1
|
Scheffer G, Rattray J, Evans P, Shi W, Bhatnagar S, Hubert CRJ. Nitrate-reducing microorganisms prevent souring of an oil field produced water storage pond. FEMS Microbiol Ecol 2025; 101:fiaf041. [PMID: 40295121 PMCID: PMC12047076 DOI: 10.1093/femsec/fiaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/28/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025] Open
Abstract
Nitrate addition for mitigating sulfide production in oil field systems has been studied in laboratory settings and in some subsurface oil reservoirs. To promote water recycling and reuse associated with oil reservoirs produced by hydraulic fracturing, high-salinity produced waters are temporarily stored in surface ponds prior to subsequent reinjection into the subsurface. In this study, nitrate was added directly to a storage pond to prevent sulfide accumulation. DNA sequencing of pond water over a 4-week period revealed a decrease in the proportion of sulfate-reducing microorganisms following nitrate application. Sulfate levels remained stable during this period, whereas nitrate and nitrite fluctuated in the days following the nitrate addition. Metagenome-assembled genomes (MAGs) reconstructed from the pond water microbiome highlighted different organisms with genes for organoheterotrophic and lithoheterotrophic nitrate reduction, whereas genes associated with sulfide production via sulfate or thiosulfate reduction were barely detected. Within those MAGs, genes for acetate metabolism were observed, consistent with acetate decreasing substantially in the pond water in the presence of nitrate. After nitrate was consumed an increase in relative abundance of putative autotrophic microorganisms was observed (e.g. Arhodomonas, Guyparkeria, and Psychroflexus), corresponding to a drop in total inorganic carbon measurements in the storage pond. This trial offers an overview on microbial processes taking place in storage pond environments in response to nitrate addition.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jayne Rattray
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Paul Evans
- Chevron Technical Center, Houston, Texas 77072, United States
| | - Wei Shi
- Chevron Technical Center, Houston, Texas 77072, United States
| | - Srijak Bhatnagar
- Faculty of Science and Technology, Athabasca University, Athabasca, Alberta T9S 3A3, Canada
| | - Casey R J Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
2
|
Das A, Das N, Pandey P, Pandey P. Microbial enhanced oil recovery: process perspectives, challenges, and advanced technologies for its efficient applications and feasibility. Arch Microbiol 2025; 207:106. [PMID: 40167782 DOI: 10.1007/s00203-025-04307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
The depletion of crude oil resources, coupled with increasing energy demands, underscores the urgency for innovative recovery strategies. Despite traditional oil recovery operations, a substantial portion of residual oil (~70%) persists within the intricate capillary networks of oil reservoirs' pore spaces. Microbial Enhanced Oil Recovery (MEOR) is an ecofriendly and cost-effective tertiary oil recovery method that offers a sustainable approach by utilizing microorganisms and their metabolites to extract this residual oil from mature or depleted reservoirs. MEOR is an emerging process gaining global attention, with numerous research studies and field trials underway worldwide. This review explores microbial strategies for modifying reservoir rheological properties, underscores the significance of microbial physiology and diversity, and examines omics technologies for deciphering microbial mechanisms to enhance the efficiency of MEOR. Cutting-edge advancements, including genetically modified microbes, enzyme-based techniques, and nanotechnology, have been discussed as potential enhancers of MEOR efficiency. The economic feasibility and integration of MEOR with Carbon Capture and Utilization (CCUS) are also assessed, emphasizing its role amid declining conventional oil production. Further, the economic and application feasibility along with patents related to MEOR technologies is presented which underscores its commercial viability. By addressing challenges and proposing solutions, this review provides a comprehensive outlook on MEOR's future, aiming to guide research and development for its successful application in sustainable oil recovery.
Collapse
Affiliation(s)
- Ankita Das
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Nandita Das
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Prisha Pandey
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 791102, Assam, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
3
|
Hou L, Cortez R, Hagerman M, Hu Z, Majumder ELW. Co-occurrence of direct and indirect extracellular electron transfer mechanisms during electroactive respiration in a dissimilatory sulfate reducing bacterium. Microbiol Spectr 2025; 13:e0122624. [PMID: 39636109 PMCID: PMC11705803 DOI: 10.1128/spectrum.01226-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Understanding the extracellular electron transfer mechanisms of electroactive bacteria could help determine their potential in microbial fuel cells (MFCs) and their microbial syntrophy with redox-active minerals in natural environments. However, the mechanisms of extracellular electron transfer to electrodes by sulfate-reducing bacteria (SRB) remain underexplored. Here, we utilized double-chamber MFCs with carbon cloth electrodes to investigate the extracellular electron transfer mechanisms of Desulfovibrio vulgaris Hildenborough (DvH), a model SRB, under varying lactate and sulfate concentrations using different DvH mutants. Our MFC setup indicated that DvH can harvest electrons from lactate at the anode and transfer them to cathode, where DvH could further utilize these electrons. Patterns in current production compared with variations of electron donor/acceptor ratios in the anode and cathode suggested that attachment of DvH to the electrode and biofilm density were critical for effective electricity generation. Electron microscopy analysis of DvH biofilms indicated DvH utilized filaments that resemble pili to attach to electrodes and facilitate extracellular electron transfer from cell to cell and to the electrode. Proteomics profiling indicated that DvH adapted to electroactive respiration by presenting more pili- and flagellar-related proteins. The mutant with a deletion of the major pilus-producing gene yielded less voltage and far less attachment to both anodic and catholic electrodes, suggesting the importance of pili in extracellular electron transfer. The mutant with a deficiency in biofilm formation, however, did not eliminate current production indicating the existence of indirect extracellular electron transfer. Untargeted metabolomics profiling showed flavin-based metabolites, potential electron shuttles.IMPORTANCEWe explored the application of Desulfovibrio vulgaris Hildenborough in microbial fuel cells (MFCs) and investigated its potential extracellular electron transfer (EET) mechanism. We also conducted untargeted proteomics and metabolomics profiling, offering insights into how DvH adapts metabolically to different electron donors and acceptors. An understanding of the EET mechanism and metabolic flexibility of DvH holds promise for future uses including bioremediation or enhancing efficacy in MFCs for wastewater treatment applications.
Collapse
Affiliation(s)
- Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
- Utah Water Research Laboratory, Logan, Utah, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rebecca Cortez
- Department of Mechanical Engineering, Union College, Schenectady, New York, USA
| | - Michael Hagerman
- Department of Chemistry, Union College, Schenectady, New York, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, USA
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Gerengi H, Kaya E, Solomon MM, Snape M, Koerdt A. Advances in the Mitigation of Microbiologically Influenced Concrete Corrosion: A Snapshot. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5846. [PMID: 39685282 DOI: 10.3390/ma17235846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Concrete, a versatile construction material, faces pervasive deterioration due to microbiologically influenced corrosion (MIC) in various applications, including sewer systems, marine engineering, and buildings. MIC is initiated by microbial activities such as involving sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria (SOB), etc., producing corrosive substances like sulfuric acid. This process significantly impacts structures, causing economic losses and environmental concerns. Despite over a century of research, MIC remains a debated issue, lacking standardized assessment methods. Microorganisms contribute to concrete degradation through physical and chemical means. In the oil and gas industry, SRB and SOB activities may adversely affect concrete in offshore platforms. MIC challenges also arise in cooling water systems and civil infrastructures, impacting concrete surfaces. Sewer systems experience biogenic corrosion, primarily driven by SRB activities, leading to concrete deterioration. Mitigation traditionally involves the use of biocides and surface coatings, but their long-term effectiveness and environmental impact are questionable. Nowadays, it is important to design more eco-friendly mitigation products. The microbial-influenced carbonate precipitation is one of the green techniques and involves incorporating beneficial bacteria with antibacterial activity into cementitious materials to prevent the growth and the formation of a community that contains species that are pathogenic or may be responsible for MIC. These innovative strategies present promising avenues for addressing MIC challenges and preserving the integrity of concrete structures. This review provides a snapshot of the MIC in various areas and mitigation measures, excluding underlying mechanisms and broader influencing factors.
Collapse
Affiliation(s)
- Husnu Gerengi
- Corrosion Research Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Düzce University, 81620 Duzce, Türkiye
| | - Ertugrul Kaya
- Corrosion Research Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Düzce University, 81620 Duzce, Türkiye
- 3-S Engineering Consultation Industry and Commerce Incorporated Company, R&D Centre, 81620 Duzce, Türkiye
| | - Moses M Solomon
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315104, China
| | - Matthew Snape
- SGS MIRAS Consultancy Services, Global Biosciences Centre, 1600-604 Lisbon, Portugal
| | - Andrea Koerdt
- Bundesanstalt für Materialforschung und Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
5
|
Gao SC, Fan XX, Zhang Z, Li RT, Zhang Y, Gao TP, Liu Y. A dual-function mixed-culture biofilm for sulfadiazine removal and electricity production using bio-electrochemical system. Biosens Bioelectron 2024; 263:116552. [PMID: 39038400 DOI: 10.1016/j.bios.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 μA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.
Collapse
Affiliation(s)
- Sheng-Chao Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Xin-Xin Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Zhen Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Rui-Tao Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Yue Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Tian-Peng Gao
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, 730070, China; College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
6
|
Yernazarova A, Shaimerdenova U, Akimbekov N, Kaiyrmanova G, Shaken M, Izmailova A. Exploring the use of microbial enhanced oil recovery in Kazakhstan: a review. Front Microbiol 2024; 15:1394838. [PMID: 39176284 PMCID: PMC11340538 DOI: 10.3389/fmicb.2024.1394838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Microbial enhanced oil recovery (MEOR) is a promising method for improving oil recovery from challenging reservoirs such as those found in Kazakhstan. MEOR relies on the activities of microorganisms to modify the properties of the reservoir, such as reducing the oil viscosity, increasing the reservoir permeability, and generating by-products that mobilize the oil. Implementing MEOR in Kazakhstan could lead to significant economic benefits for the country by increasing oil production and royalties from fossil fuel exports. Oil production in Kazakhstan has seen fluctuations in recent years, with 2018 recording a production level of 1.814 million barrels per day. Among regions, Atyrau region contributed the most to oil production with 23.4 million tons of oil. Following Atyrau, the Mangystau region produced 8.2 million tons, and Aktobe produced 2.4 million tons. Overall, the use of MEOR in Kazakhstan's oil fields could offer a promising solution for enhanced oil recovery, while minimizing environmental impact and cost. While specific data on the current use of MEOR in field conditions in Kazakhstan might be limited, the fact that studies are underway suggests a growing interest in applying this technology in the country's oil fields. It is exciting to think about the potential benefits these studies could bring to Kazakhstan's oil industry once their findings are implemented in field operations. These studies have significant implications for Kazakhstan's oil production in the future.
Collapse
Affiliation(s)
- Aliya Yernazarova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ulzhan Shaimerdenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nuraly Akimbekov
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan
| | - Gulzhan Kaiyrmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | |
Collapse
|
7
|
Tian H, Gao P, Qi C, Li G, Ma T. Nitrate and oxygen significantly changed the abundance rather than structure of sulphate-reducing and sulphur-oxidising bacteria in water retrieved from petroleum reservoirs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13248. [PMID: 38581137 PMCID: PMC10997955 DOI: 10.1111/1758-2229.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.
Collapse
Affiliation(s)
- Huimei Tian
- College of ForestryShandong Agricultural UniversityTaianChina
- Ecology Postdoctoral Mobile StationForestry College of Shandong Agricultural UniversityTaianChina
| | - Peike Gao
- College of Life SciencesQufu Normal UniversityJiningChina
| | - Chen Qi
- College of ForestryShandong Agricultural UniversityTaianChina
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
8
|
Lileikis T, Nainienė R, Bliznikas S, Uchockis V. Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals (Basel) 2023; 13:2586. [PMID: 37627377 PMCID: PMC10451764 DOI: 10.3390/ani13162586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This review examines the current state of knowledge regarding the effectiveness of different dietary ruminant enteric methane mitigation strategies and their modes of action together with the issues discussed regarding the potential harms/risks and applicability of such strategies. By investigating these strategies, we can enhance our understanding of the mechanisms by which they influence methane production and identify promising approaches for sustainable mitigation of methane emissions. Out of all nutritional strategies, the use of 3-nitrooxypropanol, red seaweed, tannins, saponins, essential oils, nitrates, and sulfates demonstrates the potential to reduce emissions and receives a lot of attention from the scientific community. The use of certain additives as pure compounds is challenging under certain conditions, such as pasture-based systems, so the potential use of forages with sufficient amounts of plant secondary metabolites is also explored. Additionally, improved forage quality (maturity and nutrient composition) might help to further reduce emissions. Red seaweed, although proven to be very effective in reducing emissions, raises some questions regarding the volatility of the main active compound, bromoform, and challenges regarding the cultivation of the seaweed. Other relatively new methods of mitigation, such as the use of cyanogenic glycosides, are also discussed in this article. Together with nitrates, cyanogenic glycosides pose serious risks to animal health, but research has proven their efficacy and safety when control measures are taken. Furthermore, the risks of nitrate use can be minimized by using probiotics. Some of the discussed strategies, namely monensin or halogenated hydrocarbons (as pure compounds), demonstrate efficacy but are unlikely to be implemented widely because of legal restrictions.
Collapse
Affiliation(s)
- Tomas Lileikis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Rasa Nainienė
- Department of Animal Breeding and Reproduction, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Saulius Bliznikas
- Analytical Laboratory, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Virginijus Uchockis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| |
Collapse
|
9
|
Yao S, Jin T, Zhang L, Zhang Y, Chen R, Wang Q, Lv M, Hu C, Ma T, Xia W. N/S element transformation modulating lithospheric microbial communities by single-species manipulation. MICROBIOME 2023; 11:107. [PMID: 37194043 DOI: 10.1186/s40168-023-01553-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The lithospheric microbiome plays a vital role in global biogeochemical cycling, yet their mutual modulation mechanisms remain largely uncharted. Petroleum reservoirs are important lithosphere ecosystems that provide desirable resources for understanding microbial roles in element cycling. However, the strategy and mechanism of modulating indigenous microbial communities for the optimization of community structures and functions are underexplored, despite its significance in energy recovery and environmental remediation. RESULTS Here we proposed a novel selective stimulation of indigenous functional microbes by driving nitrogen and sulfur cycling in petroleum reservoirs using injections of an exogenous heterocycle-degrading strain of Pseudomonas. We defined such bacteria capable of removing and releasing organically bound sulfur and nitrogen from heterocycles as "bioredox triggers". High-throughput 16S rRNA amplicon sequencing, metagenomic, and gene transcription-level analyses of extensive production water and sandstone core samples spanning the whole oil production process clarified the microbiome dynamics following the intervention. These efforts demonstrated the feasibility of in situ N/S element release and electron acceptor generation during heterocycle degradation, shifting microbiome structures and functions and increasing phylogenetic diversity and genera engaged in sulfur and nitrogen cycling, such as Desulfovibrio, Shewanella, and Sulfurospirillum. The metabolic potentials of sulfur- and nitrogen-cycling processes, particularly dissimilatory sulfate reduction and dissimilatory nitrate reduction, were elevated in reservoir microbiomes. The relative expression of genes involved in sulfate reduction (dsrA, dsrB) and nitrate reduction (napA) was upregulated by 85, 28, and 22 folds, respectively. Field trials showed significant improvements in oil properties, with a decline in asphaltenes and aromatics, hetero-element contents, and viscosity, hence facilitating the effective exploitation of heavy oil. CONCLUSIONS The interactions between microbiomes and element cycling elucidated in this study will contribute to a better understanding of microbial metabolic involvement in, and response to, biogeochemical processes in the lithosphere. The presented findings demonstrated the immense potential of our microbial modulation strategy for green and enhanced heavy oil recovery. Video Abstract.
Collapse
Affiliation(s)
- Shun Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tianzhi Jin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Mingjie Lv
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Chuxiao Hu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
10
|
Gao P, Fan K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Arch Microbiol 2023; 205:162. [PMID: 37010699 DOI: 10.1007/s00203-023-03520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Keyan Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
11
|
Fu L, Lai S, Zhou Z, Chen Z, Cheng L. Seasonal variation of microbial community and methane metabolism in coalbed water in the Erlian Basin, China. Front Microbiol 2023; 14:1114201. [PMID: 36846781 PMCID: PMC9953142 DOI: 10.3389/fmicb.2023.1114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Coalbed water is a semi-open system connecting underground coalbeds with the external environment. Microorganisms in coalbed water play an important role in coal biogasification and the carbon cycle. The community assemblages of microorganisms in such a dynamic system are not well understood. Here, we used high-throughput sequencing and metagenomic analysis to investigate microbial community structure and identify the potential functional microorganisms involved in methane metabolism in coalbed water in the Erlian Basin, a preferred low-rank coal bed methane (CBM) exploration and research area in China. The results showed that there were differences in the responses of bacteria and archaea to seasonal variation. Bacterial community structure was affected by seasonal variation but archaea was not. Methane oxidation metabolism dominated by Methylomonas and methanogenesis metabolism dominated by Methanobacterium may exist simultaneously in coalbed water.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Shouchao Lai
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhenhong Chen
- Research Institute of Petroleum Exploration and Development, Beijing, China,*Correspondence: Zhenhong Chen, ✉
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China,Lei Cheng, ✉
| |
Collapse
|
12
|
Frolova AA, Merkel AY, Kevbrin VV, Kopitsyn DS, Slobodkin AI. Sulfurospirillum tamanensis sp. nov., a Facultatively Anaerobic Alkaliphilic Bacterium from a Terrestrial Mud Volcano. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722602226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
13
|
Abd Rahman H, Sedaralit MF, Zainal S, de Rezende JR. Modelling Reservoir Souring Mitigation Strategy Based on Dynamic Microorganisms Interactions. DAY 2 TUE, NOVEMBER 01, 2022 2022. [DOI: 10.2118/211359-ms] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Managing reservoir souring is on of the challenge in oil and gas industry, especially fields without previous records of H2S productions. Due to activities such as waterflooding, reservoirs’ conditions were changed, which indirectly inducing the environment to start producing H2S gas. In low temperature fields, main contributor to the H2S production was identified as biogenic process, where microorganisms catalyzed the sour gas production. Conventionally, sulphate reducing microorganism was always blamed as the culprit in contributing towards H2S production. However, abundance of literatures discussed about contribution of other microorganisms towards souring processes. Due to the complexity of their interactions, current approach to treat or control biogenic souring became one of the most challenging issues. This study will focus on the laboratory studies of sulphide production by microorganisms and modelling various microorganisms interactions towards chemical treatment introduced to mitigate it.
Started with microorganisms sampling from fields with high SRB, the samples were then enriched in the laboratory. To identify microorganismss from samples, cultures were sent for PCR and DNA sequencing. Based on the results, microorganisms were profiled. Batch test were conducted by dosing pre-determined dosage of biocide and nitrate. Production of sulphide were monitored up to 92days. Based on the sulphide production, effectiveness of the treatments were determined.
A model, which previously developed to determine the potential of reservoir souring, enhanced with addition of dynamic interaction of microorganisms. Factors such as nutrients, type of microorganisms, treatment chemicals, and their byproducts contributed towards the model. microorganisms.
In the batch test, chemicals were dosed once into culture. Results obtained shows that nitrate treatment suppressed the sulphide production for ashort term period, where after the nitrate depleted, the number of microorganisms and sulphide productions were bounced back. Biocidetreatment, in contrast, generally suppressed all microorganisms in the cultures, effectively control the microorganisms number and maintaining low sulphide production for the entire duration of the experiment.
The model that being developed in this study tested with synthetic data that mimick to field conditions, type of microorganisms and chemical treatments to observe their output pattern. It was found that the pattern output from the synthetic data matched with experimental results, which shows the model was sensitive and reliable to model the mitigation and control strategy for biogenic reservoir souring. The model based on dynamic interactions of microorganisms towards chemical treatments (biocide and/or nitrate) is the novel element in this study. Past studies were always focus on single population model, which SRB is the main input for the model, while this study enhanced its accuracy by introducing multi-population factor.
Collapse
|
14
|
Li C, Hao L, Lü F, Duan H, Zhang H, He P. Syntrophic Acetate-Oxidizing Microbial Consortia Enriched from Full-Scale Mesophilic Food Waste Anaerobic Digesters Showing High Biodiversity and Functional Redundancy. mSystems 2022; 7:e0033922. [PMID: 36073802 PMCID: PMC9600251 DOI: 10.1128/msystems.00339-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Syntrophic acetate oxidation (SAO) coupled with hydrogenotrophic methanogenesis (HM) plays a vital role in the anaerobic digestion of protein-rich feedstocks such as food wastes. However, current knowledge of the biodiversity and genetic potential of the involved microbial participants, especially syntrophic acetate-oxidizing bacteria (SAOB), is limited due to the low abundance of these microorganisms and challenges in their isolation. The intent of this study was to enrich and identify potential SAOB. Therefore, we conducted continuous acetate feeding under high ammonia concentrations using two separate inoculum consortia of microorganisms that originated from full-scale mesophilic food waste digesters, which lasted for more than 200 days. Using 16S rRNA gene amplicon and metagenomic analyses, we observed a convergence of the experimental microbial communities during the enrichment regarding taxonomic composition and metabolic functional composition. Stable carbon isotope analyses of biogas indicated that SAO-HM was the dominant methanogenic pathway during the enrichment process. The hydrogenotrophic methanogen Methanoculleus dominated the archaeal community. The enriched SAO community featured high biodiversity and metabolic functional redundancy. By analyzing the metagenome-assembled genomes, the known SAOB Syntrophaceticus schinkii and six uncultured populations were identified to have the genetic potential to perform SAO through the conventional reversed Wood-Ljungdahl pathway, while another six bacteria were found to encode the reversed Wood-Ljungdahl pathway combined with a glycine cleavage system as novel SAOB candidates. These results showed that the food waste anaerobic digesters harbor diverse SAOB and highlighted the importance of the glycine cleavage system for acetate oxidation. IMPORTANCE Syntrophic acetate oxidation to CO2 and H2, together with hydrogenotrophic methanogenesis, contributes to much of the carbon flux in the anaerobic digestion of organic wastes, especially at high ammonia concentrations. A deep understanding of the biodiversity, metabolic genetic potential, and ecology of the SAO community can help to improve biomethane production from wastes for clean energy production. Here, we enriched the SAO-HM functional guild obtained from full-scale food waste anaerobic digesters and recorded dynamic changes in community taxonomic composition and functional profiles. By reconstructing the metabolic pathways, diverse known and novel bacterial members were found to have SAO potential via the reversed Wood-Ljungdahl (WL) pathway alone, or via the reversed WL pathway with a glycine cleavage system (WLP-GCS), and those catalyzing WLP-GCS showed higher microbial abundance. This study revealed the biodiversity and metabolic functional redundancy of SAOB in full-scale anaerobic digester systems and provided inspiration for further genome-centric studies.
Collapse
Affiliation(s)
- Chao Li
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, People’s Republic of China
| | - Liping Hao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People’s Republic of China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People’s Republic of China
| | - Haowen Duan
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, People’s Republic of China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People’s Republic of China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Qi P, Sun D, Zhang G, Li D, Wu T, Li Y. Bio-augmentation with dissimilatory nitrate reduction to ammonium (DNRA) driven sulfide-oxidizing bacteria enhances the durability of nitrate-mediated souring control. WATER RESEARCH 2022; 219:118556. [PMID: 35550970 DOI: 10.1016/j.watres.2022.118556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Biological souring (producing sulfide) is a global challenge facing anaerobic water bodies, especially the oil reservoir fluids. Nitrate injection has demonstrated great potential in souring control, and dissimilatory nitrate reduction to ammonium (DNRA) bacteria was proposed to play crucial roles in the process. How to durably control souring with nitrate amendment, however, remains undiscovered. Herein, Gordonia sp. TD-4, a DNRA-driven sulfide-oxidizing bacterium, was used to elucidate the effects of bio-augmentation with DNRA bacteria on the durability of nitrate-mediated souring control. The results revealed that nitrate amendment combined with bio-augmentation with TD-4 after souring could effectively control souring and enhance the durability of nitrate-mediated souring control, while nitrate amendment before souring failed to persistently control souring. Nitrate amendment before and after souring resulted in different evolution dynamics of nitrate-reducing bacteria. Denitrifying bacteria were enriched in reactors amended with nitrate before souring or in dissolved sulfide exhausted reactors amended with nitrate after souring. The heterotrophic denitrifying activity of denitrifying bacteria, however, decreased the durability of nitrate-mediated souring control. Comparative and functional genomics analysis identified potential niche adaptation mechanisms (autotrophic and heterotrophic nitrate/nitrite reduction, including DNRA and denitrification) of predominant SRB in nitrate-amended environments, which were responsible for the rapid resumption of sulfide accumulation after the depletion of nitrate and nitrite. Pulsed injection of nitrate combined with bio-augmentation with DNRA-driven sulfide-oxidizing bacteria was proposed as a potential method to enhance the durability of nitrate-mediated souring control. The findings were innovatively applied to simultaneous bio-demulsification and souring control of emulsified and sour produced water from the petroleum industry.
Collapse
Affiliation(s)
- Panqing Qi
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, PR China
| | - Gaixin Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Dongxia Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Tao Wu
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, PR China.
| | - Yujiang Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
16
|
Zhao Y, Zhao G. Decreasing ruminal methane production through enhancing the sulfate reduction pathway. ANIMAL NUTRITION 2022; 9:320-326. [PMID: 35600554 PMCID: PMC9097629 DOI: 10.1016/j.aninu.2022.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Methane (CH4) production from ruminants accounts for 16% of the global greenhouse gas emissions and represents 2% to 12% of feed energy. Mitigating CH4 production from ruminants is of great importance for sustainable development of the ruminant industry. H2 is the primary substrate for CH4 production in the processes of ruminal methanogenesis. Sulfate reducing bacteria are able to compete with methanogens for H2 in the rumen, and consequently inhibit the methanogenesis. Enhancing the ruminal sulfate reducing pathway is an important approach to mitigate CH4 emissions in ruminants. The review summarized the effects of sulfate and elemental S on ruminal methanogenesis, and clarified the related mechanisms through the impacts of sulfate and elemental S on major ruminal sulfate reducing bacteria. Enhancing the activities of the major ruminal sulfate reducing bacteria including Desulfovibrio, Desulfohalobium and Sulfolobus through dietary sulfate addition, elemental S and dried distillers grains with solubles can effectively decrease the ruminal CH4 emissions. Suitable levels of dietary addition with different S sources for reducing the ruminal CH4 production, as well as maintaining the performance and health of ruminants, need to be investigated in the future.
Collapse
|
17
|
Comparative Genomic Analysis Reveals Preserved Features in Organohalide-Respiring Sulfurospirillum Strains. mSphere 2022; 7:e0093121. [PMID: 35196120 PMCID: PMC8865925 DOI: 10.1128/msphere.00931-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sulfurospirillum species strains are frequently detected in various pristine and contaminated environments and participate in carbon, sulfur, nitrogen, and halogen elements cycling. Recently we obtained the complete genome sequences of two newly isolated Sulfurospirillum strains, ACSDCE and ACSTCE, capable of dechlorinating tetrachloroethene to cis-1,2-dichloroethene and trichloroethene under low-pH conditions, but a detailed analysis of these two genomes in reference to other Sulfurospirillum genomes for an improved understanding of Sulfurospirillum evolution and ecophysiology has not been accomplished. Here, we performed phylogenetic and pangenome analyses with 12 completed Sulfurospirillum genomes, including those of strain ACSTCE and strain ACSDCE, to unravel the evolutionary and metabolic potentials in the genus Sulfurospirillum. Based on 16S rRNA gene and whole-genome phylogenies, strains ACSTCE, ACSDCE, and JPD-1 could be clustered into a single species, proposed as “Candidatus Sulfurospirillum acididehalogenans.” TimeTree analysis suggested that the organohalide-respiring (OHR) Sulfurospirillum might acquire the ability to use chlorinated electron acceptors later than other energy conservation processes. Nevertheless, the ambiguity of the phylogenetic relations among Sulfurospirillum strains complicated the interpretation of acquisition and loss of metabolic traits. Interestingly, all OHR Sulfurospirillum genomes except the ones of Sulfurospirillum multivorans strains harbor a well-aligned and conserved region comprising the genetic components required for the organohalide respiration chain. Pangenome results further revealed that a total of 34,620 gene products, annotated from the 12 Sulfurospirillum genomes, can be classified into 4,118 homolog families and 2,075 singleton families. Various Sulfurospirillum species strains have conserved metabolisms as well as individual enzymes and biosynthesis capabilities. For instance, only the OHR Sulfurospirillum species strains possess the quinone-dependent pyruvate dehydrogenase (PoxB) gene, and only “Ca. Sulfurospirillum acididehalogenans” strains harbor urea transporter and urease genes. The plasmids found in strain ACSTCE and strain ACSDCE feature genes coding for type II toxin-antitoxin systems and transposases and are promising tools for the development of robust gene editing tools for Sulfurospirillum. IMPORTANCE Organohalide-respiring bacteria (OHRB) play critical roles in the detoxification of chlorinated pollutants and bioremediation of subsurface environments (e.g., groundwater and sediment) impacted by anthropogenic chlorinated solvents. The majority of known OHRB cannot perform reductive dechlorination below neutral pH, hampering the applications of OHRB for remediating acidified groundwater due to fermentation and reductive dechlorination. Previously we isolated two Sulfurospirillum strains, ACSTCE and ACSDCE, capable of dechlorinating tetrachloroethene under acidic conditions (e.g., pH 5.5), and obtained the complete genomes of both strains. Notably, two plasmid sequences were identified in the genomes of strain ACSTCE and strain ACSDCE that may be conducive to unraveling the genetic modification mechanisms in the genus Sulfurospirillum. Our findings improve the current understanding of Sulfurospirillum species strains regarding their biogeographic evolution, genome dynamics, and functional diversity. This study has applied values for the bioremediation of toxic and persistent organohalide pollutants in low-pH environments.
Collapse
|
18
|
Aftab A, Hassanpouryouzband A, Xie Q, Machuca LL, Sarmadivaleh M. Toward a Fundamental Understanding of Geological Hydrogen Storage. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Adnan Aftab
- Curtin University, Discipline of Petroleum Engineering, 26 Dick Perry Avenue, 6151 Kensington, Australia
- Petroleum Engineering Department, Mehran UET, SZAB, Khairpur Mir’s Campus, 66020 Pakistan
- Energy Resources and Petroleum Engineering, King Abdullah University of Science and Technology KAUST, Thuwal 23955-6900, Saudi Arabia
| | | | - Quan Xie
- Curtin University, Discipline of Petroleum Engineering, 26 Dick Perry Avenue, 6151 Kensington, Australia
| | - Laura L. Machuca
- Curtin Corrosion Centre, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mohammad Sarmadivaleh
- Curtin University, Discipline of Petroleum Engineering, 26 Dick Perry Avenue, 6151 Kensington, Australia
| |
Collapse
|
19
|
Suarez EM, Lepková K, Forsyth M, Tan MY, Kinsella B, Machuca LL. In Situ Investigation of Under-Deposit Microbial Corrosion and its Inhibition Using a Multi-Electrode Array System. Front Bioeng Biotechnol 2022; 9:803610. [PMID: 35083205 PMCID: PMC8784807 DOI: 10.3389/fbioe.2021.803610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon steel pipelines used in the oil and gas industry can be susceptible to the combined presence of deposits and microorganisms, which can result in a complex phenomenon, recently termed under-deposit microbial corrosion (UDMC). UDMC and its inhibition in CO2 ambiance were investigated in real-time using a multi-electrode array (MEA) system and surface profilometry analysis. Maps from corrosion rates, galvanic currents, and corrosion potentials recorded at each microelectrode allowed the visualization of local corrosion events on the steel surface. A marine bacterium Enterobacter roggenkampii, an iron-oxidizing, nitrate-reducing microorganism, generated iron deposits on the surface that resulted in pitting corrosion under anaerobic conditions. Areas under deposits displayed anodic behavior, more negative potentials, higher corrosion rates, and pitting compared to areas outside deposits. In the presence of the organic film-forming corrosion inhibitor, 2-Mercaptopyrimidine, the marine bacterium induced local breakdown of the protective inhibitor film and subsequent pitting corrosion of carbon steel. The ability of the MEA system to locally measure self-corrosion processes, galvanic effects and, corrosion potentials across the surface demonstrated its suitability to detect, evaluate and monitor the UDMC process as well as the efficiency of corrosion inhibitors to prevent this corrosion phenomenon. This research highlights the importance of incorporating the microbial component to corrosion inhibitors evaluation to ensure chemical effectiveness in the likely scenario of deposit formation and microbial contamination in oil and gas production equipment.
Collapse
Affiliation(s)
- Erika M Suarez
- Curtin Corrosion Centre (CCC), Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Kateřina Lepková
- Curtin Corrosion Centre (CCC), Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Maria Forsyth
- Institute for Frontier Materials and School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Mike Y Tan
- Institute for Frontier Materials and School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Brian Kinsella
- Curtin Corrosion Centre (CCC), Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Laura L Machuca
- Curtin Corrosion Centre (CCC), Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| |
Collapse
|
20
|
Microbially induced corrosion impacts on the oil industry. Arch Microbiol 2022; 204:138. [PMID: 35032195 DOI: 10.1007/s00203-022-02755-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
The numerous structural impacts on oil installations caused by corrosion make this issue a concern in the oil industry. Although chemical corrosion is relevant in this sector, it is indisputable that the microbial corrosion or bio-corrosion plays a preponderant role, with considerable economic losses. Microbial corrosion invariably depends on the formation of a biofilm on the attacked surface. Biofilm structures provide the conditions that favor the development of microbial groups related to corrosion. Despite the several microbial species are described as corrosive, certain groups, such as sulfate- and nitrate-reducing bacteria, acetogenic bacteria, and methanogenic archaea are the most commonly related. In spite of environmental factors influence the prevalence of certain species, it is increasingly accepted that the relationships between different species are determinant in corrosion. Such relationships can be evidenced by several surveys of microbial communities involved in bio-corrosion. Here, the main microbes related to corrosion in metallic structures used in oil installations are presented, as well as their metabolisms involved in the deterioration of metallic surfaces.
Collapse
|
21
|
Liu Q, Lai Z, Wang C, Ni J, Gao Y. Seasonal variation significantly affected bacterioplankton and eukaryoplankton community composition in Xijiang River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:55. [PMID: 34988711 DOI: 10.1007/s10661-021-09712-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Both bacterioplankton and eukaryoplankton communities play important roles in the geochemical cycles and energy flows of river ecosystems. However, whether a seasonal change in bacterioplankton and eukaryoplankton communities is synchronous remains unclear. To test the synchronicity and analyze how physical and chemical environmental factors affect these communities, we compared bacterioplankton and eukaryoplankton communities in surface water samples between March (dry season) and June (rainfall season) considering water environmental factors. Our results showed that there was no significant difference in operational taxonomic unit number, Shannon index, and Chao1 index in bacterioplankton and eukaryoplankton communities between March and June. However, principal component analysis showed that the communities were significantly different between the sampling times and sampling sites. Water temperature (WT), oxidation-reduction potential (ORP), water transparency (SD), NO3-N, and NH3 significantly influenced bacterioplankton communities, and WT, SD, ORP, and NH4-N significantly influenced eukaryoplankton communities in the river. These results implied that compared with the sampling sites, sampling times more significantly affected the bacterioplankton and eukaryoplankton river communities by influencing WT, ORP, SD, and nitrogen forms.
Collapse
Affiliation(s)
- Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Science Ltd, Dongguan, 523808, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808, China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China.
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| |
Collapse
|
22
|
Torun F, Hostins B, De Schryver P, Boon N, De Vrieze J. Molybdate effectively controls sulphide production in a shrimp pond model. ENVIRONMENTAL RESEARCH 2022; 203:111797. [PMID: 34339704 DOI: 10.1016/j.envres.2021.111797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The production of shrimp is often performed in earthen outdoor ponds in which the high input of feed and faeces on the bottom can result in deterioration of the water quality, which negatively impacts the animals and the environment. Here, we investigate the potential of sodium molybdate (Na₂MoO₄·2H₂O), sodium nitrate (NaNO3) and sodium percarbonate (Na2CO3·1.5H2O2) to control sulphide production in a simulated shrimp pond bottom system that included the sediment, overlaying artificial seawater and organic matter input in the form of shrimp feed and shrimp faeces. Sediment depth gradient measurements of oxygen, H2S and pH were obtained during 7 days of incubation using microelectrodes. The most significant impact in terms of H2S, was observed for 50 mg/L sodium molybdate. At the water-sediment interface, there was up to 73% less H2S detected for this treatment in comparison to a control treatment, while in the deeper layers of the sediment it was up to 47% less H2S. The residual sulphate concentrations in the molybdate treated samples were 16 ± 4% higher than the control, indicating an inhibition in sulphate reduction. Nitrate and sodium percarbonate treatments also showed a limited capacity to decrease H2S entering in the water column, yet no clear difference in H2S concentrations in the sediment compared to the control were observed. Molybdate treatment appears to work through the inhibition of sulphate reducing bacteria in situ for the control of H2S production better than the chemical oxygen boosters or nitrate treatment.
Collapse
Affiliation(s)
- Funda Torun
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | | | | | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent, 9000, Belgium.
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, PO box, 2411, B-3001 Leuven, Belgium; Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, PO box, 2424, B-3001 Leuven, Belgium
| |
Collapse
|
23
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
24
|
Crude Oil–Brine–Rock Interactions in Tight Chalk Reservoirs: An Experimental Study. ENERGIES 2021. [DOI: 10.3390/en14175360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present a systematic study of crude oil–brine–rock interactions in tight chalk cores at reservoir conditions. Flooding experiments are performed on outcrops (Stevns Klint) as well as on reservoir core plugs from Dan field, the Ekofisk and Tor formations. These studies are carried out in core plugs with reduced pore volumes, i.e., short core samples and aged with a dynamic ageing method. The method was evaluated by three different oil compositions. A series of synthetic multicomponent brines and designed fluid injection scenarios are investigated; injection flow rates are optimized to ensure that a capillary-dominant regime is maintained. Changes in brine compositions and fluid distribution in the core plugs are characterized using ion chromatography and X-ray computed tomography, respectively. First, we show that polar components in the oil phase play a major role in wettability alteration during ageing; this controls the oil production behavior. We also show that, compared to seawater, both formation water and ten-times-diluted seawater are better candidates for enhanced oil recovery in the Dan field. Finally, we show that the modified flow zone indicator, a measure of rock quality, is likely the main variable responsible for the higher oil recoveries observed in Tor core samples.
Collapse
|
25
|
Zhang Z, Zhou P, Zhao L, Yang J, Zhou M, Xian B. Experimental Study of the Impact of Chlorine Dioxide on the Permeability of High-Rank Contaminated Coal Reservoirs. ACS OMEGA 2021; 6:17314-17322. [PMID: 34278117 PMCID: PMC8280684 DOI: 10.1021/acsomega.1c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The permeability of high-rank coal reservoirs is generally low, and high-viscosity working fluid can also contaminate the reservoirs and reduce permeability during drilling and fracturing engineering. These two reasons lead to a lot of low-yield CBM wells in the southern Qinshui Basin, China. The impact of chlorine dioxide on the permeability of high-rank coal has been studied in detail. The coal samples with changed characteristics before and after treatment were compared using coal-ash, displacement, immersion, and plug removal experiments. The ash experiment results show that the ash content of the coal samples decreased by 16.35%. The displacement and immersion experiments using chlorine dioxide solution showed that displacement with chlorine dioxide could increase permeability. The permeability of coal samples increased by 3005.77% after 80 h of immersion. The plug removal experiment results show that the permeability of contaminated coal samples was recovered by 11.10-38.90%, with an average recovery of 27.90%. The experimental results show that chlorine dioxide is effective in improving the permeability of high-rank contaminated coal reservoirs. This research result can be applied to low-yield CBM wells polluted by high-viscous working fluid to increase gas production.
Collapse
Affiliation(s)
- Zhou Zhang
- School
of Resources and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
- Collaborative
Innovation Center of Coalbed Methane and Shale Gas for Central Plains
Economic Region, Jiaozuo 454000, Henan, China
- Henan
International Joint Laboratory for Unconventional Energy Geology and
Development, Jiaozuo 454000, China
| | - Pengbo Zhou
- School
of Resources and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| | - Lifang Zhao
- School
of Resources and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| | - Jin Yang
- School
of Resources and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| | - Min Zhou
- School
of Resources and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
- Collaborative
Innovation Center of Coalbed Methane and Shale Gas for Central Plains
Economic Region, Jiaozuo 454000, Henan, China
| | - Baoan Xian
- School
of Resources and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
- Collaborative
Innovation Center of Coalbed Methane and Shale Gas for Central Plains
Economic Region, Jiaozuo 454000, Henan, China
| |
Collapse
|
26
|
Lou Y, Chang W, Cui T, Wang J, Qian H, Ma L, Hao X, Zhang D. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review. Bioelectrochemistry 2021; 141:107883. [PMID: 34246844 DOI: 10.1016/j.bioelechem.2021.107883] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023]
Abstract
Microbial activities can change the properties of biofilm/metal interfaces to accelerate or decelerate the corrosion of metals in a given environment. Microbiologically influenced corrosion inhibition (MICI) is the inhibition of corrosion that is directly or indirectly induced by microbial action. Compared with conventional methods for protection from corrosion, MICI is environmentally friendly and an emerging approach for the prevention and treatment of (bio)corrosion. However, due to the diversity of microorganisms and the fact that their metabolic processes are greatly complicated by environmental factors, MICI is still facing challenges for practical application. This review provides a comprehensive overview of the mechanisms of MICI under different conditions and their advantages and disadvantages for potential applications in corrosion protection.
Collapse
Affiliation(s)
- Yuntian Lou
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weiwei Chang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Cui
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinke Wang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongchang Qian
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China
| | - Lingwei Ma
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China
| | - Xiangping Hao
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China.
| | - Dawei Zhang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China.
| |
Collapse
|
27
|
|
28
|
Functional Interrelationships of Microorganisms in Iron-Based Anaerobic Wastewater Treatment. Microorganisms 2021; 9:microorganisms9051039. [PMID: 34065964 PMCID: PMC8151836 DOI: 10.3390/microorganisms9051039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study explicated the functional activities of microorganisms and their interrelationships under four previously reported iron reducing conditions to identify critical factors that governed the performance of these novel iron-dosed anaerobic biological wastewater treatment processes. Various iron-reducing bacteria (FeRB) and sulfate reducing bacteria (SRB) were identified as the predominant species that concurrently facilitated organics oxidation and the main contributors to removal of organics. The high organic contents of wastewater provided sufficient electron donors for active growth of both FeRB and SRB. In addition to the organic content, Fe (III) and sulfate concentrations (expressed by Fe/S ratio) were found to play a significant role in regulating the microbial abundance and functional activities. Various fermentative bacteria contributed to this FeRB-SRB synergy by fermenting larger organic compounds to smaller compounds, which were subsequently used by FeRB and SRB. Feammox (ferric reduction coupled to ammonium oxidation) bacterium was identified in the bioreactor fed with wastewater containing ammonium. Organic substrate level was a critical factor that regulated the competitive relationship between heterotrophic FeRB and Feammox bacteria. There were evidences that suggested a synergistic relationship between FeRB and nitrogen-fixing bacteria (NFB), where ferric iron and organics concentrations both promoted microbial activities of FeRB and NFB. A concept model was developed to illustrate the identified functional interrelationships and their governing factors for further development of the iron-based wastewater treatment systems.
Collapse
|
29
|
Khanfar H, Sitepu H. Lab Case Study of Microbiologically Influenced Corrosion and Rietveld Quantitative Phase Analysis of X-ray Powder Diffraction Data of Deposits from a Refinery. ACS OMEGA 2021; 6:11822-11831. [PMID: 34056336 PMCID: PMC8153972 DOI: 10.1021/acsomega.0c04770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
This paper reports a laboratory-based case study for the characterization of deposits from a crude cooler and reboilers in a Saudi Aramco refinery by microbiologically influenced corrosion (MIC) using microbial, metallurgic, and special analyses and correlates the Rietveld quantitative phase analysis of high-resolution X-ray powder diffraction (XRD) data of scale deposits with microbe compositions. Therefore, rapid in-field microbiological assays could be carried out to assess the potential of MIC. Based on the results, it can be highlighted that the MIC investigation showed that total bacteria and sulfate-reducing bacteria (SRB) were detected in all sampling locations. Methanogens, acid-producing bacteria, and sulfate-reducing archaea were not detected in all samples. Iron-oxidizing bacteria (IOB) were detected in the solid samples from reboilers C and D. Low loads of general bacteria and low levels of microbes with MIC potential were detected in both C and D samples. The trace amount of corrosion products in one sample and the low level of MIC microbes cannot justify the contribution of MIC microbes in the formation of accumulated solids in the system. The findings recommend conducting frequent sampling and analysis including water, oil, and solid from upstream locations to have more decisive evidence of the likelihood of the scale formation and possible contribution of MIC in the formation of deposits in the plant. Subsequently, quantitative phase analysis of XRD data of scale deposits by the Rietveld method revealed that the major phase is calcium sulfate in the form of anhydrate and the minor phases are calcium carbonate in the form of calcite and aragonite, silicon oxide in the form of quartz, and iron oxide corrosion product in the form of magnetite. The results are supported by high-resolution wavelength-dispersive X-ray fluorescence (WDXRF) results. These accurate and reproducible X-ray crystallography findings obtained from Rietveld quantitative phase analysis can guide the field engineers at the refineries and gas plants to overcome the problems of the affected equipment by drawing up the right procedures and taking preventive actions to stop the generation of these particular deposits.
Collapse
|
30
|
Qi P, Sun D, Gao J, Liu S, Wu T, Li Y. Demulsification and bio-souring control of alkaline-surfactant-polymer flooding produced water by Gordonia sp. TD-4. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
External Carbon Source Facilitates Indirect Cr (VI) Bioreduction Process by Anaerobic Sludge Produced from Kitchen Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13094806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presented the investigation on indirect Cr (VI) bioreduction process by anaerobic sludge produced from kitchen waste (ASKW) using an external source of glucose and sulfate to favor the reducing environment. These compounds were added at the beginning of the experiment along with 500 mg·L−1 Cr (VI). The system containing 1 g of glucose and 2 g of sulfate attained a higher reduction, which was 10% higher than that of the control experiment. This study indicated that a neutral environment (pH ~7), along with a high release of polysaccharides (PS), improved the removal efficiency by Cr (VI) bioreduction process. Desulfovibrio and Sulfurospirillum (genus level), which accounted for 3% and 1% of the whole microorganism, respectively, were responsible for the sulfidogenic reaction. Additionally, Thermovirga (genus level) reduced from 14% to 11% and 10%. These microorganisms contributed to dominating the indirect Cr (VI) bioreduction process. SEM and FTIR analysis of the sludges obtaining from the indirect Cr (VI) bioreduction systems indicated that the external glucose could facilitate the formation of looser porous structures and richer functional groups of sludges, thus adsorbing more Cr (III) to reduce its toxicity. Meanwhile, the intensity of the hydroxyl bond, which possesses strong reducibility, was much higher after adding external glucose. Chromate reductase gene (chrR) and sulfite reductase gene (dsrA) contributed to the indirect Cr (VI) bioreduction process. These might be the main mechanisms of the external glucose acting on indirect Cr (VI) bioreduction by ASKW.
Collapse
|
32
|
Valkanas MM, Rosso T, Packard JE, Trun NJ. Limited carbon sources prevent sulfate remediation in circumneutral abandoned mine drainage. FEMS Microbiol Ecol 2021; 97:6070647. [PMID: 33417684 DOI: 10.1093/femsec/fiaa262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023] Open
Abstract
Passive remediation systems (PRS) use both biotic and abiotic processes to precipitate contaminants from abandoned mine drainage (AMD) so that the contaminants do not spread into local watersheds. PRS are efficient at removing heavy metals but sulfate remediation frequently does not occur. To understand the reasons for the lack of sulfate remediation, we studied four PRS that treat circumneutral AMD and one raw mine drainage discharge. Using 16S sequencing analysis, microbial community composition revealed a high relative abundance of bacterial families with sulfur cycling genera. Anaerobic abiotic studies showed that sulfide was quickly geochemically oxidized in the presence of iron hydroxides, leading to a buildup of sulfur intermediates. Supplementation of laboratory grown microbes from the PRS with lactate demonstrated the ability of actively growing microbes to overcome this abiotic sulfide oxidation by increasing the rate of sulfate reduction. Thus, the lack of carbon sources in the PRS contributes to the lack of sulfate remediation. Bacterial community analysis of 16S rRNA gene revealed that while the microbial communities in different parts of the PRS were phylogenetically distinct, the contaminated environments selected for communities that shared similar metabolic capabilities.
Collapse
Affiliation(s)
- Michelle M Valkanas
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Taylor Rosso
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Jessica E Packard
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Nancy J Trun
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| |
Collapse
|
33
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
34
|
Dabrowska M, Debiec-Andrzejewska K, Andrunik M, Bajda T, Drewniak L. The biotransformation of arsenic by spent mushroom compost - An effective bioremediation agent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112054. [PMID: 33601170 DOI: 10.1016/j.ecoenv.2021.112054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Spent mushroom compost (SMC) is a lignocellulose-rich waste material commonly used in the passive treatment of heavy metal-contaminated environments. In this study, we investigated the bioremediation potential of SMC against an inorganic form of arsenic, examining the individual abiotic and biotic transformations carried out by SMC. We demonstrated, that key SMC physiological groups of bacteria (denitrifying, cellulolytic, sulfate-reducing, and heterotrophic) are resistant to arsenites and arsenates, while the microbial community in SMC is also able to oxidize As(III) and reduce As(V) in respiratory metabolisms, although the SMC did not contain any As. We showed, that cooperation between arsenate and sulfate-reducing bacteria led to the precipitation of AsxSy. We also found evidence of the significant role organic acids may play in arsenic complexation, and we demonstrated the occurrence of As-binding proteins in the SMC. Furthermore, we confirmed, that biofilm produced by the microbial community in SMC was able to trap As(V) ions. We postulated, that the above-mentioned transformations are responsible for the sorption efficiency of As(V) (up to 25%) and As(III) (up to 16%), as well as the excellent buffering properties of SMC observed in the sorption experiments.
Collapse
Affiliation(s)
- M Dabrowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - K Debiec-Andrzejewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - M Andrunik
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
| | - T Bajda
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
| | - L Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
35
|
Ibrahim A, Hawboldt K, Bottaro C, Khan F. Simulation of sour‐oxic‐nitrite chemical environment in oil and gas facilities. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Abdulhaqq Ibrahim
- C‐RISE, Faculty of Engineering and Applied Science Memorial University St John's Newfoundland and Labrador Canada
| | - Kelly Hawboldt
- C‐RISE, Faculty of Engineering and Applied Science Memorial University St John's Newfoundland and Labrador Canada
| | - Christina Bottaro
- Department of Chemistry Memorial University St John's Newfoundland and Labrador Canada
| | - Faisal Khan
- C‐RISE, Faculty of Engineering and Applied Science Memorial University St John's Newfoundland and Labrador Canada
| |
Collapse
|
36
|
Ma X, Zhang G, Li F, Jiao M, Yao S, Chen Z, Liu Z, Zhang Y, Lv M, Liu L. Boosting the Microbial Electrosynthesis of Acetate from CO2 by Hydrogen Evolution Catalysts of Pt Nanoparticles/rGO. Catal Letters 2021. [DOI: 10.1007/s10562-021-03537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Zhang X, Liu T, Li F, Li X, Du Y, Yu H, Wang X, Liu C, Feng M, Liao B. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system. J Environ Sci (China) 2021; 100:90-98. [PMID: 33279057 DOI: 10.1016/j.jes.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/12/2023]
Abstract
Nitrate (NO3-) is known to be actively involved in the processes of mineralization and heavy metal transformation; however, it is unclear whether and how it affects the bioavailability of antimony (Sb) in paddy soils and subsequent Sb accumulation in rice. Here, the effects of NO3- on Sb transformation in soil-rice system were investigated with pot experiments over the entire growth period. Results demonstrated that NO3- reduced Sb accumulation in brown rice by 15.6% compared to that in the control. After amendment with NO3-, the Sb content in rice plants increased initially and then gradually decreased (in roots by 46.1%). During the first 15 days, the soil pH increased, the oxidation of Sb(III) and sulfides was promoted, but the reduction of iron oxide minerals was inhibited, resulting in the release of adsorbed and organic-bound Sb from soil. The microbial arsenite-oxidizing marker gene aoxB played an important role in Sb(III) oxidation. From days 15 to 45, after NO3- was partially consumed, the soil pH decreased, and the reductive dissolution of Fe(III)-bearing minerals was enhanced; consequently, iron oxide-bound Sb was transformed into adsorbed and dissolved Sb species. After day 45, NO3- was completely reduced, Sb(V) was evidently reduced to Sb(III), and green rust was generated gradually. Thus, the available Sb decreased due to its enhanced affinity for iron oxides. Moreover, NO3- inhibited the reductive dissolution of iron minerals, which ultimately caused low Sb availability. Therefore, NO3- can chemically and biologically reduce the Sb availability in paddy soils and alleviate Sb accumulation in rice. This study provides a potential strategy for decreasing Sb accumulation in rice in the Sb-contaminated sites.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yanhong Du
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Huanyun Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Xiangqin Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Chuanpin Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Mi Feng
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Bing Liao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
38
|
Semenova EM, Ershov AP, Sokolova DS, Tourova TP, Nazina TN. Diversity and Biotechnological Potential of Nitrate-Reducing Bacteria from Heavy-Oil Reservoirs (Russia). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
39
|
Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139710. [PMID: 32544704 DOI: 10.1016/j.scitotenv.2020.139710] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews dissimilatory nitrate reduction to ammonium (DNRA) in soils - a newly appreciated pathway of nitrogen (N) cycling in the terrestrial ecosystems. The reduction of NO3- occurs in two steps; in the first step, NO3- is reduced to NO2-; and in the second, unlike denitrification, NO2- is reduced to NH4+ without intermediates. There are two sets of NO3-/NO2- reductase enzymes, i.e., Nap/Nrf and Nar/Nir; the former occurs on the periplasmic-membrane and energy conservation is respiratory via electron-transport-chain, whereas the latter is cytoplasmic and energy conservation is both respiratory and fermentative (Nir, substrate-phosphorylation). Since, Nir catalyzes both assimilatory- and dissimilatory-nitrate reduction, the nrfA gene, which transcribes the NrfA protein, is treated as a molecular-marker of DNRA; and a high nrfA/nosZ (N2O-reductase) ratio favours DNRA. Recently, several crystal structures of NrfA have been presumed to producee N2O as a byproduct of DNRA via the NO (nitric-oxide) pathway. Meta-analyses of about 200 publications have revealed that DNRA is regulated by oxidation state of soils and sediments, carbon (C)/N and NO2-/NO3- ratio, and concentrations of ferrous iron (Fe2+) and sulfide (S2-). Under low-redox conditions, a high C/NO3- ratio selects for DNRA while a low ratio selects for denitrification. When the proportion of both C and NO3- are equal, the NO2-/NO3- ratio modulates partitioning of NO3-, and a high NO2-/NO3- ratio favours DNRA. A high S2-/NO3- ratio also promotes DNRA in coastal-ecosystems and saline sediments. Soil pH, temperature, and fine soil particles are other factors known to influence DNRA. Since, DNRA reduces NO3- to NH4+, it is essential for protecting NO3- from leaching and gaseous (N2O) losses and enriches soils with readily available NH4+-N to primary producers and heterotrophic microorganisms. Therefore, DNRA may be treated as a tool to reduce ground-water NO3- pollution, enhance soil health and improve environmental quality.
Collapse
Affiliation(s)
- C B Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, Rajasthan, India.
| | - Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - K J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - A K Mishra
- International Rice Research Institute, New Delhi 110012, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
40
|
Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris. ISME JOURNAL 2020; 14:2862-2876. [PMID: 32934357 DOI: 10.1038/s41396-020-00753-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 11/08/2022]
Abstract
Elevated nitrate in the environment inhibits sulfate reduction by important microorganisms of sulfate-reducing bacteria (SRB). Several SRB may respire nitrate to survive under elevated nitrate, but how SRB that lack nitrate reductase survive to elevated nitrate remains elusive. To understand nitrate adaptation mechanisms, we evolved 12 populations of a model SRB (i.e., Desulfovibrio vulgaris Hildenborough, DvH) under elevated NaNO3 for 1000 generations, analyzed growth and acquired mutations, and linked their genotypes with phenotypes. Nitrate-evolved (EN) populations significantly (p < 0.05) increased nitrate tolerance, and whole-genome resequencing identified 119 new mutations in 44 genes of 12 EN populations, among which six functional gene groups were discovered with high mutation frequencies at the population level. We observed a high frequency of nonsense or frameshift mutations in nitrosative stress response genes (NSR: DVU2543, DVU2547, and DVU2548), nitrogen regulatory protein C family genes (NRC: DVU2394-2396, DVU2402, and DVU2405), and nitrate cluster (DVU0246-0249 and DVU0251). Mutagenesis analysis confirmed that loss-of-functions of NRC and NSR increased nitrate tolerance. Also, functional gene groups involved in fatty acid synthesis, iron regulation, and two-component system (LytR/LytS) known to be responsive to multiple stresses, had a high frequency of missense mutations. Mutations in those gene groups could increase nitrate tolerance through regulating energy metabolism, barring entry of nitrate into cells, altering cell membrane characteristics, or conferring growth advantages at the stationary phase. This study advances our understanding of nitrate tolerance mechanisms and has important implications for linking genotypes with phenotypes in DvH.
Collapse
|
41
|
Physicochemical and biological controls of sulfide accumulation in a high temperature oil reservoir. Appl Microbiol Biotechnol 2020; 104:8467-8478. [DOI: 10.1007/s00253-020-10828-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023]
|
42
|
Zeng L, Chang Y, Wu Y, Yang J, Xu JF, Zhang X. Charge-reversal surfactant antibiotic material for reducing microbial corrosion in petroleum exploitation and transportation. SCIENCE ADVANCES 2020; 6:eaba7524. [PMID: 32596463 PMCID: PMC7304972 DOI: 10.1126/sciadv.aba7524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/11/2020] [Indexed: 05/06/2023]
Abstract
The corrosions caused by sulfate-reducing bacteria (SRB) are serious problems in petroleum exploitation and transportation, which can lead to safety problems, environmental pollutions, and economic losses. Here, a charge-reversal surfactant antibiotic material N-dodecyl-1-carboxylic acid-1-cyclohexenyl-2-carboxamide (C12N-DCA) is designed and synthesized. C12N-DCA is a negatively charged surfactant, which cannot be adsorbed by soil and rock in a large amount. Therefore, it can reach the "lesion location", with enough concentration. After being hydrolyzed and charge reversed under the acceleration of H2S produced by SRB, C12N-DCA becomes a positively charged surfactant dodecane ammonium salt to kill SRB. Through a simulating experiment, it is found that C12N-DCA can reach the SRB inhibition ratio of almost 100%, and it can reduce iron corrosion by 88%. Such an antibiotic material or its homologs may be added to the chemical flooding fluids, killing SRB during petroleum exploitation and reducing the SRB-induced corrosion in the petroleum exploitation and transportation.
Collapse
Affiliation(s)
- Lingda Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yincheng Chang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yukun Wu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinpeng Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Corresponding author. (J.-F.X.); (X.Z.)
| |
Collapse
|
43
|
The contribution of nitrate-reducing bacterium Marinobacter YB03 to biological souring and microbiologically influenced corrosion of carbon steel. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Fatehi-Pouladi S, Anderson BC, Wootton B, Wallace SJ, Bissegger S, Rozema L, Weber KP. Influence of Plant Species on Microbial Activity and Denitrifier Population Development in Vegetated Denitrifying Wood-Chip Bioreactors. PLANTS (BASEL, SWITZERLAND) 2020; 9:E289. [PMID: 32110935 PMCID: PMC7154878 DOI: 10.3390/plants9030289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 11/20/2022]
Abstract
The microbial characteristics of four vegetated and one unplanted wood-chip bioreactors treating greenhouse effluent were investigated in a continuous experiment operated for over 2.5 years. The bioreactors were designed to reduce nitrate concentrations via naturally induced microbial denitrification. The vegetation type and reactor depth were both found to be significant factors in defining the mixed microbial activity. However, a consistent correlation between the abundance of the denitrifying communities and reactor depth could not be found across all reactors. The media samples from the unit planted with Typha angustifolia displayed higher microbial activities compared with the other reactors. This plant's root-associated bacteria also demonstrated the greatest copies of the denitrifying genes nirK and nosZ. The most abundant denitrifier communities and those encoding the nosZ gene were found in the unplanted reactor, followed by the T. angustifolia unit. The T. angustifolia reactor demonstrated greater microbial activity and denitrification capacity at the depth of 20 cm, while the greatest denitrification capacity in the unplanted reactor was found at the depth of 60 cm. These findings indicated the importance of the T. angustifolia rhizosphere to support microbial community establishment and growth in the vicinity of the plant's roots, although those populations may eventually develop in an unplanted environment.
Collapse
Affiliation(s)
| | - Bruce C. Anderson
- Department of Civil Engineering, Queen’s University, 58 University Ave., Kingston, ON K7L 3N6, Canada
| | - Brent Wootton
- Centre for Advancement of Water and Wastewater Technologies, Fleming College, 200 Albert Street South, Lindsay, ON K9V 5E6, Canada
| | - Sarah J. Wallace
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Station Forces, Kingston, ON K7K 7B4, Canada
| | - Sonja Bissegger
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Station Forces, Kingston, ON K7K 7B4, Canada
| | - Lloyd Rozema
- Aqua Treatment Technologies, 4250 Fly Road, Campden, ON L0R 1G0, Canada
| | - Kela P. Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Station Forces, Kingston, ON K7K 7B4, Canada
| |
Collapse
|
45
|
Fan F, Zhang B, Liu J, Cai Q, Lin W, Chen B. Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria. CHEMOSPHERE 2020; 238:124655. [PMID: 31472344 DOI: 10.1016/j.chemosphere.2019.124655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of nitrate-mediated souring control highly depends on the interactions of sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). Biosurfactants produced by natural NRB are promising bio-agents for enhancing NRB competence towards SRB. However, the function of NRB-produced biosurfactants in NRB-SRB interactions remains unexplored due to the rarely successful isolation of natural biosurfactant-producing NRB. Hereby, biosurfactant-aided inhibitory control of SRB strain Desulfomicrobium escambiense ATCC 51164 by biosurfactant-producing NRB strain Pseudomonas stutzeri CX3, reported in our previous work, was investigated. Under non-sour conditions, insufficient nitrate injection resulted in limited SRB inhibition. Phospholipid fatty acid (PLFA) biomarkers traced the overall bacterial responses. Compositional PLFA patterns revealed biosurfactant addition benefitted both SRB and NRB towards stressful conditions. Under sour conditions, nitrite oxidation of sulfide proved to be the primary mechanism for sulfide removal. The subsequent elevation of redox potential and pH inhibited SRB activities. NRB-produced biosurfactants significantly enhanced SRB inhibition by NRB through more efficient sulfide removal and effective duration of nitrate in the microcosms. Biosurfactants specially produced by the NRB strain are for the first time reported to significantly strengthen SRB inhibition by NRB via reduced nitrate usage and prolonged effective duration of nitrate, which has encouraging potential in nitrate-dependent souring control.
Collapse
Affiliation(s)
- Fuqiang Fan
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Jiabin Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Qinhong Cai
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Weiyun Lin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
46
|
Wang B, Liu W, Cai W, Li J, Yang L, Li X, Wang H, Zhu T, Wang A. Reinjection oilfield wastewater treatment using bioelectrochemical system and consequent corrosive community evolution on pipe material. J Biosci Bioeng 2019; 129:199-205. [PMID: 31587942 DOI: 10.1016/j.jbiosc.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
The corrosive issues are comprehensively caused in oilfield rejection system, in which sulfide is one of (bio-)chemical factors leading to high corrosive rate and blocking problem. Generally, aerobic treatment is a well-established and cost-effective unit for sulfide removal before oilfield wastewater reinjection. However, the residual dissolved oxygen (DO), which causes chemical, biological and electrochemical corrosion to water injection pipeline equipment, is still high after multi-stage filtration of DO removal. Here, a novel system to achieve quick and efficient DO removal through a three-electrode (cathode-anode-cathode)-upflow bioelectrochemical reactor (RCAC) was constructed before wastewater reinjection. Bioelectrodes were well established by utilizing organic matters of oilfield wastewater and conducted extracellular electron transport to achieve a steady DO removal from ∼5 mg/L to 0.01 mg/L (HRT 6 h), the DO removal efficiency reached approximately 100%, and the downside biocathode made the largest contribution for DO removal. In the treated wastewater, the corrosion rate of stainless steel N80 ultimately declined over 30 days testing. As a result of DO removal and ammonia conversion to nitrate by bioelectrodes, the corrosive microorganisms were substantially changed. Especially, sulfate-reducing bacteria (SRB) on the surface of N80 immersed in treated wastewater were decreased in abundance; while nitrate-reducing bacteria (NRB) enriched more, which can compete with SRB to prevent biological corrosion.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jiaqi Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiqi Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Hui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingting Zhu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| |
Collapse
|
47
|
Coexistence of sulfate reducers with the other oil bacterial groups in Diyarbakır oil fields. Anaerobe 2019; 59:19-31. [DOI: 10.1016/j.anaerobe.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
|
48
|
Liu J, Wu J, Lin J, Zhao J, Xu T, Yang Q, Zhao J, Zhao Z, Song X. Changes in the Microbial Community Diversity of Oil Exploitation. Genes (Basel) 2019; 10:E556. [PMID: 31344878 PMCID: PMC6723437 DOI: 10.3390/genes10080556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 01/15/2023] Open
Abstract
To systematically evaluate the ecological changes of an active offshore petroleum production system, the variation of microbial communities at several sites (virgin field, wellhead, storage tank) of an oil production facility in east China was investigated by sequencing the V3 to V4 regions of 16S ribosomal ribonucleic acid (rRNA) of microorganisms. In general, a decrease of microbial community richness and diversity in petroleum mining was observed, as measured by operational taxonomic unit (OTU) numbers, α (Chao1 and Shannon indices), and β (principal coordinate analysis) diversity. Microbial community structure was strongly affected by environmental factors at the phylum and genus levels. At the phylum level, virgin field and wellhead were dominated by Proteobacteria, while the storage tank had higher presence of Firmicutes (29.3-66.9%). Specifically, the wellhead displayed a lower presentence of Proteobacteria (48.6-53.4.0%) and a higher presence of Firmicutes (24.4-29.6%) than the virgin field. At the genus level, the predominant genera were Ochrobactrum and Acinetobacter in the virgin field, Lactococcus and Pseudomonas in the wellhead, and Prauseria and Bacillus in the storage tank. Our study revealed that the microbial community structure was strongly affected by the surrounding environmental factors, such as temperature, oxygen content, salinity, and pH, which could be altered because of the oil production. It was observed that the various microbiomes produced surfactants, transforming the biohazard and degrading hydro-carbon. Altering the microbiome growth condition by appropriate human intervention and taking advantage of natural microbial resources can further enhance oil recovery technology.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiawei Lin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Zhao
- Dalian Chivy Biotechnology Limited Company, Liaoning 116023, China.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
49
|
Lan W, Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1270-1283. [PMID: 30841400 DOI: 10.1016/j.scitotenv.2018.11.180] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/16/2023]
Abstract
Methane emission from ruminants not only causes serious environmental problems, but also represents a significant source of energy loss to animals. The increasing demand for sustainable animal production is driving researchers to explore proper strategies to mitigate ruminal methanogenesis. Since hydrogen is the primary substrate of ruminal methanogenesis, hydrogen metabolism and its associated microbiome in the rumen may closely relate to low- and high-methane phenotypes. Using candidate microbes that can compete with methanogens and redirect hydrogen away from methanogenesis as ruminal methane mitigants are promising avenues for methane mitigation, which can both prevent the adverse effects deriving from chemical additives such as toxicity and resistance, and increase the retention of feed energy. This review describes the ruminal microbial ecosystem and its association with methane production, as well as the effects of interspecies hydrogen transfer on methanogenesis. It provides a scientific perspective on using bacteria that are involved in hydrogen utilization as ruminal modifiers to decrease methanogenesis. This information will be helpful in better understanding the key role of ruminal microbiomes and their relationship with methane production and, therefore, will form the basis of valuable and eco-friendly methane mitigation methods while improving animal productivity.
Collapse
Affiliation(s)
- Wei Lan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China
| | - Chunlei Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China.
| |
Collapse
|
50
|
Wang X, Li X, Yu L, Huang L, Xiu J, Lin W, Zhang Y. Characterizing the microbiome in petroleum reservoir flooded by different water sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:872-885. [PMID: 30759613 DOI: 10.1016/j.scitotenv.2018.10.410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Petroleum reservoir is an unusual subsurface biosphere, where indigenous microbes lived and evolved for million years. However, continual water injection changed the situation by introduction of new electron acceptors, donors and exogenous microbes. In this study, 16S-rRNA gene sequencing, comparative metagenomics and genomic bins reconstruction were employed to investigate the microbial community and metabolic potential in three typical water-flooded blocks of the Shen84 oil reservoir in Liaohe oil field, China. The results showed significant difference of microbial community compositions and metabolic characteristics existed between the injected water and the produced water/oil mixtures; however, there was considerable uniformity between the produced samples in different blocks. Microbial communities in the produced fluids were dominated by exogenous facultative microbes such as Pseudomonas and Thauera members from Proteobacteria phylum. Metabolic potentials for O2-dependent hydrocarbon degradation, dissimilarly nitrate reduction, and thiosulfate‑sulfur oxidation were much more abundant, whereas genes involved in dissimilatory sulfate reduction, anaerobic hydrocarbon degradation and methanogenesis were less abundant in the oil reservoir. Statistical analysis indicated the water composition had an obvious influence on microbial community composition and metabolic potential. The water-flooding process accompanied with introduction of nitrate or nitrite, and dissolved oxygen promoted the alteration of microbiome in oil reservoir from slow-growing anaerobic indigenous microbes (such as Thermotoga, Clostridia, and Syntrophobacter) to fast-growing opportunists as Beta- and Gama- Proteobacteria. The findings of this study shed light on the microbial ecology change in water flooded petroleum reservoir.
Collapse
Affiliation(s)
- Xiaotong Wang
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, PR China; Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, PR China
| | - Xizhe Li
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, PR China; Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, PR China.
| | - Li Yu
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, PR China; Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang, Hebei 065007, PR China
| | - Lixin Huang
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, PR China; Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang, Hebei 065007, PR China
| | - Jianlong Xiu
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, PR China; Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang, Hebei 065007, PR China
| | - Wei Lin
- Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Langfang, Hebei 065007, PR China; Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - Yanming Zhang
- Chinese National Human Genome Center, Beijing 100176, PR China
| |
Collapse
|