1
|
Shi J, Sun M. Bacillus thuringiensis: a gift for nematode management. Trends Parasitol 2025; 41:235-246. [PMID: 39939273 DOI: 10.1016/j.pt.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 02/14/2025]
Abstract
Nematodes attacking plants and animals pose a global threat to agricultural industry and public health. Chemicals as long preferred tools for nematode management are facing challenges such as pest resistance and policy restrictions. Recent findings show that Bacillus thuringiensis (Bt) produces rich components with excellent nematicidal competence and is a precious nonchemical resource for controlling a broad range of nematode parasites. Transgenic plants, microbial products, and nanoparticles efficiently deliver and protect Bt nematicidal activities. The combination of nematicidal elements with distinct modes of action can enhance the efficacy and sustainability of Bt-derived nematicidal products. Here we outline these advances, emphasize the promise of Bt in managing nematodes, and discuss issues concerning the optimization of field deployments of Bt-based nematode management.
Collapse
Affiliation(s)
- Jianwei Shi
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, China.
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Yang M, Hutchinson N, Ye N, Timek H, Jennings M, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as Oral Probiotics To Enhance Clearance of Blood Lactate. ACS Synth Biol 2025; 14:101-112. [PMID: 39739838 DOI: 10.1021/acssynbio.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases, such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between the systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic Bacillus subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced the level of blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to "knocking down" circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hania Timek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Maria Jennings
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Justin D Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, Massachusetts 02142, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
K N V, Bamne SS, Crasta J, Kumar C S, Bhat RM, Shuster BM, Oliver JWK, Abbott ZD. Bacillus subtilis ZB423: 90-Day repeat dose oral (gavage) toxicity study in Wistar rats. J Appl Toxicol 2024; 44:1874-1885. [PMID: 39168852 DOI: 10.1002/jat.4677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The novel genetically modified probiotic Bacillus subtilis ZB423 was assessed in a 90-day repeated-dose oral toxicity study adhering to Good Laboratory Practice (GLP) and Organization for Economic Cooperation and Development (OECD) guidelines. Spray-dried spores at a concentration of 1.1E12 CFU/g were administered at doses of 130, 260, and 519 mg/kg body weight/day correlating to 1.43 × 1011, 2.86 × 1011, and 5.71 × 1011 CFU/kg/day, respectively, by oral gavage to Wistar rats for a period of 90 consecutive days. Results showed no toxicologically relevant findings for B. subtilis ZB423 from measured parameters. The no observed adverse effect level (NOAEL) of B. subtilis ZB423 is 519 mg/kg body weight/day corresponding to 5.71 × 1011 CFU/kg/day for lyophilized B. subtilis ZB423 spores under the test conditions employed.
Collapse
Affiliation(s)
- Vijayakumar K N
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Swati S Bamne
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Johnson Crasta
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Satish Kumar C
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Ramakrishna M Bhat
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | | | | | | |
Collapse
|
4
|
Schemczssen-Graeff Z, Silva CR, de Freitas PNN, Constantin PP, Pileggi SAV, Olchanheski LR, Pileggi M. Probiotics as a strategy for addressing helminth infections in low-income countries: Working smarter rather than richer. Biochem Pharmacol 2024; 226:116363. [PMID: 38871336 DOI: 10.1016/j.bcp.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology, and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Paola Pereira Constantin
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Luiz Ricardo Olchanheski
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil.
| |
Collapse
|
5
|
Yang M, Hutchinson N, Ye N, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as oral probiotics to enhance clearance of blood lactate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569300. [PMID: 38076834 PMCID: PMC10705430 DOI: 10.1101/2023.11.30.569300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic B. subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced elevations in blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to 'knocking down' circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Justin D. Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
6
|
Li H, Gazzola D, Hu Y, Aroian RV. An efficient method for viable cryopreservation and recovery of hookworms and other gastrointestinal nematodes in the laboratory. Int J Parasitol 2023; 53:451-458. [PMID: 37201563 PMCID: PMC10330584 DOI: 10.1016/j.ijpara.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Hookworms (genera Ancylostoma and Necator) are amongst the most prevalent and important parasites of humans globally. These intestinal parasites ingest blood, resulting in anemia, growth stunting, malnutrition, and adverse pregnancy outcomes. They are also critical parasites of dogs and other animals. In addition, hookworms and hookworm products are being explored for their use in treatment of autoimmune and inflammatory diseases. There is thus a significant and growing interest in these mammalian host-obligate parasites. Laboratory research is hampered by the lack of good means of cryopreservation and recovery of parasites. Here, we describe a robust method for long-term (≥3 year) cryopreservation and recovery of both Ancylostoma and Necator hookworms that is also applicable to two other intestinal parasites that passage through the infective L3 stage, Strongyloides ratti and Heligmosomoides polygyrus bakeri. The key is a revised recovery method, in which cryopreserved L1s are thawed and raised to the infective L3 stage using activated charcoal mixed with uninfected feces from a permissive host. This technique will greatly facilitate research on and availability of gastrointestinal parasitic nematodes with great importance to global health, companion animal health, and autoimmune/inflammatory disease therapies.
Collapse
Affiliation(s)
- Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David Gazzola
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yan Hu
- Department of Biology, Worcester State University, Worcester, MA, USA
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Li H, Gazzola D, Hu Y, Aroian RV. An efficient method for viable cryopreservation of hookworms and other gastrointestinal nematodes in the laboratory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526637. [PMID: 36778351 PMCID: PMC9915591 DOI: 10.1101/2023.02.01.526637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hookworms (genera Ancylostoma and Necator ) are amongst of the most prevalent and important parasites of humans globally. These intestinal parasites ingest blood, resulting in anemia, growth stunting, malnutrition, and adverse pregnancy outcomes. They are also critical parasites of dogs and other animals. In addition, hookworms and hookworm products are being explored for their use in treatment of autoimmune and inflammatory diseases. There is thus a significant and growing interest in these mammalian host-obligate parasites. Laboratory research is hampered by the lack of good means of cryopreservation. Here, we describe a robust method for long-term (≥3 year) cryoprotection and recovery of both Ancylostoma and Necator hookworms that is also applicable to two other intestinal parasites that passages through the infective third larval stage, Strongyloides ratti and H eligmosomoides polygyrus bakeri . The key is the use cryo-preserved first-staged larvae raised to the infective third larval stage using activated charcoal mixed with uninfected feces from a permissive host. This technique will greatly facilitate research on and availability of gastrointestinal parasitic nematodes with great importance to global health, companion animal health, and autoimmune/inflammatory disease therapies.
Collapse
|
8
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Hookworm infection: Toward development of safe and effective peptide vaccines. J Allergy Clin Immunol 2021; 148:1394-1419.e6. [PMID: 34872650 DOI: 10.1016/j.jaci.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.
Collapse
Affiliation(s)
- Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
9
|
Urban JF, Nielsen MK, Gazzola D, Xie Y, Beshah E, Hu Y, Li H, Rus F, Flanagan K, Draper A, Vakalapudi S, Li RW, Ostroff GR, Aroian RV. An inactivated bacterium (paraprobiotic) expressing Bacillus thuringiensis Cry5B as a therapeutic for Ascaris and Parascaris spp. infections in large animals. One Health 2021; 12:100241. [PMID: 33889707 PMCID: PMC8048022 DOI: 10.1016/j.onehlt.2021.100241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ascaris and Parascaris are important parasites in the family Ascarididae, large, ubiquitous intestinal-dwelling nematodes infecting all classes of vertebrates. Parasitic nematode drug resistance in veterinary medicine and drug recalcitrance in human medicine are increasing worldwide, with few if any new therapeutic classes on the horizon. Some of these parasites are zoonotic, e.g., Ascaris is passed from humans to pigs and vice versa. The development of new therapies against this family of parasites would have major implications for both human and livestock health. Here we tested the therapeutic ability of a paraprobiotic or dead probiotic that expresses the Bacillus thuringiensis Cry5B protein with known anthelmintic properties, against zoonotic Ascaris suum and Parascaris spp. This paraprobiotic, known as IBaCC, intoxicated A. suum larvae in vitro and was highly effective in vivo against intestinal A. suum infections in a new mouse model for this parasite. Fermentation was scaled up to 350 l to treat pigs and horses. Single dose Cry5B IBaCC nearly completely cleared A. suum infections in pigs. Furthermore, single dose Cry5B IBaCC drove fecal egg counts in Parascaris-infected foals to zero, showing at least parity with, and potential superiority to, current efficacy of anthelmintics used against this parasite. Cry5B IBaCC therefore represents a new, paraprobiotic One Health approach towards targeting Ascarididae that is safe, effective, massively scalable, stable, and useful in human and veterinary medicine in both the developed and developing regions of the world. IBaCC is Bacillus thuringiensis Cry5B protein crystals trapped inside dead bacteria. IBaCC intoxicates Ascaris suum intestinal parasitic nematodes in vitro. IBaCC is highly effective against A. suum parasites in vivo in mice and pigs. IBaCC is highly effective against related Parascaris parasites in foals. IBaCC represents a new paradigm for treating ascarid parasites of humans and animals.
Collapse
Affiliation(s)
- Joseph F Urban
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - David Gazzola
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yue Xie
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America.,Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ethiopia Beshah
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States of America
| | - Yan Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Florentina Rus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Kelly Flanagan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Austin Draper
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, United States of America
| | - Sridhar Vakalapudi
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, United States of America
| | - Robert W Li
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal and Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
10
|
Recombinant Paraprobiotics as a New Paradigm for Treating Gastrointestinal Nematode Parasites of Humans. Antimicrob Agents Chemother 2021; 65:AAC.01469-20. [PMID: 33318013 PMCID: PMC8092541 DOI: 10.1128/aac.01469-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. However, benzimidazole efficacy against GINs is suboptimal, and reduced/low efficacy has been seen. Developing an anthelmintic for human MDA is daunting: it must be safe, effective, inexpensive, stable without a cold chain, and massively scalable. Bacillus thuringiensis crystal protein 5B (Cry5B) has anthelmintic properties that could fill this void. Here, we developed an active pharmaceutical ingredient (API) containing B. thuringiensis Cry5B compatible with MDA. We expressed Cry5B in asporogenous B. thuringiensis during vegetative phase, forming cytosolic crystals. These bacteria with cytosolic crystals (BaCC) were rendered inviable (inactivated BaCC [IBaCC]) with food-grade essential oils. IBaCC potency was validated in vitro against nematodes. IBaCC was also potent in vivo against human hookworm infections in hamsters. IBaCC production was successfully scaled to 350 liters at a contract manufacturing facility. A simple fit-for-purpose formulation to protect against stomach digestion and powdered IBaCC were successfully made and used against GINs in hamsters and mice. A pilot histopathology study and blood chemistry workup showed that five daily consecutive doses of 200 mg/kg body weight Cry5B IBaCC (the curative single dose is 40 mg/kg) was nontoxic to hamsters and completely safe. IBaCC is a safe, inexpensive, highly effective, easy-to-manufacture, and scalable anthelmintic that is practical for MDA and represents a new paradigm for treating human GINs.
Collapse
|
11
|
Sanders J, Xie Y, Gazzola D, Li H, Abraham A, Flanagan K, Rus F, Miller M, Hu Y, Guynn S, Draper A, Vakalapudi S, Petersson KH, Zarlenga D, Li RW, Urban JF, Ostroff GR, Zajac A, Aroian RV. A new paraprobiotic-based treatment for control of Haemonchus contortus in sheep. Int J Parasitol Drugs Drug Resist 2020; 14:230-236. [PMID: 33242790 PMCID: PMC7695930 DOI: 10.1016/j.ijpddr.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Haemonchus contortus is a critical parasite of goats and sheep. Infection by this blood-feeding gastrointestinal nematode (GIN) parasite has significant health consequences, especially in lambs and kids. The parasite has developed resistance to virtually all known classes of small molecule anthelmintics used to treat it, giving rise in some areas to multidrug resistant parasites that are very difficult to control. Thus, new anthelmintics are urgently needed. Bacillus thuringiensis (Bt) crystal protein 5B (Cry5B), a naturally occurring protein made by a bacterium widely and safely used around the world as a bioinsecticide, represents a new non-small molecule modality for treating GINs. Cry5B has demonstrated anthelmintic activities against parasites of monogastric animals, including some related to those that infect humans, but has not yet been studied in a ruminant. Here we show that H. contortus adults are susceptible to Cry5B protein in vitro. Cry5B produced in its natural form as a spore-crystal lysate against H. contortus infections in goats had no significant efficacy. However, a new Active Pharmaceutical Ingredient (API) paraprobiotic form of Cry5B called IBaCC (Inactivated Bacterium with Cytosolic Crystals), in which Cry5B crystals are encapsulated in dead Bt cell wall ghosts, showed excellent efficacy in vitro against larval stages of H. contortus and relative protein stability in bovine rumen fluid. When given to sheep experimentally infected with H. contortus as three 60 mg/kg doses, Cry5B IBaCC resulted in significant reductions in fecal egg counts (90%) and parasite burdens (72%), with a very high impact on female parasites (96% reduction). These data indicate that Cry5B IBaCC is a potent new treatment tool for small ruminants in the battle against H. contortus.
Collapse
Affiliation(s)
- John Sanders
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yue Xie
- United State Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, Immunology Laboratory, Beltsville, MD, 20705, USA
| | - David Gazzola
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ambily Abraham
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kelly Flanagan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Florentina Rus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Melanie Miller
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yan Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Biology Department, Worcester State University, Worcester, MA, 01602, USA
| | - Sierra Guynn
- Department of Large Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Austin Draper
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, 84341, USA
| | - Sridhar Vakalapudi
- Synthetic Biomanufacturing Facility, Utah State University, Logan, UT, 84341, USA
| | - Katherine H Petersson
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Dante Zarlenga
- United State Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705, USA
| | - Robert W Li
- United State Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705, USA
| | - Joseph F Urban
- United State Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, Immunology Laboratory, Beltsville, MD, 20705, USA; United State Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705, USA
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anne Zajac
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
12
|
Lyophilized B. subtilis ZB183 Spores: 90-Day Repeat Dose Oral (Gavage) Toxicity Study in Wistar Rats. J Toxicol 2019; 2019:3042108. [PMID: 31781202 PMCID: PMC6875028 DOI: 10.1155/2019/3042108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 11/17/2022] Open
Abstract
A 90-day repeated-dose oral toxicological evaluation was conducted according to GLP and OECD guidelines on lyophilized spores of the novel genetically modified strain B. subtilis ZB183. Lyophilized spores at doses of 109, 1010, and 1011 CFU/kg body weight/day were administered by oral gavage to Wistar rats for a period of 90 consecutive days. B. subtilis ZB183 had no effects on clinical signs, mortality, ophthalmological examinations, functional observational battery, body weights, body weight gains and food consumption in both sexes. There were no test item-related changes observed in haematology, coagulation, urinalysis, thyroid hormonal analysis, terminal fasting body weights, organ weights, gross pathology and histopathology. A minimal increase in the plasma albumin level was observed at 1010 and 1011 CFU/kg/day doses without an increase in total protein in males or females and was considered a nonadverse effect. The “No Observed Adverse Effect Level (NOAEL)” is defined at the highest dose of 1011 CFU/kg body weight/day for lyophilized B. subtilis ZB183 Spores under the test conditions employed.
Collapse
|
13
|
Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes. Sci Rep 2019; 9:12347. [PMID: 31451730 PMCID: PMC6710243 DOI: 10.1038/s41598-019-48720-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Soil-transmitted nematodes (STNs), namely hookworms, whipworms, and ascarids, are extremely common parasites, infecting 1-2 billion of the poorest people worldwide. Two benzimidazoles, albendazole and mebendazole, are currently used in STN mass drug administration, with many instances of low/reduced activity reported. New drugs against STNs are urgently needed. We tested various models for STN drug screening with the aim of identifying the most effective tactics for the discovery of potent, safe and broad-spectrum agents. We screened a 1280-compound library of approved drugs to completion against late larval/adult stages and egg/larval stages of both the human hookworm parasite Ancylostoma ceylanicum and the free-living nematode Caenorhabditis elegans, which is often used as a surrogate for STNs in screens. The quality of positives was further evaluated based on cheminformatics/data mining analyses and activity against evolutionarily distant Trichuris muris whipworm adults. From these data, two pairs of positives, sulconazole/econazole and pararosaniline/cetylpyridinium, predicted to target nematode CYP-450 and HSP-90 respectively, were prioritized for in vivo evaluation against A. ceylanicum infections in hamsters. One of these positives, pararosaniline, showed a significant impact on hookworm fecundity in vivo. Taken together, our results suggest that anthelmintic screening with A. ceylanicum larval stages is superior to C. elegans based on both reduced false negative rate and superior overall quality of actives. Our results also highlight two potentially important targets for the discovery of broad-spectrum human STN drugs.
Collapse
|
14
|
Identification of small molecule enzyme inhibitors as broad-spectrum anthelmintics. Sci Rep 2019; 9:9085. [PMID: 31235822 PMCID: PMC6591293 DOI: 10.1038/s41598-019-45548-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
Targeting chokepoint enzymes in metabolic pathways has led to new drugs for cancers, autoimmune disorders and infectious diseases. This is also a cornerstone approach for discovery and development of anthelmintics against nematode and flatworm parasites. Here, we performed omics-driven knowledge-based identification of chokepoint enzymes as anthelmintic targets. We prioritized 10 of 186 phylogenetically conserved chokepoint enzymes and undertook a target class repurposing approach to test and identify new small molecules with broad spectrum anthelmintic activity. First, we identified and tested 94 commercially available compounds using an in vitro phenotypic assay, and discovered 11 hits that inhibited nematode motility. Based on these findings, we performed chemogenomic screening and tested 32 additional compounds, identifying 6 more active hits. Overall, 6 intestinal (single-species), 5 potential pan-intestinal (whipworm and hookworm) and 6 pan-Phylum Nematoda (intestinal and filarial species) small molecule inhibitors were identified, including multiple azoles, Tadalafil and Torin-1. The active hit compounds targeted three different target classes in humans, which are involved in various pathways, including carbohydrate, amino acid and nucleotide metabolism. Last, using representative inhibitors from each target class, we demonstrated in vivo efficacy characterized by negative effects on parasite fecundity in hamsters infected with hookworms.
Collapse
|
15
|
Tyagi R, Maddirala AR, Elfawal M, Fischer C, Bulman CA, Rosa BA, Gao X, Chugani R, Zhou M, Helander J, Brindley PJ, Tseng CC, Greig IR, Sakanari J, Wildman SA, Aroian R, Janetka JW, Mitreva M. Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics. ACS Infect Dis 2018; 4:1130-1145. [PMID: 29718656 PMCID: PMC6283408 DOI: 10.1021/acsinfecdis.8b00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The enormous prevalence of infections caused by parasitic nematodes worldwide, coupled to the rapid emergence of their resistance to commonly used anthelmintic drugs, presents an urgent need for the discovery of new drugs. Herein, we have identified several classes of small molecules with broad spectrum activity against these pathogens. Previously, we reported the identification of carnitine palmitoyltransferases (CPTs) as a representative class of enzymes as potential targets for metabolic chokepoint intervention that was elucidated from a combination of chemogenomic screening and experimental testing in nematodes. Expanding on these previous findings, we have discovered that several chemical classes of known small molecule inhibitors of mammalian CPTs have potent activity as anthelmintics. Cross-clade efficacy against a broad spectrum of adult parasitic nematodes was demonstrated for multiple compounds from different series. Several analogs of these initial hit compounds were designed and synthesized. The compounds we report represent a good starting point for further lead identification and optimization for development of new anthelmintic drugs with broad spectrum activity and a novel mechanism of action.
Collapse
Affiliation(s)
- Rahul Tyagi
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Mostafa Elfawal
- University of Massachusetts Medical School, Suite 219 Biotech 2, 373 Plantation St., Worcester, Massachusetts 01605, USA
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St, San Francisco, California 94158, USA
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St, San Francisco, California 94158, USA
| | - Bruce A. Rosa
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
| | - Xin Gao
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
| | - Ryan Chugani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Mingzhou Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Jon Helander
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Ross Hall, Room 521, 2300 Eye Street, NW, Washington, DC 20037, USA
| | - Chih-Chung Tseng
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, U.K
| | - Iain R. Greig
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, U.K
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St, San Francisco, California 94158, USA
| | - Scott A. Wildman
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53792, USA
| | - Raffi Aroian
- University of Massachusetts Medical School, Suite 219 Biotech 2, 373 Plantation St., Worcester, Massachusetts 01605, USA
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., CB 8051, St. Louis MO, 63110, USA
| |
Collapse
|
16
|
Schulz JD, Moser W, Hürlimann E, Keiser J. Preventive Chemotherapy in the Fight against Soil-Transmitted Helminthiasis: Achievements and Limitations. Trends Parasitol 2018; 34:590-602. [DOI: 10.1016/j.pt.2018.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
|
17
|
Hu Y, Miller M, Zhang B, Nguyen TT, Nielsen MK, Aroian RV. In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites. PLoS Negl Trop Dis 2018; 12:e0006506. [PMID: 29775454 PMCID: PMC5979042 DOI: 10.1371/journal.pntd.0006506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/31/2018] [Accepted: 05/08/2018] [Indexed: 01/21/2023] Open
Abstract
Background The soil-transmitted nematodes (STNs) or helminths (hookworms, whipworms, large roundworms) infect the intestines of ~1.5 billion of the poorest peoples and are leading causes of morbidity worldwide. Only one class of anthelmintic or anti-nematode drugs, the benzimidazoles, is currently used in mass drug administrations, which is a dangerous situation. New anti-nematode drugs are urgently needed. Bacillus thuringiensis crystal protein Cry5B is a powerful, promising new candidate. Drug combinations, when properly made, are ideal for treating infectious diseases. Although there are some clinical trials using drug combinations against STNs, little quantitative and systemic work has been performed to define the characteristics of these combinations in vivo. Methodology/Principal findings Working with the hookworm Ancylostoma ceylanicum-hamster infection system, we establish a laboratory paradigm for studying anti-nematode combinations in vivo using Cry5B and the nicotinic acetylcholine receptor (nAChR) agonists tribendimidine and pyrantel pamoate. We demonstrate that Cry5B strongly synergizes in vivo with both tribendimidine and pyrantel at specific dose ratios against hookworm infections. For example, whereas 1 mg/kg Cry5B and 1 mg/kg tribendimidine individually resulted in only a 0%-6% reduction in hookworm burdens, the combination of the two resulted in a 41% reduction (P = 0.020). Furthermore, when mixed at synergistic ratios, these combinations eradicate hookworm infections at doses where the individual doses do not. Using cyathostomin nematode parasites of horses, we find based on inhibitory concentration 50% values that a strongylid parasite population doubly resistant to nAChR agonists and benzimidazoles is more susceptible or “hypersusceptible” to Cry5B than a cyathostomin population not resistant to nAChR agonists, consistent with previous Caenhorhabditis elegans results. Conclusions/Significance Our study provides a powerful means by which anthelmintic combination therapies can be examined in vivo in the laboratory. In addition, we demonstrate that Cry5B and nAChR agonists have excellent combinatorial properties—Cry5B combined with nAChR agonists gives rise to potent cures that are predicted to be recalcitrant to the development of parasite resistance. These drug combinations highlight bright spots in new anthelmintic development for human and veterinary animal intestinal nematode infections. Intestinal nematodes are roundworm parasites of humans and animals, causing significant morbidity in both. In humans, these parasites are leading causes of morbidity in children, e.g., causing growth stunting, cognitive impairment, and malnutrition. Few drugs are used to treat these parasites in humans and animals and there is increasing evidence that the drugs are losing efficacy and/or have low efficacy. Infectious diseases are best treated with drug combinations and not single drugs. However, there has been little work to characterize in detail how various anti-nematode drugs combine. Here we establish a new laboratory model to study anti-nematode drug combinations using the human hookworm Ancylostoma ceylanicum infection in hamsters. We show that two classes of anti-nematode drugs, Cry5B and the nicotinic acetylcholine receptor agonists tribendimidine and pyrantel, combine (synergize) in a way that is more powerful at specific drug ratios than predicted from their individual impacts. Furthermore, when combined at these ratios, these combinations completely eliminated parasites at doses where normally neither drug has that effect. Horse parasites resistant to pyrantel also appear to be hypersensitive (more sensitive than wild-type parasites) to Cry5B. These characteristics predict that combinations of Cry5B with tribendimidine or pyrantel will be extremely effective therapeutically and relatively recalcitrant to the development of parasite resistance.
Collapse
Affiliation(s)
- Yan Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Melanie Miller
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Bo Zhang
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Thanh-Thanh Nguyen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Martin K. Nielsen
- Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Bacillus thuringiensis Cry5B protein as a new pan-hookworm cure. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:287-294. [PMID: 29772478 PMCID: PMC6039361 DOI: 10.1016/j.ijpddr.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022]
Abstract
Hookworms are intestinal nematode parasites that infect nearly half a billion people and are globally one of the most important contributors to iron-deficiency anemia. These parasites have significant impacts in developing children, pregnant women and working adults. Of all the soil-transmitted helminths or nematodes (STNs), hookworms are by far the most important, with disease burdens conservatively estimated at four million DALYs (Disability-Adjusted Life Years) and with productivity losses of up to US$139 billion annually. To date, mainly one drug, albendazole is used for hookworm therapy in mass drug administration, which has on average ∼80% cure rate that is lower (<40%) in some places. Given the massive numbers of people needing treatment, the threat of parasite resistance, and the inadequacy of current treatments, new and better cures against hookworms are urgently needed. Cry5B, a pore-forming protein produced by the soil bacterium Bacillus thuringiensis (Bt) has demonstrated good efficacy against Ancylostoma ceylanicum hookworm infections in hamsters. Here we broaden studies of Cry5B to include tests against infections of Ancylostoma caninum hookworms in dogs and against infections of the dominant human hookworm, Necator americanus, in hamsters. We show that Cry5B is highly effective against all hookworm parasites tested in all models. Neutralization of stomach acid improves Cry5B efficacy, which will aid in practical application of Cry5B significantly. Importantly, we also demonstrate that the anti-nematode therapeutic efficacy of Cry5B is independent of the host immune system and is not itself negated by repeated dosing. This study indicates that Bt Cry5B is a pan-hookworm anthelmintic with excellent properties for use in humans and other animals.
Collapse
|
19
|
Gordon CA, Kurscheid J, Jones MK, Gray DJ, McManus DP. Soil-Transmitted Helminths in Tropical Australia and Asia. Trop Med Infect Dis 2017; 2:E56. [PMID: 30270913 PMCID: PMC6082059 DOI: 10.3390/tropicalmed2040056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Soil-transmitted helminths (STH) infect 2 billion people worldwide including significant numbers in South-East Asia (SEA). In Australia, STH are of less concern; however, indigenous communities are endemic for STH, including Strongyloides stercoralis, as well as for serious clinical infections due to other helminths such as Toxocara spp. The zoonotic hookworm Ancylostoma ceylanicum is also present in Australia and SEA, and may contribute to human infections particularly among pet owners. High human immigration rates to Australia from SEA, which is highly endemic for STH Strongyloides and Toxocara, has resulted in a high prevalence of these helminthic infections in immigrant communities, particularly since such individuals are not screened for worm infections upon entry. In this review, we consider the current state of STH infections in Australia and SEA.
Collapse
Affiliation(s)
- Catherine A Gordon
- QIMR Berghofer Medical Research Institute, Molecular Parasitology Laboratory, Queensland 4006, Australia.
| | - Johanna Kurscheid
- Australian National University, Department of Global Health, Research School of Population Health, Australian Capital Territory 2601, Australia.
| | - Malcolm K Jones
- School of Veterinary Science, University of Queensland, Brisbane, QLD 4067, Australia.
| | - Darren J Gray
- Australian National University, Department of Global Health, Research School of Population Health, Australian Capital Territory 2601, Australia.
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Molecular Parasitology Laboratory, Queensland 4006, Australia.
| |
Collapse
|
20
|
Bracho OR, Manchery C, Haskell EC, Blanar CA, Smith RP. Circumvention of Learning Increases Intoxication Efficacy of Nematicidal Engineered Bacteria. ACS Synth Biol 2016; 5:241-9. [PMID: 26692340 DOI: 10.1021/acssynbio.5b00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synthetic biology holds promise to engineer systems to treat diseases. One critical, yet underexplored, facet of designing such systems is the interplay between the system and the pathogen. Understanding this interplay may be critical to increasing efficacy and overcoming resistance against the system. Using the principles of synthetic biology, we engineer a strain of Escherichia coli to attract and intoxicate the nematode Caenorhabditis elegans. Our bacteria are engineered with a toxin module, which intoxicates the nematode upon ingestion, and an attraction module, which serves to attract and increase the feeding rate of the nematodes. When independently implemented, these modules successfully intoxicate and attract the worms, respectively. However, in combination, the efficacy of our bacteria is significantly reduced due to aversive associative learning in C. elegans. Guided by mathematical modeling, we dynamically regulate module induction to increase intoxication by circumventing learning. Our results detail the creation of a novel nematicidal bacterium that may have application against nematodes, unravel unique constraints on circuit dynamics that are governed by C. elegans physiology, and add to the growing list of design and implementation considerations associated with synthetic biology.
Collapse
Affiliation(s)
- Olena R. Bracho
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Cyril Manchery
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Evan C. Haskell
- Department
of Mathematics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Christopher A. Blanar
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Robert P. Smith
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| |
Collapse
|
21
|
Intracellular and Extracellular Expression of Bacillus thuringiensis Crystal Protein Cry5B in Lactococcus lactis for Use as an Anthelminthic. Appl Environ Microbiol 2015; 82:1286-94. [PMID: 26682852 PMCID: PMC4751831 DOI: 10.1128/aem.02365-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022] Open
Abstract
The Bacillus thuringiensis crystal (Cry) protein Cry5B (140 kDa) and a truncated version of the protein, tCry5B (79 kDa), are lethal to nematodes. Genes encoding the two proteins were separately cloned into a high-copy-number vector with a strong constitutive promoter (pTRK593) in Lactococcus lactis for potential oral delivery against parasitic nematode infections. Western blots using a Cry5B-specific antibody revealed that constitutively expressed Cry5B and tCry5B were present in both cells and supernatants. To increase production, cry5B was cloned into the high-copy-number plasmid pMSP3535H3, carrying a nisin-inducible promoter. Immunoblotting revealed that 3 h after nisin induction, intracellular Cry5B was strongly induced at 200 ng/ml nisin, without adversely affecting cell viability or cell membrane integrity. Both Cry5B genes were also cloned into plasmid pTRK1061, carrying a promoter and encoding a transcriptional activator that invoke low-level expression of prophage holin and lysin genes in Lactococcus lysogens, resulting in a leaky phenotype. Cry5B and tCry5B were actively expressed in the lysogenic strain L. lactis KP1 and released into cell supernatants without affecting culture growth. Lactate dehydrogenase (LDH) assays indicated that Cry5B, but not LDH, leaked from the bacteria. Lastly, using intracellular lysates from L. lactis cultures expressing both Cry5B and tCry5B, in vivo challenges of Caenorhabditis elegans worms demonstrated that the Cry proteins were biologically active. Taken together, these results indicate that active Cry5B proteins can be expressed intracellularly in and released extracellularly from L. lactis, showing potential for future use as an anthelminthic that could be delivered orally in a food-grade microbe.
Collapse
|
22
|
Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste. Appl Environ Microbiol 2015; 81:6718-24. [PMID: 26187966 DOI: 10.1128/aem.01535-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
Organic manures may contain high levels of arsenic (As) due to the use of As-containing growth-promoting substances in animal feed. To develop a bioremediation strategy to remove As from organic waste, Bacillus subtilis 168, a bacterial strain which can grow at high temperature but is unable to methylate and volatilize As, was genetically engineered to express the arsenite S-adenosylmethionine methyltransferase gene (CmarsM) from the thermophilic alga Cyanidioschyzon merolae. The genetically engineered B. subtilis 168 converted most of the inorganic As in the medium into dimethylarsenate and trimethylarsine oxide within 48 h and volatized substantial amounts of dimethylarsine and trimethylarsine. The rate of As methylation and volatilization increased with temperature from 37 to 50°C. When inoculated into an As-contaminated organic manure composted at 50°C, the modified strain significantly enhanced As volatilization. This study provides a proof of concept of using genetically engineered microorganisms for bioremediation of As-contaminated organic waste during composting.
Collapse
|