1
|
Cheng Q, Wang Y, Han C, Liu W, Fan G, Zhang H, Lei Z, Hu C, Zhao X. Selenium: The Toxicant for Pathogen and Pest but the Guardian of Soil and Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11495-11514. [PMID: 40317105 DOI: 10.1021/acs.jafc.5c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Selenium (Se) is an essential micronutrient for higher organisms and plays a beneficial role in plant growth and development. In recent years, there has been growing interest in the using of Se to enhance plant resilience, particularly in mitigating the effects of diseases and pests in agricultural systems. This review offers a comprehensive analysis of the sources and chemical forms of Se in soil, investigates the mechanisms of plant uptake and metabolism of different Se forms, and evaluates the physical and chemical inhibition of pathogens by various Se forms, as well as the role of Se in enhancing plant systemic resistance for crop protection. Additionally, we summarize current research on the role of Se in pest and disease control and explore potential future research directions, with a focus on integrating Se into sustainable agricultural practices. The insights presented in this review seek to establish a solid scientific foundation for Se-based approaches to pest control and emphasize its potential application in sustainable agriculture.
Collapse
Affiliation(s)
- Qin Cheng
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Chuang Han
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Guocheng Fan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| | - Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes/College of Resource and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Penaud V, Alahmad A, De Vrieze M, Bouteiller M, Eude M, Bernardon-Mery A, Trinsoutrot-Gattin I, Laval K, Gauthier A. In vitro biocontrol potential of plant extract-based formulation against infection structures of Phytophthora infestans along with lower non-target effects. Front Microbiol 2025; 16:1569281. [PMID: 40297289 PMCID: PMC12034721 DOI: 10.3389/fmicb.2025.1569281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Late blight, caused by Phytophthora infestans, is among the most destructive diseases affecting tomatoes and potatoes. The use of synthetic fungicides is becoming increasingly restricted due to the banning of several active ingredients for environmental and health reasons. Moreover, the rise of fungicide-resistant strains is compromising their effectiveness. Solutions for sustainable crop protection are thus urgently needed. Biocontrol products based on plant extracts appear to be a promising solution. This study aimed to evaluate in vitro inhibitory potential of a plant extract-based biocontrol product on the different stages of P. infestans lifecycle, including mycelial development and, formation and germination of infection structures (sporangia and zoospores). Non-target effects were also assessed using four fungi, three of which were isolated from the phyllosphere, and two ubiquitous bacteria. For this purpose, the formulated product (FV) and the plant extract at different concentrations (PE and CPE) were tested through bioassays. The results show that the mycelial growth of Phytophthora infestans was completely inhibited by the FV and less affected by the CPE. Infection structures were more sensitive to PE than mycelia, although FV was consistently the most effective inhibitor. Interestingly, at non-inhibitory doses, zoospore germination exhibited disturbances, such as an increase in abnormal germination phenotypes. Overall, PE showed significant inhibitory potential against the oomycete. FV exhibited a strong impact on mycelium, sporangia, and zoospores at very low concentrations (0.01-0.05%), suggesting an optimized inhibitory effect of PE. Non-target effects of FV on fungal and bacterial growth were observed only at concentrations substantially higher than those required to inhibit P. infestans in vitro. This study highlights the strong efficacy of the plant extract-based biocontrol product against the target oomycete, with minimal impact on non-target microorganisms. These findings support its potential as a promising anti-Phytophthora agent within integrated late blight management strategies.
Collapse
Affiliation(s)
- Valentin Penaud
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
- Biom InnoV, Saint-Malo, France
- Gaïago SAS, Saint-Malo, France
| | | | - Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Plant Production Systems, Agroscope, Nyon, Switzerland
| | | | - Miléna Eude
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| | | | | | - Karine Laval
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| | - Adrien Gauthier
- UniLaSalle, AGHYLE, SFR NORVEGE FED, Mont-Saint-Aignan, France
| |
Collapse
|
3
|
Chang N, Liu R, Lu C, Lai Y, Xu Q, Yang Y, Li Y, Ling J, Xie B, Zhao W, Mao Z, Zhao J. Role of Methyl thiobutyrate to Botrytis cinerea on cucumber. FRONTIERS IN PLANT SCIENCE 2025; 16:1551274. [PMID: 40265121 PMCID: PMC12013339 DOI: 10.3389/fpls.2025.1551274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Introduction Botrytis cinerea is a major agricultural pathogen that causes significant economic Q7 losses worldwide, affecting various crops, including cucumbers. Developing environmentally sustainable control strategies for this pathogen is crucial. Methyl thiobutyrate (MTB), a small organic molecule identified in the volatile organic compounds (VOCs) of biocontrol bacteria, has demonstrated potential in inhibiting B. cinerea both in vitro and in vivo. Methods In this study, the efficacy of MTB against cucumber gray mold disease was examined by assessing the in vitro and in vivo activities of MTB against B. cinerea and analyzing the transcriptomic data from MTB-treated cucumber leaves infected with B. cinerea. Results and discussion This study shows that a 2 mg/mL solution of MTB inhibits B. cinerea growth by 98.6% in vitro. In vivo, MTB effectively reduces B. cinerea infection in cucumbers, alleviates necrotic damage in leaf tissues, and significantly reduces disease severity. Transcriptomic analysis reveals that MTB activates the plant immune responses by modulating key MAPK cascade signaling genes and upregulating basal defense genes, including chitinase, pectinase, and lignin biosynthesis genes. Furthermore, MTB influences the signaling pathways of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET), resulting in the upregulation of genes such as peroxidase (POD), phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX), and ethyleneresponsive transcription factors (ERFs). These results demonstrate the potential of MTB as an effective biocontrol agent against B. cinerea and provide valuable insights into its underlying mechanisms of action.
Collapse
Affiliation(s)
- Nv Chang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Rui Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cuihua Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqing Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenchao Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Mesguida O, Compant S, Wallner A, Antonielli L, Lobinski R, Godin S, Le Bechec M, Terrasse M, Taibi A, Dreux-Zigha A, Berthon JY, Guyoneaud R, Rey P, Attard E. Genomic and metabolomic insights into the modes-of-action of bacterial strains to control the grapevine wood pathogen, Fomitiporia mediterranea. Microbiol Res 2025; 293:128085. [PMID: 39908943 DOI: 10.1016/j.micres.2025.128085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Grapevine trunk diseases (GTDs), particularly Esca, represent a major challenge for viticulture worldwide, leading to substantial economic losses. With no effective control treatments available, developing new methods such as biocontrol is crucial for managing GTDs. Our aim was to select biocontrol bacteria effective against the white-rot fungal pathogen Fomitiporia mediterranea (Fmed) and to investigate their mechanisms of action. A stepwise screening of 58 bacterial strains was conducted in vitro to assess their ability to inhibit Fmed growth through volatile and diffusible metabolites production. The screening was also done on wood sawdust from seven different grapevine cultivars. Out of 58 tested strains, 49 inhibited Fmed growth by over 50 % through their volatile organic compounds, only eight achieving this through their agar-diffusible metabolites. Pseudomonas lactis SV9, Pseudomonas paracarnis S45, and Paenibacillus polymyxa SV13 exhibited a strong efficacy in inhibiting Fmed on wood sawdust in a cultivar-dependent manner. We selected these strains for whole genome analysis and metabolomic profiling via LC-MS/MS for diffusible compounds and SPME GC-MS for volatile compounds. P. polymyxa SV13 inhibited Fmed primarily through diffusible metabolites, producing mainly fusaricidin-type compounds. Conversely, Pseudomonas strains acted mainly via their volatile metabolites, producing mainly the antifungal compound dimethyl disulfide. Genome analysis of the three bacterial strains revealed gene clusters responsible for regulating both direct and indirect mechanisms in biocontrol agents (BCAs). Our findings highlight the importance of comprehensive studies that combine in vitro experiments mimicking field conditions, with detailed investigations into modes of action to improve BCAs efficacy.
Collapse
Affiliation(s)
- Ouiza Mesguida
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France; GreenCell: Biopôle Clermont-Limagne, Saint Beauzire 63360, France.
| | - Stéphane Compant
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln 3430, Austria
| | - Adrian Wallner
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln 3430, Austria
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln 3430, Austria
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France; Chair of Analytical Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland
| | - Simon Godin
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | | | - Maxence Terrasse
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | - Ahmed Taibi
- GreenCell: Biopôle Clermont-Limagne, Saint Beauzire 63360, France
| | | | | | - Rémy Guyoneaud
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | - Patrice Rey
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | - Eléonore Attard
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| |
Collapse
|
5
|
Castillo-Novales D, Vega-Celedón P, Larach A, Seeger M, Besoain X. Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine. PLANTS (BASEL, SWITZERLAND) 2025; 14:1043. [PMID: 40219111 PMCID: PMC11990564 DOI: 10.3390/plants14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17-90%); younger grapevines (1-5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture.
Collapse
Affiliation(s)
- Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
6
|
Dupont CA, Bourigault Y, Biziere-Maco H, Boukerb AM, Latour X, Barbey C, Verdon J, Merieau A. The GacS/GacA two-component system strongly regulates antimicrobial competition mechanisms of Pseudomonas fluorescens MFE01 strain. J Bacteriol 2025; 207:e0038824. [PMID: 39846737 PMCID: PMC11841057 DOI: 10.1128/jb.00388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
Pseudomonas fluorescens MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of trpE gene by the transposon was insufficient to explain these phenotypes. To determine the actual impact of this insertion, a comparative transcriptomic analysis was performed on the two-component system GacS/GacA, known to influence numerous phenotypes in Pseudomonas. The results demonstrated that the gacS gene is less expressed in 3H5 than in MFE01. Phenotypic analysis of a gacS deletion mutant, ΔgacS, confirmed many similarities between ΔgacS and 3H5. Indeed, ΔgacS exhibited an inactive T6SS and an altered VOC emission profile. In-depth analysis of volatilomes and phenotypes correlated with the decrease in gacS transcription, highlighting that the emission of 1-undecene is under the strict control of GacS/GacA. This study confirms that 1-undecene is not the sole volatile molecule responsible for MFE01's inhibition of Legionella. Moreover, MFE01 has antimicrobial activity against the phytopathogenic oomycetes Phytophthora infestans via hydrogen cyanide (HCN) emission, which is also controlled by GacS. In MFE01, GacS/GacA is also a partial positive regulator of other VOC emission, whose reduced emission in 3H5 coincides with the decrease in gacS transcription. IMPORTANCE Our model strain Pseudomonas fluorescens MFE01 uses an active type VI secretion system (T6SS) and volatile compounds (VCs) to outcompete other microorganisms in the natural environment. By investigating the cellular mechanism regulating the production of these weapons, we identified the two-component system GacS/GacA. Indeed, GacS cellular membrane sensor plays a crucial role in regulating T6SS activity and VC emission. Among the latter, 1-undecene and hydrogen cyanide are strong aerial inhibitors of the Legionella human pathogen and the Phytophtora infestans major plant pest, respectively. The aim is to improve the understanding of the regulation of these volatile molecule emission and the critical role of a global regulator in both plant and human health.
Collapse
Affiliation(s)
- Charly A. Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Héloïse Biziere-Maco
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Amine M. Boukerb
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
- Biocontrol and Biostimulation for Agroecology Association (ABBA), Paris, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| | - Julien Verdon
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, Nouvelle-Aquitaine, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, Québec, Canada
- Normandie University, Rouen, France
| |
Collapse
|
7
|
Schweitzer M, Friedrich AM, Dennig A, Berg G, Müller Bogotá CA. Exploring 1-alkene biosynthesis in bacterial antagonists and Jeotgalicoccus sp. ATCC 8456. FEMS Microbiol Lett 2025; 372:fnaf004. [PMID: 39805715 PMCID: PMC11776017 DOI: 10.1093/femsle/fnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025] Open
Abstract
Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp. ATCC 8456 produces 1-alkenes via the fatty acid decarboxylase OleTJE. UndA and UndB are recently identified non-heme iron oxidases converting medium-chain fatty acids into terminal alkenes. Our knowledge about the diversity and natural function of OleTJE, UndA, and UndB homologs is scarce. We applied a combined screening strategy-solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME GC-MS) and polymerase chain reaction (PCR)-based amplification-to survey an environmental strain collection for microbial 1-alkene producers and their corresponding enzymes. Our results reinforce the high level of conservation of UndA and UndB genes across the genus Pseudomonas. In vivo production of defined 1-alkenes (C9-C13; C15; C19) was directed by targeted feeding of fatty acids. Lauric acid feeding enabled 1-undecene production to a concentration of 3.05 mg l-1 in Jeotgalicoccus sp. ATCC 8456 and enhanced its production by 105% in Pseudomonas putida 1T1 (1.10 mg l-1). Besides, whole genome sequencing of Jeotgalicoccus sp. ATCC 8456 enabled reconstruction of the 1-alkene biosynthetic pathway. These results advance our understanding of microbial 1-alkene synthesis and the underlying genetic basis.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Andrea Marianne Friedrich
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
- Leibniz-Institute for Agricultural Engineering Potsdam, Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | | |
Collapse
|
8
|
Lv Y, Liu J, Zhang Y, Zhou Y, Huang J, Wang W, Ye X. New Family of Benzimidazole-Based Chitosan Derivatives against Penicillium expansum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21843-21853. [PMID: 39308015 DOI: 10.1021/acs.jafc.4c06436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Penicillium expansum is the major fungus that causes blue mold and produces patulin, threatening human health. Due to health and environmental pollution concerns, chitosan (CS) has attracted more and more attention as a safer alternative to synthetic fungicides for the control of blue mold. In the present study, four different benzimidazole groups were introduced onto CS by the acylation reaction to obtain benzimidazole-based chitosan derivatives (R1b-R4b). After being well-characterized with Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis spectra), and nuclear magnetic resonance (NMR), their antifungal activities against P. expansum were screened. Results showed that the inhibitory effects of chitosan derivatives against the pathogen were significantly correlated with chitosan derivatives' concentration and their structures. R4b was shown as optimum with good solubility and antifungal activity with a minimum inhibitory concentration (MIC) value of 0.5 mg/mL and a minimum fungicidal concentration (MFC) value of 2.0 mg/mL. The remarkable antifungal efficiency of R4b against P. expansum was further demonstrated in terms of spore germination, mycelial growth, patulin production, and the preliminary antifungal mechanism. R4b exhibited significant inhibition of patulin production, while its antifungal mechanism was revealed by destroying cell membrane integrity and inducing membrane depolarization. Furthermore, R4b treatment could significantly reduce the incidence of blue mold rot in apple fruit, and the MTT assay showed the nontoxicity of R4b against Raw 264.7, HBZY-1, and Caco-2 cells. Altogether, these results indicate that it is promising to be used as a fruit preservative in the future.
Collapse
Affiliation(s)
- Yan Lv
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jing Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yujun Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yiyu Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenjie Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Xiancheng Ye
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| |
Collapse
|
9
|
Duflos R, Vailleau F, Roux F. Toward Ecologically Relevant Genetics of Interactions Between Host Plants and Plant Growth-Promoting Bacteria. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300210. [PMID: 39552649 PMCID: PMC11561803 DOI: 10.1002/ggn2.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Indexed: 11/19/2024]
Abstract
The social movement to reduce reliance on pesticides and synthesized fertilizers and the growing global demand for sustainable food supplies require the development of eco-friendly and sustainable agricultural practices. In line, plant growth-promoting bacteria (PGPB) can participate in creating innovative agroecological systems. While the effectiveness of PGPB is highly influenced by abiotic conditions and microbe-microbe interactions, beneficial plant-PGPB interactions can also highly depend on both host and PGPB genotype. Here, the state of the art on the extent of natural genetic variation of plant-PGPB interactions and the underlying genetic architecture, in particular in Arabidopsis thaliana is reviewed. Extensive natural plant genetic variation in response to PGPB is associated with a polygenic architecture and genetic pathways rarely mentioned as being involved in the response to PGPB. To date, natural genetic variation within PGPB is little explored, which may in turn allow the identification of new genetic pathways underlying benefits to plants. Accordingly, several avenues to better understand the genomic and molecular landscape of plant-PGPB interactions are introduced. Finally, the need for establishing thorough functional studies of candidate genes underlying Quantitative Trait Loci and estimating the extent of genotype-by-genotype-by-environment interactions within the context of realistic (agro-)ecological conditions is advocated.
Collapse
Affiliation(s)
- Rémi Duflos
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| | | | - Fabrice Roux
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| |
Collapse
|
10
|
Pavić D, Geček S, Miljanović A, Grbin D, Bielen A. Characterization of Bacterial Communities on Trout Skin and Eggs in Relation to Saprolegnia parasitica Infection Status. Microorganisms 2024; 12:1733. [PMID: 39203577 PMCID: PMC11357440 DOI: 10.3390/microorganisms12081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
We have investigated the changes in the microbial communities on the surface of trout eggs and the skin of adult trout in relation to the presence of Saprolegnia parasitica. This pathogen causes saprolegniosis, a disease responsible for significant losses in salmonid farms and hatcheries. It is known from other disease systems that the host-associated microbiome plays a crucial role in the defence against pathogens, but if the pathogen predominates, this can lead to dysbiosis. However, analyses of the effects of S. parasitica on the diversity, composition, and function of microbial communities on fish skin and eggs are scarce. Thus, we have collected skin swabs from injured and healthy trout (N = 12), which differed in S. parasitica load, from three different fish farms in Croatia (Kostanjevac, Radovan, and Solin), while trout egg samples (N = 12) were infected with S. parasitica in the laboratory. Illumina sequencing of the V4 region of the 16S rRNA marker gene showed that infection with S. parasitica reduced the microbial diversity on the surface of the eggs, as evidenced by decreased Pielou's evenness and Shannon's indices. We further determined whether the bacterial genera with a relative abundance of >5.0% in the egg/skin samples were present at significantly different abundances in relation to the presence of S. parasitica. The results have shown that some genera, such as Pseudomonas and Flavobacterium, decreased significantly in the presence of the pathogen on the egg surface. On the other hand, some bacterial taxa, such as Acinetobacter and Janthinobacterium, as well as Aeromonas, were more abundant on the diseased eggs and the injured trout skin, respectively. Finally, beta diversity analyses (weighted UniFrac, unweighted UniFrac, Bray-Curtis) have shown that the sampling location (i.e., fish farm), along with S. parasitica infection status, also has a significant influence on the microbial communities' composition on the trout skin and eggs, demonstrating the strong influence of the environment on the shaping of the host surface microbiome. Overall, we have shown that the presence of S. parasitica was associated with changes in the diversity and structure of the trout skin/egg microbiome. The results obtained could support the development of new strategies for the management of saprolegniosis in aquaculture.
Collapse
Affiliation(s)
- Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Dorotea Grbin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| |
Collapse
|
11
|
Seo H, Kim JH, Lee SM, Lee SW. The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health. THE PLANT PATHOLOGY JOURNAL 2024; 40:251-260. [PMID: 38835296 PMCID: PMC11162857 DOI: 10.5423/ppj.rw.01.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024]
Abstract
Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.
Collapse
Affiliation(s)
- Hyojun Seo
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ju Hui Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
12
|
Zhang P, Jiang Y, Schwab F, Monikh FA, Grillo R, White JC, Guo Z, Lynch I. Strategies for Enhancing Plant Immunity and Resilience Using Nanomaterials for Sustainable Agriculture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9051-9060. [PMID: 38742946 PMCID: PMC11137868 DOI: 10.1021/acs.est.4c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Research on plant-nanomaterial interactions has greatly advanced over the past decade. One particularly fascinating discovery encompasses the immunomodulatory effects in plants. Due to the low doses needed and the comparatively low toxicity of many nanomaterials, nanoenabled immunomodulation is environmentally and economically promising for agriculture. It may reduce environmental costs associated with excessive use of chemical pesticides and fertilizers, which can lead to soil and water pollution. Furthermore, nanoenabled strategies can enhance plant resilience against various biotic and abiotic stresses, contributing to the sustainability of agricultural ecosystems and the reduction of crop losses due to environmental factors. While nanoparticle immunomodulatory effects are relatively well-known in animals, they are still to be understood in plants. Here, we provide our perspective on the general components of the plant's immune system, including the signaling pathways, networks, and molecules of relevance for plant nanomodulation. We discuss the recent scientific progress in nanoenabled immunomodulation and nanopriming and lay out key avenues to use plant immunomodulation for agriculture. Reactive oxygen species (ROS), the mitogen-activated protein kinase (MAPK) cascade, and the calcium-dependent protein kinase (CDPK or CPK) pathway are of particular interest due to their interconnected function and significance in the response to biotic and abiotic stress. Additionally, we underscore that understanding the plant hormone salicylic acid is vital for nanoenabled applications to induce systemic acquired resistance. It is suggested that a multidisciplinary approach, incorporating environmental impact assessments and focusing on scalability, can expedite the realization of enhanced crop yields through nanotechnology while fostering a healthier environment.
Collapse
Affiliation(s)
- Peng Zhang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yaqi Jiang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China
| | - Fabienne Schwab
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Fazel Abdolahpur Monikh
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Joensuu-Kuopio 80101, Finland
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Renato Grillo
- Department
of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000, Brazil
| | - Jason C. White
- Department
of Analytical Chemistry, The Connecticut
Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zhiling Guo
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
13
|
Rabiço F, Borelli TC, Alnoch RC, Polizeli MDLTDM, da Silva RR, Silva-Rocha R, Guazzaroni ME. Novel Pseudomonas Species Prevent the Growth of the Phytopathogenic Fungus Aspergillus flavus. BIOTECH 2024; 13:8. [PMID: 38651488 PMCID: PMC11036216 DOI: 10.3390/biotech13020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
In response to the escalating demand for sustainable agricultural methodologies, the utilization of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as a viable eco-friendly alternative. Microbial volatiles exhibit rapid diffusion rates, facilitating prompt chemical interactions. Moreover, microorganisms possess the capacity to emit volatiles constitutively, as well as in response to biological interactions and environmental stimuli. In addition to volatile compounds, these bacteria demonstrate the ability to produce soluble metabolites with antifungal properties, such as APE Vf, pyoverdin, and fragin. In this study, we identified two Pseudomonas strains (BJa3 and MCal1) capable of inhibiting the in vitro mycelial growth of the phytopathogenic fungus Aspergillus flavus, which serves as the causal agent of diseases in sugarcane and maize. Utilizing GC/MS analysis, we detected 47 distinct VOCs which were produced by these bacterial strains. Notably, certain volatile compounds, including 1-heptoxydecane and tridecan-2-one, emerged as primary candidates for inhibiting fungal growth. These compounds belong to essential chemical classes previously documented for their antifungal activity, while others represent novel molecules. Furthermore, examination via confocal microscopy unveiled significant morphological alterations, particularly in the cell wall, of mycelia exposed to VOCs emitted by both Pseudomonas species. These findings underscore the potential of the identified BJa3 and MCal1 Pseudomonas strains as promising agents for fungal biocontrol in agricultural crops.
Collapse
Affiliation(s)
- Franciene Rabiço
- Department of Cell and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil; (F.R.); (T.C.B.)
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil; (R.C.A.); (M.d.L.T.d.M.P.)
| | - Tiago Cabral Borelli
- Department of Cell and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil; (F.R.); (T.C.B.)
- Department of Biomolecular Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil;
| | - Robson Carlos Alnoch
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil; (R.C.A.); (M.d.L.T.d.M.P.)
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil; (R.C.A.); (M.d.L.T.d.M.P.)
| | - Ricardo R. da Silva
- Department of Biomolecular Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil;
| | - Rafael Silva-Rocha
- ByMyCell Inova Simples, Av. Dra. Nadir Aguiar, 1805, Ribeirão Preto 14056-680, SP, Brazil;
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3.900, Ribeirão Preto 14040-901, SP, Brazil; (R.C.A.); (M.d.L.T.d.M.P.)
| |
Collapse
|
14
|
Sohaib H, Fays M, Khatib A, Rivière J, El Aouad N, Desoignies N. Contribution to the characterization of the seed endophyte microbiome of Argania spinosa across geographical locations in Central Morocco using metagenomic approaches. Front Microbiol 2024; 15:1310395. [PMID: 38601940 PMCID: PMC11005822 DOI: 10.3389/fmicb.2024.1310395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Microbial endophytes are microorganisms that live inside plants, and some of them play important yet understudied roles in plant health, growth, and adaptation to environmental conditions. Their diversity within plants has traditionally been underestimated due to the limitations of culture-dependent techniques. Metagenomic profiling provides a culture-independent approach to characterize entire microbial communities. The argan tree (Argania spinosa) is ecologically and economically important in Morocco, yet its seed endophyte microbiome remains unexplored. This study aimed to compare the bacterial and fungal endophyte communities associated with argan seeds collected from six sites across Morocco using Illumina MiSeq sequencing of the 16S rRNA gene and ITS regions, respectively. Bacterial DNA was extracted from surface-sterilized seeds and amplified using universal primers, while fungal DNA was isolated directly from seeds. Bioinformatics analysis of sequencing data identified taxonomic profiles at the phylum to genus levels. The results indicated that bacterial communities were dominated by the genus Rhodoligotrophos, while fungal communities exhibited varying degrees of dominance between Ascomycota and Basidiomycota depending on site, with Penicillium being the most abundant overall. Distinct site-specific profiles were observed, with Pseudomonas, Bacillus, and Aspergillus present across multiple locations. Alpha diversity indices revealed variation in endophyte richness between seed sources. In conclusion, this first exploration of the argan seed endophyte microbiome demonstrated environmental influence on community structure. While facing limitations due to small sample sizes and lack of ecological metadata, it provides a foundation for future mechanistic investigations into how specific endophyte-host interactions shape argan adaptation across Morocco's diverse landscapes.
Collapse
Affiliation(s)
- Hourfane Sohaib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Morgan Fays
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| | - Abderrezzak Khatib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - John Rivière
- Laboratory of Biotechnology and Applied Biology, Haute Ecole Provinciale de Hainaut-Condorcet, Ath, Hainaut, Belgium
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Nicolas Desoignies
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
- University of Liege - Gembloux Agro-Bio Tech, TERRA - Teaching and Research Center, Plant Sciences Axis, Gembloux, Belgium
| |
Collapse
|
15
|
Vlasselaer L, Crauwels S, Lievens B, De Coninck B. Unveiling the microbiome of hydroponically cultivated lettuce: impact of Phytophthora cryptogea infection on plant-associated microorganisms. FEMS Microbiol Ecol 2024; 100:fiae010. [PMID: 38317643 PMCID: PMC10872686 DOI: 10.1093/femsec/fiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.
Collapse
Affiliation(s)
- Liese Vlasselaer
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Bart Lievens
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
16
|
Raio A. Diverse roles played by "Pseudomonas fluorescens complex" volatile compounds in their interaction with phytopathogenic microrganims, pests and plants. World J Microbiol Biotechnol 2024; 40:80. [PMID: 38281212 PMCID: PMC10822798 DOI: 10.1007/s11274-023-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Pseudomonas fluorescens complex consists of environmental and some human opportunistic pathogenic bacteria. It includes mainly beneficial and few phytopathogenic species that are common inhabitants of soil and plant rhizosphere. Many members of the group are in fact known as effective biocontrol agents of plant pathogens and as plant growth promoters and for these attitudes they are of great interest for biotechnological applications. The antagonistic activity of fluorescent Pseudomonas is mainly related to the production of several antibiotic compounds, lytic enzymes, lipopeptides and siderophores. Several volatile organic compounds are also synthesized by fluorescent Pseudomonas including different kinds of molecules that are involved in antagonistic interactions with other organisms and in the induction of systemic responses in plants. This review will mainly focus on the volatile compounds emitted by some members of P. fluorescens complex so far identified, with the aim to highlight the role played by these molecules in the interaction of the bacteria with phytopathogenic micro and macro-organisms and plants.
Collapse
Affiliation(s)
- Aida Raio
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano, 10., 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
17
|
Wang W, Long Y. A review of biocontrol agents in controlling late blight of potatoes and tomatoes caused by Phytophthora infestans and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:4715-4725. [PMID: 37555293 DOI: 10.1002/ps.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Su Y, Wang J, Gao W, Wang R, Yang W, Zhang H, Huang L, Guo L. Dynamic metabolites: A bridge between plants and microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165612. [PMID: 37478935 DOI: 10.1016/j.scitotenv.2023.165612] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Plant metabolites have a great influence on soil microbiomes. Although few studies provided insights into plant-microbe interactions, we still know very little about how plants recruit their microbiome. Here, we discuss the dynamic progress that typical metabolites shape microbes by a variety of factors, such as physiographic factors, cultivar factors, phylogeny factors, and environmental stress. Several kinds of metabolites have been reviewed, including plant primary metabolites (PPMs), phytohormones, and plant secondary metabolites (PSMs). The microbes assembled by plant metabolites in return exert beneficial effects on plants, which have been widely applied in agriculture. What's more, we point out existing problems and future research directions, such as unclear mechanisms, few species, simple parts, and ignorance of absolute abundance. This review may inspire readers to study plant-metabolite-microbe interactions in the future.
Collapse
Affiliation(s)
- Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
19
|
Kiros T, Ebu SM, Melaku Y, Tesfa T, Dekebo A. Isolation and identification of endophytic bacteria and associated compound from Gloriosa superba and their antibacterial activities. Heliyon 2023; 9:e22104. [PMID: 38045151 PMCID: PMC10692777 DOI: 10.1016/j.heliyon.2023.e22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
Gloriosa superba L., which belongs to the genus Gloriosa and family Colchicaceae, is a climbing annual herb and tuberous poisonous tropical medicinal plant. This study was aimed to isolate possible endophytic bacteria from leaves, stems and tubers of Gloriosa superba. Thirty pure endophytic bacteria were isolated and subjected to biochemical characterization. Bacterial identification was conducted by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The structure of the isolated compound was characterized. The antibacterial activity was also evaluated. Majority (21, 70 %) of the isolates were Gram-positive. Certain of them are spore formers. Based on MALDI-TOF MS, 26 of the isolates were identified as Bacillus spp. (65.4 %), Escherichia spp. (30.8 %) and Providencia spp. (3.9 %). A 1-undecene was isolated from culture filtrate of E. coli (GST-5). The ethyl acetate extracts (1000 μg/mL) of GSL-5 and GST-2 culture filtrates recorded maximum inhibition zone against E. coli (9.4 ± 0.6 mm) and S. aurous ATCC 25923T (8.4 ± 0.8 mm), respectively. The Pseudomonas aeruginosa ATCC 27853T was prone to all ethyl acetate extracts. A 1-undecene showed a moderate activity against E. coli ATCC 25922Tand P. aeruginosa ATCC 27853T at 50 μg/mL. The present finding would be a breakthrough to studies of similar works in Ethiopia since it may be for the first time.
Collapse
Affiliation(s)
- Tsegu Kiros
- Central Laboratory, Haramaya University, Dire Dawa, P.O.BOX 138, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, Adama, P.O.BOX 1888, Ethiopia
| | - Seid Mohammed Ebu
- Department of Applied Biology, Adama Science and Technology University, Adama, P.O.BOX 1888, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, Adama Science and Technology University, Adama, P.O.BOX 1888, Ethiopia
| | - Tewodros Tesfa
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Dire Dawa, P.O.BOX 235, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, Adama, P.O.BOX 1888, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
20
|
Anand A, Falquet L, Abou-Mansour E, L'Haridon F, Keel C, Weisskopf L. Biological hydrogen cyanide emission globally impacts the physiology of both HCN-emitting and HCN-perceiving Pseudomonas. mBio 2023; 14:e0085723. [PMID: 37650608 PMCID: PMC10653877 DOI: 10.1128/mbio.00857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Bacteria communicate by exchanging chemical signals, some of which are volatile and can remotely reach other organisms. HCN was one of the first volatiles discovered to severely impact exposed organisms by inhibiting their respiration. Using HCN-deficient mutants in two Pseudomonas strains, we demonstrate that HCN's impact goes beyond the sole inhibition of respiration and affects both emitting and receiving bacteria in a global way, modulating their motility, biofilm formation, and production of antimicrobial compounds. Our data suggest that bacteria could use HCN not only to control their own cellular functions, but also to remotely influence the behavior of other bacteria sharing the same environment. Since HCN emission occurs in both clinically and environmentally relevant Pseudomonas, these findings are important to better understand or even modulate the expression of bacterial traits involved in both virulence of opportunistic pathogens and in biocontrol efficacy of plant-beneficial strains.
Collapse
Affiliation(s)
- Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Buffi M, Cailleau G, Kuhn T, Li Richter XY, Stanley CE, Wick LY, Chain PS, Bindschedler S, Junier P. Fungal drops: a novel approach for macro- and microscopic analyses of fungal mycelial growth. MICROLIFE 2023; 4:uqad042. [PMID: 37965130 PMCID: PMC10642649 DOI: 10.1093/femsml/uqad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
This study presents an inexpensive approach for the macro- and microscopic observation of fungal mycelial growth. The 'fungal drops' method allows to investigate the development of a mycelial network in filamentous microorganisms at the colony and hyphal scales. A heterogeneous environment is created by depositing 15-20 µl drops on a hydrophobic surface at a fixed distance. This system is akin to a two-dimensional (2D) soil-like structure in which aqueous-pockets are intermixed with air-filled pores. The fungus (spores or mycelia) is inoculated into one of the drops, from which hyphal growth and exploration take place. Hyphal structures are assessed at different scales using stereoscopic and microscopic imaging. The former allows to evaluate the local response of regions within the colony (modular behaviour), while the latter can be used for fractal dimension analyses to describe the hyphal network architecture. The method was tested with several species to underpin the transferability to multiple species. In addition, two sets of experiments were carried out to demonstrate its use in fungal biology. First, mycelial reorganization of Fusarium oxysporum was assessed as a response to patches containing different nutrient concentrations. Second, the effect of interactions with the soil bacterium Pseudomonas putida on habitat colonization by the same fungus was assessed. This method appeared as fast and accessible, allowed for a high level of replication, and complements more complex experimental platforms. Coupled with image analysis, the fungal drops method provides new insights into the study of fungal modularity both macroscopically and at a single-hypha level.
Collapse
Affiliation(s)
- Matteo Buffi
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Thierry Kuhn
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, B304, Bessemer Building, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Patrick S Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, P.O. Box 1663, NM 87545, United States
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
22
|
Xu R, Huang QY, Shen WH, Li XP, Zheng LP, Wang JW. Volatiles of Shiraia fruiting body-associated Pseudomonas putida No.24 stimulate fungal hypocrellin production. Synth Syst Biotechnol 2023; 8:427-436. [PMID: 37409170 PMCID: PMC10319174 DOI: 10.1016/j.synbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Hypocrellins are major bioactive perylenequinones from Shiraia fruiting bodies and have been developed as efficient photosensitizers for photodynamic therapy. Pseudomonas is the second dominant genus inside Shiraia fruiting bodies, but with less known actions on the host fungus. In this work, the effects of bacterial volatiles from the Shiraia-associated Pseudomonas on fungal hypocrellin production were investigated. Pseudomonas putida No.24 was the most active to promote significantly accumulation of Shiraia perylenequinones including hypocrellin A (HA), HC, elsinochrome A (EA) and EC. Headspace analysis of the emitted volatiles revealed dimethyl disulfide as one of active compounds to promote fungal hypocrellin production. The bacterial volatiles induced an apoptosis in Shiraia hyphal cell, which was associated with the generation of reactive oxygen species (ROS). ROS generation was proved to mediate the volatile-induced membrane permeability and up-regulation of gene expressions for hypocrellin biosynthesis. In the submerged volatile co-culture, the bacterial volatiles stimulated not only HA content in mycelia, but also HA secretion into the medium, leading to the enhanced HA production to 249.85 mg/L, about 2.07-fold over the control. This is the first report on the regulation of Pseudomonas volatiles on fungal perylenequinone production. These findings could be helpful to understand the roles of bacterial volatiles in fruiting bodies and also provide new elicitation method using bacterial volatiles to stimulate fungal secondary metabolite production.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
23
|
Naik H, Maiti S, Amaresan N. Microbial volatile compounds (MVCs): an eco-friendly tool to manage abiotic stress in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91746-91760. [PMID: 37531051 DOI: 10.1007/s11356-023-29010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Microbial volatile compounds (MVCs) are produced during the metabolism of microorganisms, are widely distributed in nature, and have significant applications in various fields. To date, several MVCs have been identified. Microbial groups such as bacteria and fungi release many organic and inorganic volatile compounds. They are typically small odorous compounds with low molecular masses, low boiling points, and lipophilic moieties with high vapor pressures. The physicochemical properties of MVCs help them to diffuse more readily in nature and allow dispersal to a more profound distance than other microbial non-volatile metabolites. In natural environments, plants communicate with several microorganisms and respond differently to MVCs. Here, we review the following points: (1) MVCs produced by various microbes including bacteria, fungi, viruses, yeasts, and algae; (2) How MVCs are effective, simple, efficient, and can modulate plant growth and developmental processes; and (3) how MVCs improve photosynthesis and increase plant resistance to various abiotic stressors.
Collapse
Affiliation(s)
- Hetvi Naik
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India
| | - Saborni Maiti
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India.
| |
Collapse
|
24
|
Liang Y, Wei L, Wang S, Hu C, Xiao M, Zhu Z, Deng Y, Wu X, Kuzyakov Y, Chen J, Ge T. Long-term fertilization suppresses rice pathogens by microbial volatile compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117722. [PMID: 36924706 DOI: 10.1016/j.jenvman.2023.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Microbial volatile organic compounds (VOCs) can suppress plant pathogens. Although fertilization strongly affects soil microbial communities, the influence of fertilization on microbial VOC-mediated suppression of pathogens has not been elucidated. Soil was sampled from a paddy field that had been subjected to the following treatments for 30 years: a no-fertilizer control, mineral fertilization (NPK), NPK combined with rice straw (NPK + S), NPK combined with chicken manure (70% NPK + 30% M). Then, within a laboratory experiment, pathogens were exposed to VOCs without physical contact to assess the impact of VOCs emitted from paddy soils on in vitro growth of the fungal rice pathogens: Pyricularia oryzae and Rhizoctonia solani. The VOCs emitted from soil reduced the mycelial biomass of P. oryzae and R. solani by 36-51% and 10-30%, respectively, compared to that of the control (no soil; no VOCs emission). Overall, the highest suppression of P. oryzae and R. solani was in the NPK and NPK + S soils, which emitted more quinones, phenols, and low alcohols than NPK + M soils. The abundances of quinones and phenols in the soil air were maximal in the NPK-fertilized soil because the low ratio of dissolved organic carbon and Olsen-P increased the population of key species such as Acidobacteriae, Anaerolineae, and Entorrhizomycetes. The abundance of alcohols was minimum in the NPK + S fertilized soil because the high SOC content decreased the population of Sordariomycetes. In conclusion, mineral fertilization affects bacterial and fungal VOC emissions, thereby suppressing the growth of R. solani and P. oryzae.
Collapse
Affiliation(s)
- Yuqin Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Agro-Ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Can Hu
- College of Mechanical and Electrical Engineering, Tarim University, Alar, 843300, China
| | - Mouliang Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yangwu Deng
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi Province, China
| | - Xiaohong Wu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan Province, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077, Goettingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198, Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049, Kazan, Russia
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
25
|
Agho CA, Runno-Paurson E, Tähtjärv T, Kaurilind E, Niinemets Ü. Variation in Leaf Volatile Emissions in Potato ( Solanum tuberosum) Cultivars with Different Late Blight Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112100. [PMID: 37299080 DOI: 10.3390/plants12112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) play key roles in plant abiotic and biotic stress resistance, but even for widespread crops, there is limited information on variations in the magnitude and composition of constitutive VOC emissions among cultivars with varying stress resistance. The foliage VOC emissions from nine local and commercial potato cultivars (Alouette, Sarme, Kuras, Ando, Anti, Jõgeva Kollane, Teele, 1681-11, and Reet) with medium to late maturities and varying Phytophthora infestans (the causative agent of late blight disease) resistance backgrounds were analyzed to gain an insight into the genetic diversity of constitutive VOC emissions and to test the hypothesis that cultivars more resistant to Phytophthora infestans have greater VOC emissions and different VOC fingerprints. Forty-six VOCs were identified in the emission blends of potato leaves. The majority of the VOCs were sesquiterpenes (50% of the total number of compounds and 0.5-36.9% of the total emissions) and monoterpenes (30.4% of the total number of compounds and 57.8-92.5% of the total VOC emissions). Qualitative differences in leaf volatiles, mainly in sesquiterpenes, were related to the potato genotype background. Among the volatile groups, the monoterpenes α-pinene, β-pinene, Δ3-carene, limonene, and p-cymene, the sesquiterpenes (E)-β-caryophyllene and α-copaene, and green leaf volatile hexanal were the major volatiles in all cultivars. A higher share of VOCs known to have antimicrobial activities was observed. Interestingly, the cultivars were grouped into high and low resistance categories based on the VOC profiles, and the total terpenoid and total constitutive VOC emission scale positively with resistance. To support and expedite advances in breeding for resistance to diseases such as late blight disease, the plant research community must develop a fast and precise approach to measure disease resistance. We conclude that the blend of emitted volatiles is a fast, non-invasive, and promising indicator to identify cultivars resistant to potato late blight disease.
Collapse
Affiliation(s)
- C A Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - E Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - T Tähtjärv
- The Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, 48309 Jõgeva, Estonia
| | - E Kaurilind
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Ü Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
26
|
Abdelsattar AM, Elsayed A, El-Esawi MA, Heikal YM. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107673. [PMID: 37030249 DOI: 10.1016/j.plaphy.2023.107673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Stevia rebaudiana is an important medicinal plant which represents the most important sugar substitute in many countries. Poor seed germination of this plant is a critical problem that affects the final yield and the availability of the products in the market. Continuous cropping without supplying soil nutrients is also a serious issue as it results in declining soil fertility. This review highlights the important use of beneficial bacteria for the enhancement of Stevia rebaudiana growth and its dynamic interactions in the phyllosphere, rhizosphere, and endosphere. Fertilizers can increase crop yield and preserve and improve soil fertility. There is a rising concern that prolonged usage of chemical fertilizers may have negative impacts on the ecosystem of the soil. On the other hand, soil health and fertility are improved by plant growth-promoting bacteria which could eventually increase plant growth and productivity. Accordingly, a biocompatible strategy involving beneficial microorganisms inoculation is applied to boost plant growth and reduce the negative effects of chemical fertilizers. Plants benefit extensively from endophytic bacteria, which promote growth and induce resistance to pathogens and stresses. Additionally, several plant growth-promoting bacteria are able to produce amino acids, polyamines, and hormones that can be used as alternatives to chemicals. Therefore, understanding the dynamic interactions between bacteria and Stevia can help make the favorable bacterial bio-formulations, use them more effectively, and apply them to Stevia to improve yield and quality.
Collapse
Affiliation(s)
- Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt; Photobiology Research Group, Sorbonne Université CNRS, 75005, Paris, France
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
27
|
Antagonistic Activity of Volatile Organic Compounds Produced by Acid-Tolerant Pseudomonas protegens CLP-6 as Biological Fumigants To Control Tobacco Bacterial Wilt Caused by Ralstonia solanacearum. Appl Environ Microbiol 2023; 89:e0189222. [PMID: 36722969 PMCID: PMC9972909 DOI: 10.1128/aem.01892-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tobacco bacterial wilt, which is caused by Ralstonia solanacearum, is a devastating soilborne disease of tobacco worldwide and is widespread in the continuously acidic fields of southern China. Here, the fumigation activity under different pH conditions, component identification, and bioactivity of the volatile organic compounds (VOCs) produced by an acid-tolerant strain, Pseudomonas protegens CLP-6, were investigated. There was a wide antimicrobial spectrum of the VOCs against phytopathogens, including four bacteria, eight fungi, and two oomycetes. The antagonistic activity of the VOCs against R. solanacearum was proportionally correlated with the concentration of the inoculum, amount, culture time, and culture pH for CLP-6. The number of gene copies of R. solanacearum was significantly inhibited by VOCs produced at pH 5.5 in vivo. The control effect of VOCs emitted at pH 5.5 was 78.91% for tobacco bacterial wilt, which was >3-fold greater than that at pH 7.0. Finally, the main volatile compounds were identified by solid-phase microextraction (SPME)-gas chromatography-mass spectroscopy (GC-MS) as S-methyl thioacetate, methyl thiocyanate, methyl disulfide, 1-decene, 2-ethylhexanol, 1,4-undecadiene, 1-undecene, 1,3-benzothiazole, and 2,5-dimethylpyrazine, and the inhibition rates of 1,3-benzothiazole, 2-ethylhexanolmethyl thiocyanate, dimethyl disulfide, and S-methyl thioacetate were 100%, 100%, 88.91%, 67.64%, and 53.29%, respectively. S-Methyl thioacetate was detected only at pH 5.5. In summary, VOCs produced by P. protegens CLP-6 had strong antagonistic activities against phytopathogens, especially R. solanacearum, under acidic conditions and could be used to develop a safe and additive fumigant against R. solanacearum on tobacco and even other Solanaceae crop bacterial wilt diseases in acidic fields. IMPORTANCE VOCs produced by beneficial bacteria penetrate the rhizosphere to inhibit the growth of plant-pathogenic microorganisms; thus, they have the potential to be used as biological agents in controlling plant diseases. Tobacco bacterial wilt, which is caused by the acidophilic pathogen R. solanacearum, is a major bacterial disease in southern China and is prevalent in acidic soil. In this study, we discovered that the VOCs produced by P. protegens CLP-6 had excellent inhibitory effects on important plant pathogens. Moreover, two of the VOCs, namely, 1,3-benzothiazole and 2-ethylhexanol, had excellent inhibitory effect on R. solanacearum, and another VOC substance, methyl thiocyanate, was produced only at pH 5.5. The VOCs produced by the acid-tolerant strain P. protegens CLP-6 may have potential as environment-friendly microbial fumigant agents for bacterial wilt of tobacco or even other Solanaceae crops in acidic soils in China.
Collapse
|
28
|
Parmagnani AS, Kanchiswamy CN, Paponov IA, Bossi S, Malnoy M, Maffei ME. Bacterial Volatiles (mVOC) Emitted by the Phytopathogen Erwinia amylovora Promote Arabidopsis thaliana Growth and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030600. [PMID: 36978848 PMCID: PMC10045578 DOI: 10.3390/antiox12030600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | | | - Ivan A. Paponov
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Simone Bossi
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-5967
| |
Collapse
|
29
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
30
|
Volynchikova E, Kim KD. Anti-Oomycete Activity and Pepper Root Colonization of Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 against Phytophthora capsici. THE PLANT PATHOLOGY JOURNAL 2023; 39:123-135. [PMID: 36760054 PMCID: PMC9929162 DOI: 10.5423/ppj.oa.01.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Previously, Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 from a sequential screening procedure were proven to effectively control Phytophthora blight caused by Phytophthora capsici. In this study, we further investigated the anti-oomycete activities of these strains against mycelial growth, zoospore germination, and germ tube elongation of P. capsici. We also investigated root colonization ability of the bacterial strains in square dishes, including cell motility (swimming and swarming motilities) and biofilm formation. Both strains significantly inhibited mycelial growth in liquid and solid V8 juice media and M9 minimal media, zoospore germination, and germ tube elongation compared with Bacillus vallismortis EXTN-1 (positive biocontrol strain), Sphingomonas aquatilis KU408 (negative biocontrol strain), and MgSO4 solution (untreated control). In diluted (nutrient-deficient) V8 juice broth, the tested strain populations were maintained at >108 cells/ml, simultaneously providing mycelial inhibitory activity. Additionally, these strains colonized pepper roots at a 106 cells/ml concentration for 7 days. The root colonization of the strains was supported by strong swimming and swarming activities, biofilm formation, and chemotactic activity towards exudate components (amino acids, organic acids, and sugars) of pepper roots. Collectively, these results suggest that strains YJR13 and YJR92 can effectively suppress Phytophthora blight of pepper through direct anti-oomycete activities against mycelial growth, zoospore germination and germ tube elongation. Bacterial colonization of pepper roots may be mediated by cell motility and biofilm formation together with chemotaxis to root exudates.
Collapse
Affiliation(s)
| | - Ki Deok Kim
- Corresponding author: Phone) +82-2-3290-3065, FAX) +82-2-925-1970, E-mail)
| |
Collapse
|
31
|
Bora SS, Hazarika DJ, Churaman A, Naorem RS, Dasgupta A, Chakrabarty R, Kalita H, Barooah M. Common scab disease-induced changes in geocaulosphere microbiome assemblages and functional processes in landrace potato (Solanum tuberosum var. Rongpuria) of Assam, India. Arch Microbiol 2022; 205:44. [PMID: 36576579 DOI: 10.1007/s00203-022-03380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Common scab (CS) caused by pathogenic Streptomyces spp. plays a decisive role in the qualitative and quantitative production of potatoes worldwide. Although the CS pathogen is present in Assam's soil, disease signs and symptoms are less obvious in the landrace Rongpuria potatoes that indicate an interesting interaction between the plant and the geocaulosphere microbial population. Toward this, a comparative metagenomics study was performed to elucidate the geocaulosphere microbiome assemblages and functions of low CS-severe (LSG) and moderately severe (MSG) potato plants. Alpha diversity indices showed that CS occurrence modulated microbiome composition and decreased overall microbial abundances. Functional analysis involving cluster of orthologous groups (COG) too confirmed reduced microbial metabolism under disease incidence. The top-three most dominant genera were Pseudomonas (relative abundance: 2.79% in LSG; 12.31% in MSG), Streptomyces (2.55% in LSG; 5.28% in MSG), and Pantoea (2.30% in LSG; 3.51% in MSG). As shown by the high Pielou's J evenness index, the potato geocaulosphere core microbiome was adaptive and resilient to CS infection. The plant growth-promoting traits and potential antagonistic activity of major taxa (Pseudomonads, non-pathogenic Streptomyces spp., and others) against the CS pathogen, i.e., Streptomyces scabiei, point toward selective microbial recruitment and colonization strategy by the plants to its own advantage. KEGG Orthology analysis showed that the CS infection resulted in high abundances of ATP-binding cassette transporters and a two-component system, ubiquitous to the transportation and regulation of metabolites. As compared to the LSG metagenome, the MSG counterpart had a higher representation of important PGPTs related to 1-aminocyclopropane-1-carboxylate deaminase, IAA production, betaine utilization, and siderophore production.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Amrita Churaman
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Romen S Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Abhisek Dasgupta
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India
| | - Ranjana Chakrabarty
- Regional Agricultural Research Station, Assam Agricultural University, Shillongani, Assam, India
| | - Hemen Kalita
- Regional Agricultural Research Station, Assam Agricultural University, Shillongani, Assam, India
| | - Madhumita Barooah
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India.
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
| |
Collapse
|
32
|
Volynchikova E, Kim KD. Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops. MYCOBIOLOGY 2022; 50:269-293. [PMID: 36404903 PMCID: PMC9645277 DOI: 10.1080/12298093.2022.2136333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 05/25/2023]
Abstract
Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.
Collapse
Affiliation(s)
- Elena Volynchikova
- Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Alfiky A, L'Haridon F, Abou-Mansour E, Weisskopf L. Disease Inhibiting Effect of Strain Bacillus subtilis EG21 and Its Metabolites Against Potato Pathogens Phytophthora infestans and Rhizoctonia solani. PHYTOPATHOLOGY 2022; 112:2099-2109. [PMID: 35536116 DOI: 10.1094/phyto-12-21-0530-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potato production worldwide is plagued by several disease-causing pathogens that result in crop and economic losses estimated to billions of dollars each year. To this day, synthetic chemical applications remain the most widespread control strategy despite their negative effects on human and environmental health. Therefore, obtainment of superior biocontrol agents or their naturally produced metabolites to replace fungicides or to be integrated into practical pest management strategies has become one of the main targets in modern agriculture. Our main focus in the present study was to elucidate the antagonistic potential of a new strain identified as Bacillus subtilis EG21 against potato pathogens Phytophthora infestans and Rhizoctonia solani using several in vitro screening assays. Microscopic examination of the interaction between EG21 and R. solani showed extended damage in fungal mycelium, while EG21 metabolites displayed strong anti-oomycete and zoosporecidal effect on P. infestans. Mass spectrometry (MS) analysis revealed that EG21 produced antifungal and anti-oomycete cyclic lipopeptides surfactins (C12 to C19). Further characterization of EG21 confirmed its ability to produce siderophores and the extracellular lytic enzymes cellulase, pectinase and chitinase. The antifungal activity of EG21 cell-free culture filtrate (CF) was found to be stable at high-temperature/pressure treatment and extreme pH values and was not affected by proteinase K treatment. Disease-inhibiting effect of EG21 CF against P. infestans and R. solani infection was confirmed using potato leaves and tubers, respectively. Biotechnological applications of using microbial agents and their bioproducts for crop protection hold great promise to develop into effective, environment-friendly and sustainable biocontrol strategies. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alsayed Alfiky
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
- Genetics Department, Faculty of Agriculture, Tanta University, Tanta, 31527 Egypt
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| | - Eliane Abou-Mansour
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
34
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
35
|
Zhang Y, Kong WL, Wu XQ, Li PS. Inhibitory Effects of Phenazine Compounds and Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 Against Phytophthora cinnamomi. PHYTOPATHOLOGY 2022; 112:1867-1876. [PMID: 35263163 DOI: 10.1094/phyto-10-21-0442-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytophthora cinnamomi is an important plant pathogen that is widely distributed worldwide and has caused serious ecological damage and significant economic losses in forests and plantations in many countries. The use of plant growth-promoting rhizobacteria is an effective and environmentally friendly strategy for controlling diseases caused by P. cinnamomi. In this study, we investigated the antagonistic mechanism of Pseudomonas aurantiaca ST-TJ4 against P. cinnamomi through different antagonistic approaches, observations of mycelial morphology, study of mycelial metabolism, and identification of antagonistic substances. The results showed that Pseudomonas aurantiaca ST-TJ4 was able to significantly inhibit mycelial growth, causing mycelial deformation and disrupting internal cell structures. Additionally, pathogen cell membranes were damaged by ST-TJ4, and mycelial cell content synthesis was disrupted. Ultraperformance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry analyses showed that phenazine compounds and 2-undecanone were the main antagonistic components. The ammonia produced by the ST-TJ4 strain also contributed to the inhibition of the growth of P. cinnamomi. In conclusion, our results confirm that Pseudomonas aurantiaca ST-TJ4 can inhibit P. cinnamomi through multiple mechanisms and can be used as a biological control agent for various plant diseases caused by P. cinnamomi.
Collapse
Affiliation(s)
- Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Pu-Sheng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
36
|
Win KT, Kobayashi M, Tanaka F, Takeuchi K, Oo AZ, Jiang CJ. Identification of Pseudomonas strains for the biological control of soybean red crown root rot. Sci Rep 2022; 12:14510. [PMID: 36008526 PMCID: PMC9411174 DOI: 10.1038/s41598-022-18905-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Soybean red crown root rot (RCR), caused by the soil-borne fungal pathogen, Calonectria ilicicola, is the most destructive disease affecting soybean production in Japan. To date, no resistant cultivars or effective fungicides have been developed to control this disease. In this study, we evaluated 13 bacterial strains to determine their efficacy in controlling C. ilicicola. We first investigated whether the volatile organic compounds (VOCs) emitted by the bacterial strains exhibited any antifungal activity against C. ilicicola using the double-plate chamber method. The results showed that VOCs from three Pseudomonas bacterial strains, OFT2 (Pseudomonas sp.), OFT5 (Pseudomonas sp.), and Cab57 (Pseudomonas protegens), exhibited strong inhibitory activity against C. ilicicola mycelial growth. Some antifungal activity was also observed in the culture supernatants of these Pseudomonas strains. Greenhouse soil inoculation tests showed that application of OFT2, OFT5, and Cab57 cultures around soybean seeds after seed sowing significantly reduced the severity of RCR, as shown by up to 40% reduction in C. ilicicola fungal growth in the roots and 180-200% increase in shoot and root fresh weights compared to the water control. Our results suggest that OFT2, Cab57, and OFT5 produce potent antifungal compounds against C. ilicicola, thereby showing considerable potential for the biological control of C. ilicicola during soybean production.
Collapse
Affiliation(s)
- Khin Thuzar Win
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan
| | - Michie Kobayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan
| | - Fukuyo Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kasumi Takeuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan
| | - Aung Zaw Oo
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| | - Chang-Jie Jiang
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan. .,Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
37
|
Mhlongo MI, Piater LA, Dubery IA. Profiling of Volatile Organic Compounds from Four Plant Growth-Promoting Rhizobacteria by SPME-GC-MS: A Metabolomics Study. Metabolites 2022; 12:763. [PMID: 36005635 PMCID: PMC9414699 DOI: 10.3390/metabo12080763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023] Open
Abstract
The rhizosphere microbiome is a major determinant of plant health. Plant-beneficial or plant growth-promoting rhizobacteria (PGPR) influence plant growth, plant development and adaptive responses, such as induced resistance/priming. These new eco-friendly choices have highlighted volatile organic compounds (biogenic VOCs) as a potentially inexpensive, effective and efficient substitute for the use of agrochemicals. Secreted bacterial VOCs are low molecular weight lipophilic compounds with a low boiling point and high vapor pressures. As such, they can act as short- or long-distance signals in the rhizosphere, affecting competing microorganisms and impacting plant health. In this study, secreted VOCs from four PGPR strains (Pseudomonas koreensis (N19), Ps. fluorescens (N04), Lysinibacillus sphaericus (T19) and Paenibacillus alvei (T22)) were profiled by solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) combined with a multivariate data analysis. Metabolomic profiling with chemometric analyses revealed novel data on the composition of the secreted VOC blends of the four PGPR strains. Of the 121 annotated metabolites, most are known as bioactives which are able to affect metabolism in plant hosts. These VOCs belong to the following classes: alcohols, aldehydes, ketones, alkanes, alkenes, acids, amines, salicylic acid derivatives, pyrazines, furans, sulfides and terpenoids. The results further demonstrated the presence of species-specific and strain-specific VOCs, characterized by either the absence or presence of specific VOCs in the different strains. These molecules could be further investigated as biomarkers for the classification of an organism as a PGPR and selection for agricultural use.
Collapse
Affiliation(s)
| | | | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
38
|
Kong WL, Chen X, Sun H, Sun XR, Wu XQ. Identification of Two Fungal Pathogens Responsible for Liriodendron chinense × tulipifera Black Spot and Screening of Trichoderma sp. for Disease Control. PLANT DISEASE 2022; 106:2172-2181. [PMID: 35077229 DOI: 10.1094/pdis-06-21-1266-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liriodendron chinense × tulipifera black spot is a newly discovered disease that causes yellowing and early shedding of leaves, affecting the growth of Liriodendron trees, and significantly reducing their ornamental value as a garden species. The pathogen responsible for this disease, and how it can be prevented and controlled, are not clear. In this study, the occurrence of this disease was first investigated according to Koch's postulates, and the primary pathogens causing Liriodendron black spot were determined to be Colletotrichum gloeosporioides and Alternaria alternata. Biocontrol strains antagonistic to these two pathogens were then screened from the leaf microorganisms of L. chinense × tulipifera, and a preliminary investigation of the biological control of Liriodendron black spot was performed. Through the screening of antagonistic microorganisms on the leaf surface of L. chinense × tulipifera, the strain Trichoderma koningiopsis T2, which displayed strong antagonism against C. gloeosporioides and A. alternata, was obtained. The T2 strain could inhibit the growth of the two pathogens via three mechanisms: hyperparasitism, volatile and nonvolatile metabolite production, and environmental acidification. The biocontrol experiments in the greenhouse and field showed that initial spraying with a T. koningiopsis T2 spore suspension followed by the two pathogens resulted in the lowest disease incidence. These results confirmed the black spot pathogens of L. chinense × tulipifera, clarified the antagonistic mechanism of T. koningiopsis T2 against the two pathogens, and provided a theoretical basis and technical support for the biological control of the disease.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xi Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Rui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
39
|
Naqqash T, Malik KA, Imran A, Hameed S, Shahid M, Hanif MK, Majeed A, Iqbal MJ, Qaisrani MM, van Elsas JD. Inoculation With Azospirillum spp. Acts as the Liming Source for Improving Growth and Nitrogen Use Efficiency of Potato. FRONTIERS IN PLANT SCIENCE 2022; 13:929114. [PMID: 35968126 PMCID: PMC9366913 DOI: 10.3389/fpls.2022.929114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is one of the limiting factors for plant growth, and it is mainly supplied exogenously by fertilizer application. It is well documented that diazotrophic rhizobacteria improve plant growth by fixing atmospheric N in the soil. The present study investigates the nitrogen-fixing potential of two Azospirillum spp. strains using the 15N isotope-dilution method. The two diazotrophic strains (TN03 and TN09) native to the rhizosphere of potato belong to the genus Azospirillum (16S rRNA gene accession numbers LN833443 and LN833448, respectively). Both strains were able to grow on an N-free medium with N-fixation potential (138-143 nmol mg-1 protein h-1) and contained the nifH gene. Strain TN03 showed highest indole acetic acid (IAA) production (30.43 μg/mL), while TN09 showed highest phosphate solubilization activity (249.38 μg/mL) while both diazotrophs showed the production of organic acids. A 15N dilution experiment was conducted with different fertilizer inputs to evaluate the N-fixing potential of both diazotrophs in pots. The results showed that plant growth parameters and N contents increased significantly by the inoculations. Moreover, reduced 15N enrichment was found compared to uninoculated controls that received similar N fertilizer levels. This validates the occurrence of N-fixation through isotopic dilution. Strain TN09 showed higher N-fixing potential than TN03 and the uninoculated controls. Inoculation with either strain also showed a remarkable increase in plant growth under field conditions. Thus, there were remarkable increases in N use efficiency, N uptake and N utilization levels. Confocal laser scanning and transmission electron microscopy showed that TN03 is an ectophyte, i.e., present outside root cells or within the grooves of root hairs, while TN09 is an endophyte, i.e., present within root cells, forming a strong association withroot it. This study confirms that diazotrophic Azospirillum spp. added to potato systems can improve plant growth and N use efficiency, opening avenues for improvement of potato crop growth with reduced input of N fertilizer.
Collapse
Affiliation(s)
- Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Sohail Hameed
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Biosciences, University of Wah Research Lab Complex, University of Wah, Wah, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Kashif Hanif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Biological Sciences, University of Lahore, Sargodha Campus, Punjab, Pakistan
| | - Afshan Majeed
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Soil and Environmental Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Javed Iqbal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muther Mansoor Qaisrani
- Department of Bioinformatics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Gfeller A, Fuchsmann P, De Vrieze M, Gindro K, Weisskopf L. Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms 2022; 10:microorganisms10081510. [PMID: 35893568 PMCID: PMC9394277 DOI: 10.3390/microorganisms10081510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial volatiles play important roles in mediating beneficial interactions between plants and their associated microbiota. Despite their relevance, bacterial volatiles are mostly studied under laboratory conditions, although these strongly differ from the natural environment bacteria encounter when colonizing plant roots or shoots. In this work, we ask the question whether plant-associated bacteria also emit bioactive volatiles when growing on plant leaves rather than on artificial media. Using four potato-associated Pseudomonas, we demonstrate that potato leaves offer sufficient nutrients for the four strains to grow and emit volatiles, among which 1-undecene and Sulfur compounds have previously demonstrated the ability to inhibit the development of the oomycete Phytophthora infestans, the causative agent of potato late blight. Our results bring the proof of concept that bacterial volatiles with known plant health-promoting properties can be emitted on the surface of leaves and warrant further studies to test the bacterial emission of bioactive volatiles in greenhouse and field-grown plants.
Collapse
Affiliation(s)
- Aurélie Gfeller
- Changins School of Viticulture and Oenology, 1260 Nyon, Switzerland; (A.G.); (M.D.V.)
- Agroscope, Plant Protection, 1260 Nyon, Switzerland;
| | - Pascal Fuchsmann
- Agroscope, Nutrition, Sensory analysis and Flavour Group, 3003 Bern, Switzerland;
| | - Mout De Vrieze
- Changins School of Viticulture and Oenology, 1260 Nyon, Switzerland; (A.G.); (M.D.V.)
- Agroscope, Plant Protection, 1260 Nyon, Switzerland;
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Katia Gindro
- Agroscope, Plant Protection, 1260 Nyon, Switzerland;
| | - Laure Weisskopf
- Changins School of Viticulture and Oenology, 1260 Nyon, Switzerland; (A.G.); (M.D.V.)
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
41
|
Abdelrahman O, Yagi S, El Siddig M, El Hussein A, Germanier F, De Vrieze M, L’Haridon F, Weisskopf L. Evaluating the Antagonistic Potential of Actinomycete Strains Isolated From Sudan's Soils Against Phytophthora infestans. Front Microbiol 2022; 13:827824. [PMID: 35847058 PMCID: PMC9277107 DOI: 10.3389/fmicb.2022.827824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Soil microorganisms play crucial roles in soil fertility, e.g., through decomposing organic matter, cycling nutrients or through beneficial interactions with plants. Actinomycetes are a major component of soil inhabitants; they are prolific producers of specialized metabolites, among which many antibiotics. Here we report the isolation and characterization of 175 Actinomycetes from rhizosphere and bulk soil samples collected in 18 locations in Sudan. We evaluated the strains' metabolic potential for plant protection by testing their ability to inhibit the mycelial growth of the oomycete Phytophthora infestans, which is one of the most devastating plant pathogens worldwide. Most strains significantly reduced the oomycete's growth in direct confrontational in vitro assays. A significant proportion of the tested strains (15%) were able to inhibit P. infestans to more than 80%, 23% to 50%-80%, while the remaining 62% had inhibition percentages lesser than 50%. Different morphologies of P. infestans mycelial growth and sporangia formation were observed upon co-inoculation with some of the Actinomycetes isolates, such as the production of fewer, thinner hyphae without sporangia leading to a faint growth morphology, or on the contrary, of clusters of thick-walled hyphae leading to a bushy, or "frozen" morphology. These morphologies were caused by strains differing in activity levels but phylogenetically closely related with each other. To evaluate whether the isolated Actinomycetes could also inhibit the pathogen's growth in planta, the most active strains were tested for their ability to restrict disease progress in leaf disc and full plant assays. Five of the active strains showed highly significant protection of potato leaves against the pathogen in leaf disc assays, as well as substantial reduction of disease progress in full plants assays. Using cell-free filtrates instead of the bacterial spores also led to full protection against disease on leaf discs, which highlights the strong crop protective potential of the secreted metabolites that could be applied as leaf spray. This study demonstrates the strong anti-oomycete activity of soil- and rhizosphere-borne Actinomycetes and highlights their significant potential for the development of sustainable solutions based on either cell suspensions or cell-free filtrates to safeguard potatoes from their most damaging pathogen.
Collapse
Affiliation(s)
- Ola Abdelrahman
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | - Sakina Yagi
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | | | - Adil El Hussein
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | - Fanny Germanier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
42
|
Identification of Volatile Organic Compounds Produced by Xenorhabdus indica Strain AB and Investigation of Their Antifungal Activities. Appl Environ Microbiol 2022; 88:e0015522. [PMID: 35727028 DOI: 10.1128/aem.00155-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenorhabdus spp. are symbiotic bacteria associated with entomopathogenic nematodes to form a model complex that is used for the biological control of insect pests. These bacteria also produce secondary metabolites that have commercial potential in the pharmaceutical and agroforestry industries. Volatile organic compounds (VOCs) produced by the Xenorhabdus indica "strain AB" have been shown to have significant antifungal activity against Fusarium oxysporum f. sp. cucumerinum. Using gas chromatography-mass spectrometry, we identified 61 volatiles in the mixture of VOCs emitted by strain AB compared to a control strain, 6 of which were investigated for their antifungal activities. Of these, methyl anthranilate exhibited the highest mycelial growth suppression toward F. oxysporum, with a minimum inhibitory volume (MIV) of 50 μL/plate. Fluorescence assays, scanning electron microscopy, and measurements of the leakage of intracellular components revealed that the use of methyl anthranilate changed cell wall and cell membrane integrity as well as the permeability of the plasma membrane. Furthermore, methyl anthranilate treatment upregulated the transcription level of target genes related to redox reactions and the cell wall integrity pathway. The results suggest a novel mechanism used by Xenorhabdus spp. to overcome competitors during its life cycle and open up a new approach to using these bacteria in biological control. IMPORTANCE Fungal phytopathogens, particularly Fusarium oxysporum, are a major problem worldwide, especially in the postharvest of vital economic crops. Concerns about negative effects on the environment and human health have led to increasing restrictions on the use of chemical fungicides, and therefore, biological control agents are now being considered alternatives. It is in this context that we investigated the antifungal activity of VOCs produced by X. indica strain AB against F. oxysporum. We found that AB VOCs have a strong effect on the growth of the fungal phytopathogen. In addition, 85% of the identified volatile compounds were determined to be new compounds, opening up new lines of research to discover their properties, effects, and potential for pharmaceutical and agricultural applications. Antifungal assays proved that four of the six compounds with a high concentration in the GC-MS profile had a significant inhibitory effect on pathogen growth. Accordingly, this study opens up a new approach for the use of these bacteria in biocontrol.
Collapse
|
43
|
Farooq QUA, Hardy GESJ, McComb JA, Thomson PC, Burgess TI. Changes to the Bacterial Microbiome in the Rhizosphere and Root Endosphere of Persea americana (Avocado) Treated With Organic Mulch and a Silicate-Based Mulch or Phosphite, and Infested With Phytophthora cinnamomi. Front Microbiol 2022; 13:870900. [PMID: 35572652 PMCID: PMC9097018 DOI: 10.3389/fmicb.2022.870900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Plant growth and responses of the microbial profile of the rhizosphere soil and root endosphere were investigated for avocado plants infested or not infested with Phytophthora cinnamomi and the changes were compared in plants grown with various soil additives or by spraying plants with phosphite. Soil treatments were organic mulches or silica-based mineral mulch. Reduction of root growth and visible root damage was least in the infested plants treated with phosphite or mineral mulch applied to the soil. Rhizosphere soils and root endospheres were analyzed for bacterial communities using metabarcoding. Bacterial abundance and diversity were reduced in infested rhizospheres and root endospheres. The presence or absence of mineral mulch resulted in greater diversity and larger differences in rhizosphere community composition between infested and non-infested pots than any other treatment. Some rhizosphere bacterial groups, especially Actinobacteria and Proteobacteria, had significantly higher relative abundance in the presence of Phytophthora. The bacterial communities of root endospheres were lower in abundance than rhizosphere communities and not affected by soil treatments or phosphite but increased in abundance after infection with P. cinnamomi. These findings suggested that the addition of silicate-based mineral mulch protects against Phytophthora root rot, which may be partly mediated through changes in rhizosphere bacterial community composition. However, the changes to the microbiome induced by spraying plants with phosphite are different from those resulting from the application of mineral mulch to the soil.
Collapse
Affiliation(s)
- Qurrat Ul Ain Farooq
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Giles Edward St. John Hardy
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
- ArborCarbon, ROTA Compound Murdoch University, Murdoch, WA, Australia
| | - Jen A. McComb
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | | | - Treena Isobel Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
44
|
Potentiality of Formulated Bioagents from Lab to Field: A Sustainable Alternative for Minimizing the Use of Chemical Fungicide in Controlling Potato Late Blight. SUSTAINABILITY 2022. [DOI: 10.3390/su14084383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Late blight of potato caused by an oomycete, Phytophthora infestans (Mont.) De Bary limits the production of potato worldwide. Late blight management has been based on chemical fungicide application, and the repeated use of these fungicides introduces new and more aggressive genotypes, which can rapidly overcome host resistance. Therefore, innovative and effective control measures are needed if fungicide use is to be reduced or eliminated. Some potential formulated bacterial bioagents viz. Pseudomonas putida (BDISO64RanP) and Bacillus subtilis (BDISO36ThaR), and fungal bioagents viz. Trichoderma paraviridicens (BDISOF67R) and T. erinaceum (BDISOF91R), were evaluated for their performance in controlling late blight of potato under growth chamber and field conditions. Both artificial inoculation and field experiments revealed that eight sprays of these bacterial (P. putida and B. subtilis) and fungal (T. erinaceum) bioagents were found to be most effective at reducing late blight severity by 99% up until 60 days after planting (DAP), whereas these bioagents were found to be partially effective until 70 DAP, reducing late blight severity by 46 to 60% and 58 to 60% in the field and growth chamber conditions, respectively. However, these bioagents can reduce the spray frequencies of Curzate M8 by 50% (four sprays instead of eight) when applied together with this fungicide. Economic analysis revealed that T6 (eight sprays of formulated P. putida + B. subtilis + four sprays of Curzate M8) and T16 (eight sprays of formulated P. putida, B. subtilis, and T. erinaceum + four sprays of Curzate M8) performed better in consecutive two years, applying less fungicidal spray compared to T1 (eight sprays of Curzate M8 (Positive control)), which indicated that the return ranged, by Bangladeshi Currency (Taka), from 0.85 to 0.90 over the investment of Bangladeshi Currency (Taka) 1.00 in these treatments, and these results together highlight the possibility of using bioagents in reducing late blight of potato under a proper warning system to reduce the application frequency of chemical fungicide.
Collapse
|
45
|
Antifungal volatile organic compounds from Streptomyces setonii WY228 control black spot disease of sweet potato. Appl Environ Microbiol 2022; 88:e0231721. [PMID: 35108080 DOI: 10.1128/aem.02317-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are considered as promising environmental-safety fumigants for controlling postharvest diseases. Ceratocystis fimbriata, the pathogen of black spot disease, seriously affects the quality and yield of sweet potato in the field and postharvest. This study tested the effects of VOCs produced by Streptomyces setonii WY228 on the control of C. fimbriata in vitro and in vivo. The VOCs exhibited strong antifungal activity and significantly inhibited the growth of C. fimbriata. During the 20-days storage, VOCs fumigation significantly controlled the occurrence of pathogen, increased the content of antioxidant and defense-related enzymes and flavonoids, and boosted the starch content so as to maintain the quality of sweet potato. Headspace analysis showed that volatiles 2-ethyl-5-methylpyrazine and dimethyl disulfide significantly inhibited the mycelial growth and spore germination of C. fimbriata in a dose dependent manner. Fumigation with 100 μL/L 2-ethyl-5-methylpyrazine completely controlled the pathogen in vivo after 10-days storage. Transcriptome analysis showed that volatiles mainly downregulated the ribosomal synthesis genes and activated the proteasome system of pathogen in response to VOCs stress, while the genes related to spore development, cell membrane synthesis, mitochondrial function, as well as hydrolase and toxin synthesis were also downregulated, indicating that WY228-produced VOCs act diverse modes of action for pathogen control. Our study demonstrates that fumigation of sweet potato tuberous roots with S. setonii WY228 or use of formulations based on the VOCs is a promising new strategy to control sweet potato and other food and fruit pathogens during storage and shipment. Importance Black spot disease caused by Ceratocystis fimbriata has caused huge economic losses to worldwide sweet potato production. At present, the control of C. fimbriata mainly depends on toxic fungicides, and there is a lack of effective alternative strategies. The research on biological control of sweet potato black spot disease is also very limited. The development of efficient biocontrol technique against pathogens using microbial volatile organic compounds could be an alternative method to control this disease. Our study revealed the significant biological control effect of volatile organic compounds of Streptomyces setonii WY228 on black spot disease of postharvest sweet potato and the complex antifungal mechanism against C. fimbriata. Our data demonstrated that Streptomyces setonii WY228 and its volatile 2-ethyl-5-methylpyrazine could be candidate strain and compound for the creation of fumigants, and showed the important potential of biotechnology application in the field of food and agriculture.
Collapse
|
46
|
Montes-Osuna N, Cernava T, Gómez-Lama Cabanás C, Berg G, Mercado-Blanco J. Identification of Volatile Organic Compounds Emitted by Two Beneficial Endophytic Pseudomonas Strains from Olive Roots. PLANTS (BASEL, SWITZERLAND) 2022; 11:318. [PMID: 35161300 PMCID: PMC8840531 DOI: 10.3390/plants11030318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The production of volatile organic compounds (VOCs) represents a promising strategy of plant-beneficial bacteria to control soil-borne phytopathogens. Pseudomonas sp. PICF6 and Pseudomonas simiae PICF7 are two indigenous inhabitants of olive roots displaying effective biological control against Verticillium dahliae. Additionally, strain PICF7 is able to promote the growth of barley and Arabidopsis thaliana, VOCs being involved in the growth of the latter species. In this study, the antagonistic capacity of these endophytic bacteria against relevant phytopathogens (Verticillium spp., Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium oxysporum f.sp. lycopersici) was assessed. Under in vitro conditions, PICF6 and PICF7 were only able to antagonize representative isolates of V. dahliae and V. longisporum. Remarkably, both strains produced an impressive portfolio of up to twenty VOCs, that included compounds with reported antifungal (e.g., 1-undecene, (methyldisulfanyl) methane and 1-decene) or plant growth promoting (e.g., tridecane, 1-decene) activities. Moreover, their volatilomes differed strongly in the absence and presence of V. dahliae. For example, when co incubated with the defoliating pathotype of V. dahliae, the antifungal compound 4-methyl-2,6-bis(2-methyl-2-propanyl)phenol was produced. Results suggest that volatiles emitted by these endophytes may differ in their modes of action, and that potential benefits for the host needs further investigation in planta.
Collapse
Affiliation(s)
- Nuria Montes-Osuna
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Cordoba, Spain; (N.M.-O.); (C.G.-L.C.)
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria; (T.C.); (G.B.)
| | - Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Cordoba, Spain; (N.M.-O.); (C.G.-L.C.)
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria; (T.C.); (G.B.)
- Leibniz-Institute for Agricultural Engineering Potsdam, Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Cordoba, Spain; (N.M.-O.); (C.G.-L.C.)
| |
Collapse
|
47
|
Freitas CSA, Maciel LF, Corrêa Dos Santos RA, Costa OMMM, Maia FCB, Rabelo RS, Franco HCJ, Alves E, Consonni SR, Freitas RO, Persinoti GF, Oliveira JVDC. Bacterial volatile organic compounds induce adverse ultrastructural changes and DNA damage to the sugarcane pathogenic fungus Thielaviopsis ethacetica. Environ Microbiol 2022; 24:1430-1453. [PMID: 34995419 DOI: 10.1111/1462-2920.15876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.
Collapse
Affiliation(s)
- Carla Sant Anna Freitas
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucas Ferreira Maciel
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ohanna Maria Menezes Medeiro Costa
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Francisco Carlos Barbosa Maia
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Eduardo Alves
- Laboratory of Electron Microscopy and Ultrastructural Analysis, Plant Pathology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raul Oliveira Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
48
|
Grabež V, Egelandsdal B, Cruz A, Hallenstvedt E, Mydland LT, Alvseike O, Kåsin K, Ruud L, Karlsen V, Øverland M. Understanding metabolic phenomena accompanying high levels of yeast in broiler chicken diets and resulting carcass weight and meat quality changes. Poult Sci 2022; 101:101749. [PMID: 35288371 PMCID: PMC8920926 DOI: 10.1016/j.psj.2022.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/29/2021] [Accepted: 01/23/2022] [Indexed: 11/28/2022] Open
Abstract
The use of yeast as a protein source was investigated in broiler chicken diets on carcass quality, storage stability, and metabolite changes in leg meat. Male Ross 308 chickens (n = 100) were fed with one of 5 diets: control, control added 0.6% formic acid, or 3 diets where soybean meal was substituted with 10, 20, and 30% crude protein from inactivated yeast Cyberlindnera jadinii (CJ10, CJ20, CJ30, respectively). The yeast-containing diets reduced carcass weight, linoleic acid, and warm-over flavor in chicken leg meat. Protein degradation-related metabolite biomarkers were upregulated in the leg of chickens that were fed yeast-containing diets, indicating an adaptive response to the loss of appetite. Chill-stored leg meat of birds fed yeast diets showed increased browning and metallic taste compared with those fed the control diet. The use of formic acid in the diet reduced cooking loss and had a positive effect on vitamin B content.
Collapse
Affiliation(s)
- Vladana Grabež
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway.
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Ana Cruz
- Felleskjøpet Fôrutvikling AS, NO-7018, Trondheim, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | | | - Karoline Kåsin
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Lene Ruud
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Victoria Karlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| |
Collapse
|
49
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
50
|
Cellini A, Spinelli F, Donati I, Ryu CM, Kloepper JW. Bacterial volatile compound-based tools for crop management and quality. TRENDS IN PLANT SCIENCE 2021; 26:968-983. [PMID: 34147324 DOI: 10.1016/j.tplants.2021.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.
Collapse
Affiliation(s)
- Antonio Cellini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Irene Donati
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|