1
|
Del Río MC, Martín S, Quílez J, Molina JM, Ferrer O, Molina JA, Melián A, Ruiz A. Molecular Epidemiology of Cryptosporidiosis on Lamb and Goat Kid Farms in Gran Canaria, Canary Islands (Spain). Microorganisms 2025; 13:644. [PMID: 40142536 PMCID: PMC11946421 DOI: 10.3390/microorganisms13030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of this study was to analyse and characterise Cryptosporidium spp. in sheep and goats in Gran Canaria (Spain) and to identify the risks and economic factors related to the disease. During sampling, a semi-structured survey was conducted with farmers, and faecal samples were collected from lambs, goat kids, sheep, and adult goats from a total of 30 farms. Adult samples were examined microscopically for the presence of Cryptosporidium spp. oocysts, with only three positive samples being found in sheep and one in goats. The PCR of the SSU rRNA gene was performed on all juvenile and adult samples, and positive samples from lambs (8.3%), sheep (6.9%), goat kids (23.3%), and goats (2.5%) were subjected to sequencing, detecting three of the most important species in small ruminants: C. parvum, C. xiaoi, and C. ubiquitum. By sequencing the GP60 PCR products, two subtypes of C. parvum belonging to the IId family were identified, IIdA16G1 and IIdA23G1, with the latter being the most frequent. Although the prevalence of the disease was not very high, the zoonotic potential of C. parvum and the limited awareness of the parasite among farmers make surveillance and health education focused on the control of this member of Apicomplexa necessary.
Collapse
Affiliation(s)
- María Cristina Del Río
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain; (M.C.D.R.)
| | - Sergio Martín
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain; (M.C.D.R.)
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013 Zaragoza, Spain
| | - José Manuel Molina
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain; (M.C.D.R.)
| | - Otilia Ferrer
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain; (M.C.D.R.)
| | - José Adrián Molina
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain; (M.C.D.R.)
| | - Adrián Melián
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Spain
| | - Antonio Ruiz
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain; (M.C.D.R.)
| |
Collapse
|
2
|
Aboelsoued D, Toaleb NI, Abdel Megeed KN. Coproantigen detection and molecular identification of Cryptosporidium species among newborn and adult farm animals. AMB Express 2025; 15:12. [PMID: 39843766 PMCID: PMC11754770 DOI: 10.1186/s13568-024-01817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Cryptosporidium sp. is an obligatory intracellular apicomplexan protozoan parasite that causes a disease called cryptosporidiosis with substantial veterinary and medical importance. Therefore, this study aimed to evaluate an early diagnosis of cryptosporidiosis using the anti-Cryptosporidium parvum oocyst immunoglobulin IgG polyclonal antibodies (anti-C. parvum IgG PAbs)-based sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of Cryptosporidium oocyst antigens in fecal samples of farm animals in Egypt. Further molecular identification and sequencing were performed for the detected isolates. Eight hundred and twenty fecal samples of farm animals; 102 buffalo calves, 120 cattle calves, 100 lambs and 98 goat kids, 80 buffaloes, 60 cattle, 160 sheep and 100 goats, collected from different small-scale farms and local holders were examined for cryptosporidiosis by Modified Ziehl-Neelsen (MZN) technique. The percentage of positivity was 45.1%, 50%, 20%, 18.4%, 31.25%, 38.3%, 18.8%, and 11% in buffalo calves, cattle calves, lambs, goat kids, adult buffaloes, adult cattle, sheep, and goats, respectively. Molecular identification of Cryptosporidium samples was performed based on COWP gene, revealing the isolates: GenBank: OQ121955.1, OR029973.1 and PP316107.1 which were identical to the C. parvum and GenBank: PP316108.1 and OR029972.1 which were identical to C. hominis and C. andersoni, respectively. Then, C. parvum oocysts were used for preparation of antigens and rabbit immunization. Anti-C. parvum IgG PAbs were purified and characterized by SDS-PAGE and then labeled with horseradish peroxidase (HRP). Anti-C. parvum IgG PAbs in-house sandwich ELISA was prepared, then tested this ELISA on 820 samples and compared results with MZN microscopical examination and a commercial sandwich ELISA kit. In this study, in-house sandwich ELISA scored higher sensitivity of 98%, 100% specificity, validity 99% and relative agreement 98.6% than (92%, 90%, 91% and 91.4%) of MZN and (96%, 95%, 95.5% and 95.7%) of coproantigen commercial sandwich ELISA kit, respectively. Moreover, we used PCR to evaluate the positivity of in-house sandwich ELISA results, and the total PCR positive samples were 263 out of 268 sandwich ELISA positive samples (98.13%). In conclusion, the prepared Anti-C. parvum IgG PAbs based sandwich ELISA offered a simple and accurate diagnostic method for cryptosporidiosis in the fecal samples of different species of farm animals in Egypt with high sensitivity (98%) and specificity (100%). Further studies on this Anti-C. parvum IgG PAbs may help also in the protection against cryptosporidiosis.
Collapse
Affiliation(s)
- Dina Aboelsoued
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt.
| | - Nagwa I Toaleb
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt
| | - Kadria N Abdel Megeed
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt
| |
Collapse
|
3
|
Nyirenda JT, Henrion MYR, Nyasulu V, Msakwiza M, Nedi W, Thole H, Phulusa J, Toto N, Jere KC, Winter A, Sawyer LA, Conrad T, Hebert D, Chen C, Van Voorhis WC, Houpt ER, Iroh Tam PY, Operario DJ. Examination of ELISA against PCR for assessing treatment efficacy against Cryptosporidium in a clinical trial context. PLoS One 2023; 18:e0289929. [PMID: 37682856 PMCID: PMC10490871 DOI: 10.1371/journal.pone.0289929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Cryptosporidium is a gastrointestinal pathogen that presents a serious opportunistic infection in immunocompromised individuals including those living with human immunodeficiency syndrome. The CRYPTOFAZ trial, previously published, was conducted in Malawi to evaluate the efficacy of clofazimine in response to an unmet need for drugs to treat cryptosporidiosis in HIV populations. A combination of rapid diagnostic tests, ELISA, qPCR, and conventional sequencing were employed to detect Cryptosporidium in 586 individuals during pre-screening and monitor oocyst shedding and identify enteric co-pathogens in 22 enrolled/randomized participants during the in-patient period and follow-up visits. METHODOLOGY Oocyst shedding as measured by qPCR was used to determine primary trial outcomes, however pathogen was detected even at trial days 41-55 in individuals randomized to either clofazimine or placebo arms of the study. Therefore, in this work we re-examine the trial outcomes and conclusions in light of data from the other diagnostics, particularly ELISA. ELISA data was normalized between experiments prior to comparison to qPCR. The amount of all identified enteric pathogens was examined to determine if co-pathogens other than Cryptosporidium were major causative agents to a participant's diarrhea. CONCLUSION ELISA had higher sample-to-sample variability and proved to be equally or less sensitive than qPCR in detecting Cryptosporidium positive samples. Compared to qPCR, ELISA had equal or greater specificity in detecting Cryptosporidium negative samples. Sequencing identified several Cryptosporidium species including viatorum which has never been identified in Malawi and Southern Africa. In addition to Cryptosporidium, enterotoxigenic E. coli was also identified as a pathogen in diarrheagenic amounts in 4 out of 22 participants.
Collapse
Affiliation(s)
- James T. Nyirenda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Marc Y. R. Henrion
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Vita Nyasulu
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mike Msakwiza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Wilfred Nedi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Herbert Thole
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Jacob Phulusa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Neema Toto
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Khuzwayo C. Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alex Winter
- Emmes Corporation, Rockville, Maryland, United States of America
| | - Leigh A. Sawyer
- Emmes Corporation, Rockville, Maryland, United States of America
| | - Thomas Conrad
- Emmes Corporation, Rockville, Maryland, United States of America
| | - Donnie Hebert
- Emmes Corporation, Rockville, Maryland, United States of America
| | - Crystal Chen
- Emmes Corporation, Rockville, Maryland, United States of America
| | | | - Eric R. Houpt
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Pui-Ying Iroh Tam
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Darwin J. Operario
- University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
4
|
Zhang YY, Zou Y, Li YQ, Ma PP, Liu ZL, Wang S, Sun XL. Subtyping of Nonhuman Primate-Adapted Cryptosporidium hominis in Macaca Fascicularis and Macaca mulatta in Yunnan Province, Southwestern China. Vector Borne Zoonotic Dis 2023. [PMID: 37326984 DOI: 10.1089/vbz.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Background: Cryptosporidium spp. are a type of protozoan parasite responsible for causing diarrheal illness worldwide. They infect a broad range of vertebrate hosts, including both non-human primates (NHPs) and humans. In fact, zoonotic transmission of cryptosporidiosis from NHPs to humans is frequently facilitated by direct contact between the two groups. However, there is a need to enhance the information available on the subtyping of Cryptosporidium spp. in NHPs in the Yunnan province of China. Materials and Methods: Thus, the study investigated the molecular prevalence and species of Cryptosporidium spp. from 392 stool samples of Macaca fascicularis (n = 335) and Macaca mulatta (n = 57) by using nested PCR targeting the large subunit of nuclear ribosomal RNA (LSU) gene. Of the 392 samples, 42 (10.71%) were tested Cryptosporidium-positive. Results: All the samples were identified as Cryptosporidium hominis. Further, the statistical analysis revealed that age is a risk factor for the infection of C. hominis. The probability of detecting C. hominis was found to be higher (odds ratio = 6.23, 95% confidence interval 1.73-22.38) in NHPs aged between 2 and 3 years, as compared with those younger than 2 years. Sequence analysis of the 60 kDa glycoprotein (gp60) identified six (IbA9 n = 4, IiA17 n = 5, InA23 n = 1, InA24 n = 2, InA25 n = 3, and InA26 n = 18) C. hominis subtypes with "TCA" repeats. Among these subtypes, it has been previously reported that the Ib family subtypes are also capable of infecting humans. Conclusion: The findings of this study highlight the genetic diversity of C. hominis infection among M. fascicularis and M. mulatta in Yunnan province. Further, the results confirm that both these NHPs are susceptible to C. hominis infection, posing a potential threat to humans.
Collapse
Affiliation(s)
- Yue-Yue Zhang
- Veterinary Public Health, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Yang Zou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Ya-Qi Li
- Veterinary Public Health, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R. China
| | - Ping-Ping Ma
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, P.R. China
| | - Zhong-Li Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xiao-Lin Sun
- Veterinary Public Health, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R. China
| |
Collapse
|
5
|
Diverse Genotypes of Cryptosporidium in Sheep in California, USA. Pathogens 2022; 11:pathogens11091023. [PMID: 36145455 PMCID: PMC9504958 DOI: 10.3390/pathogens11091023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidium spp. is a parasite that can infect a wide variety of vertebrate species. The parasite has been detected in sheep worldwide with diverse species and genotypes of various levels of zoonotic potential and public health concern. The purpose of this study was to determine the distribution of genotypes of Cryptosporidium in sheep in California, USA. Microscopic positive samples from individual sheep from central and northern California ranches were genotyped by sequencing a fragment of the 18S rRNA gene and BLAST analysis. Eighty-eight (63.8%) of the microscopic positive samples were genotyped, and multiple genotypes of Cryptosporidium were identified from sheep in the enrolled ranches. Approximately 89% of isolates (n = 78) were C. xiaoi or C. bovis, 10% of isolates (n = 9) were C. ubiquitum, and 1% of isolates (n = 1) were C. parvum. The C. parvum and C. ubiquitum isolates were detected only from lambs and limited to four farms. Given that the majority of Cryptosporidium species (i.e., C. xiaoi and C. bovis) were of minor zoonotic concern, the results of this study suggest that sheep are not a reservoir of major zoonotic Cryptosporidium in California ranches.
Collapse
|
6
|
Jang DH, Cho HC, Shin SU, Kim EM, Park YJ, Hwang S, Park J, Choi KS. Prevalence and distribution pattern of Cryptosporidium spp. among pre-weaned diarrheic calves in the Republic of Korea. PLoS One 2021; 16:e0259824. [PMID: 34780521 PMCID: PMC8592421 DOI: 10.1371/journal.pone.0259824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidium spp. are protozoan parasites that belong to subphylum apicomplexa and cause diarrhea in humans and animals worldwide. Data on the prevalence of Cryptosporidium spp. and its subtypes among calves in the Republic of Korea (KOR) are sparse. Hence, our study aimed to investigate the prevalence and association between the age of calf and the identified Cryptosporidium spp. and to determine the genotypes/subtypes of Cryptosporidium spp. in pre-weaned calves with diarrhea in the KOR. A total of 460 diarrheic fecal samples were collected from calves aged 1−60 days and screened for Cryptosporidium spp. by the 18S rRNA gene. Species identification was determined using the sequencing analysis of the 18S rRNA gene, and C. parvum-positive samples were subtyped via the sequence analysis of the 60-kDa glycoprotein (gp60) gene. Sequence analysis based on the 18S rRNA gene revealed the presence of three Cryptosporidium spp., namely, C. parvum (n = 72), C. ryanae (n = 12), and C. bovis (n = 2). Co-infection by these species was not observed. The infection rate was the highest in calves aged 11−20 days (26.1%, 95% CI 17.1−35.1), whereas the lowest rate was observed in calves aged 21−30 days (7.7%, 95% CI 0.0−16.1). The prevalence of C. parvum was detected exclusively in calves aged ≤20 days, and the highest infection rate of C. ryanae was seen in calves ≥31 days of age. The occurrence of C. parvum (χ2 = 25.300, P = 0.000) and C. ryanae (χ2 = 18.020, P = 0.001) was significantly associated with the age of the calves. Eleven different subtypes of the IIa family that belonging to C. parvum were recognized via the sequence analyses of the gp60 gene. Except for two (IIaA18G3R1 and IIaA15G2R1) subtypes, nine subtypes were first identified in calves with diarrhea in the KOR. IIaA18G3R1 was the most frequently detected subtype (72.2% of calves), followed by IIaA17G3R1 (5.6%), IIaA15G2R1 (4.2%), IIaA19G4R1 (4.2%), IIaA16G4R1 (2.8%), IIaA17G4R1 (2.8%), IIaA19G3R (2.8%), IIaA14G1R1 (1.4%), IIaA14G3R1 (1.4%), IIaA15G1R1 (1.4%), and IIaA19G1R1 (1.4%) These results suggest that the prevalence of Cryptosporidium spp. is significantly associated with calf age. Furthermore, the findings demonstrate the high genetic diversity of C. parvum and the widespread occurrence of zoonotic C. parvum in pre-weaned calves. Hence, calves are a potential source of zoonotic transmission with considerable public health implications.
Collapse
Affiliation(s)
- Dong-Hun Jang
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Seung-Uk Shin
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Eun-Mi Kim
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Yu-Jin Park
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Sunwoo Hwang
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Jinho Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Small ruminants and zoonotic cryptosporidiosis. Parasitol Res 2021; 120:4189-4198. [PMID: 33712929 DOI: 10.1007/s00436-021-07116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Sheep and goats are commonly infected with three Cryptosporidium species, including Cryptosporidium parvum, Cryptosporidium ubiquitum, and Cryptosporidium xiaoi, which differ from each in prevalence, geographic distribution, and public health importance. While C. parvum appears to be a dominant species in small ruminants in European countries, its occurrence in most African, Asian, and American countries appear to be limited. As a result, zoonotic infections due to contact with lambs and goat kids are common in European countries, leading to frequent reports of outbreaks of cryptosporidiosis on petting farms. In contrast, C. xiaoi is the dominant species elsewhere, and mostly does not infect humans. While C. ubiquitum is another zoonotic species, it occurs in sheep and goats at much lower frequency. Host adaptation appears to be present in both C. parvum and C. ubiquitum, consisting of several subtype families with different host preference. The host-adapted nature of C. parvum and C. ubiquitum has allowed the use of subtyping tools in tracking infection sources. This has led to the identification of geographic differences in the importance of small ruminants in epidemiology of human cryptosporidiosis. These tools have also been used effectively in linking zoonotic transmission of C. parvum between outbreak cases and the suspected animals. Further studies should be directly elucidating the reasons for differences in the distribution and public health importance of major Cryptosporidium species in sheep and goats.
Collapse
|
8
|
Widmer G, Köster PC, Carmena D. Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity. Int J Parasitol 2020; 50:253-262. [PMID: 32205089 DOI: 10.1016/j.ijpara.2020.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Parasites in the genus Cryptosporidium, phylum Apicomplexa, are found worldwide in the intestinal tract of many vertebrate species and in the environment. Driven by sensitive PCR methods, and the availability of abundant sequence data and reference genomes, the taxonomic complexity of the genus has steadily increased; 38 species have been named to date. Due to its public health importance, Cryptosporidium hominis has long attracted the interest of the research community. This species was initially described as infectious to humans only. This perception has persisted in spite of an increasing number of observations of natural and experimental infections of animals with this species. Here we summarize and discuss this literature published since 2000 and conclude that the host range of C. hominis is broader than originally described. The evolving definition of the C. hominis host range raises interesting questions about host specificity and the evolution of Cryptosporidium parasites.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, United States
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
9
|
Mammeri M, Cartou L, Chevillot A, Thomas M, Julien C, Vallée I, Polack B, Follet J, Adjou KT. First identification of Cryptosporidium parvum zoonotic subtype IIaA15G2R1 in diarrheal lambs in France. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2019; 18:100355. [PMID: 31796189 DOI: 10.1016/j.vprsr.2019.100355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
To date, no information is available about the presence of Cryptosporidium spp. in French sheep, nor their potential role as zoonotic reservoirs. A total of 23 fecal samples were collected from diarrheic lambs (<11 days old) from seven randomly selected farms. Cryptosporidium-oocysts were detected microscopically with Direct Immunofluorescence Assays (DFA) in 23/23 (100%) of fecal samples. PCR-RFLP of the 18S rRNA gene was used to determine species in all samples, and only Cryptosporidium parvum was identified. Isolates were subtyped by sequencing the 60 kDa glycoprotein (gp60) gene. Two zoonotic subtypes within the IIa subtype family were identified, including IIaA15G2R1 (22/23) and IIaA16G3R1 (1/23). This study reports for the first time the identification and genotyping of zoonotic C. parvum subtypes from lambs in France. Sheep could thus play an important role as potential reservoirs for this zoonotic protist.
Collapse
Affiliation(s)
- Mohamed Mammeri
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort F-94700, France; Phileo Lesaffre Animal Care, 137 rue Gabriel Péri, 59 700 Marcq-en-Barœul, France
| | - Lara Cartou
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort F-94700, France
| | - Aurélie Chevillot
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort F-94700, France
| | - Myriam Thomas
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort F-94700, France
| | - Christine Julien
- Phileo Lesaffre Animal Care, 137 rue Gabriel Péri, 59 700 Marcq-en-Barœul, France
| | - Isabelle Vallée
- UMR BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort F-94700, France
| | - Bruno Polack
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort F-94700, France
| | - Jérôme Follet
- Université de Lille, CNRS, ISEN, UMR 8520- IEMN, Lille 59000, France; ISA-YNCREA Hauts de France, 59046 Lille Cedex, France
| | - Karim Tarik Adjou
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort F-94700, France.
| |
Collapse
|
10
|
Hatam-Nahavandi K, Ahmadpour E, Carmena D, Spotin A, Bangoura B, Xiao L. Cryptosporidium infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasit Vectors 2019; 12:453. [PMID: 31521186 PMCID: PMC6744657 DOI: 10.1186/s13071-019-3704-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cryptosporidium spp. are causative agents of gastrointestinal diseases in a wide variety of vertebrate hosts. Mortality resulting from the disease is low in livestock, although severe cryptosporidiosis has been associated with fatality in young animals. Methods The goal of this systematic review and meta-analysis was to review the prevalence and molecular data on Cryptosporidium infections in selected terrestrial domestic and wild ungulates of the families Bovidae (bison, buffalo, cattle, goat, impala, mouflon sheep, sheep, yak), Cervidae (red deer, roe deer, white-tailed deer), Camelidae (alpaca, camel), Suidae (boar, pig), Giraffidae (giraffes) and Equidae (horses). Data collection was carried out using PubMed, Scopus, Science Direct and Cochran databases, with 429 papers being included in this systematic analysis. Results The results show that overall 18.9% of ungulates from the investigated species were infected with Cryptosporidium spp. Considering livestock species (cattle, sheep, goats, pigs, horses and buffaloes), analysis revealed higher Cryptosporidium infection prevalence in ungulates of the Cetartiodactyla than in those of the Perissodactyla, with cattle (29%) being the most commonly infected farm animal. Conclusions Overall, the investigated domestic ungulates are considered potential sources of Cryptosporidium contamination in the environment. Control measures should be developed to reduce the occurrence of Cryptosporidium infection in these animals. Furthermore, literature on wild populations of the named ungulate species revealed a widespread presence and potential reservoir function of wildlife.
Collapse
Affiliation(s)
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Carlos III Health Institute, Ctra Majadahonda-Pozuelo Km 2, 28220, Majadahonda, Madrid, Spain
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Berit Bangoura
- Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
11
|
Molecular characterization of zoonotic Cryptosporidium spp. and Giardia duodenalis pathogens in Algerian sheep. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2019; 16:100280. [PMID: 31027593 DOI: 10.1016/j.vprsr.2019.100280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 11/23/2022]
Abstract
Little is known about the presence of Cryptosporidium spp. and Giardia duodenalis in Algerian sheep, nor their potential role as zoonotic reservoirs. This study aimed to investigate the occurrence and distribution of these two protists in lambs. A total of 83 fecal samples were collected from lambs (< 40 days old) from 14 different farms. Samples were screened for Cryptosporidium spp. and Giardia duodenalis presence using immunofluorescent techniques (IF). Nested PCR of the small subunit ribosomal RNA (rRNA) gene, followed by restriction fragment length polymorphism (PCR-RFLP) and sequence analyses were used to identify Cryptosporidium species. C. parvum was further subtyped by sequencing the highly polymorphic 60 kDa glycoprotein (gp60) gene. For G. duodenalis, nested PCR of the glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) genes was performed and then PCR-RFLP was used to identify G. duodenalis assemblages. Cryptosporidium oocysts and Giardia cysts were detected in 36/83 (43%) and 23/83 (28%) of fecal samples, respectively. Of the 21/36 (58%) Cryptosporidium samples that were positive with IF, 16/21 (76%) were identified as C. parvum, and 5/21 (24%) as C. ubiquitum. From 15C. parvum isolates, 2 subtypes were identified within the IIa subtype family, including IIaA21G2R1 (3/15) and IIaA13G2R1 (1/15), while IIdA16G1 (11/15) was the only subtype identified from the IId subtype family. Of the 16/23 (69%) G. duodenalis IF-positive samples, the most frequent assemblage was ruminant-specific assemblage E (10/16), followed by assemblage D (4/16), and A + E mixed assemblages (2/16). This study is the first to identify and genotype both Cryptosporidium spp. and Giardia duodenalis in Algerian lambs, and is also the first to describe G. duodenalis assemblage D in small ruminants. The presence of zoonotic C. parvum subtype families (IIa, IId), C. ubiquitum, as well as G. duodenalis assemblage A + E, indicates that sheep could play an important role as a potential reservoir for protists.
Collapse
|
12
|
Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol 2018; 34:997-1011. [DOI: 10.1016/j.pt.2018.07.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
|
13
|
Mi R, Wang X, Huang Y, Mu G, Zhang Y, Jia H, Zhang X, Yang H, Wang X, Han X, Chen Z. Sheep as a Potential Source of Zoonotic Cryptosporidiosis in China. Appl Environ Microbiol 2018; 84:e00868-18. [PMID: 30006394 PMCID: PMC6121973 DOI: 10.1128/aem.00868-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 01/03/2023] Open
Abstract
In this study, we assessed the prevalence and genetic characteristics of Cryptosporidium in sheep from 10 provinces in China. Fecal samples from 1,035 sheep originating from 16 farms were collected, and 295 (28.5%) were found to be Cryptosporidium positive by nested PCR. Cryptosporidium was detected at all farms, with infection rates between 5.7% and 50.0%. Three Cryptosporidium species were identified, including Cryptosporidium xiaoi (73.2%, 216/295), Cryptosporidium ubiquitum (21.7%, 64/295), and Cryptosporidium parvum (5.1%, 15/295). The distribution of Cryptosporidium species differed by province and by farm. All three species were detected in lambs and adult sheep but the highest infection rate was found in postweaned lambs. All three species were detected in all four seasons, with the highest prevalence found in autumn. Four C. parvum subtypes (IIaA15G2R1, IIaA17G2R1, IIdA18G1, and IIdA19G1) and one C. ubiquitum subtype (XIIa) were identified. For most provinces in this study, we are not aware of a previously published description or molecular characterization of Cryptosporidium infections in sheep. This information will improve our knowledge and understanding of the epidemiology of cryptosporidiosis in China.IMPORTANCECryptosporidium is an important zoonotic parasite that causes diarrhea in humans and animals worldwide. Previous studies suggested geographic differences in the distribution of Cryptosporidium species in sheep. However, molecular characterization studies of Cryptosporidium species in sheep have been carried out in only a few provinces in China, and the limited data available do not reflect the real situation. In this study, five districts, covering most areas where sheep are bred in China, were selected for examination of Cryptosporidium species, and Cryptosporidium infections were detected at all farms assessed, suggesting that Cryptosporidium is widespread in sheep in China. We also found geographic differences in the distribution of Cryptosporidium species but did not detect any differences between sheep age groups or seasons. Subtyping analyses showed that all of the subtypes identified in this study have been reported in humans, suggesting that sheep may be a potential source of zoonotic cryptosporidiosis.
Collapse
Affiliation(s)
- Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaojuan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guodong Mu
- Jilin Center for Animal Disease Control and Prevention, Changchun, China
| | - Yehua Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Jia
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoli Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Heng Yang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xu Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
14
|
Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 2017; 38:535-47. [PMID: 27454991 DOI: 10.1111/pim.12350] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
Cryptosporidium is a major cause of moderate-to-severe diarrhoea in humans worldwide, second only to rotavirus. Due to the wide host range and environmental persistence of this parasite, cryptosporidiosis can be zoonotic and associated with foodborne and waterborne outbreaks. Currently, 31 species are recognized as valid, and of these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections in humans. The immune status of the host, both innate and adaptive immunity, has a major impact on the severity of the disease and its prognosis. Immunocompetent individuals typically experience self-limiting diarrhoea and transient gastroenteritis lasting up to 2 weeks and recover without treatment, suggesting an efficient host antiparasite immune response. Immunocompromised individuals can suffer from intractable diarrhoea, which can be fatal. Effective drug treatments and vaccines are not yet available. As a result of this, the close cooperation and interaction between veterinarians, health physicians, environmental managers and public health operators is essential to properly control this disease. This review focuses on a One Health approach to prophylaxis, including the importance of understanding transmission routes for zoonotic Cryptosporidium species, improved sanitation and better risk management, improved detection, diagnosis and treatment and the prospect of an effective anticryptosporidial vaccine.
Collapse
Affiliation(s)
- U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - A Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Paparini
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
15
|
Kaupke A, Michalski MM, Rzeżutka A. Diversity of Cryptosporidium species occurring in sheep and goat breeds reared in Poland. Parasitol Res 2017; 116:871-879. [PMID: 28058536 PMCID: PMC5313596 DOI: 10.1007/s00436-016-5360-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022]
Abstract
The aim of this study was molecular identification of Cryptosporidium species and assessment of their prevalence in different breeds of sheep and goat reared in Poland. In addition, the relationship between animal age, breed type, and the frequency of Cryptosporidium infections was determined. Fecal samples from 234 lambs and 105 goat kids aged up to 9 weeks, representing 24 breeds and their cross-breeds were collected from 71 small ruminant farms across Poland. The identification of Cryptosporidium species was performed at the 18 SSU ribosomal RNA (rRNA) and COWP loci followed by subtyping of C. parvum and C. hominis strains at GP60 gene locus. The presence of Cryptosporidium DNA at the 18 SSU rRNA locus was detected in 45/234 (19.2%) lamb feces samples and in 39/105 (37.1%) taken from goats. The following Cryptosporidium species: C. xiaoi, C. bovis, C. ubiquitum, C. parvum, and C. hominis were detected in small ruminants. Infections caused by C. xiaoi were predominant without favoring any tested animal species. Subsequent GP60 subtyping revealed the presence of C. parvum IIaA17G1R1 subtype in sheep and IIdA23G1 subtype in goats. IIdA23G1 subtype was detected in a goat host for the first time. There were no significant differences found in frequency of infections between the age groups (<3 and 3-9 weeks) of lambs (P = 0.14, α > 0.05) or goat kids (P = 0.06, α > 0.05). In addition, there was no correlation observed between the frequency in occurrence of particular parasite species and breed type in relation to native sheep breeds (F = 0.11; P = 0.990 > 0.05). In the case of goats, more breed-related differences in parasite occurrence were found. The results of this study improve our knowledge on the breed-related occurrence of Cryptosporidium infections in the population of small ruminants reared in Poland.
Collapse
Affiliation(s)
- Agnieszka Kaupke
- Department of Food and Environmental Virology, National Veterinary Research Institute, al. Partyzantów 57, 24-100, Puławy, Poland
| | - Mirosław M Michalski
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
16
|
Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int J Parasitol 2017; 47:281-290. [PMID: 28192123 DOI: 10.1016/j.ijpara.2016.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022]
Abstract
Host adaptation is known to occur in Cryptosporidium parvum, with IIa and IId subtype families preferentially infecting calves and lambs, respectively. To improve our understanding of the genetic basis of host adaptation in Cryptosporidium parvum, we sequenced the genomes of two IId specimens and one IIa specimen from China and Egypt using the Illumina technique and compared them with the published IIa IOWA genome. Sequence data were obtained for >99.3% of the expected genome. Comparative genomic analysis identified differences in numbers of three subtelomeric gene families between sequenced genomes and the reference genome, including those encoding SKSR secretory proteins, the MEDLE family of secretory proteins, and insulinase-like proteases. These gene gains and losses compared with the reference genome were confirmed by PCR analysis. Altogether, 5,191-5,766 single nucleotide variants were seen between genomes sequenced in this study and the reference genome, with most SNVs occurring in subtelomeric regions of chromosomes 1, 4, and 6. The most highly polymorphic genes between IIa and IId encode mainly invasion-associated and immunodominant mucin proteins, and other families of secretory proteins. Further studies are needed to verify the biological significance of these genomic differences.
Collapse
|
17
|
Jacobson C, Williams A, Yang R, Ryan U, Carmichael I, Campbell AJ, Gardner GE. Greater intensity and frequency of Cryptosporidium and Giardia oocyst shedding beyond the neonatal period is associated with reductions in growth, carcase weight and dressing efficiency in sheep. Vet Parasitol 2016; 228:42-51. [DOI: 10.1016/j.vetpar.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
|
18
|
Molecular investigation of Cryptosporidium in small caged pets in northeast China: host specificity and zoonotic implications. Parasitol Res 2016; 115:2905-11. [PMID: 27107987 DOI: 10.1007/s00436-016-5076-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
This study screened 151 pet-derived fecal specimens randomly collected from four commercial markets in northeast China for the presence of Cryptosporidium by genus-specific nested PCRs of the small subunit rRNA gene. Of these, 14 specimens (9.3 %) from nine species of birds, two types of rodents, and a hedgehog were positive for Cryptosporidium. Sequence analysis on the PCR-positive isolates facilitated identification of three Cryptosporidium species (C. baileyi, C. galli, and C. ubiquitum) and two Cryptosporidium genotypes (ferret genotype and avian genotype V). The study birds were affected predominantly with bird-specific C. baileyi (Atlantic canary, budgerigar, crested myna, rock dove, and silky fowl), C. galli (Chinese hwamei), and Cryptosporidium avian genotype V (Fischer's lovebird and rosy-faced lovebird). Cryptosporidium ferret genotype previously considered rodent-adapted was identified in three specimens from budgerigar, chipmunk, and red squirrel. Two specimens collected from common hill myna and hedgehog were positive for C. ubiquitum. The species of birds that can be colonized by Cryptosporidium were extended. Moreover, the data expanded the host range of Cryptosporidium ferret genotype and C. ubiquitum, especially the birds. The carriage of zoonotic C. ubiquitum in small caged pets is of public health importance.
Collapse
|
19
|
Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview. Int J Parasitol 2016; 46:465-71. [PMID: 27021167 DOI: 10.1016/j.ijpara.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
Abstract
Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper.
Collapse
|
20
|
Exposure to viral and bacterial pathogens among Soay sheep (Ovis aries) of the St Kilda archipelago. Epidemiol Infect 2016; 144:1879-88. [PMID: 26829883 PMCID: PMC4890341 DOI: 10.1017/s0950268816000017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We assessed evidence of exposure to viruses and bacteria in an unmanaged and long-isolated population of Soay sheep (Ovis aries) inhabiting Hirta, in the St Kilda archipelago, 65 km west of Benbecula in the Outer Hebrides of Scotland. The sheep harbour many metazoan and protozoan parasites but their exposure to viral and bacterial pathogens is unknown. We tested for herpes viral DNA in leucocytes and found that 21 of 42 tested sheep were infected with ovine herpesvirus 2 (OHV-2). We also tested 750 plasma samples collected between 1997 and 2010 for evidence of exposure to seven other viral and bacterial agents common in domestic Scottish sheep. We found evidence of exposure to Leptospira spp., with overall seroprevalence of 6·5%. However, serological evidence indicated that the population had not been exposed to border disease, parainfluenza, maedi-visna, or orf viruses, nor to Chlamydia abortus. Some sheep tested positive for antibodies against Mycobacterium avium subsp. paratuberculosis (MAP) but, in the absence of retrospective faecal samples, the presence of this infection could not be confirmed. The roles of importation, the pathogen-host interaction, nematode co-infection and local transmission warrant future investigation, to elucidate the transmission ecology and fitness effects of the few viral and bacterial pathogens on Hirta.
Collapse
|
21
|
Romero-Salas D, Alvarado-Esquivel C, Cruz-Romero A, Aguilar-Domínguez M, Ibarra-Priego N, Merino-Charrez JO, Pérez de León AA, Hernández-Tinoco J. Prevalence of Cryptosporidium in small ruminants from Veracruz, Mexico. BMC Vet Res 2016; 12:14. [PMID: 26785744 PMCID: PMC4717630 DOI: 10.1186/s12917-016-0638-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cryptosporidiosis is a zoonotic disease caused by the protozoan parasite Cryptosporidium spp. that can affect domestic animal and human populations. In newborn ruminants, cryptosporidiosis is characterized by outbreaks of diarrhea, which can result in high morbidity and economic impact. The aim of the present study was to determine the prevalence of Cryptosporidium spp. in small ruminants from the Perote municipality in Veracruz State, Mexico. One hundred and sixty small ruminants (80 sheep and 80 goats) from eight farms located in four towns of the Perote municipality were examined following a cross-sectional study design. Stool samples were analyzed by a modification of the Faust centrifugation method, and the presence of Cryptosporidium spp. oocysts was examined using a modification of the Ziehl-Neelsen staining procedure. Bivariate and multivariate analyses were used to assess the association of Cryptosporidium infection and the general characteristics of the animals studied. RESULTS Overall, 112 (70%, 95% CI: 62.3-76.9) of the 160 small ruminants sampled were infected with Cryptosporidium spp. The prevalence of Cryptosporidium spp. infection in goats was 72.5% (95% CI: 61.4-81.9) and in sheep 67.5% (95% CI: 56.1-77.6). Small ruminants aged 1 month old had the highest (88.2%; 95% CI: 63.6-98.5) prevalence of infection. Prevalence varied from 60% to 85% among herds. Animal species, age, sex, breed, farm, town or cohabitation with cattle did not influence the prevalence of Cryptosporidium infection. CONCLUSIONS A high prevalence of infection with Cryptosporidium spp. was observed in small ruminants from the Perote municipality in Veracruz, Mexico. Infection was widely distributed among sheep and goats regardless of their age, breed or farm location. Further research is required to identify risk factors for, and to assess the veterinary public health significance of Cryptosporidium infection among sheep and goats in the Mexican state of Veracruz.
Collapse
Affiliation(s)
- Dora Romero-Salas
- Laboratorio de Parasitología. UD PZTM. Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico.
| | - Cosme Alvarado-Esquivel
- Laboratorio de Investigación Biomédica. Facultad de Medicina y Nutrición, Juárez University of Durango State, Avenida Universidad S/N, 34000, Durango, Mexico.
| | - Anabel Cruz-Romero
- Laboratorio de Parasitología. UD PZTM. Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico.
| | - Mariel Aguilar-Domínguez
- Laboratorio de Parasitología. UD PZTM. Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico.
| | - Nelly Ibarra-Priego
- Laboratorio de Parasitología. UD PZTM. Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico.
| | - José O Merino-Charrez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd. Victoria, Tamaulipas, Mexico.
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, and Veterinary Pest Genomics Center, Kerrville, TX, USA.
| | - Jesús Hernández-Tinoco
- Institute for Scientific Research "Dr. Roberto Rivera Damm", Juárez University of Durango State, Durango, Mexico.
| |
Collapse
|
22
|
Cryptosporidiosis outbreak in visitors of a UK industry-compliant petting farm caused by a rare Cryptosporidium parvum subtype: a case-control study. Epidemiol Infect 2015; 144:1000-9. [DOI: 10.1017/s0950268815002319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYA case-control study was conducted to investigate an outbreak of 46 cases of cryptosporidiosis in visitors to a petting farm in England. Details of exposures on the farm were collected for 38 cases and 39 controls, recruited through snowball sampling. Multivariable logistic regression identified that cases were 5·5 times more likely than controls to have eaten without washing their hands [95% confidence interval (CI) 1·51–19·9, P = 0·01] and 10 times less likely to report being informed of risk of infection on arrival (odds ratio 0·10, 95% CI 0·01–0·71, P = 0·02). An uncommon Cryptosporidium parvum gp60 subtype (IIaA19G1R1) was identified in a lamb faecal sample and all subtyped cases (n = 22). We conclude that lack of verbal advice and non-compliance with hand washing are significantly associated with a risk of cryptosporidiosis on open farms. These findings highlight the public health importance of effectively communicating risk to petting farm visitors in order to prevent future outbreaks of zoonotic infections.
Collapse
|
23
|
Díaz P, Quílez J, Prieto A, Navarro E, Pérez-Creo A, Fernández G, Panadero R, López C, Díez-Baños P, Morrondo P. Cryptosporidium species and subtype analysis in diarrhoeic pre-weaned lambs and goat kids from north-western Spain. Parasitol Res 2015. [PMID: 26212102 DOI: 10.1007/s00436-015-4639-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Faecal specimens from diarrhoeic pre-weaned lambs (n = 171) and goat kids (n = 118) were collected in 37 sheep and 23 goat flocks, respectively, from NW Spain and microscopically examined for the presence of Cryptosporidium oocysts. Positive specimens were selected for molecular characterization. Presence of Cryptosporidium oocysts were significantly higher in specimens from goat kids (62.7%) than from lambs (31.6%). PCR products of the SSU rRNA locus were obtained for 108 isolates, and three Cryptosporidium species were identified. Cryptosporidium parvum was the most common species identified from both lambs (74.4%) and goat kids (93.8%). The remaining PCR products from lambs (25.6%) and goat kids (7.7%) were identified as Cryptosporidium Ubiquitum and Cryptosporidium xiaoi, respectively. Five C. parvum subtypes were identified; IIaA13G1R1, IIaA14G2R1, IIaA15G2R1 and IIaA16G3R1 were found in both host species, and IIdA17G1 was only detected in goat kids. Subtype IIaA15G2R1 was the most common and widely distributed. The present study provides the first description of subtypes IIaA13G1R1 in both small ruminant species, IIaA14G2R1 in sheep and IIaA16G3R1 in goats. Our results also reveal that diarrhoeic pre-weaned lambs and goat kids must be considered important reservoirs of Cryptosporidium species with zoonotic potential, such as C. parvum and C. ubiquitum.
Collapse
Affiliation(s)
- Pablo Díaz
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013, Zaragoza, Spain
| | - Alberto Prieto
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Esther Navarro
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Pérez-Creo
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Gonzalo Fernández
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Rosario Panadero
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ceferino López
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Díez-Baños
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Patrocinio Morrondo
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
24
|
Cacciò SM, de Waele V, Widmer G. Geographical segregation of Cryptosporidium parvum multilocus genotypes in Europe. INFECTION GENETICS AND EVOLUTION 2015; 31:245-9. [PMID: 25687913 DOI: 10.1016/j.meegid.2015.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
Cryptosporidium parvum is a common enteric protozoan pathogen of humans and livestock. Multilocus genotyping based on simple sequence repeat polymorphisms has been used extensively to identify transmission cycles and to investigate the structure of C. parvum populations and of the related pathogen Cryptosporidiumhominis. Using such methods, the zoonotic transmission of C. parvum has been shown to be epidemiologically important. Because different genetic markers have been used in different surveys, the comparison of Cryptosporidium genotypes across different laboratories is often not feasible. Therefore, few comparisons of Cryptosporidium populations across wide geographical areas have been published and our understanding of the epidemiology of cryptosporidiosis is fragmented. Here we report on the genotypic analysis of a large collection of 692 C. parvum isolates originating primarily from cattle and other ruminants from Italy, Ireland and Scotland. Because the same genotypic markers were used in these surveys, it was possible to merge the data. We found significant geographical segregation and a correlation between genetic and geographic distance, consistent with a model of isolation by distance. The presence of strong LD and positive IA(S) values in the combined MLG dataset suggest departure from panmixia, with different population structures of the parasite prevailing in each country.
Collapse
Affiliation(s)
- Simone M Cacciò
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immunomediated Diseases, Viale Regina Elena 299, Rome 00161, Italy.
| | - Valerie de Waele
- Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerpen, Belgium
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine at Tufts University, Department of Infectious Disease and Global Health, North Grafton, MA 01536, United States
| |
Collapse
|
25
|
Wang T, Chen Z, Yu H, Xie Y, Gu X, Lai W, Peng X, Yang G. Prevalence of Cryptosporidium infection in captive lesser panda (Ailurus fulgens) in China. Parasitol Res 2015; 114:773-6. [PMID: 25563613 DOI: 10.1007/s00436-014-4290-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Cryptosporidium is a global epidemic parasite and one of the most important intestinal pathogens causing diarrhea in animals and humans. Despite extensive research on this parasite group, little is known about rates of Cryptosporidium infection in lesser pandas. In this study, we use molecular diagnostic tools to detect Cryptosporidium infections and identify Cryptosporidium species in the lesser panda. Using a PCR approach, we sequenced the 18S rRNA gene in fecal samples collected from 110 captive lesser pandas held throughout China (approximately one third of the captive population). We determined Cryptosporidium species via a BLAST comparison of our sequences against those of published Cryptosporidium sequences available in GenBank and subsequent phylogenetic analysis. We report that captive lesser pandas were infected with a single Cryptosporidium species, Cryptosporidium andersoni, at a prevalence of 6.36 % (7/110). The present investigation revealed the existence of C. andersoni infection in captive lesser panda and suggested that proper control measures should be taken carefully to protect the welfare of zoo workers and visitors.
Collapse
Affiliation(s)
- Tao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.46, Xingkang Road, Yucheng District, Ya'an, 625014, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cryptosporidiumspecies in humans and animals: current understanding and research needs. Parasitology 2014; 141:1667-85. [DOI: 10.1017/s0031182014001085] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYCryptosporidiumis increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20Cryptosporidiumspecies and genotypes that have been reported in humans,Cryptosporidium hominisandCryptosporidium parvumare responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with severalCryptosporidiumspecies or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission ofCryptosporidiumspecies, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for manyCryptosporidiumspecies of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity ofCryptosporidiumspecies and impact of climate change on the transmission ofCryptosporidium.
Collapse
|
27
|
Koinari M, Lymbery AJ, Ryan UM. Cryptosporidium species in sheep and goats from Papua New Guinea. Exp Parasitol 2014; 141:134-7. [PMID: 24703974 DOI: 10.1016/j.exppara.2014.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/28/2022]
Abstract
Species of Cryptosporidium are extensively recognised as pathogens of domesticated livestock and poultry, companion animals, wildlife, and are a threat to public health. Little is known of the prevalence of Cryptosporidium spp. in humans, domesticated animals or wildlife in Papua New Guinea (PNG). The aim of the present study was to screen sheep and goats for Cryptosporidium using molecular tools. A total of 504 faecal samples were collected from sheep (n=276) and goats (n=228) in village, government and institutional farms in PNG. Samples were screened by nested PCR and genotyped at the 18S rRNA and at the 60kDa glycoprotein (gp60) loci. The overall prevalences were 2.2% for sheep (6/278) and 4.4% (10/228) for goats. The species/genotypes identified were Cryptosporidium hominis (subtype IdA15G1) in goats (n=6), Cryptosporidium parvum (subtypes IIaA15G2R1and IIaA19G4R1) in sheep (n=4) and in goats (n=2), Cryptosporidium andersoni (n=1) and Cryptosporidium scrofarum (n=1) in sheep, Cryptosporidium xiao (n=1) and Cryptosporidium rat genotype II (n=1) in goats. This is the first report of Cryptosporidium spp. identified in sheep and goats in PNG. Identification of Cryptosporidium in livestock warrants better care of farm animals to avoid contamination and illness in vulnerable population. The detection of zoonotic Cryptosporidium in livestock suggests these animals may serve as reservoirs for human infection.
Collapse
Affiliation(s)
- M Koinari
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - A J Lymbery
- Fish Health Unit, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - U M Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
28
|
Widmer G, Ras R, Chalmers RM, Elwin K, Desoky E, Badawy A. Population structure of natural and propagated isolates of Cryptosporidium parvum, C. hominis and C. meleagridis. Environ Microbiol 2014; 17:984-93. [PMID: 24593863 DOI: 10.1111/1462-2920.12447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
Abstract
The three protozoan species Cryptosporidium parvum, C. meleagridis and C. hominis (phylum Apicomplexa) are enteric pathogens of humans. The former two species are zoonotic and the latter is thought to infect only humans. To better characterize the structure and transmission of natural and laboratory-propagated isolates, we analyzed a collection of archived human and animal isolates of these three species by deep-sequencing polymerase chain reaction products amplified from a polymorphic sequence on chromosome 1. Thousands of screened 200-nucleotide sequences were analyzed to compare the diversity among samples, to assess the impact of laboratory propagation on population complexity and to identify taxonomically mixed isolates. Contrary to our expectation, repeated propagation in animals did not reduce intra-isolate diversity nor was diversity associated with host species. Significantly, in most samples, sequences characteristic of a different species were identified. The presence of C. hominis alleles in C. parvum and C. meleagridis isolates confirms earlier reports of mixed isolates and raises the possibility that the host range of C. hominis is broader than typically assumed. In a genetically divergent isolate of C. parvum, a majority of sequences was found to be recombinant, suggesting that this genotype originated from a C. parvum × C. hominis recombination event.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Longitudinal prevalence, oocyst shedding and molecular characterisation of Cryptosporidium species in sheep across four states in Australia. Vet Parasitol 2014; 200:50-8. [DOI: 10.1016/j.vetpar.2013.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022]
|
30
|
Cryptosporidium parvum GP60 subtypes in dairy cattle from Buenos Aires, Argentina. Res Vet Sci 2013; 96:311-4. [PMID: 24480390 DOI: 10.1016/j.rvsc.2013.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 11/22/2022]
Abstract
Cryptosporidium parvum from 73 dairy calves less than two months old from Buenos Aires province (Argentina) were molecularly characterized using sequence analysis of the GP60 gene. Seventy-five sequences were obtained, and seven different subtypes were identified, all belonging to the IIa subtype family. The most common subtypes were IIaA20G1R1 (27/75), IIaA22G1R1 (16/75), and IIaA18G1R1 (13/75). Subtypes IIaA21G1R1, IIaA23G1R1, IIaA16G1R1 and IIaA19G1R1 were found sporadically. Two samples contained mixed infections with IIaA21G1R1 and IIaA22G1R1. A significant association was found between subtypes and geographic location, whereas there was no relation between subtypes and presence of diarrhea. Three of the subtypes found in this study (IIaA16G1R1, IIaA18G1R1, and IIaA19G1R1) were previously identified in humans. These findings suggest that cattle could play an important role in the transmission of cryptosporidiosis to humans in Buenos Aires province.
Collapse
|
31
|
|
32
|
Ye J, Xiao L, Wang Y, Wang L, Amer S, Roellig DM, Guo Y, Feng Y. Periparturient transmission of Cryptosporidium xiaoi from ewes to lambs. Vet Parasitol 2013; 197:627-33. [DOI: 10.1016/j.vetpar.2013.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|