1
|
Dillon CF, Dillon GR. Q Fever-Related Community Infections: United States Exposure to Coxiella burnetii. Pathogens 2025; 14:460. [PMID: 40430780 PMCID: PMC12114960 DOI: 10.3390/pathogens14050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Coxiella burnetii is a significant infectious pathogen that causes Q fever. Q fever is thought to be uncommon in the US and most human cases are believed to occur in agricultural livestock workers. However, the extent of US community exposure to C. burnetii is not known with certainty. Using nationally representative 2003-2004 US National Health and Nutrition Examination Survey serologic, demographic, and occupational history data, the magnitude of US adult general population exposure to C. burnetii, excluding agricultural-sector workers, was estimated. Exposure was defined as positive serum IgG antibodies in an immunofluorescence assay (e.g., current or past infection). A total of 3.0% (95% CI: 2.0-4.4) of the US population met the criteria for C. burnetii exposure, representing some 6.2 million persons. Overall, 86.9% (95% CI: 75.5-98.4) of the seropositive persons had no lifetime history of work in the agricultural sector (5.5 million persons). This was consistently true across all US demographic groups: aged 20-59 years, 87.3%; aged 60+ years, 85.7%; men, 86.1%; women, 87.6%; non-Hispanic Whites, 82%; non-Hispanic Blacks, 95.8%; Mexican Americans, 89.4%; immigrants from Mexico, 83.5%; and other immigrants, 96.8%. As a proportion of C. burnetii infections result in acute Q fever and chronic Q fever conveys significant mortality, the community-level risks to the general public may be significant. It is recommended that a 6-year sample of the most recent NHANES stored sera be analyzed to determine the current community C. burnetii exposure rates. Also, analyzing an additional 2005-2008 stored sera sample would provide an opportunity to assess the time trends and long-term health impacts.
Collapse
|
2
|
Wambua L, Bett B, Abkallo HM, Muturi M, Nthiwa D, Nyamota R, Kiprono E, Kirwa L, Gakuya F, Bartlow AW, Middlebrook EA, Fair J, Njenga K, Gachohi J, Mwatondo A, Akoko JM. National serosurvey and risk mapping reveal widespread distribution of Coxiella burnetii in Kenya. Sci Rep 2025; 15:9706. [PMID: 40113846 PMCID: PMC11926080 DOI: 10.1038/s41598-025-94154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is an emerging pathogen that has the potential to cause severe chronic infections in animals and humans worldwide. The detrimental impact on public health is projected to be higher in the low- and middle-income countries given their lower capacity to sustain effective surveillance and response measures. We implemented a national serosurvey of cattle in Kenya to map the spatial distribution of the pathogen. The study used serum samples that were collected from randomly selected cattle in different ago-ecological zones across the country. These samples were screened for the pathogen using PrioCHECK Ruminant Q Fever AB Plate ELISA kit. The laboratory findings were analyzed using INLA package to identify risk factors for C. burnetii exposure from herd- and animal-level factors, area, and bioclimatic datasets accessed from online databases. A total of 6,593 cattle were recruited for the study; of these, 7.9% (95% CI; 7.2-8.5) were seropositive. Outputs from the multivariable analysis revealed that the animal age and some of the geographical variables including wind speed, area under shrubs and "petric calcisols" type of soil were significantly associated with C. burnetii seropositivity. Being a calf, weaner or subadult was associated with lower odds of exposure compared to being an adult by 0.24 (credibility interval: 2.5% and 97.5%), 0.41 (0.30-0.55) and 0.51 (0.38-0.69), respectively. In addition, a unit increase in the wind speed increased the odds of C. burnetii seropositivity by 1.27 (1.05-1.52) while an increase on the land area under shrubs was associated with lower odds of exposure (0.67 [0.47-0.69]). The effect of petric calcisols was non-linear; an increase of the land area with this soil type was associated with an exponential increase in C. burnetii seropositivity. This study provides new data on C. burnetii seroprevalence, information of its risk factors and a prevalence map that can be used for C. burnetii risk surveillance and control. The identification of environmental risk factors for C. burnetii exposure, and the increasing awareness of the zoonotic potential of the pathogen, calls for the need to enhance the existing collaborations for the surveillance and control of C. burnetii in line with the One Health framework. The evidence generated on the potential role of environmental factors can also be used to design nature-based interventions, such as replacement of vegetation in denuded areas, to reduce potential for the aerosolization of the pathogen. Livestock vaccination in the hotspots would also reduce animal infections and hence the contamination of the environment.
Collapse
Affiliation(s)
- Lillian Wambua
- International Livestock Research Institute, Nairobi, Kenya.
- World Organisation for Animal Health, Sub-Regional Representation for Eastern Africa, Nairobi, Kenya.
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Mathew Muturi
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Faculty of Veterinary Medicine, Dahlem Research School of Biomedical Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | | | - Enock Kiprono
- International Livestock Research Institute, Nairobi, Kenya
| | - Lynn Kirwa
- International Livestock Research Institute, Nairobi, Kenya
| | - Francis Gakuya
- Wildlife Research and Training Institute, Naivasha, Kenya
| | | | | | - Jeanne Fair
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kariuki Njenga
- Global Health Programme, Washington State University, Nairobi, Kenya
- Paul G, Allen School of Global Health, Washington State University, Pullman, WA, 99164, USA
| | - John Gachohi
- Global Health Programme, Washington State University, Nairobi, Kenya
- Paul G, Allen School of Global Health, Washington State University, Pullman, WA, 99164, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Athman Mwatondo
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, Faculty of Health, University of Nairobi, Nairobi, Kenya
| | - James M Akoko
- International Livestock Research Institute, Nairobi, Kenya.
| |
Collapse
|
3
|
Miller HK, Priestley RA, Smith CB, Cherry C, Kersh GJ. Longitudinal surveillance of Coxiella burnetii following an abortion storm in domestic goats. Front Vet Sci 2024; 11:1426573. [PMID: 39346957 PMCID: PMC11427434 DOI: 10.3389/fvets.2024.1426573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Q fever is a disease caused by Coxiella burnetii, which can cause serious illness in humans and abortions in goats. A Q fever outbreak among an unvaccinated goat herd led to a 65% loss of the kid crop in spring 2018. To assess the impact of the outbreak on the herd and environment, longitudinal surveillance of the ranch was conducted across three samplings in September 2018, April 2019, and May 2022. Antibodies against C. burnetii were monitored by an indirect immunofluorescence assay. Shedding was monitored through analysis of vaginal/fecal swabs and milk. Environmental swabs and bulk soil were collected from various locations around the ranch. Animal and environmental samples were analyzed for C. burnetii DNA by PCR. Herd-level seroprevalence decreased from 89% in 2018 to 84.3% in 2019, and 64.5% in 2022. Overall herd shedding was 14.4% in 2018, 7.4% in 2019, and 6.7% in 2022. The percentage of C. burnetii-positive environmental samples was 83.7% in 2018, 51.7% in 2019, and 28.6% in 2022. Serological evidence suggests that new infections were occurring in the herd 4 years post-abortion storm. This study demonstrates the presence of C. burnetii shedding and environmental contamination in a goat operation at least four kidding seasons after an outbreak. A better understanding of management practices that can improve outcomes for infected herds, particularly in areas without access to vaccines against C. burnetii, is needed to better protect operators and the public.
Collapse
Affiliation(s)
- Halie K Miller
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Rachael A Priestley
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Cody B Smith
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Cara Cherry
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gilbert J Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
4
|
Alessiani A, Di Domenico M, Averaimo D, Pompilii C, Rulli M, Cocco A, Lomellini L, Coccaro A, Cantelmi MC, Merola C, Tieri EE, Romeo G, Secondini B, Marfoglia C, Di Teodoro G, Petrini A. Coxiella burnetii: A Brief Summary of the Last Five Years of Its Presence in the Abruzzo and Molise Regions in Italy. Animals (Basel) 2024; 14:2248. [PMID: 39123774 PMCID: PMC11310968 DOI: 10.3390/ani14152248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Coxiella burnetii is the causative agent of Q fever. The main reservoirs for this bacterium, which can lead to human infection, in our region are typically cattle, goats, and sheep. In animals, C. burnetii infection is often detected due to reproductive problems. European Member States are required to report confirmed cases annually, but the lack of uniform reporting methods makes the data rather inconsistent. The Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise is involved in official controls to identify the causes of abortions, monitor suspected or positive herds, evaluate suspected infections in pets and humans, monitor the spread in wildlife, etc. In this paper, we summarize the presence of C. burnetii over the last five years (2019-2023). Additionally, a detailed overview of C. burnetii infection in wild and domestic animals is provided. Five hundred sixty animals-including cattle; goats; sheep; wild animals, such as deer, boars, wolves, roe deer, owls, and otters; buffalo; dogs; horses; cats; and a donkey-and six human samples were tested by real-time PCR on the transposase gene IS1111 to detect C. burnetii. The MST profile was identified in some of the samples. Outbreaks of C. burnetii occurred in four herds. In one of them, it was possible to follow the outbreak from inception to eradication by evaluating the effect of vaccination on real-time PCR Ct values. A total of 116 animals tested positive for C. burnetii, including 73 goats, 42 sheep, and one bovine. None of the other samples tested positive. The strains for which the ST was performed were identified as ST79, a strain that has been present in the area for more than ten years. The effect of vaccination on the reduction of positive samples and the variation of real-time PCR Ct values was evaluated in strict correlation.
Collapse
Affiliation(s)
- Alessandra Alessiani
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Daniela Averaimo
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Cinzia Pompilii
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Marco Rulli
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Laura Lomellini
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Antonio Coccaro
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Maria Chiara Cantelmi
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
- Department of Bioscience and Technology for Food and Environment, University of Teramo, 64100 Teramo, Italy
| | - Carmine Merola
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
- Department of Bioscience and Technology for Food and Environment, University of Teramo, 64100 Teramo, Italy
| | - Elga Ersilia Tieri
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Gianfranco Romeo
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Cristina Marfoglia
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy; (M.D.D.); (D.A.); (C.P.); (M.R.); (A.C.); (L.L.); (A.C.); (M.C.C.); (C.M.); (E.E.T.); (G.R.); (B.S.); (C.M.); (G.D.T.); (A.P.)
| |
Collapse
|
5
|
Oakley RB, Gemechu G, Gebregiorgis A, Alemu A, Zinsstag J, Paris DH, Tschopp R. Seroprevalence and risk factors for Q fever and Rift Valley fever in pastoralists and their livestock in Afar, Ethiopia: A One Health approach. PLoS Negl Trop Dis 2024; 18:e0012392. [PMID: 39178328 PMCID: PMC11376510 DOI: 10.1371/journal.pntd.0012392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/05/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Coxiella burnetii, the causative agent of Q fever, and Rift Valley fever virus are two under-researched zoonotic pathogens in Ethiopia. Potential outbreaks of these diseases, in light of the high dependency of nomadic pastoralists on their livestock, poses a risk to both human and animal health in addition to risking the pastoralists livelihoods. Our study aimed to determine the seroprevalence and associated risk factors for Q fever and Rift Valley fever in pastoral communities in the Afar region of north-eastern Ethiopia. METHODOLOGY/PRINCIPAL FINDINGS This cross-sectional study screened pastoralists (n = 323) and their livestock (n = 1377) for IgG antibodies to Coxiella burnetii and Rift Valley fever virus. A seroprevalence for Q fever of 25.0% (95%CI 18.6-32.6) was found in pastoralists and 34.3% (95%CI 27.9-41.3) in livestock overall; with 51.9% in goats (95%CI 44.9-58.8), 39.9% in sheep (95%CI 24.6-51.2), 16.3% in camels (95%CI 10.4-24.6) and 8.8% in cattle (95%CI 5.0-15.0). For Rift Valley fever the seroprevalence in pastoralists was 6.1% (95%CI 3.3-11.0) and 3.9% (95%CI 2.6-5.7) in livestock overall; cattle had the highest seroprevalence (8.3%, 95%CI 3.3-19.2), followed by goats (2.7%; 95%CI 1.4-5.1), sheep (2.5%; 95%CI 1.0-5.9) and camels (1.8%; 95%CI 0.4-6.9). Human Q fever seropositivity was found to be associated with goat abortions (OR = 2.11, 95%CI 1.18-3.78, p = 0.011), while Rift Valley fever seropositivity in livestock was found to be associated with cattle abortions (OR = 2.52, 95%CI 1.05-6.08, p = 0.039). CONCLUSIONS/SIGNIFICANCE This study provides evidence for a notable exposure to both Q fever and Rift Valley fever in pastoralists and livestock in Afar. The outbreak potential of these pathogens warrants ongoing integrated human and animal surveillance requiring close collaboration of the human and animal health sectors with community representatives following a One Health approach.
Collapse
Affiliation(s)
- Regina Bina Oakley
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Gizachew Gemechu
- One Health Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Ayinalem Alemu
- One Health Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Jakob Zinsstag
- University of Basel, Basel, Switzerland
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Daniel Henry Paris
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Rea Tschopp
- University of Basel, Basel, Switzerland
- One Health Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| |
Collapse
|
6
|
Manyenya S, Nthiwa D, Lutta HO, Muturi M, Nyamota R, Mwatondo A, Watene G, Akoko J, Bett B. Multiple pathogens co-exposure and associated risk factors among cattle reared in a wildlife-livestock interface area in Kenya. Front Vet Sci 2024; 11:1415423. [PMID: 39119353 PMCID: PMC11306132 DOI: 10.3389/fvets.2024.1415423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Understanding multi-pathogen infections/exposures in livestock is critical to inform prevention and control measures against infectious diseases. We investigated the co-exposure of foot-and-mouth disease virus (FMDV), Brucella spp., Leptospira spp., and Coxiella burnetii in cattle in three zones stratified by land use change and with different wildlife-livestock interactions in Narok county, Kenya. We also assessed potential risk factors associated with the transmission of these pathogens in cattle. Methods We identified five villages purposively, two each for areas with intensive (zone 1) and moderate wildlife-livestock interactions (zone 2) and one for locations with low wildlife-livestock interactions (zone 3). We sampled 1,170 cattle from 390 herds through a cross-sectional study and tested the serum samples for antibodies against the focal pathogens using enzyme-linked immunosorbent assay (ELISA) kits. A questionnaire was administered to gather epidemiological data on the putative risk factors associated with cattle's exposure to the investigated pathogens. Data were analyzed using the Bayesian hierarchical models with herd number as a random effect to adjust for the within-herd clustering of the various co-exposures among cattle. Results Overall, 88.0% (95% CI: 85.0-90.5) of the cattle tested positive for at least one of the targeted pathogens, while 41.7% (95% CI: 37.7-45.8) were seropositive to at least two pathogens. FMDV and Brucella spp. had the highest co-exposure at 33.7% (95% CI: 30.9-36.5), followed by FMDV and Leptospira spp. (21.8%, 95% CI: 19.5-24.4), Leptospira spp. and Brucella spp. (8.8%, 95% CI: 7.2-10.6), FMDV and C. burnetii (1.5%, 95% CI: 0.7-2.8), Brucella spp. and C. burnetii (1.0%, 95% CI: 0.3-2.2), and lowest for Leptospira spp. and C. burnetii (0.3%, 95% CI: 0.0-1.2). Cattle with FMDV and Brucella spp., and Brucella spp. and Leptospira spp. co-exposures and those simultaneously exposed to FMDV, Brucella spp. and Leptospira spp. were significantly higher in zone 1 than in zones 2 and 3. However, FMDV and Leptospira spp. co-exposure was higher in zones 1 and 2 than zone 3. Discussion/conclusion We recommend the establishment of a One Health surveillance system in the study area to reduce the morbidity of the targeted zoonotic pathogens in cattle and the risks of transmission to humans.
Collapse
Affiliation(s)
- Sophina Manyenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
- International Livestock Research Institute, Nairobi, Kenya
| | - Harrison Osundwa Lutta
- Biotechnology Research Institute, Kabete Centre, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Mathew Muturi
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock, and Fisheries, Nairobi, Kenya
| | | | - Athman Mwatondo
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock, and Fisheries, Nairobi, Kenya
| | - Grace Watene
- International Livestock Research Institute, Nairobi, Kenya
| | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
7
|
Miller HK, Kersh GJ. Efficacy of rifapentine and other rifamycins against Coxiella burnetii in vitro. Microbiol Spectr 2024; 12:e0103424. [PMID: 38864598 PMCID: PMC11218529 DOI: 10.1128/spectrum.01034-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Since 1999, doxycycline and hydroxychloroquine have been the recommended treatment for chronic Q fever, a life-threatening disease caused by the bacterial pathogen, Coxiella burnetii. Despite the duration of its use, the treatment is not ideal due to the lengthy treatment time, high mortality rate, resistant strains, and the potential for contraindicated usage. A literature search was conducted to identify studies that screened large panels of drugs against C. burnetii to identify novel targets with potential efficacy against C. burnetii. Twelve candidate antimicrobials approved for use in humans by the US Food and Drug Administration were selected and minimum inhibitory concentrations (MICs) were determined against the low virulence strain Nine Mile phase II. Rifabutin and rifaximin were the best performing antibiotics tested with MICs of ≤0.01 µg mL-1. Further screening of these top candidates was conducted alongside two drugs from the same class, rifampin, well-characterized, and rifapentine, not previously reported against C. burnetii. These were screened against virulent strains of C. burnetii representing three clinically relevant genotypes. Rifapentine was the most effective in the human monocytic leukemia cell line, THP-1, with a MIC ≤0.01 µg mL-1. In the human kidney epithelial cell line, A-498, efficacy of rifapentine, rifampin, and rifabutin varied across C. burnetii strains with MICs between ≤0.001 and 0.01 µg mL-1. Rifampin, rifabutin, and rifapentine were all bactericidal against C. burnetii; however, rifabutin and rifapentine demonstrated impressive bactericidal activity as low as 0.1 µg mL-1 and should be further explored as alternative Q fever treatments given their efficacy in vitro. IMPORTANCE This work will help inform investigators and physicians about potential alternative antimicrobial therapies targeting the causative agent of Q fever, Coxiella burnetii. Chronic Q fever is difficult to treat, and alternative antimicrobials are needed. This manuscript explores the efficacy of rifamycin antibiotics against virulent strains of C. burnetii representing three clinically relevant genotypes in vitro. Importantly, this study determines the susceptibility of C. burnetii to rifapentine, which has not been previously reported. Evaluation of the bactericidal activity of the rifamycins reveals that rifabutin and rifapentine are bactericidal at low concentrations, which is unusual for antibiotics against C. burnetii.
Collapse
Affiliation(s)
- Halie K. Miller
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Shujat S, Shehzad W, Anjum AA, Hertl JA, Gröhn YT, Zahoor MY. Molecular identification of Coxiella burnetii in raw milk samples collected from farm animals in districts Kasur and Lahore of Punjab, Pakistan. PLoS One 2024; 19:e0301611. [PMID: 38843180 PMCID: PMC11156400 DOI: 10.1371/journal.pone.0301611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Coxiella burnetii is the worldwide zoonotic infectious agent for Q fever in humans and animals. Farm animals are the main reservoirs of C. burnetii infection, which is mainly transmitted via tick bites. In humans, oral, percutaneous, and respiratory routes are the primary sources of infection transmission. The clinical signs vary from flu-like symptoms to endocarditis for humans' acute and chronic Q fever. While it is usually asymptomatic in livestock, abortion, stillbirth, infertility, mastitis, and endometritis are its clinical consequences. Infected farm animals shed C. burnetii in birth products, milk, feces, vaginal mucus, and urine. Milk is an important source of infection among foods of animal origin. This study aimed to determine the prevalence and molecular characterization of C. burnetii in milk samples of dairy animals from two districts in Punjab, Pakistan, as it has not been reported there so far. Using a convenience sampling approach, the current study included 304 individual milk samples from different herds of cattle, buffalo, goats, and sheep present on 39 farms in 11 villages in the districts of Kasur and Lahore. PCR targeting the IS1111 gene sequence was used for its detection. Coxiella burnetii DNA was present in 19 of the 304 (6.3%) samples. The distribution was 7.2% and 5.2% in districts Kasur and Lahore, respectively. The results showed the distribution in ruminants as 3.4% in buffalo, 5.6% in cattle, 6.7% in goats, and 10.6% in sheep. From the univariable analysis, the clinical signs of infection i.e. mastitis and abortion were analyzed for the prevalence of Coxiella burnetii. The obtained sequences were identical to the previously reported sequence of a local strain in district Lahore, Sahiwal and Attock. These findings demonstrated that the prevalence of C. burnetii in raw milk samples deserves more attention from the health care system and veterinary organizations in Kasur and Lahore of Punjab, Pakistan. Future studies should include different districts and human populations, especially professionals working with animals, to estimate the prevalence of C. burnetii.
Collapse
Affiliation(s)
- Shahpal Shujat
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Julia A. Hertl
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
9
|
Liu P, Wu J, Ma W, Yang Y, Lv L, Cai J, Liu Z, He J, Shang Y, Li Z, Cao X. Molecular detection and characterization of Coxiella burnetii in aborted samples of livestock in China. Acta Trop 2024; 254:107163. [PMID: 38428630 DOI: 10.1016/j.actatropica.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Coxiella burnetii is the causative agent of zoonotic Q fever. Animals are the natural reservoirs of C. burnetii, and domestic livestock represent the major sources of human infection. C. burnetii infection in pregnant females may causes abortion during late pregnancy, whereby massive shedding of C. burnetii with abortion products becomes aerosolized and persists in the environment. Therefore, monitoring and surveillance of this infection in livestock is important for the prevention of the C. burnetii transmission. Previous serological surveys have shown that C. burnetii infection is endemic in livestock in China. However, few data are available on the diagnosis of C. burnetii as a cause of abortion by molecular methods in livestock. To get a better understanding of the impact of C. burnetii infection on domestic livestock in China, a real-time PCR investigation was carried out on collected samples from different domestic livestock suffering abortion during 2021-2023. A total of 338 samples collected from eight herds of five livestock species were elected. The results showed that 223 (66 %) of the collected samples were positive for C. burnetii DNA using real-time PCR. For the aborted samples, 82 % (128/15) of sheep, 81 % (34/42) of goats, 44 % (15/34) of cattle, 69 % (18/26) of camels, and 50 % (17/34) of donkeys were positive for C. burnetii. Besides, 44 % (8/18) and 4 % (1/25) of asymptomatic individuals of sheep and donkey were also positive for C. burnetii. In addition, the positive samples were further confirmed by amplification and sequencing of the C. burnetii-specific isocitrate dehydrogenase (icd) gene. Phylogenetic analysis based on specific gene fragments of icd genes revealed that the obtained sequences in this study were clustered into two different groups associated with different origin of hosts and geographic regions. This is the first report confirming that C. burnetii exists in aborted samples of sheep, goats, cattle, donkeys and camels in China. Further studies are needed to fully elucidate the epidemiology of this pathogen in livestock as well as the potential risks to public health.
Collapse
Affiliation(s)
- Ping Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weimin Ma
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yamin Yang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Lv Lv
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jiang Cai
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhijie Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
10
|
Tan T, Heller J, Firestone S, Stevenson M, Wiethoelter A. A systematic review of global Q fever outbreaks. One Health 2024; 18:100667. [PMID: 39010957 PMCID: PMC11247264 DOI: 10.1016/j.onehlt.2023.100667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 07/17/2024] Open
Abstract
Q fever is an important zoonotic disease with a worldwide distribution. Outbreaks of Q fever are unpredictable and can affect many people, resulting in a significant burden on public health. The epidemiology of the disease is complex and substantial efforts are required to understand and control Q fever outbreaks. The purpose of this study was to systematically review previous investigations of outbreaks and summarise important epidemiological features. This will improve knowledge of the factors driving the occurrence of Q fever outbreaks and assist decision makers in implementing mitigation strategies. A search of four electronic databases identified 94 eligible articles published in English between 1990 and 2022 that related to 81 unique human Q fever outbreaks. Outbreaks were reported across 27 countries and mostly in industrialised nations. Documented Q fever outbreaks varied in size (2 to 4107 cases) and duration (4 to 1722 days). Most outbreaks (43/81) occurred in communities outside of traditional at-risk occupational settings and were frequently associated with living in proximity to livestock holdings (21/43). Indirect transmission via environmental contamination, windborne spread or fomites was the most common route of infection, particularly for large community outbreaks. Exposure to ruminants and/or their products were confirmed as the principal risk factors for infection, with sheep (28/81) as the most common source followed by goats (12/81) and cattle (7/81). Cooperation and data sharing between human and animal health authorities is valuable for outbreak investigation and control using public health and veterinary measures, but this multisectoral approach was seldom applied (14/81). Increased awareness of Q fever among health professionals and the public may facilitate the early detection of emerging outbreaks that are due to non-occupational, environmental exposures in the community.
Collapse
Affiliation(s)
- Tabita Tan
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jane Heller
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Simon Firestone
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Stevenson
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anke Wiethoelter
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
11
|
Miller HK, Branan M, Priestley RA, Álvarez-Alonso R, Cherry C, Smith C, Urie NJ, Wiedenheft A, Bliss C, Marshall K, Kersh GJ. Coxiella burnetii in domestic doe goats in the United States, 2019-2020. Front Vet Sci 2024; 11:1393296. [PMID: 38774910 PMCID: PMC11107086 DOI: 10.3389/fvets.2024.1393296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Coxiella burnetii is a bacterial pathogen capable of causing serious disease in humans and abortions in goats. Infected goats can shed C. burnetii through urine, feces, and parturient byproducts, which can lead to infections in humans when the bacteria are inhaled. Goats are important C. burnetii reservoirs as evidenced by goat-related outbreaks across the world. To better understand the current landscape of C. burnetii infection in the domestic goat population, 4,121 vaginal swabs from 388 operations across the United States were analyzed for the presence of C. burnetii by IS1111 PCR as part of the United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services' National Animal Health Monitoring System Goats 2019 Study. In total, 1.5% (61/4121) of swabs representing 10.3% (40/388) (weighted estimate of 7.8, 95% CI 4.4-13.5) of operations were positive for C. burnetii DNA. The quantity of C. burnetii on positive swabs was low with an average Ct of 37.9. Factors associated with greater odds of testing positive included suspected Q fever in the herd in the previous 3 years, the presence of wild deer or elk on the operation, and the utilization of hormones for estrus synchronization. Factors associated with reduced odds of testing positive include the presence of kittens and treatment of herds with high tannin concentrate plants, diatomaceous earth, and tetrahydropyrimidines. In vitro analysis demonstrated an inhibitory effect of the tetrahydropyrimidine, pyrantel pamoate, on the growth of C. burnetii in axenic media as low as 1 μg per mL. The final multivariable logistic regression modeling identified the presence of wild predators on the operation or adjacent property (OR = 9.0, 95% CI 1.3-61.6, p value = 0.0248) as a risk factor for C. burnetii infection.
Collapse
Affiliation(s)
- Halie K. Miller
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Matthew Branan
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Rachael A. Priestley
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Raquel Álvarez-Alonso
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Cara Cherry
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Cody Smith
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Natalie J. Urie
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Alyson Wiedenheft
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Clayton Bliss
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Katherine Marshall
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, National Animal Health Monitoring System, Fort Collins, CO, United States
| | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
12
|
Mertens-Scholz K, Moawad AA, Liebler-Tenorio EM, Helming A, Andrack J, Miethe P, Neubauer H, Pletz MW, Richter IG. Ultraviolet C inactivation of Coxiella burnetii for production of a structurally preserved whole cell vaccine antigen. BMC Microbiol 2024; 24:118. [PMID: 38575865 PMCID: PMC10993581 DOI: 10.1186/s12866-024-03246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
Q fever, a worldwide-occurring zoonotic disease, can cause economic losses for public and veterinary health systems. Vaccines are not yet available worldwide and currently under development. In this regard, it is important to produce a whole cell antigen, with preserved structural and antigenic properties and free of chemical modifications. Thus, inactivation of Coxiella burnetii with ultraviolet light C (UVC) was evaluated. C. burnetii Nine Mile phase I (NMI) and phase II (NMII) were exposed to decreasing intensities in a time-dependent manner and viability was tested by rescue cultivation in axenic medium or cell culture. Effects on the cell structure were visualized by transmission electron microscopy and antigenicity of UVC-treated NMI was studied by immunization of rabbits. NMI and NMII were inactivated at UVC intensities of 250 µW/cm2 for 5 min or 100 µW/cm2 for 20 min. Reactivation by DNA repair was considered to be unlikely. No morphological changes were observed directly after UVC inactivation by transmission electron microscopy, but severe swelling and membrane degradation of bacteria with increasing severity occurred after 24 and 48 h. Immunization of rabbits resulted in a pronounced antibody response. UVC inactivation of C. burnetii resulted in a structural preserved, safe whole cell antigen and might be useful as antigen for diagnostic purposes or as vaccine candidate.
Collapse
Affiliation(s)
- Katja Mertens-Scholz
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany.
- Institute for Infectious Diseases and Infection Control and Center for Sepsis Care and Control (CSCC), Jena University Hospital, Jena, Germany.
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | | | - Andrea Helming
- Department of In Vitro Diagnostics Development, Research Centre of Medical Technology and Biotechnology, Erfurt, Germany
| | - Jennifer Andrack
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Peter Miethe
- Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control and Center for Sepsis Care and Control (CSCC), Jena University Hospital, Jena, Germany
| | - Ina-Gabriele Richter
- Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany
| |
Collapse
|
13
|
Zendoia II, Barandika JF, Cevidanes A, Hurtado A, García-Pérez AL. Coxiella burnetii infection persistence in a goat herd during seven kidding seasons after an outbreak of abortions: the effect of vaccination. Appl Environ Microbiol 2024; 90:e0220123. [PMID: 38412030 PMCID: PMC10952520 DOI: 10.1128/aem.02201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Coxiella burnetii infection was monitored during seven kidding seasons (2017-2023) in a dairy goat herd that after an outbreak of Q fever abortions was vaccinated with an inactivated phase I vaccine. Due to the high infection rate just after the outbreak, only the replacement stock was vaccinated during the first three kidding seasons, and when the average herd immunity had decreased (fourth kidding season onwards), the whole herd was vaccinated. Vaginal swabs, feces, and milk were analyzed by PCR to monitor infection, and dust and aerosols were analyzed to measure C. burnetii environmental contamination. One year after the onset of the outbreak, a significant reduction in C. burnetii shedding loads was observed, but the percentage of shedding animals remained high until the third kidding season. By the seventh kidding season, no shedders were detected. The bacterial load excreted was significantly lower in vaccinated compared with unvaccinated animals, and in yearlings compared with multiparous. C. burnetii was detected by PCR in aerosols collected inside the animal premises throughout the study period except in the last season; whereas, aerosols collected outdoors tested negative in the last three kidding seasons. Viable C. burnetii was detectable in environmental dust collected inside the barn until the third kidding season following the outbreak. These results indicate that after an outbreak of Q fever, the risk of infection for humans and susceptible animals can remain high for at least three kidding seasons when the number of C. burnetii animal shedders is still high, even when bacterial excretion is low. IMPORTANCE Q fever is a zoonosis distributed worldwide. Ruminants are the main reservoir, and infection can cause high rates of abortion. After entering a farm, Coxiella burnetii infection can persist in the animal population over several lambing/kidding periods. Once infection is established in a herd, vaccination with the inactivated Phase I vaccine significantly reduces bacterial shedding, but although at low levels, excretion may continue to occur for several lambing/kidding seasons. The time that C. burnetii remains viable in the farm environment after an outbreak of Q fever determines the period when risk of infection is high for the people in close contact. This work showed that this period extends at least three kidding seasons after the outbreak. These results provided valuable information on the epidemiology of C. burnetii infection in goat herds and may help to develop guidelines for controlling the disease and reducing infection risk for susceptible people and animals.
Collapse
Affiliation(s)
- Ion I. Zendoia
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Jesús F. Barandika
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Aitor Cevidanes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana Hurtado
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana L. García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
14
|
Welch JL, Branan M, Urie N, Shrestha R, Wiedenheft A, Marshall K, Robbe-Austerman S, Shanmuganatham KK. Coxiella burnetii seroprevalence in domestic goat does in the United States: Prevalence, distribution, and associated risk factors. Prev Vet Med 2024; 223:106114. [PMID: 38198901 DOI: 10.1016/j.prevetmed.2023.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Infection with the bacterium Coxiella burnetii can cause coxiellosis in animals and Q fever in humans. Coxiellosis a consistently underreported infectious disease. The infection can result in reproductive consequences for humans and animals. Ruminants are a reservoir for infection and humans are generally infected via aerosolized secretions, making it a public health concern. Studies of ruminant seroprevalence are generally limited in size and scope. This study determined seroprevalence in a large-scale U.S. population of female goats using serum samples from 7736 does from 24 states. This study identified C. burnetii seroprevalence in the United States domestic goat population. Overall, 14.5 % (SE = 2.3) of does were seropositive and 21.0 % (SE = 2.4) of operations had at least 1 seropositive doe. Further, operation demographics and herd management practices associated with seropositivity were as follows: the suspected or confirmed presence of caprine arthritis encephalitis (CAE), caseous lymphadenitis (CL), Johne's disease, or sore mouth in the herd in the previous 3 years, not cleaning or disinfecting the kidding areas or removing aborting does from other does, allowing visitors to access the kidding areas, and a lower percentage of adult goat inventory that were adult bucks or wethers. Furthermore, goat breed was associated with seropositivity. These data show C. burnetii seroprevalence in the United States and identify operation and animal characteristics and management practices associated with C. burnetii seropositivity. Together, this information can be used to help limit animal transmission, inform public health measures, and help educate and protect individuals working with goats.
Collapse
Affiliation(s)
- Jennifer L Welch
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Matthew Branan
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Natalie Urie
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA.
| | - Ram Shrestha
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Alyson Wiedenheft
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA; Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Katherine Marshall
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Suelee Robbe-Austerman
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Karthik K Shanmuganatham
- Method Development and Scientific Support, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
15
|
Mazwi KD, Kolo FB, Jaja IF, Bokaba RP, Ngoshe YB, Hassim A, Neves L, van Heerden H. Serological Evidence and Coexposure of Selected Infections among Livestock Slaughtered at Eastern Cape Abattoirs in South Africa. Int J Microbiol 2023; 2023:8906971. [PMID: 38077996 PMCID: PMC10708957 DOI: 10.1155/2023/8906971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 05/08/2024] Open
Abstract
Zoonotic infections were investigated in a cross-sectional study on asymptomatic livestock slaughtered in abattoirs in the Eastern Cape. Antibodies against Brucella spp., Coxiella burnetii, Toxoplasma gondii, and the coexposure were investigated in sera using serological tests. A total of 565 animals comprising of 280 cattle, 200 sheep, and 85 pigs were screened using RBT, iELISA, CFT, and AMOS-PCR. The Mast® Toxoreagent test and iELISA were used for the detection of T. gondii and C. burnetii, respectively. The Brucella positivity based on at least two tests was 4.3% (12/280), 1.0% (2/200), and 0.0% (0/85) in cattle, sheep, and pigs, respectively. Toxoplasma gondii seropositivity of 37.90% (106/280), 1.50% (3/200), and 7.10% (6/85) was observed in cattle, sheep, and pigs, respectively. Coxiella burnetii seropositivity of 26.40% (74/280), 15.00% (30/200), and 2.40% (2/85) was observed in cattle, sheep, and pigs, respectively. Coexposure was detected in cattle for positivity against C. burnetii and T. gondii 40.54%, Brucella spp. and T. gondii 1.35%, and Brucella spp. and C. burnetii 4.05%. Coexposure for Brucella spp., C. burnetii, and T. gondii 4.05% was detected in cattle. Coexposure of Brucella spp. and C. burnetii 6.67% was detected in sheep. The AMOS-PCR identified B. abortus in cattle and a mixed infection of B. abortus and B. melitensis in sheep in 64.71% seropositive samples. To our knowledge, the coexposure of Brucella spp., T. gondii, and C. burnetii in cattle has not been reported. Coexposure of Brucella spp. and C. burnetii in cattle and sheep is significant as it results in reproductive losses and constitutes an infectious risk to humans. The detection of antibodies against multiple zoonotic infections in livestock from abattoirs has implications for public health.
Collapse
Affiliation(s)
- K. D. Mazwi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - F. B. Kolo
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - I. F. Jaja
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Roodepoort, Johannesburg, South Africa
| | - R. P. Bokaba
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Y. B. Ngoshe
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - A. Hassim
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - L. Neves
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - H. van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
16
|
Trachsel C, Hirsbrunner G, Herms TL, Runge M, Kiene F, Ganter M, Zanolari P, Bauer BU. Two Years after Coxiella burnetii Detection: Pathogen Shedding and Phase-Specific Antibody Response in Three Dairy Goat Herds. Animals (Basel) 2023; 13:3048. [PMID: 37835654 PMCID: PMC10571745 DOI: 10.3390/ani13193048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The infection dynamics of Coxiella (C.) burnetii were investigated in three dairy goat herds (A, B, and C) 2 years after the first pathogen detection. A total of 28 and 29 goats from herds A and B, and 35 goats from herd C, were examined. Sera were analyzed on three sampling dates using phase-specific serology. Pathogen shedding was assessed using post-partum vaginal swabs and monthly bulk tank milk (BTM) samples. Dust samples from a barn and milking parlor were also collected monthly. These samples were analyzed with PCR (target IS1111). In herd A, individual animals tested seropositive, while vaginal swabs, BTM, and most dust samples tested negative. Herds B and C exhibited high IgG phase I activity, indicating a past infection. In herd B, approximately two-thirds of the goats shed C. burnetii with vaginal mucus, and irregular positive results were obtained from BTM. Herd C had two positive goats based on vaginal swabs, and BTM tested positive once. Dust samples from herds B and C contained C. burnetii DNA, with higher quantities typically found in samples from the milking parlor. This study highlights the different infection dynamics in three unvaccinated dairy goat herds and the potential use of dust samples as a supportive tool to detect C. burnetii at the herd level.
Collapse
Affiliation(s)
- Christa Trachsel
- Clinic for Ruminants, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (C.T.); (G.H.)
| | - Gaby Hirsbrunner
- Clinic for Ruminants, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (C.T.); (G.H.)
| | - T. Louise Herms
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany; (T.L.H.); (M.R.)
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany; (T.L.H.); (M.R.)
| | - Frederik Kiene
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany; (F.K.); (M.G.); (B.U.B.)
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany; (F.K.); (M.G.); (B.U.B.)
| | - Patrik Zanolari
- Clinic for Ruminants, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (C.T.); (G.H.)
| | - Benjamin U. Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany; (F.K.); (M.G.); (B.U.B.)
| |
Collapse
|
17
|
Two phase feature-ranking for new soil dataset for Coxiella burnetii persistence and classification using machine learning models. Sci Rep 2023; 13:29. [PMID: 36593267 PMCID: PMC9807593 DOI: 10.1038/s41598-022-26956-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Coxiella burnetii (Cb) is a hardy, stealth bacterial pathogen lethal for humans and animals. Its tremendous resistance to the environment, ease of propagation, and incredibly low infectious dosage make it an attractive organism for biowarfare. Current research on the classification of Coxiella and features influencing its presence in the soil is generally confined to statistical techniques. Machine learning other than traditional approaches can help us better predict epidemiological modeling for this soil-based pathogen of public significance. We developed a two-phase feature-ranking technique for the pathogen on a new soil feature dataset. The feature ranking applies methods such as ReliefF (RLF), OneR (ONR), and correlation (CR) for the first phase and a combination of techniques utilizing weighted scores to determine the final soil attribute ranks in the second phase. Different classification methods such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Multi-Layer Perceptron (MLP) have been utilized for the classification of soil attribute dataset for Coxiella positive and negative soils. The feature-ranking methods established that potassium, chromium, cadmium, nitrogen, organic matter, and soluble salts are the most significant attributes. At the same time, manganese, clay, phosphorous, copper, and lead are the least contributing soil features for the prevalence of the bacteria. However, potassium is the most influential feature, and manganese is the least significant soil feature. The attribute ranking using RLF generates the most promising results among the ranking methods by generating an accuracy of 80.85% for MLP, 79.79% for LR, and 79.8% for LDA. Overall, SVM and MLP are the best-performing classifiers, where SVM yields an accuracy of 82.98% and 81.91% for attribute ranking by CR and RLF; and MLP generates an accuracy of 76.60% for ONR. Thus, machine models can help us better understand the environment, assisting in the prevalence of bacteria and decreasing the chances of false classification. Subsequently, this can assist in controlling epidemics and alleviating the devastating effect on the socio-economics of society.
Collapse
|
18
|
Coxiella burnetii and Co-Infections with Other Major Pathogens Causing Abortion in Small Ruminant Flocks in the Iberian Peninsula. Animals (Basel) 2022; 12:ani12243454. [PMID: 36552374 PMCID: PMC9774532 DOI: 10.3390/ani12243454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii is an intracellular bacterium causing human Q fever and reproductive disorders in domestic ruminants. We analyzed the occurrence of C. burnetii and co-infections with six other major pathogens causing abortion in sheep (1242 cases) and goat (371 cases) flocks from Spain and Portugal. After real-time PCR detection, co-infections were established by principal component and cluster analysis that grouped cases based on the joint presence/absence of several microorganisms. C. burnetii and Chlamydia abortus were the most common abortifacient agents with approximately 75% of cases from both hosts testing positive, followed by Toxoplasma gondii, Campylobacter sp., Salmonella enterica, border disease virus and Neospora caninum. C. burnetii was significantly more common than C. abortus in goat abortions (p < 0.001). Co-infections with at least two pathogens were found in more than 66% cases of ovine abortions and 36% cases of caprine abortions testing positive for C. burnetii, mostly including mixed infections with only C. abortus. These findings indicate that both pathogens are the most significant ones to be readily prevented by vaccination in this geographical area. Biosecurity and biocontainment measures are also steadfastly recommended to prevent both the economic losses and public health risks associated with most of these abortifacient agents.
Collapse
|
19
|
Silva-Ramos CR, Faccini-Martínez ÁA, Pérez-Torres J, Hidalgo M, Cuervo C. First molecular evidence of Coxiella burnetii in bats from Colombia. Res Vet Sci 2022; 150:33-35. [DOI: 10.1016/j.rvsc.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
20
|
Abstract
Coxiella burnetii, the etiological agent of Q fever, is an intracellular zoonotic pathogen transmitted via the respiratory route. Once released from infected animals, C. burnetii can travel long distances through air before infecting another host. As such, the ability to detect the presence of C. burnetii in air is important. In this study, three air samplers, AirPort MD8, BioSampler, and the Coriolis Micro, were assessed against a set of predetermined criteria in the presence of three different aerosolized C. burnetii concentrations. Two liquid collection media, phosphate-buffered saline (PBS) and alkaline polyethylene glycol (Alk PEG), were tested with devices requiring a collection liquid. Samples were tested by quantitative polymerase chain reaction assay (qPCR) targeting the single-copy com1 gene or multicopy insertion element IS1111. All air samplers performed well at detecting airborne C. burnetii across the range of concentrations tested. At high nebulized concentrations, AirPort MD8 showed higher, but variable, recovery probabilities. While the BioSampler and Coriolis Micro recovered C. burnetii at lower concentrations, the replicates were far more repeatable. At low and intermediate nebulized concentrations, results were comparable in the trials between air samplers, although the AirPort MD8 had consistently higher recovery probabilities. In this first study validating air samplers for their ability to detect aerosolized C. burnetii, we found that while all samplers performed well, not all samplers were equal. It is important that these results are further validated under field conditions. These findings will further inform efforts to detect airborne C. burnetii around known point sources of infection. IMPORTANCE Coxiella burnetii causes Q fever in humans and coxiellosis in animals. It is important to know if C. burnetii is present in the air around putative sources as it is transmitted via inhalation. This study assessed air samplers (AirPort MD8, BioSampler, and Coriolis Micro) for their efficacy in detecting C. burnetii. Our results show that all three devices could detect aerosolized bacteria effectively; however, at high concentrations the AirPort performed better than the other two devices, showing higher percent recovery. At intermediate and low concentrations AirPort detected at a level higher than or similar to that of other samplers. Quantification of samples was hindered by the limit of quantitation of the qPCR assay. Compared with the other two devices, the AirPort was easier to handle and clean in the field. Testing air around likely sources (e.g., farms, abattoirs, and livestock saleyards) using validated sampling devices will help better estimate the risk of Q fever to nearby communities.
Collapse
|
21
|
Muema J, Nyamai M, Wheelhouse N, Njuguna J, Jost C, Oyugi J, Bukania Z, Oboge H, Ogoti B, Makori A, Fernandez MDP, Omulo S, Thumbi S. Endemicity of Coxiella burnetii infection among people and their livestock in pastoral communities in northern Kenya. Heliyon 2022; 8:e11133. [PMID: 36303929 PMCID: PMC9593183 DOI: 10.1016/j.heliyon.2022.e11133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Coxiella burnetti can be transmitted to humans primarily through inhaling contaminated droplets released from infected animals or consumption of contaminated dairy products. Despite its zoonotic nature and the close association pastoralist communities have with their livestock, studies reporting simultaneous assessment of C. burnetti exposure and risk-factors among people and their livestock are scarce. Objective This study therefore estimated the seroprevalence of Q-fever and associated risk factors of exposure in people and their livestock. Materials and methods We conducted a cross-sectional study in pastoralist communities in Marsabit County in northern Kenya. A total of 1,074 women and 225 children were enrolled and provided blood samples for Q-fever testing. Additionally, 1,876 goats, 322 sheep and 189 camels from the same households were sampled. A structured questionnaire was administered to collect individual- and household/herd-level data. Indirect IgG ELISA kits were used to test the samples. Results Household-level seropositivity was 13.2% [95% CI: 11.2–15.3]; differences in seropositivity levels among women and children were statistically insignificant (p = 0.8531). Lactating women had higher odds of exposure, odds ratio (OR) = 2.4 [1.3–5.3], while the odds of exposure among children increased with age OR = 1.1 [1.0–1.1]. Herd-level seroprevalence was 83.7% [81.7–85.6]. Seropositivity among goats was 74.7% [72.7–76.7], while that among sheep and camels was 56.8% [51.2–62.3] and 38.6% [31.6–45.9], respectively. Goats and sheep had a higher risk of exposure OR = 5.4 [3.7–7.3] and 2.6 [1.8–3.4], respectively relative to camels. There was no statistically significant association between Q-fever seropositivity and nutrition status in women, p = 0.900 and children, p = 1.000. We found no significant association between exposure in people and their livestock at household level (p = 0.724) despite high animal exposure levels, suggesting that Q-fever exposure in humans may be occurring at a scale larger than households. Conclusion The one health approach used in this study revealed that Q-fever is endemic in this setting. Longitudinal studies of Q-fever burden and risk factors simultaneously assessed in human and animal populations as well as the socioeconomic impacts of the disease and further explore the role of environmental factors in Q-fever epidemiology are required. Such evidence may form the basis for designing Q-fever prevention and control strategies.
Collapse
Affiliation(s)
- Josphat Muema
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Corresponding author.
| | - Mutono Nyamai
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Joseph Njuguna
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Christine Jost
- United States Agency for International Development's Bureau for Humanitarian Assistance (USAID/BHA), Washington, DC, USA,Global Health Support Initiative III, Social Solutions International, Washington DC, USA
| | - Julius Oyugi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Zipporah Bukania
- Center for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Harriet Oboge
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA
| | - Brian Ogoti
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Anita Makori
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Sylvia Omulo
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | - S.M. Thumbi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya,Paul G. Allen School for Global Health, Washington State University, Pullman, USA,South African Center for Epidemiological Modelling Analysis, South Africa,Institute of Immunology and Infection Research, University of Edinburgh, UK
| |
Collapse
|
22
|
Bauer BU, Herms TL, Runge M, Ganter M. A Q fever outbreak on a dairy goat farm did not result in Coxiella burnetii shedding on neighboring sheep farms – An observational study. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ullah Q, Jamil T, Saqib M, Iqbal M, Neubauer H. Q Fever—A Neglected Zoonosis. Microorganisms 2022; 10:microorganisms10081530. [PMID: 36013948 PMCID: PMC9416428 DOI: 10.3390/microorganisms10081530] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Q fever remains a neglected zoonosis in many developing countries including Pakistan. The causing agent Coxiella (C.) burnetii is resistant to environmental factors (such as drying, heat and many disinfectants), resulting in a long-lasting infection risk for both human and animals. As the infection is usually asymptomatic, it mostly remains undiagnosed in animals until and unless adverse pregnancy outcomes occur in a herd. In humans, the infection leads to severe endocarditis and vascular infection in chronic cases. Limited data are available on molecular epidemiology and evolution of this pathogen, especially in ruminants. Genomic studies will help speculating outbreak relationships in this scenario. Likewise, pathogenesis of C. burnetii needs to be explored by molecular studies. Awareness programs and ensuring pasteurization of the dairy milk before human consumption would help preventing Q fever zoonosis.
Collapse
Affiliation(s)
- Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan 29111, Pakistan
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (Q.U.); (T.J.); (M.S.)
| | - Mudassar Iqbal
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| |
Collapse
|
24
|
Rebollada-Merino A, Pérez-Sancho M, Rodríguez-Bertos A, García N, Martínez I, Navarro A, Domínguez L, García-Seco T. Environment and Offspring Surveillance in Porcine Brucellosis. Front Vet Sci 2022; 9:915692. [PMID: 35799841 PMCID: PMC9253667 DOI: 10.3389/fvets.2022.915692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine brucellosis, caused by Brucella suis (B. suis), is a notifiable disease causing significant economic losses in production systems. Most infected pigs may act as carriers and shed B. suis even if asymptomatic. This can contribute to environmental persistence, thus hindering control efforts. Here, the environment and the offspring were investigated during and after a B. suis outbreak at a sow breeding farm. The diagnosis of B. suis in sows (n = 1,140) was performed by culture and polymerase chain reaction (PCR) from vaginal swabs, indirect enzyme-linked immunosorbent assay (I-ELISA) from sera, and brucellin skin test (BST). B. suis diagnosis in post-weaning pigs (n = 899) was performed by I-ELISA in sera and BST. The environmental surveillance programme was implemented by placing gauze sponges (n = 175) pre-hydrated in a surfactant and inactivating liquid for Brucella DNA detection by PCR in different farm areas. Our results showed that the offspring of infected sows reacted to in vivo techniques for B. suis. Furthermore, the offspring born during the outbreak displayed higher seropositivity (I-ELISA) and reactivity (BST) than those pigs born after. Brucella DNA was detected in pregnant sow areas, boxes, boots, and post-weaning pig areas. In addition, Brucella DNA environmental detection was higher during the B. suis outbreak than the post B. suis outbreak. The environmental approach has proven to be a simple, practical, valuable, and safe method to detect and monitor B. suis. These results suggest a role of the environment and the offspring that should be considered in porcine brucellosis surveillance and control programmes.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Marta Pérez-Sancho
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Nerea García
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Irene Martínez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Navarro
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Tan TS, Hernandez‐Jover M, Hayes LM, Wiethoelter A, Firestone SM, Stevenson MA, Heller J. Identifying scenarios and risk factors for Q fever outbreaks using qualitative analysis of expert opinion. Zoonoses Public Health 2022; 69:344-358. [PMID: 35243790 PMCID: PMC9310758 DOI: 10.1111/zph.12923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Q fever is an important zoonotic disease perceived to be an occupational hazard for those working with livestock. Outbreaks involving large numbers of people are uncommon, but the increasing case incidence coupled with changing environmental and industry conditions that promote transmission of Q fever has raised concerns that large and serious outbreaks could become more frequent. The aim of this study was to use expert opinion to better understand how large Q fever outbreaks might occur in an Australian context and to document factors believed to be drivers of disease transmission. Focus groups were conducted with human and animal health professionals across several Australian states. All discussions were recorded, transcribed verbatim and imported into NVIVO for thematic analysis. Four anthropogenic risk factors (disease awareness, industry practices, land use, human behaviour) and three ecological risk factors (physical environment, agent dissemination, animal hosts) emerged from the data. Analysis of expert opinions pointed to the existence of numerous scenarios in which Q fever outbreaks could occur, many of which depict acquisition in the wider community outside of traditional at-risk occupations. This perception of the expansion of Q fever from occupational-acquisition to community-acquisition is driven by greater overarching economic, political and socio-cultural influences that govern the way in which people live and work. Findings from this study highlight that outbreaks are complex phenomena that involve the convergence of diverse elements, not just that of the pathogen and host, but also the physical, political and socioeconomic environments in which they interact. A review of the approaches to prevent and manage Q fever outbreaks will require a multisectorial approach and strengthening of community education, communication and engagement so that all stakeholders become an integrated part of outbreak mitigation and response.
Collapse
Affiliation(s)
- Tabita Su‐En Tan
- Gulbali InstituteCharles Sturt UniversityWagga WaggaAustralia
- School of Animal and Veterinary SciencesCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | - Marta Hernandez‐Jover
- Gulbali InstituteCharles Sturt UniversityWagga WaggaAustralia
- School of Animal and Veterinary SciencesCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | - Lynne Maree Hayes
- Gulbali InstituteCharles Sturt UniversityWagga WaggaAustralia
- School of Animal and Veterinary SciencesCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | - Anke Katrin Wiethoelter
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Simon Matthew Firestone
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Mark Anthony Stevenson
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Jane Heller
- Gulbali InstituteCharles Sturt UniversityWagga WaggaAustralia
- School of Animal and Veterinary SciencesCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| |
Collapse
|
26
|
Yessinou RE, Katja MS, Heinrich N, Farougou S. Prevalence of Coxiella-infections in ticks - review and meta-analysis. Ticks Tick Borne Dis 2022; 13:101926. [DOI: 10.1016/j.ttbdis.2022.101926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/04/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
27
|
Eckstein S, Ehmann R, Gritli A, Ben Rhaiem M, Ben Yahia H, Diehl M, Wölfel R, Handrick S, Ben Moussa M, Stoecker K. Viral and Bacterial Zoonotic Agents in Dromedary Camels from Southern Tunisia: A Seroprevalence Study. Microorganisms 2022; 10:microorganisms10040727. [PMID: 35456778 PMCID: PMC9028256 DOI: 10.3390/microorganisms10040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
The rapid spread of SARS-CoV-2 clearly demonstrated the potential of zoonotic diseases to cause severe harm to public health. Having limited access to medical care combined with severe underreporting and a lack of active surveillance, Africa carries a high burden of neglected zoonotic diseases. Therefore, the epidemiological monitoring of pathogen circulation is essential. Recently, we found extensive Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence in free-roaming dromedary camels from southern Tunisia. In this study, we aimed to investigate the seroprevalence, and thus the risk posed to public health, of two additional viral and two bacterial pathogens in Tunisian dromedaries: Rift Valley fever virus (RVFV), foot-and-mouth disease virus (FMDV), Coxiella burnetii and Brucella spp. via ELISA. With 73.6% seropositivity, most animals had previously been exposed to the causative agent of Q fever, C. burnetii. Additionally, 7.4% and 1.0% of the dromedaries had antibodies against Brucella and RVFV, respectively, while no evidence was found for the occurrence of FMDV. Our studies revealed considerable immunological evidence of various pathogens within Tunisian dromedary camels. Since these animals have intense contact with humans, they pose a high risk of transmitting serious zoonotic diseases during active infection. The identification of appropriate countermeasures is therefore highly desirable.
Collapse
Affiliation(s)
- Simone Eckstein
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
- Correspondence: ; Tel.: +49-992692-3990
| | - Rosina Ehmann
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Abderraouf Gritli
- Veterinary Service, General Directorate of Military Health, Ministry of National Defense, Tunis 1000, Tunisia; (A.G.); (M.B.R.); (H.B.Y.)
| | - Mohamed Ben Rhaiem
- Veterinary Service, General Directorate of Military Health, Ministry of National Defense, Tunis 1000, Tunisia; (A.G.); (M.B.R.); (H.B.Y.)
| | - Houcine Ben Yahia
- Veterinary Service, General Directorate of Military Health, Ministry of National Defense, Tunis 1000, Tunisia; (A.G.); (M.B.R.); (H.B.Y.)
| | - Manuel Diehl
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Susann Handrick
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| | - Mohamed Ben Moussa
- Department of Virology, Military Hospital of Instruction of Tunis, Tunis 1008, Tunisia;
| | - Kilian Stoecker
- Bundeswehr Institute of Microbiology (IMB), 80937 Munich, Germany; (R.E.); (M.D.); (R.W.); (S.H.); (K.S.)
| |
Collapse
|
28
|
Mwololo D, Nthiwa D, Kitala P, Abuom T, Wainaina M, Kairu-Wanyoike S, Lindahl JF, Ontiri E, Bukachi S, Njeru I, Karanja J, Sang R, Grace D, Bett B. Sero-epidemiological survey of Coxiella burnetii in livestock and humans in Tana River and Garissa counties in Kenya. PLoS Negl Trop Dis 2022; 16:e0010214. [PMID: 35239658 PMCID: PMC8923444 DOI: 10.1371/journal.pntd.0010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/15/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coxiella burnetii is a widely distributed pathogen, but data on its epidemiology in livestock, and human populations remain scanty, especially in developing countries such as Kenya. We used the One Health approach to estimate the seroprevalance of C. burnetii in cattle, sheep, goats and human populations in Tana River county, and in humans in Garissa county, Kenya. We also identified potential determinants of exposure among these hosts. Methods Data were collected through a cross-sectional study. Serum samples were taken from 2,727 animals (466 cattle, 1,333 goats, and 928 sheep) and 974 humans and screened for Phase I/II IgG antibodies against C. burnetii using enzyme-linked immunosorbent assay (ELISA). Data on potential factors associated with animal and human exposure were collected using a structured questionnaire. Multivariable analyses were performed with households as a random effect to adjust for the within-household correlation of C. burnetii exposure among animals and humans, respectively. Results The overall apparent seroprevalence estimates of C. burnetii in livestock and humans were 12.80% (95% confidence interval [CI]: 11.57–14.11) and 24.44% (95% CI: 21.77–27.26), respectively. In livestock, the seroprevalence differed significantly by species (p < 0.01). The highest seroprevalence estimates were observed in goats (15.22%, 95% CI: 13.34-17.27) and sheep (14.22%, 95% CI: 12.04–16.64) while cattle (3.00%, 95% CI: 1.65–4.99) had the lowest seroprevalence. Herd-level seropositivity of C. burnetii in livestock was not positively associated with human exposure. Multivariable results showed that female animals had higher odds of seropositivity for C. burnetii than males, while for animal age groups, adult animals had higher odds of seropositivity than calves, kids or lambs. For livestock species, both sheep and goats had significantly higher odds of seropositivity than cattle. In human populations, men had a significantly higher odds of testing positive for C. burnetii than women. Conclusions This study provides evidence of livestock and human exposure to C. burnetii which could have serious economic implications on livestock production and impact on human health. These results also highlight the need to establish active surveillance in the study area to reduce the disease burden associated with this pathogen. Q fever caused by Coxiella burnetii is a significant zoonotic disease that affects wildlife, domestic animals and humans. This study determined the prevalence of antibodies to C. burnetii in livestock (cattle, sheep, and goats) and human populations in arid and semi-arid areas of Kenya between December 2013 and February 2014. We also identified potential factors that were associated with exposure among the above-targeted hosts. Results from this study showed considerable exposure in both livestock and human populations. However, human exposure to this pathogen at the household level was not correlated with herd-level seropositivity. Further studies are needed to elucidate the transmission routes of this pathogen among humans.
Collapse
Affiliation(s)
- Damaris Mwololo
- Directorate of Veterinary Services, Ministry of Agriculture, Livestock, Fisheries and Cooperatives, Nairobi, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
- International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| | - Philip Kitala
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Tequiero Abuom
- Department of Clinical Medicine, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | | | - Salome Kairu-Wanyoike
- Department of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Johanna F. Lindahl
- International Livestock Research Institute, Nairobi, Kenya
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Enoch Ontiri
- International Livestock Research Institute, Nairobi, Kenya
| | - Salome Bukachi
- Institute of Anthropology, University of Nairobi, Nairobi, Kenya
| | - Ian Njeru
- Division of Disease Surveillance and Response, Ministry of Public Health and Sanitation, Kenyatta National Hospital, Nairobi, Kenya
| | - Joan Karanja
- Division of Disease Surveillance and Response, Ministry of Public Health and Sanitation, Kenyatta National Hospital, Nairobi, Kenya
| | | | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
29
|
Surveillance of Coxiella burnetii Shedding in Three Naturally Infected Dairy Goat Herds after Vaccination, Focusing on Bulk Tank Milk and Dust Swabs. Vet Sci 2022; 9:vetsci9030102. [PMID: 35324830 PMCID: PMC8950187 DOI: 10.3390/vetsci9030102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Q fever outbreaks on three dairy goat farms (A–C) were monitored after the animals had been vaccinated with an inactivated Coxiella burnetii phase I vaccine. The antibody response was measured before vaccination by serum samples with two C. burnetii phase-specific ELISAs to characterize the disease status. Shedding was determined by vaginal swabs during three kidding seasons and monthly bulk tank milk (BTM) samples. Dust swabs from one windowsill of each barn and from the milking parlors were collected monthly to evaluate the indoor exposure. These samples were analyzed by qPCR. The phase-specific serology revealed an acute Q fever infection in herd A, whereas herds B and C had an ongoing and past infection, respectively. In all three herds, vaginal shedders were present during three kidding seasons. In total, 50%, 69%, and 15% of all collected BTM samples were C. burnetii positive in herds A, B, and C, respectively. Barn dust contained C. burnetii DNA in 71%, 45%, and 50% of examined swabs collected from farms A, B, and C, respectively. The largest number of C. burnetii positive samples was obtained from the milking parlor (A: 91%, B: 72%, C: 73%), indicating a high risk for humans to acquire Q fever during milking activity.
Collapse
|
30
|
Cherry CC, Nichols Heitman K, Bestul NC, Kersh GJ. Acute and chronic Q fever national surveillance - United States, 2008-2017. Zoonoses Public Health 2021; 69:73-82. [PMID: 34626097 DOI: 10.1111/zph.12896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
Q fever is a zoonotic disease caused by the bacterium Coxiella burnetii and can manifest in an acute or chronic form. Many persons with acute Q fever are asymptomatic, but some develop a febrile illness, pneumonia or hepatitis. Chronic infections are rare and occur in less than 5% of persons exposed. Forms of chronic Q fever include endocarditis, infection of vascular grafts or aneurysms, osteomyelitis and osteoarthritis. Acute and chronic Q fever are nationally notifiable diseases, and presented here are the incidence, demographics and distribution of acute and chronic Q fever in the United States during 2008-2017. We summarized passive surveillance data from the Centers for Disease Control and Prevention's (CDC) National Notifiable Diseases Surveillance System (NNDSS) and supplemental case report forms (CRFs). Health departments reported 1,109 cases of acute Q fever and 272 chronic Q fever cases to NNDSS during this period. The 10-year average annual incidence for acute Q fever was 0.36 cases per million persons, and the average annual incidence for chronic Q fever was 0.09. Males accounted for nearly 75% of both acute and chronic Q fever cases. Average annual incidence was highest among persons aged 60-69 years for both acute and chronic Q fever (0.70 cases per million persons and 0.25, respectively). As reported through CRFs, many Q fever cases did not have a known exposure to C. burnetii; 60% (n = 380) of acute Q fever cases did not report exposure to animals in the 2 months before symptom onset. Almost 90% (n = 558) did not report exposure to unpasteurized milk. Only 40% (n = 247) of persons with reported Q fever were employed in high-risk occupations. Even though Q fever is a rare disease in the United States, incidence doubled from 2008 to 2017.
Collapse
Affiliation(s)
- Cara C Cherry
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Nichols Heitman
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicolette C Bestul
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - Gilbert J Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Priestley RA, Smith CB, Miller HK, Kersh GJ. Coxiella burnetii infections in mice: Immunological responses to contemporary genotypes found in the US. Virulence 2021; 12:2461-2473. [PMID: 34516359 PMCID: PMC8451504 DOI: 10.1080/21505594.2021.1975527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium that causes the human disease Q fever, which can manifest as an acute flu-like illness or a long-term chronic illness, such as endocarditis. Three genotypes (ST8, ST16, and ST20) of Coxiella burnetii are commonly found in the contemporary US and are associated with specific animal hosts. Although all three genotypes have been isolated from humans with Q fever, studies comparing virulence between C. burnetii sequence types have been rare. Here, groups of mice were infected via aerosol inoculation with isolates derived from cow's milk, environmental, animal, and human samples. Mice were monitored for weight loss and blood samples were takenweekly. Animals were euthanized at 2- and 12-weeks post-infection, and bacterial burden was determined for tissues by real-time PCR. The levels of anti-Coxiella antibodies and selected inflammatory cytokines were determined for serum samples. Weight loss and splenomegaly were observed in mice infected with ST20 and ST16 isolates but were absent in the mice infected with ST8 isolates. Bacterial concentrations in the tissues were lower in the ST8 isolates at 2 weeks post-infection relative to all other isolates. ST16 and ST20 isolates induced robust antibody and cytokine responses, while ST8 isolates produced significantly lower anti-C. burnetii titers early in the infection but saw increased titers in some animals several weeks post-infection. The data suggest that the ST8 isolates are less virulent in this mouse model, as they produce less robust antibody responses that are slow to develop, relative to the ST16 and ST20 isolates.
Collapse
Affiliation(s)
- Rachael A Priestley
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - Cody B Smith
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - Halie K Miller
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - Gilbert J Kersh
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| |
Collapse
|
32
|
Guzman RM, Howard ZP, Liu Z, Oliveira RD, Massa AT, Omsland A, White SN, Goodman AG. Natural genetic variation in Drosophila melanogaster reveals genes associated with Coxiella burnetii infection. Genetics 2021; 217:6117219. [PMID: 33789347 PMCID: PMC8045698 DOI: 10.1093/genetics/iyab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
The gram-negative bacterium Coxiella burnetii is the causative agent of Query (Q) fever in humans and coxiellosis in livestock. Host genetics are associated with C. burnetii pathogenesis both in humans and animals; however, it remains unknown if specific genes are associated with severity of infection. We employed the Drosophila Genetics Reference Panel to perform a genome-wide association study to identify host genetic variants that affect host survival to C. burnetii infection. The genome-wide association study identified 64 unique variants (P < 10−5) associated with 25 candidate genes. We examined the role each candidate gene contributes to host survival during C. burnetii infection using flies carrying a null mutation or RNAi knockdown of each candidate. We validated 15 of the 25 candidate genes using at least one method. This is the first report establishing involvement of many of these genes or their homologs with C. burnetii susceptibility in any system. Among the validated genes, FER and tara play roles in the JAK/STAT, JNK, and decapentaplegic/TGF-β signaling pathways which are components of known innate immune responses to C. burnetii infection. CG42673 and DIP-ε play roles in bacterial infection and synaptic signaling but have no previous association with C. burnetii pathogenesis. Furthermore, since the mammalian ortholog of CG13404 (PLGRKT) is an important regulator of macrophage function, CG13404 could play a role in host susceptibility to C. burnetii through hemocyte regulation. These insights provide a foundation for further investigation regarding the genetics of C. burnetii susceptibility across a wide variety of hosts.
Collapse
Affiliation(s)
- Rosa M Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Zachary P Howard
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ziying Liu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ryan D Oliveira
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Alisha T Massa
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Stephen N White
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.,USDA-ARS Animal Disease Research, Pullman, WA 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.,Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
33
|
Miller HK, Priestley RA, Kersh GJ. Q Fever: A troubling disease and a challenging diagnosis. CLINICAL MICROBIOLOGY NEWSLETTER 2021; 43:109-118. [PMID: 37701818 PMCID: PMC10493821 DOI: 10.1016/j.clinmicnews.2021.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Q fever is a disease caused by the bacterial pathogen Coxiella burnetii. This hardy organism can easily spread long distances in the wind, and only a few infectious aerosolized particles are necessary to cause serious illness. Presentations of Q fever disease can be wide-ranging, allowing it to masquerade as other illnesses and highlight the importance of laboratory testing for diagnosis and treatment. This review summarizes Q fever's epidemiology and clinical presentations and presents classical laboratory diagnostic assays and novel approaches to detecting this troubling disease.
Collapse
Affiliation(s)
- Halie K. Miller
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | |
Collapse
|
34
|
Zendoia II, Barandika JF, Hurtado A, López CM, Alonso E, Beraza X, Ocabo B, García-Pérez AL. Analysis of environmental dust in goat and sheep farms to assess Coxiella burnetii infection in a Q fever endemic area: Geographical distribution, relationship with human cases and genotypes. Zoonoses Public Health 2021; 68:666-676. [PMID: 34240552 DOI: 10.1111/zph.12871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023]
Abstract
Real-time PCR analysis of environmental samples (dust and aerosols) is an easy tool to investigate the presence of Coxiella burnetii in the farm environment. The aim of this study was to assess the distribution of C. burnetii DNA in dust collected inside animal premises from 272 small ruminant farms in Bizkaia (northern Spain), a region with recent reports of human Q fever cases and outbreaks. Within each farm, 5 samples of dust were collected from difference surfaces, and data on animal census, management procedures, characteristics of the premises and geographic location were collected. Real-time PCR analysis of the dust samples detected presence of C. burnetii DNA in 98 farms (36.0%), flock-prevalence being higher in sheep (38.9%) or mixed ovine-caprine production systems (36.8%), compared to goats (25.0%). Larger bacterial burdens were observed in mixed farms, compared to sheep (p < .05). Single nucleotide polymorphism (SNP) analysis identified 5 different genotypes, with SNP8 being the predominant genotype (73%), followed by SNP6 (11%), SNP2 (9%), SNP4 (5%) and SNP1 (2%). Proportion of farms where C. burnetii DNA was detected differed among the different agricultural counties, and a higher proportion of C. burnetii DNA positive farms was associated with the occurrence of recent human Q fever outbreaks at several geographical locations. Dust sampling in domestic ruminant farms coupled with real-time PCR to screen for the presence of C. burnetii and estimate bacterial load can be a useful tool to identify herds and regions with high prevalence, define priority actions and monitor the effect of control measures. If combined with molecular genotyping and spatial distribution maps, it can help to identify farm contamination sources and trace the origin of human outbreaks.
Collapse
Affiliation(s)
- Ion I Zendoia
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jesús F Barandika
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana Hurtado
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ceferino M López
- Department of Animal Pathology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
| | - Eva Alonso
- Departamento de Salud del Gobierno Vasco, Subdirección de Salud Pública de Bizkaia, Unidad de Vigilancia Epidemiológica, Bilbao, Spain
| | - Xabier Beraza
- Departamento de Salud del Gobierno Vasco, Subdirección de Salud Pública de Bizkaia, Unidad de Vigilancia Epidemiológica, Bilbao, Spain
| | - Blanca Ocabo
- Departamento de Agricultura, Servicio de Ganadería, Diputación Foral de Bizkaia, Bilbao, Spain
| | - Ana L García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
35
|
Delaney MA, Hartigh AD, Carpentier SJ, Birkland TP, Knowles DP, Cookson BT, Frevert CW. Avoidance of the NLRP3 Inflammasome by the Stealth Pathogen, Coxiella burnetii. Vet Pathol 2021; 58:624-642. [PMID: 33357072 DOI: 10.1177/0300985820981369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coxiella burnetii, a highly adapted obligate intracellular bacterial pathogen and the cause of the zoonosis Q fever, is a reemerging public health threat. C. burnetii employs a Type IV secretion system (T4SS) to establish and maintain its intracellular niche and modulate host immune responses including the inhibition of apoptosis. Interactions between C. burnetii and caspase-1-mediated inflammasomes are not fully elucidated. This study confirms that C. burnetii does not activate caspase-1 during infection of mouse macrophages in vitro. C. burnetii-infected cells did not develop NLRP3 and ASC foci indicating its ability to avoid cytosolic detection. C. burnetii is unable to inhibit the pyroptosis and IL-1β secretion that is induced by potent inflammasome stimuli but rather enhances these caspase-1-mediated effects. We found that C. burnetii upregulates pro-IL-1β and robustly primes NLRP3 inflammasomes via TLR2 and MyD88 signaling. As for wildtype C. burnetii, T4SS-deficient mutants primed and potentiated NLRP3 inflammasomes. An in vivo model of pulmonary infection in C57BL/6 mice was developed. Mice deficient in NLRP3 or caspase-1 were like wildtype mice in the development and resolution of splenomegaly due to red pulp hyperplasia, and histologic lesions and macrophage kinetics, but had slightly higher pulmonary bacterial burdens at the greatest measured time point. Together these findings indicate that C. burnetii primes but avoids cytosolic detection by NLRP3 inflammasomes, which are not required for the clinical resistance of C57BL/6 mice. Determining mechanisms employed by C. burnetii to avoid cytosolic detection via NLRP3 inflammasomes will be beneficial to the development of preventative and interventional therapies for Q fever.
Collapse
Affiliation(s)
- Martha A Delaney
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
- Current address: Martha A. Delaney, Zoological Pathology Program, University of Illinois, Brookfield, IL, USA
| | - Andreas den Hartigh
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Samuel J Carpentier
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Timothy P Birkland
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| | - Donald P Knowles
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA
- Department of Veterinary Microbiology and Pathology, 6760Washington State University, Pullman, WA
| | - Brad T Cookson
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Charles W Frevert
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| |
Collapse
|
36
|
Flock Management Risk Factors Associated with Q Fever Infection in Sheep in Saudi Arabia. Animals (Basel) 2021; 11:ani11071948. [PMID: 34208803 PMCID: PMC8300262 DOI: 10.3390/ani11071948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Q fever is a zoonotic disease caused by Coxiella burnetii (C. burnetii), an intracellular, Gram-negative bacterium that infects humans and domestic ruminants. Information on flock management factors associated with Q fever seropositivity in Saudi Arabia is very scarce. Therefore, the objective of this study was to identify the animal and flock management factors associated with Q fever seropositivity. For the assessment of risk factors, a case-control study was carried out. Cases (n = 25) were flocks that had recent abortions within the previous two weeks and were PCR positive for C. burnetii. Control flocks (n = 25) had no history of recent abortion and were PCR negative for C. burnetii. A questionnaire was developed to collect information about the flock management risk factors possibly associated with Q fever exposure in sheep. A total of 2437 sheep serum samples, collected from infected (n = 1610, 10-150 samples/flock) and non-infected (n = 827, 10-65 samples/flock) flocks, were tested for C. burnetii antibodies using a commercial ELISA kit between May 2018 and April 2019. In addition, 521 samples, including 50 aborted materials, 173 vaginal swabs, 134 faecal, and 164 milk samples, were collected for PCR testing. Infected flocks were 100% seropositive (within-flock seroprevalence ranging between 13.8% and 60%) and 100% PCR positive (with animal shedders of C. burnetii through aborted materials and/or vaginal fluids, feces, and milk). However, in non-infected control flocks, 28% were seropositive (within-flock seroprevalence ranging between 6.7% and 20%) and none had C. burnetii shedders. Epidemiological data were analyzed using mixed-effect logistic regression with a random effect for the flock. The results identified three protective factors: flocks with a lambing pen (odds ratio (OR): 0.46; 95% CI: 0.28-0.76), change bedding after removing aborted materials (OR: 0.42; 95% CI: 0.23-0.76), and flocks that isolated aborted ewes (OR: 0.41; 95% CI: 0.25-0.67), as well as two risk factors: flocks infested with ticks (OR: 2.78; 95% CI: 1.65-4.70) and flocks with a history of Q fever (OR: 3.03; 95% CI: 1.42-6.50). These results could be used to improve sheep flock biosecurity measures to prevent the introduction and reduce exposure of sheep and humans to Q fever infection.
Collapse
|
37
|
Iqbal MZ, Durrani AZ, Khan JA, Ahmad N, Usman M, Jabbar A, Khan A, Usman S, Anjum A, Husnain M. Molecular epidemiology of Coxiella Brunetii in small ruminants in Punjab, Pakistan: a novel reporting analytical cross sectional study. Trop Anim Health Prod 2021; 53:68. [PMID: 33394174 DOI: 10.1007/s11250-020-02496-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022]
Abstract
Coxiella burnetii, an intracellular zoonotic bacterium, causes query (Q) fever in ruminants. Its role has never been elucidated in small ruminants from Pakistan. The current study is designed to (a) determine the prevalence of coxiellosis in small ruminants, (b) evaluate the association of various potential risk factors and biomarkers in the occurrence of Coxiella burnetii, (c) and determine phylogeny and genetic variability of its various isolates identified during the study. For this purpose, 320 blood samples from sheep (n = 160) and goats (n = 160) were collected from 9 Union Councils of district Kasur, Punjab, and processed for DNA extraction. C. burnetii was confirmed by amplification of IS1111 transposase gene with an amplicon size of 294 bp. The results showed that the overall positive percentage of C. burnetii is 36.87% (sheep: 46.9% and goats: 30%). The phylogenetic tree was also constructed which described the possible origin of this pathogen from environment. Besides, after translation into amino acid, the resultant alignment showed several unique changes at position numbers 18 and 27 in the isolates from goats and at 27 and 66 from those of sheep. These mutations can have major impact on the infectious characteristics of this pathogen. Furthermore, different potential risk factors and clinical biomarkers like age, tick infestation, abortion, mastitis, and infertility were also studied and found that these are significantly (p < 0.05) associated with the occurrence of coxiellosis. It is concluded from the study that C. burnetii is endemic in small ruminants in Punjab, Pakistan. The outcomes of this study are alarming for scientific community as well as for policy makers because coxiellosis is an emerging threat to both humans and animals in this region due to its interspecies transmission ability.
Collapse
Affiliation(s)
- Muhammad Zahid Iqbal
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aneela Zameer Durrani
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nisar Ahmad
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Usman
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Abdul Jabbar
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amjad Khan
- Department of Public Health/Nutrition, The University of Haripur, Haripur, Pakistan
| | - Saba Usman
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ahsan Anjum
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Husnain
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
38
|
Abeykoon AMH, Clark NJ, Soares Magalhaes RJ, Vincent GA, Stevenson MA, Firestone SM, Wiethoelter AK. Coxiella burnetii in the environment: A systematic review and critical appraisal of sampling methods. Zoonoses Public Health 2020; 68:165-181. [PMID: 33314733 DOI: 10.1111/zph.12791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023]
Abstract
Q fever is a zoonotic disease caused by the intracellular bacterium, Coxiella burnetii. Its primary mode of transmission is by inhalation of aerosols originating from infected animals and contaminated environments. The organism has a very low infective dose, can persist in the environment for long periods of time and large outbreaks fuelled by windborne spread have been previously reported. Detection of C. burnetii in the environment is therefore important during human and animal outbreak investigations and for the control and prevention of Q fever. This study aimed to systematically review and critically appraise the published literature on sampling methods used to detect C. burnetii from different environmental samples. A search of four electronic databases with subsequent hand searching identified 47 eligible articles published since 1935. These articles described sampling of dust, air, soil and liquids in attempts to detect C. burnetii during 19 Q fever outbreaks and in 28 endemic settings. Environmental positivity was most commonly associated with ruminant livestock populations. Evidence describing spatio-temporal characteristics and associated geographical dispersion gradients was limited. The most commonly tested sample type was dust which also yielded the highest bacterial loads of >108 bacteria/cloth. The MD8 (Sartorius) air sampler was used widely for air sampling. Soil was the only sample type for which a validated laboratory protocol was established specifically for C. burnetii. Each environmental sample type has its advantages and limitations which are discussed in detail and a simplified framework to guide decisions around environmental sampling for C. burnetii is provided. In any type of environmental sampling, it is recommended to use standardized and validated methods and to match the most ideal sampling strategy and timing with the research context. These conditions are essential to be considered when designing future Q fever management plans that involve environmental sampling for C. burnetii.
Collapse
Affiliation(s)
- A M Hasanthi Abeykoon
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Joshua Clark
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ricardo Jorge Soares Magalhaes
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,Children's Health and Environment Program, UQ Children's Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Gemma Anne Vincent
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC, Australia
| | - Mark Anthony Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Simon Matthew Firestone
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anke Katrin Wiethoelter
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Devaux CA, Osman IO, Million M, Raoult D. Coxiella burnetii in Dromedary Camels ( Camelus dromedarius): A Possible Threat for Humans and Livestock in North Africa and the Near and Middle East? Front Vet Sci 2020; 7:558481. [PMID: 33251255 PMCID: PMC7674558 DOI: 10.3389/fvets.2020.558481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
The "One Health" concept recognizes that human health is connected to animal health and to the ecosystems. Coxiella burnetii-induced human Q fever is one of the most widespread neglected zoonosis. The main animal reservoirs responsible for C. burnetii transmission to humans are domesticated ruminants, primarily goats, sheep, and cattle. Although studies are still too sparse to draw definitive conclusions, the most recent C. burnetii serosurvey studies conducted in herds and farms in Africa, North Africa, Arabian Peninsula, and Asia highlighted that seroprevalence was strikingly higher in dromedary camels (Camelus dromedarius) than in other ruminants. The C. burnetii seroprevalence in camel herds can reach more than 60% in Egypt, Saudi Arabia, and Sudan, and 70 to 80% in Algeria and Chad, respectively. The highest seroprevalence was in female camels with a previous history of abortion. Moreover, C. burnetii infection was reported in ticks of the Hyalomma dromedarii and Hyalomma impeltatum species collected on camels. Even if dromedary camels represent <3% of the domesticated ruminants in the countries of the Mediterranean basin Southern coast, these animals play a major socioeconomic role for millions of people who live in the arid zones of Africa, Middle East, and Asia. In Chad and Somalia, camels account for about 7 and 21% of domesticated ruminants, respectively. To meet the growing consumers demand of camel meat and milk (>5 million tons/year of both raw and pasteurized milk according to the Food and Agriculture Organization) sustained by a rapid increase of population (growth rate: 2.26-3.76 per year in North Africa), dromedary camel breeding tends to increase from the Maghreb to the Arabic countries. Because of possible long-term persistence of C. burnetii in camel hump adipocytes, this pathogen could represent a threat for herds and breeding farms and ultimately for public health. Because this review highlights a hyperendemia of C. burnetii in dromedary camels, a proper screening of herds and breeding farms for C. burnetii is urgently needed in countries where camel breeding is on the rise. Moreover, the risk of C. burnetii transmission from camel to human should be further evaluated.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Ikram Omar Osman
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Faculty of Sciences Ben-Ben-M'Sik, University Hassan II, Casablanca, Morocco
| | - Matthieu Million
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
40
|
Bauer B, Prüfer L, Walter M, Ganter I, Frangoulidis D, Runge M, Ganter M. Comparison of Coxiella burnetii Excretion between Sheep and Goats Naturally Infected with One Cattle-Associated Genotype. Pathogens 2020; 9:E652. [PMID: 32823701 PMCID: PMC7459479 DOI: 10.3390/pathogens9080652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/17/2022] Open
Abstract
The main reservoir of Coxiella (C.) burnetii are ruminants. They shed the pathogen through birth products, vaginal mucus, faeces and milk. A direct comparison of C. burnetii excretions between naturally infected sheep and goats was performed on the same farm to investigate species-specific differences. The animals were vaccinated with an inactivated C. burnetii phase I vaccine at the beginning of the study period for public health reasons. Vaginal and rectal swabs along with milk specimens were taken monthly during the lambing period and once again at the next lambing season. To estimate the environmental contamination of the animals' housings, nasal swabs from every animal were taken simultaneously. Moreover, dust samples from the windowsills and straw beddings were collected. All samples were examined by qPCR targeting the IS1111 gene and the MLVA/VNTR typing method was performed. Whole genome sequencing was applied to determine the number of IS1111 copies followed by a calculation of C. burnetii genome equivalents of each sample. The cattle-associated genotype C7 was detected containing 29 IS1111 copies. Overall, goats seem to shed more C. burnetii through vaginal mucus and in particular shed more and for longer via the rectal route than sheep. This is supported by the larger quantities of C. burnetii DNA detected in caprine nasal swabs and environmental samples compared to the ovine ones. Transmission of C. burnetii from cattle to small ruminants must also be considered.
Collapse
Affiliation(s)
- Benjamin Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Louise Prüfer
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany; (L.P.); (M.R.)
| | - Mathias Walter
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.W.); (D.F.)
| | - Isabel Ganter
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.W.); (D.F.)
- Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information (MI2), Dachauer Straße 128, 80637 Munich, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany; (L.P.); (M.R.)
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| |
Collapse
|
41
|
Álvarez-Alonso R, Zendoia II, Barandika JF, Jado I, Hurtado A, López CM, García-Pérez AL. Monitoring Coxiella burnetii Infection in Naturally Infected Dairy Sheep Flocks Throughout Four Lambing Seasons and Investigation of Viable Bacteria. Front Vet Sci 2020; 7:352. [PMID: 32754620 PMCID: PMC7365863 DOI: 10.3389/fvets.2020.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Progression of Coxiella burnetii infection in four naturally infected sheep flocks, and in their farm environment, was monitored throughout four lambing seasons. Flocks with an active infection were selected based on the presence of C. burnetii DNA in bulk-tank milk (BTM) and a high seroprevalence in yearlings during the previous milking period (Spring 2015). During four consecutive lambing seasons (2015/16–2018/19), samples were collected within 1 week after each lambing period from animals (vaginal swabs, milk and feces from ewes, and yearlings) and the environment (dust indoor sheep premises). BTM samples and aerosols (outdoors and indoors) were monthly collected between lambing and the end of milking. Real-time PCR analyses showed different trends in C. burnetii shedding in the flocks, with a general progressive decrease in bacterial shedding throughout the years, interrupted in three flocks by peaks of reinfection associated with specific management practices. A significant relationship was found between C. burnetii fecal shedding and the bacterial burden detected in dust, whereas shedding by vaginal route affected the detection of C. burnetii in indoor aerosols. Three genotypes were identified: SNP8 (three flocks, 52.9% of the samples), SNP1 (two flocks, 44.8% samples), and SNP5 (one flock, two environmental samples). Coxiella burnetii viability in dust measured by culture in Vero cells was demonstrated in two of the flocks, even during the fourth lambing season. The results showed that infection can remain active for over 5 years if effective control and biosafety measures are not correctly implemented.
Collapse
Affiliation(s)
- Raquel Álvarez-Alonso
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Ion I Zendoia
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Jesús F Barandika
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Isabel Jado
- Laboratory of Special Pathogens, Instituto de Salud Carlos III, Centro Nacional de Microbiología, Madrid, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Ceferino M López
- Department of Animal Pathology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
| | - Ana L García-Pérez
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| |
Collapse
|
42
|
First molecular detection of Coxiella burnetii in Brazilian artisanal cheese: a neglected food safety hazard in ready-to-eat raw-milk product. Braz J Infect Dis 2020; 24:208-212. [PMID: 32563680 PMCID: PMC9392133 DOI: 10.1016/j.bjid.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022] Open
Abstract
Background Global publications on Q fever have increased after the 2007 epidemic in the Netherlands. However, the epidemiology of Q fever/coxiellosis in Brazil is still poorly understood. Accordingly, there have been few studies investigating the presence of Coxiella burnetii in dairy products around the world, especially in Brazil, where consumption of fresh cheese made from raw-milk is very high. Objective This study was a random survey to assess the prevalence of C. burnetii by PCR in traditional Minas artisanal cheese from the Serro microregion, Brazil, which is manufactured from bovine raw-milk. Methods DNA extracted from 53 cheese samples were analyzed by nested PCR with C. burnetii-specific primers and the products confirmed by DNA sequencing. Results Out of the 53 cheese samples five (9.43%) were C. burnetii DNA-positive, each coming from one of the respective randomly selected manufacturing agroindustries. Based on our results, it is estimated that 1.62 tons/day of ready-to-eat cheese made from raw-milk from a total of 16.2 tons produced daily in the study region are contaminated with C. burnetii. Conclusion To our knowledge, this is the first report of highly heat-resistant zoonotic pathogen in raw-milk Brazilian artisanal cheese. This food safety hazard has been completely neglected in ready-to-eat raw-milk Brazilian artisanal cheese and could imply potential threats to consumers, since C. burnetii survives in artisanal cheese submitted to long ripening periods. Thus, this work established random and representative baseline prevalence of C. burnetii in this food product in Brazil. Further epidemiological studies, monitoring trends and setting control targets are warranted. Finally, these results point out the importance of including C. burnetii in animal and public health surveillance programs.
Collapse
|
43
|
Obaidat MM, Malania L, Imnadze P, Roess AA, Bani Salman AE, Arner RJ. Seroprevalence and Risk Factors for Coxiella burnetii in Jordan. Am J Trop Med Hyg 2020; 101:40-44. [PMID: 31115294 DOI: 10.4269/ajtmh.19-0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This is the first cross-sectional study of the seroprevalence and risk factors for Coxiella burnetii in Jordan. A total of 781 individuals from 11 governorates of Jordan were tested by SERION ELISA classic C. burnetii IgG Phase 2. A validated and pretested questionnaire was used to collect risk factors and demographic data. The overall seroprevalence for C. burnetii was 24.2% (95% CI; 21.3-27.3%). Unadjusted odds ratios showed that governorate of residence, consumption of raw milk, and ownership of sheep, goats, and dogs were significantly (P ≤ 0.05) associated with C. burnetii seropositivity. The multivariate logistic regression showed that individuals who own small ruminants had three times greater odds of seropositivity than those who do not own a small ruminant, after controlling for age, gender, raw milk consumption, and ownership of dogs. In addition, individuals who live in Al-Karak, Az-Zarqa, and Al-Tafilah had significantly greater odds of seropositivity compared with individuals who live in the capital city, Amman (OR = 3.6, 4.8, and 2.7, respectively). This study suggests that preventive measures should be practiced in ruminant farms in Jordan to avoid C. burnetii infection. Coxiella burnetii should also be considered in the differential diagnosis of febrile-like illnesses in Jordan, especially among farmers and veterinarians.
Collapse
Affiliation(s)
- Mohammad M Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Lile Malania
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Paata Imnadze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Amira A Roess
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | - Alaa E Bani Salman
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ryan J Arner
- Ryan Arner Science Consulting, LLC, Freeport, Pennsylvania
| |
Collapse
|
44
|
Abdullah HHAM, Hussein HA, El-Razik KAA, Barakat AMA, Soliman YA. Q fever: A neglected disease of camels in Giza and Cairo Provinces, Egypt. Vet World 2019; 12:1945-1950. [PMID: 32095045 PMCID: PMC6989333 DOI: 10.14202/vetworld.2019.1945-1950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Q fever is a zoonotic disease caused by Coxiella burnetii. Cattle, sheep, and goat are the main reservoir of C. burnetii. In Egypt, the epidemiological data about C. burnetii in camels are limited. Therefore, the current study was conducted to identify C. burnetii infection in camels by different molecular tools and to estimate its seropositivity through the detection of anti-C. burnetii antibodies in camel sera. Materials and Methods Blood samples were collected 112 from camels in Giza and Cairo Provinces, Egypt. All blood samples were screened by trans-quantitative polymerase chain reaction (trans-qPCR) for C. burnetii and positive samples subjected to standard PCR using the superoxide dismutase enzyme coding gene of C. burnetii. Sera of studied camels were examined for the presence of antibodies against C. burnetii using enzyme-linked immunosorbent assay. Results Out of 112 camels, 19 were positive for C. burnetii by qPCR with an overall prevalence of 16.9% (18.6% in Giza and 15.1% in Cairo Provinces, respectively). The seroprevalence of anti-C. burnetii IgG antibodies in the examined camels was 4.5% (5/112). Conclusions Trans-qPCR assay is a rapid and sensitive tool for the detection of C. burnetii in acute stage. Camels should be considered one of the major reservoirs for C. burnetii in Egypt.
Collapse
Affiliation(s)
- Hend H A M Abdullah
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Hany A Hussein
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Dokki, Giza, Egypt.,Key Laboratory of Diagnostic and Detective Technology, Department of Veterinary Research, Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, China
| | - Khaled A Abd El-Razik
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Dokki, Giza, Egypt
| | - Ashraf M A Barakat
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Yousef A Soliman
- Department of Biotechnology, Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo, Egypt
| |
Collapse
|
45
|
The Effect of pH on Antibiotic Efficacy against Coxiella burnetii in Axenic Media. Sci Rep 2019; 9:18132. [PMID: 31792307 PMCID: PMC6889355 DOI: 10.1038/s41598-019-54556-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023] Open
Abstract
Coxiella burnetii, the etiologic agent of Q fever, replicates in an intracellular phagolysosome with pH between 4 and 5. The impact of this low pH environment on antimicrobial treatment is not well understood. An in vitro system for testing antibiotic susceptibility of C. burnetii in axenic media was set up to evaluate the impact of pH on C. burnetii growth and survival in the presence and absence of antimicrobial agents. The data show that C. burnetii does not grow in axenic media at pH 6.0 or higher, but the organisms remain viable. At pH of 4.75, 5.25, and 5.75 moxifloxacin, doxycycline, and rifampin are effective at preventing growth of C. burnetii in axenic media, with moxifloxacin and doxycycline being bacteriostatic and rifampin having bactericidal activity. The efficacy of doxycycline and moxifloxacin improved at higher pH, whereas rifampin activity was pH independent. Hydroxychloroquine is thought to inhibit growth of C. burnetii in vivo by raising the pH of typically acidic intracellular compartments. It had no direct bactericidal or bacteriostatic activity on C. burnetii in axenic media, suggesting that raising pH of acidic intracellular compartments is its primary mechanism of action in vivo. The data suggest that doxycycline and hydroxychloroquine are primarily independent bacteriostatic agents.
Collapse
|
46
|
Coxiella burnetii Antibody Prevalence and Risk Factors of Infection in the Human Population of Estonia. Microorganisms 2019; 7:microorganisms7120629. [PMID: 31795442 PMCID: PMC6956122 DOI: 10.3390/microorganisms7120629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
Q fever is an emerging health problem in both humans and animals. To estimate the prevalence of Coxiella burnetii (C. burnetii) antibodies in the Estonian population, we analyzed plasma samples from 1000 individuals representing the general population and 556 individual serum samples from five population groups potentially at a higher risk (veterinary professionals, dairy cattle, beef cattle, and small ruminant stockbreeders and hunters). Additionally, 118 dairy cow bulk tank milk samples were analyzed to establish the infection status of the dairy cattle herds and the participating dairy cattle keepers. Questionnaires were used to find the potential risk factors of exposure. The effects of different variables were evaluated using binary logistic regression analysis and mixed-effects logistic analysis. The prevalence in veterinary professionals (9.62%; p = 0.003) and dairy cattle farmers (7.73%; p = 0.047) was significantly higher than in the general population (3.9%). Contact with production animals in veterinary practice and being a dairy stockbreeder in C. burnetii positive farms were risk factors for testing C. burnetii seropositive (p = 0.038 and p = 0.019, respectively). Results suggest that C. burnetii is present in Estonia and the increased risk of infection in humans is associated with farm animal contact.
Collapse
|
47
|
Sellens E, Bosward KL, Norris JM, Wood N, Heller J, Graves S, Gidding HF. Coxiella burnetii seroprevalence in unvaccinated veterinary workers in Australia: Evidence to support Q fever vaccination. Zoonoses Public Health 2019; 67:79-88. [PMID: 31677254 DOI: 10.1111/zph.12658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
Q fever (caused by Coxiella burnetii) is a serious zoonotic disease that occurs almost worldwide. Occupational contact with animals increases the risk of exposure, and Q fever vaccination is recommended for veterinary workers in Australia. This study aimed to investigate C. burnetii seroprevalence among unvaccinated veterinary workers in Australia and determine factors associated with a positive serological result. During 2014 and 2015, convenience sampling at veterinary conferences and workplace vaccination clinics was undertaken. Participants completed a questionnaire and provided a blood sample for C. burnetii serology. Participants were predominantly veterinarians (77%), but veterinary support staff, animal scientists, and administration workers also participated. Blood samples (n = 192) were analysed by an immunofluorescence assay and considered positive where the phase I or phase II IgG titre was ≥1/50. Seroprevalence was 19% (36/192; 95% CI 14%-25%). A positive serological result was significantly associated with (a) working in outer regional/remote areas (odds ratio [OR] 6.2; 95% CI 1.9-20.8; reference = major cities; p = .009) and (b) having spent more than 50% of total career working with ruminants (OR 4.8; 95% CI 1.7-13.5; reference = <15% of career; p = .025). These findings confirm an increased risk of exposure to C. burnetii compared to the general population, providing new evidence to support Q fever vaccination of veterinary workers in Australia.
Collapse
Affiliation(s)
- Emily Sellens
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| | - Katrina L Bosward
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| | - Jacqueline M Norris
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, NSW, Australia
| | - Nicholas Wood
- Discipline of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Jane Heller
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Vic., Australia
| | - Heather F Gidding
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia.,School of Public Health and Community Medicine, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Clinical and Population Perinatal Health Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,The University of Sydney Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Cocking JH, Deberg M, Schupp J, Sahl J, Wiggins K, Porty A, Hornstra HM, Hepp C, Jardine C, Furstenau TN, Schulte-Hostedde A, Fofanov VY, Pearson T. Selective whole genome amplification and sequencing of Coxiella burnetii directly from environmental samples. Genomics 2019; 112:1872-1878. [PMID: 31678592 DOI: 10.1016/j.ygeno.2019.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Whole genome sequencing (WGS) is a widely available, inexpensive means of providing a wealth of information about an organism's diversity and evolution. However, WGS for many pathogenic bacteria remain limited because they are difficult, slow and/or dangerous to culture. To avoid culturing, metagenomic sequencing can be performed directly on samples, but the sequencing effort required to characterize low frequency organisms can be expensive. Recently developed methods for selective whole genome amplification (SWGA) can enrich target DNA to provide efficient sequencing. We amplified Coxiella burnetii (a bacterial select agent and human/livestock pathogen) from 3 three environmental samples that were overwhelmed with host DNA. The 68- to 147-fold enrichment of the bacterial sequences provided enough genome coverage for SNP analyses and phylogenetic placement. SWGA is a valuable tool for the study of difficult-to-culture organisms and has the potential to facilitate high-throughput population characterizations as well as targeted epidemiological or forensic investigations.
Collapse
Affiliation(s)
- Jill Hager Cocking
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America; School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Michael Deberg
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Jim Schupp
- Pathogen and Microbiome Division, TGen North, Flagstaff, AZ, United States of America.
| | - Jason Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Kristin Wiggins
- Pathogen and Microbiome Division, TGen North, Flagstaff, AZ, United States of America.
| | - Ariel Porty
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada.
| | - Heidie M Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Crystal Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America; School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Claire Jardine
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada.
| | - Tara N Furstenau
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | | | - Viacheslav Y Fofanov
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America; School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Talima Pearson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America.
| |
Collapse
|
49
|
Seroprevalence and risk factors of Coxiella burnetii infection in cattle in northeast Algeria. Trop Anim Health Prod 2019; 52:935-942. [PMID: 31606841 DOI: 10.1007/s11250-019-02083-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
A cross-sectional study was conducted to determine the seroprevalence and the risk factors associated with C. burnetii infection in cattle in the state of Setif in northeastern Algeria from March 2016 to April 2018. A total of 678 cows animals aged at least 24 months and belonging to 90 herds were randomly selected. A serum sample from each cow was tested for antibodies against C. burnetii using an indirect enzyme-linked immunosorbent assay (ELISA). A structured questionnaire focusing on risk factors for C. burnetii infection was administered to farm owners involved in the study. The individual animal prevalence was 11.36% (77/678) (95%CI 8.97-13.75%), the herd prevalence was 45.56% (41/90) (95%CI 35.27-55.84%), and the within-herd prevalence ranged from 9.09 to 57.14% (mean 23.71%; Q1 11.11%, Q2 or median 20%, Q3 30%). Multivariable logistic regression analysis revealed that contact with other herds (odds ratio (OR) 1.95, 95 CI 1.12-3.42) and purchased animals (OR 2.05, 95 CI 1.14-3.68) was identified as risk factors for seropositivity to C. burnetii, while the use of disinfectants (OR 0.32, 95 CI 0.14-0.72) was identified as protective factor. The results from the present study indicate that C. burnetii is circulating into cattle herds in the region of Setif in Northeastern of Algeria. It is recommended to implement good hygienic practices and measures of biosecurity to reduce the spread of infection between cattle herds and possible exposure of humans.
Collapse
|
50
|
Johnson SAM, Kaneene JB, Asare‐Dompreh K, Tasiame W, Mensah IG, Afakye K, Simpson SV, Addo K. Seroprevalence of Q fever in cattle, sheep and goats in the Volta region of Ghana. Vet Med Sci 2019; 5:402-411. [PMID: 30859744 PMCID: PMC6682790 DOI: 10.1002/vms3.160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Q fever is a zoonotic disease caused by Coxiella burnetii, a causative agent of abortion in livestock and febrile illness in humans. Outbreaks of human cases of Q fever have been reported in Australia and the Netherlands, which was linked to abortions in goat and sheep farms. In Ghana, information on Q fever in both livestock and humans is scanty. This study sought to determine the seroprevalence of Q fever in livestock in the Tongu area of the Volta region of Ghana. It was a cross sectional study with blood sampled from 204 cattle, 158 sheep and 100 goats. An indirect ELISA test was performed to detect Q fever antibodies in the serum of livestock. A total of 20 farms were sampled across the municipalities and an overall prevalence of Q fever was 21.6%. Specie-specific prevalence was 28.4% (45/158) for sheep, 21.7% (45/204) for cattle and 10% (10/100) for goats. Abortions were reported on all the farms sampled and most farmers lived in close proximity to the farms sampled. Q fever is prevalent in the North Tongu area and requires the attention of the veterinary and health authorities, using the One- Health approach in order to control its occurrence and save lives.
Collapse
Affiliation(s)
| | - John B. Kaneene
- Center for Comparative EpidemiologyCollege of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | | | - William Tasiame
- School of Veterinary MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Ivy G. Mensah
- Noguchi Memorial Institute for Medical ResearchUniversity of GhanaLegonGhana
| | - Kofi Afakye
- School of Veterinary MedicineCBASUniversity of GhanaLegonGhana
| | - Shirley V. Simpson
- Noguchi Memorial Institute for Medical ResearchUniversity of GhanaLegonGhana
| | - Kwasi Addo
- Noguchi Memorial Institute for Medical ResearchUniversity of GhanaLegonGhana
| |
Collapse
|