1
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2025; 17:763-780. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
2
|
Alexander LM, Khalid S, Gallego-Lopez GM, Astmann TJ, Oh JH, Heggen M, Huss P, Fisher R, Mukherjee A, Raman S, Choi IY, Smith MN, Rogers CJ, Epperly MW, Knoll LJ, Greenberger JS, van Pijkeren JP. Development of a Limosilactobacillus reuteri therapeutic delivery platform with reduced colonization potential. Appl Environ Microbiol 2024; 90:e0031224. [PMID: 39480094 DOI: 10.1128/aem.00312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
Bacterial biotherapeutic delivery vehicles have the potential to treat a variety of diseases. This approach obviates the need to purify the recombinant effector molecule, allows delivery of therapeutics in situ via oral or intranasal administration, and protects the effector molecule during gastrointestinal transit. Lactic acid bacteria have been broadly developed as therapeutic delivery vehicles though risks associated with the colonization of a genetically modified microorganism have so-far not been addressed. Here, we present an engineered Limosilactobacillus reuteri strain with reduced colonization potential. We applied a dual-recombineering scheme for efficient barcoding and generated mutants in genes encoding five previously characterized and four uncharacterized putative adhesins. Compared with the wild type, none of the mutants were reduced in their ability to survive gastrointestinal transit in mice. CmbA was identified as a key protein in L. reuteri adhesion to HT-29 and enteroid cells. The nonuple mutant, a single strain with all nine genes encoding adhesins inactivated, had reduced capacity to adhere to enteroid monolayers. The nonuple mutant producing murine IFN-β was equally effective as its wild-type counterpart in mitigating radiation toxicity in mice. Thus, this work established a novel therapeutic delivery platform that lays a foundation for its application in other microbial therapeutic delivery candidates and furthers the progress of the L. reuteri delivery system towards human use.IMPORTANCEOne major advantage to leverage gut microbes that have co-evolved with the vertebrate host is that evolution already has taken care of the difficult task to optimize survival within a complex ecosystem. The availability of the ecological niche will support colonization. However, long-term colonization of a recombinant microbe may not be desirable. Therefore, strategies need to be developed to overcome this potential safety concern. In this work, we developed a single strain in which we inactivated the encoding sortase, and eight genes encoding characterized/putative adhesins. Each individual mutant was characterized for growth and adhesion to epithelial cells. On enteroid cells, the nonuple mutant has a reduced adhesion potential compared with the wild-type strain. In a model of total-body irradiation, the nonuple strain engineered to release murine interferon-β performed comparable to a derivative of the wild-type strain that releases interferon-β. This work is an important step toward the application of recombinant L. reuteri in humans.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saima Khalid
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gina M Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Theresa J Astmann
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Heggen
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - In Young Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Morgan N Smith
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
3
|
Xie Z, McAuliffe O, Jin YS, Miller MJ. Invited review: Genomic modifications of lactic acid bacteria and their applications in dairy fermentation. J Dairy Sci 2024; 107:8749-8764. [PMID: 38969005 DOI: 10.3168/jds.2024-24989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
Lactic acid bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. Lactic acid bacteria are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated protein)-based genome engineering. Finally, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.
Collapse
Affiliation(s)
- Zifan Xie
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland P61 C996; School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland BT9 5DL
| | - Yong-Su Jin
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Michael J Miller
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
4
|
Rios CI, DiCarlo AL, Harrison L, Prasanna PGS, Buchsbaum JC, Rudokas MW, Gomes L, Winters TA. Advanced Technologies in Radiation Research. Radiat Res 2024; 201:338-365. [PMID: 38453643 PMCID: PMC11046920 DOI: 10.1667/rade-24-00003.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
The U.S. Government is committed to maintaining a robust research program that supports a portfolio of scientific experts who are investigating the biological effects of radiation exposure. On August 17 and 18, 2023, the Radiation and Nuclear Countermeasures Program, within the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), partnered with the National Cancer Institute, NIH, the National Aeronautics and Space Administration, and the Radiation Injury Treatment Network to convene a workshop titled, Advanced Technologies in Radiation Research (ATRR), which focused on the use of advanced technologies under development or in current use to accelerate radiation research. This meeting report provides a comprehensive overview of the research presented at the workshop, which included an assembly of subject matter experts from government, industry, and academia. Topics discussed during the workshop included assessments of acute and delayed effects of radiation exposure using modalities such as clustered regularly interspaced short palindromic repeats (CRISPR) - based gene editing, tissue chips, advanced computing, artificial intelligence, and immersive imaging techniques. These approaches are being applied to develop products to diagnose and treat radiation injury to the bone marrow, skin, lung, and gastrointestinal tract, among other tissues. The overarching goal of the workshop was to provide an opportunity for the radiation research community to come together to assess the technological landscape through sharing of data, methodologies, and challenges, followed by a guided discussion with all participants. Ultimately, the organizers hope that the radiation research community will benefit from the workshop and seek solutions to scientific questions that remain unaddressed. Understanding existing research gaps and harnessing new or re-imagined tools and methods will allow for the design of studies to advance medical products along the critical path to U.S. Food and Drug Administration approval.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Lynn Harrison
- Division of Biological and Physical Sciences/National Aeronautics and Space Administration, Houston, Texas
| | - Pataje G. S. Prasanna
- Division of Cancer Treatment and Diagnosis/National Cancer Institute/NIH, Gaithersburg, Maryland
| | - Jeffrey C. Buchsbaum
- Division of Cancer Treatment and Diagnosis/National Cancer Institute/NIH, Gaithersburg, Maryland
| | - Michael W. Rudokas
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Lauren Gomes
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
5
|
Klotskova H, Kidess E, Nadal AL, Brugman S. The role of interleukin-22 in mammalian intestinal homeostasis: Friend and foe. Immun Inflamm Dis 2024; 12:e1144. [PMID: 38363052 PMCID: PMC10870696 DOI: 10.1002/iid3.1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024] Open
Abstract
Interleukin-22 (IL-22) is an important cytokine in the intestinal environment. IL-22 is mainly produced by immune cells and targeted at nonimmune cells such as epithelial and stromal cells in a broad array of tissues such as -but not restricted to- the liver and adipose tissue. IL-22 therefore connects immune functions with metabolic functions of the host, and since it is induced by the microbiota, connects host functioning to the outside environment. IL-22 induces epithelial cell proliferation aiding in rapid epithelium regeneration and wound healing. Additionally, IL-22 activates antiapoptotic genes and DNA damage response pathways, enhancing epithelial cell survival. Recently, it has also been shown that IL-22 induces Paneth cell differentiation in humans. However, IL-22 can also contribute to intestinal epithelium damage and reduces microbial diversity in the intestine directly or indirectly by inducing excessive antimicrobial peptide production by epithelial cells. Moreover, IL-22 enhances angiogenesis and may therefore support tumorigenesis in the intestine. In conclusion, it appears that whether IL-22 has a beneficial or harmful effect in the mammalian intestine largely depends on its regulation. This review aims to provide a comprehensive overview of the current literature and emphasizes that IL-22 signaling outcome depends on the timing and duration of IL-22 production, the presence of it regulators such as IL-22BP, and the specific location of the cytokine production in the gastrointestinal tract.
Collapse
Affiliation(s)
- Hedi‐Britt Klotskova
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Evelien Kidess
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Adria L. Nadal
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Sylvia Brugman
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
6
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Singh K, Park S. Construction of prophage-free and highly-transformable Limosilactobacillus reuteri strains and their use for production of 1,3-propanediol. Biotechnol Bioeng 2024; 121:317-328. [PMID: 37747698 DOI: 10.1002/bit.28559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
The lactic acid bacterium Limosilactobacillus reuteri (formerly Lactobacillus reuteri) is a desirable host for the production of 1,3-propanediol (1,3-PDO) from glycerol when 1,3-PDO is used in the food or cosmetic industry. However, the production is hindered by strain instability, causing cell lysis, and difficult gene manipulation. This study reveals that the stability of L. reuteri DSM 20016 and its 1,3-PDO production, especially in the alcohol dehydrogenases (ADHs)-deletion mutants, are greatly enhanced after the deletion of two prophages (Φ3 and Φ4) present in the L. reuteri's chromosome. The resulting phage-free and ADHs-deletion mutant could produce >825 mM 1,3-PDO in 48 h without cell lysis at the theoretical maximum yield on glucose of ~2 mol/mol. Compared to the wild-type strain, the mutant exhibited a 45.2% increase in 1,3-PDO production titer and a 2.1-fold increase in yield. In addition, this study reports that the transformation efficiency of L. reuteri Δadh2Δadh6 mutant strains were greatly enhanced by >300-fold after the deletion of prophage Φ3, probably due to the removal of a restriction-modification (RM) system which resides in the phage genome. With improved stability and higher transformation efficiency, recombinant L. reuteri DSM 20016 Δadh2Δadh6ΔΦ3ΔΦ4 can be a more reliable and amenable host for industrial applications.
Collapse
Affiliation(s)
- Kalpana Singh
- School of Energy and Chemical Engineering, UNIST, Ulsan, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, Republic of Korea
| |
Collapse
|
8
|
Guo Q, Yan Y, Zhang Z, Xu B, Bangash HL, Sui X, Yang Y, Zhou Z, Zhao S, Peng N. Developing the Limosilactobacillus reuteri Chassis through an Endogenous Programmable Endonuclease-Based Genome Editing Tool. ACS Synth Biol 2023; 12:3487-3496. [PMID: 37934952 DOI: 10.1021/acssynbio.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Using genetically tractable probiotics to engineer live biotherapeutic products (LBPs) for disease treatment is urgently needed. Limosilactobacillus reuteri is an important vertebrate gut symbiont, which has great potential for developing LBPs. However, in L. reuteri, synthetic biology work is largely limited by the long editing cycle. In this study, we identified a subtype II-A CRISPR-Cas9 system in L. reuteri 03 and found the endogenous Cas9 (LrCas9) recognizing a broad protospacer-adjacent motif (PAM) sequence (3'-NDR; N = A, G, T, C; D = A, G, T; R = A, G). We reprogrammed the LrCas9 for efficient gene deletion (95.46%), point mutation (86.36%), large fragment deletion (40 kb), and gene integration (1743 bp, 73.9%), which uncovered the function of the repeated conserved domains in mucus-binding protein. Moreover, we analyzed the distribution of endogenous endonucleases in 304 strains of L. reuteri and found the existence of programmable endonucleases in 98.36% of L. reuteri strains suggesting the potential to reprogram endogenous endonucleases for genetic manipulation in the majority of L. reuteri strains. In conclusion, this study highlights the development of a new probiotic chassis based on endogenous endonucleases in L. reuteri 03, which paves the way for the development of genome editing tools for functional genetic studies in other L. reuteri. We believe that the development of an endogenous endonuclease-based genetic tool will greatly facilitate the construction of LBPs.
Collapse
Affiliation(s)
- Qiujin Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Yiting Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Zhenting Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou, P.R. China
| | - Boya Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Hina Lqbal Bangash
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Xin Sui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Yalin Yang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, P.R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
9
|
Xie W, Wang X, Cai J, Bai H, Shao Y, Li Z, Cai L, Zhang S, Li J, Cui W, Jiang Y, Tang L. Optimum Fermentation Conditions for Bovine Lactoferricin-Lactoferrampin-Encoding LimosiLactobacillus reuteri and Regulation of Intestinal Inflammation. Foods 2023; 12:4068. [PMID: 38002126 PMCID: PMC10670345 DOI: 10.3390/foods12224068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The multifunctional antibacterial peptide lactoferricin-lactoferrampin (LFCA) is derived from bovine lactoferrin. Optimization of the fermentation process should be studied since different microorganisms have their own favorable conditions and processes for growth and the production of metabolites. In this study, the culture conditions of a recombinant strain, pPG-LFCA-E/LR-CO21 (LR-LFCA), expressing LFCA was optimized, utilizing the high-density fermentation process to augment the biomass of LimosiLactobacillus reuteri and the expression of LFCA. Furthermore, an assessment of the protective effect of LR-LFCA on intestinal inflammation induced by lipopolysaccharide (LPS) was conducted to evaluate the impact of LR-LFCA on the disease resistance of piglets. The findings of this study indicate that LR-LFCA fermentation conditions optimally include 2% inoculation volume, 36.5 °C fermentation temperature, 9% dissolved oxygen concentration, 200 revolutions/minute stirring speed, pH 6, 10 mL/h glucose flow, and 50% glucose concentration. The inclusion of fermented LR-LFCA in the diet resulted in an elevation of immunoglobulin levels, significant upregulation of tight junction proteins ZO-1 and occludin, reinforcement of the intestinal barrier function, and significant amelioration of the aberrant alterations in blood physiological parameters induced by LPS. These results offer a theoretical framework for the implementation of this micro-ecological preparation in the field of piglet production to enhance intestinal well-being.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Huitao Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Zhuoran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Choi IY, Oh JH, Wang Z, van Pijkeren JP. Bioluminescent monitoring of recombinant lactic acid bacteria and their products. mBio 2023; 14:e0119723. [PMID: 37668408 PMCID: PMC10653940 DOI: 10.1128/mbio.01197-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE Lactic acid bacteria constitute a genetically diverse group of microorganisms with significant roles in the food industry, biotechnology, agriculture, and medicine. A core understanding of bacterial physiology in diverse environments is crucial to select and develop bacteria for industrial and medical applications. However, there is a lack of versatile tools to track (recombinant) protein production in lactic acid bacteria. In this study, we adapted a peptide-based bioluminescent tagging system that is functional across multiple genera and species. This system enables tracking of tagged proteins both in vitro and in situ, while it also can be used to enumerate recombinant bacteria from the mouse gastrointestinal tract with accuracy comparable to that of conventional plate counts. Our work expands the lactic acid bacteria genetic toolbox and will facilitate researchers in industry and academia with opportunities to monitor microbes and proteins under different physiologically relevant conditions.
Collapse
Affiliation(s)
- In Young Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhiying Wang
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
11
|
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Mukherjee A, Yu J, Leibowitz BJ, Vlad AM, Coffman L, Wang H, Huq MS, Huang Z, Rogers CJ, Greenberger JS. Release of Interferon-β (IFN-β) from Probiotic Limosilactobacillus reuteri-IFN-β (LR-IFN-β) Mitigates Gastrointestinal Acute Radiation Syndrome (GI-ARS) following Whole Abdominal Irradiation. Cancers (Basel) 2023; 15:1670. [PMID: 36980556 PMCID: PMC10046795 DOI: 10.3390/cancers15061670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Thus, strategies to mitigate toxicity are important and can revitalize the current standard of care. We previously established that LR-IL-22 protects the intestine from WAI. We now hypothesize that LR-IFN-β is an effective radiation protector and mitigator and is rapidly cleared from the digestive tract, making it an option for intestinal radioprotection. We report that the gavage of LR-IFN-β during WAI provides improved intestinal barrier integrity and significantly preserves the numbers of Lgr5+GFP+ intestinal stem cells, improving survival. The rapid clearance of the genetically engineered probiotic from the digestive tract renders it a safe and feasible radiation mitigator. Therefore, the above genetically engineered probiotic is both a feasible and effective radiation mitigator that could potentially revolutionize the management of OC patients. Furthermore, the subsequent addition of platinum/taxane-based chemotherapy to the combination of WAI and LR-IFN-β should reduce tumor volume while protecting the intestine and should improve the overall survival in OC patients.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anda M. Vlad
- Department of OB/Gyn and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lan Coffman
- Department of Medicine, University of Pittsburgh, PA 15260, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ziyu Huang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
12
|
Alexander LM, van Pijkeren JP. Modes of therapeutic delivery in synthetic microbiology. Trends Microbiol 2023; 31:197-211. [PMID: 36220750 PMCID: PMC9877134 DOI: 10.1016/j.tim.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 02/03/2023]
Abstract
For decades, bacteria have been exploited as vectors for vaccines and therapeutics. However, the bacterial arsenal used has historically been limited to a few strains. Advancements in immunology, combined with the development of genetic tools, have expanded our strategies and capabilities to engineer bacteria using various delivery strategies. Depending on the application, each delivery strategy requires specific considerations, optimization, and safety concerns. Here, we review various modes of therapeutic delivery used to target or vaccinate against a variety of ailments in preclinical models and in clinical trials. We highlight modes of bacteria-derived delivery best suited for different applications. Finally, we discuss current obstacles in bacteria-derived therapies and explore potential improvements of the various modes of therapeutic delivery.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan-Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Özçam M, Oh JH, Tocmo R, Acharya D, Zhang S, Astmann TJ, Heggen M, Ruiz-Ramírez S, Li F, Cheng CC, Vivas E, Rey FE, Claesen J, Bugni TS, Walter J, van Pijkeren JP. A secondary metabolite drives intraspecies antagonism in a gut symbiont that is inhibited by cell-wall acetylation. Cell Host Microbe 2022; 30:824-835.e6. [PMID: 35443156 DOI: 10.1016/j.chom.2022.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/03/2022]
Abstract
The mammalian microbiome encodes numerous secondary metabolite biosynthetic gene clusters; yet, their role in microbe-microbe interactions is unclear. Here, we characterized two polyketide synthase gene clusters (fun and pks) in the gut symbiont Limosilactobacillus reuteri. The pks, but not the fun, cluster encodes antimicrobial activity. Forty-one of 51 L. reuteri strains tested are sensitive to Pks products; this finding was independent of strains' host origin. Sensitivity to Pks was also established in intraspecies competition experiments in gnotobiotic mice. Comparative genome analyses between Pks-resistant and -sensitive strains identified an acyltransferase gene (act) unique to Pks-resistant strains. Subsequent cell-wall analysis of wild-type and act mutant strains showed that Act acetylates cell-wall components, providing resistance to Pks-mediated killing. Additionally, pks mutants lost their competitive advantage, while act mutants lost their Pks resistance in in vivo competition assays. These findings provide insight into how closely related gut symbionts can compete and co-exist in the gastrointestinal tract.
Collapse
Affiliation(s)
- Mustafa Özçam
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Deepa Acharya
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shenwei Zhang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Theresa J Astmann
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Heggen
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Christopher C Cheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Eugenio Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Medicine and APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Jan-Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA; Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Does over a century of aerobic phage work provide a solid framework for the study of phages in the gut? Anaerobe 2021; 68:102319. [PMID: 33465423 DOI: 10.1016/j.anaerobe.2021.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial viruses (bacteriophages, phages) of the gut have increasingly become a focus in microbiome studies, with an understanding that they are likely key players in health and disease. However, characterization of the virome remains largely based on bioinformatic approaches, with the impact of these viromes inferred based on a century of knowledge from aerobic phage work. Studying the phages infecting anaerobes is difficult, as they are often technically demanding to isolate and propagate. In this review, we primarily discuss the phages infecting three well-studied anaerobes in the gut: Bifidobacterium, Clostridia and Bacteroides, with a particular focus on the challenges in isolating and characterizing these phages. We contrast the lessons learned from these to other anaerobic work on phages infecting facultative anaerobes of the gut: Enterococcus and Lactobacillus. Phages from the gut do appear to adhere to the lessons learned from aerobic work, but the additional challenges of working on them has required ingenious new approaches to enable their study. This, in turn, has uncovered remarkable biology likely underpinning phage-host relationships in many stable environments.
Collapse
|
16
|
Oh JH, Schueler KL, Stapleton DS, Alexander LM, Yen CLE, Keller MP, Attie AD, van Pijkeren JP. Secretion of Recombinant Interleukin-22 by Engineered Lactobacillus reuteri Reduces Fatty Liver Disease in a Mouse Model of Diet-Induced Obesity. mSphere 2020; 5:e00183-20. [PMID: 32581074 PMCID: PMC7316485 DOI: 10.1128/msphere.00183-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of metabolic syndrome continues to rise globally. In mice, intravenous administration of interleukin-22 (IL-22) ameliorates various disease phenotypes associated with diet-induced metabolic syndrome. In patients, oral treatment is favored over intravenous treatment, but methodologies to deliver IL-22 via the oral route are nonexistent. The goal of this study was to assess to what extent engineered Lactobacillus reuteri secreting IL-22 could ameliorate nonalcoholic fatty liver disease. We used a mouse model of diet-induced obesity and assessed various markers of metabolic syndrome following treatment with L. reuteri and a recombinant derivative. Mice that received an 8-week treatment of wild-type probiotic gained less weight and had a smaller fat pad than the control group, but these phenotypes were not further enhanced by recombinant L. reuteri However, L. reuteri secreting IL-22 significantly reduced liver weight and triglycerides at levels that exceeded those of the probiotic wild-type treatment group. Our findings are interesting in light of the observed phenotypes associated with reduced nonalcoholic liver disease, in humans the most prevalent chronic liver disease, following treatment of a next-generation probiotic that is administered orally. Once biological and environmental containment strategies are in place, therapeutic applications of recombinant Lactobacillus reuteri are on the horizon.IMPORTANCE In humans, nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease due to the increased prevalence of obesity. While treatment of NAFLD is often geared toward lifestyle changes, such as diet and exercise, the use of dietary supplements such as probiotics is underinvestigated. Here, we report that probiotic Lactobacillus reuteri reduces fatty liver in a mouse model of diet-induced obesity. This phenotype was further enhanced upon delivery of recombinant interleukin-22 by engineered Lactobacillus reuteri These observations pave the road to a better understanding of probiotic mechanisms driving the reduction of diet-induced steatosis and to development of next-generation probiotics for use in the clinic. Ultimately, these studies may lead to rational selection of (engineered) probiotics to ameliorate fatty liver disease.
Collapse
Affiliation(s)
- Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donnie S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
17
|
Wassenaar TM, Zimmermann K. How industrial bacterial cultures can be kept stable over time. Lett Appl Microbiol 2020; 71:220-228. [PMID: 32379347 PMCID: PMC7496531 DOI: 10.1111/lam.13309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/22/2022]
Abstract
The tremendous variation that exists between bacterial species illustrates the power of evolution, which is the continuous process of mutation and selection over time. Even within a bacterial species, individual members can harbour an impressive degree of genetic variation, depending on the species. The question then arises how similar the offspring of a given bacterial cell over time is, and how long it takes before differences are noticeable? Here we show that on the one hand one can expect random mutations to arise, as a result of various mechanisms. On the other hand, there are forces at play that keep the offspring of a cell genetically relatively constant, unless there is selection for a particular characteristic. The most common mechanisms behind mutations that can appear in a bacterial population are briefly introduced. Next, it is explained why nevertheless such mutations are rarely observed, as long as single colonies are randomly selected, unless selective pressures apply. Since quality control of industrial bacterial cultures is likely to depend heavily on genome sequencing in the near future, the accuracy of whole‐genomic sequencing technologies is also discussed. It can be concluded that the bacteriologists who started picking single colonies from agar plates more than hundred years ago were unknowingly ingeneous, as their practice maintains a bacterial culture stable over time. Significance and Impact of Study The questions addressed here are relevant for industries that depend on live bacteria for (manufacturing of) their products, as they have to guard their bacterial cultures that remain unchanged over time. The explanation why randomly selection of single colonies keeps a population stable can be of use in bacteriology courses. The limitations of whole‐genome sequencing are relevant to legislators to avoid overinterpretation of those data.
Collapse
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany
| | | |
Collapse
|
18
|
Zhang X, Fisher R, Hou W, Shields D, Epperly MW, Wang H, Wei L, Leibowitz BJ, Yu J, Alexander LM, VAN Pijkeren JP, Watkins S, Wipf P, Greenberger JS. Second-generation Probiotics Producing IL-22 Increase Survival of Mice After Total Body Irradiation. In Vivo 2020; 34:39-50. [PMID: 31882461 PMCID: PMC6984118 DOI: 10.21873/invivo.11743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Intestinal damage induced by total body irradiation (TBI) reduces leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)-expressing stem cells, goblet, and Paneth cells, breaching the epithelial lining, and facilitating bacterial translocation, sepsis, and death. MATERIALS AND METHODS Survival was measured after TBI in animals that received wild-type or recombinant bacteria producing interleukin-22 (IL-22). Changes in survival due to microbially delivered IL-22 were measured. Lactobacillus reuteri producing IL-22, or Escherichia coli-IL-22 were compared to determine which delivery system is better. RESULTS C57BL/6 mice receiving IL-22 probiotics at 24 h after 9.25 Gy TBI, demonstrated green fluorescent protein-positive bacteria in the intestine, doubled the number of Lgr5+ intestinal stem cells, and increased 30-day survival. Bacteria were localized to the jejunum, ileum, and colon. CONCLUSION Second-generation probiotics appear to be valuable for mitigation of TBI, and radiation protection during therapeutic total abdominal irradiation.
Collapse
Affiliation(s)
- Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Liang Wei
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, U.S.A
| | | | - Simon Watkins
- Center for Imaging, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| |
Collapse
|
19
|
Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem. Appl Environ Microbiol 2019; 86:AEM.01922-19. [PMID: 31676478 PMCID: PMC6912086 DOI: 10.1128/aem.01922-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts. The gut microbiota harbors a diverse phage population that is largely derived from lysogens, which are bacteria that contain dormant phages in their genome. While the diversity of phages in gut ecosystems is getting increasingly well characterized, knowledge is limited on how phages contribute to the evolution and ecology of their host bacteria. Here, we show that biologically active prophages are widely distributed in phylogenetically diverse strains of the gut symbiont Lactobacillus reuteri. Nearly all human- and rodent-derived strains, but less than half of the tested strains of porcine origin, contain active prophages, suggesting different roles of phages in the evolution of host-specific lineages. To gain insight into the ecological role of L. reuteri phages, we developed L. reuteri strain 6475 as a model to study its phages. After administration to mice, L. reuteri 6475 produces active phages throughout the intestinal tract, with the highest number detected in the distal colon. Inactivation of recA abolished in vivo phage production, which suggests that activation of the SOS response drives phage production in the gut. In conventional mice, phage production reduces bacterial fitness as fewer wild-type bacteria survive gut transit compared to the mutant lacking prophages. However, in gnotobiotic mice, phage production provides L. reuteri with a competitive advantage over a sensitive host. Collectively, we uncovered that the presence of prophages, although associated with a fitness trade-off, can be advantageous for a gut symbiont by killing a competitor strain in its intestinal niche. IMPORTANCE Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts.
Collapse
|