid F, Mejri M, Pellegrini N, Sforza S, Prandi B. How Looking for Celiac‐Safe Wheat Can Influence Its Technological Properties. Compr Rev Food Sci Food Saf 2017; 16:797-807. [DOI: 10.1111/1541-4337.12288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022]
Abstract
AbstractBecause of the continuous increase in the prevalence of gluten‐related disorders, selection of wheat with a low content of immunogenic gluten epitopes could be an innovative alternative for prevention. In this review, the focus is on literature data concerning the deallergenization tools of wheat, which are mainly related to breeding approaches (classic and advanced) and processing operations (germination and fermentation). Until now, no safe wheat genotype has been identified, whereas decreasing wheat allergenicity is possible. On the other hand, the decrease of gluten or some of its epitopes can strongly affect technological properties. Thus, obtaining celiac‐safe gluten without affecting the technological properties of wheat could be considered as a new challenge that scientists will be facing. Celiac‐safe wheat‐based product development could be a great revolution in the market of foods for special medical purposes. The present paper is aiming to: (a) review the strategies and the approaches used, or that can be used, for developing low allergenic wheat: their utilities and limits were also discussed and (b) screen the impact of gluten reduction or removal on the quality of wheat end‐use products.
Collapse
Affiliation(s)
- Fatma Boukid
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax Univ. of Sfax Tunisia
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Mondher Mejri
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax Univ. of Sfax Tunisia
| | - Nicoletta Pellegrini
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
- Food Quality Design Group Wageningen Univ. PO Box 8129 Wageningen The Netherlands
| | - Stefano Sforza
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| | - Barbara Prandi
- Food and Drug Dept. Univ. di Parma Parco Area delle Scienze 27/A 43124 Parma Italy
| |
Collapse
|
49
|
Francavilla R, De Angelis M, Rizzello CG, Cavallo N, Dal Bello F, Gobbetti M. Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Appl Environ Microbiol 2017; 83:e00376-17. [PMID: 28500039 PMCID: PMC5494637 DOI: 10.1128/aem.00376-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to demonstrate the capacity of probiotic lactobacilli to hydrolyze immunogenic gluten peptides. Eighteen commercial strains of probiotic lactobacilli with highly variable peptidase activity (i.e., aminopeptidase N, iminopeptidase, prolyl endopeptidyl peptidase, tripeptidase, prolidase, prolinase, and dipeptidase), including toward Pro-rich peptides, were tested in this study. Ten probiotic strains were selected on the basis of their specific enzyme activity. When pooled, these 10 strains provided the peptidase portfolio that is required to completely degrade the immunogenic gluten peptides involved in celiac disease (CD). The selected probiotic mixture was able to completely hydrolyze well-known immunogenic epitopes, including the gliadin 33-mer peptide, the peptide spanning residues 57 to 68 of the α9-gliadin (α9-gliadin peptide 57-68), A-gliadin peptide 62-75, and γ-gliadin peptide 62-75. During digestion under simulated gastrointestinal conditions, the pool of 10 selected probiotic lactobacilli strongly hydrolyzed the wheat bread gluten (ca. 18,000 ppm) to less than 10 ppm after 360 min of treatment. As determined by multidimensional chromatography (MDLC) coupled to nanoelectrospray ionization (nano-ESI)-tandem mass spectrometry (MS/MS), no known immunogenic peptides were detected in wheat bread that was digested in the presence of the probiotics. Accordingly, the level of cytokines (interleukin 2 [IL-2], IL-10, and interferon gamma [IFN-γ]) produced by duodenal biopsy specimens from CD patients who consumed wheat bread digested by probiotics was similar to the baseline value (negative control). Probiotics that specifically hydrolyze gluten polypeptides could also be used to hydrolyze immunogenic peptides that contaminate gluten-free products. This could provide a new and safe adjunctive therapy alternative to the gluten-free diet (GFD).IMPORTANCE This study confirmed that probiotic Lactobacillus strains have different enzymatic abilities for hydrolyzing polypeptides, including the Pro-rich epitopes involved in the pathology of CD. Ten lactobacilli with complementary peptidase activities that hydrolyze gluten peptides during simulated gastrointestinal digestion were selected and tested. The results collected showed the potential of probiotic formulas as novel dietary treatments for CD patients.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bozen, Italy
| |
Collapse
|
50
|
Gobbetti M, Pontonio E, Filannino P, Rizzello CG, De Angelis M, Di Cagno R. How to improve the gluten-free diet: The state of the art from a food science perspective. Food Res Int 2017; 110:22-32. [PMID: 30029702 DOI: 10.1016/j.foodres.2017.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
The celiac disease is the most common food intolerance and its prevalence is increasing. Consequently, use of gluten-free diet has expanded, notwithstanding consumption as therapy for other gluten-related disorders or by wellbeing people without any medical prescription. Even the therapeutic efficiency has undoubtedly proven, several drawbacks mainly regarding the compliance, nutritional deficits and related diseases, and the alteration of the intestinal microbiota have described in the literature. Food science has been considered as one of the primary area of intervention to limit or eliminate such drawbacks. Efforts have approached shelf life, rheology and palatability aspects but more recently have mainly focused to improve the nutritional features of the gluten-free diet, and to propose dietary alternatives. The sourdough fermentation has shown the most promising results, also including a biotechnology strategy that has allowed the complete degradation of gluten prior to consumption.
Collapse
Affiliation(s)
- Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bozen, Italy.
| | - Erica Pontonio
- Department of Soil, Plant and Food Sciences, University of Bari, Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Sciences, University of Bari, Aldo Moro, Bari, Italy
| | | | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari, Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bozen, Bozen, Italy
| |
Collapse
|