1
|
Castañeda-Espinosa A, Duque-Granda D, Cadavid-Restrepo G, Murcia LM, Junca H, Moreno-Herrera CX, Vivero-Gómez RJ. Study of Bacterial Communities in Water and Different Developmental Stages of Aedes aegypti from Aquatic Breeding Sites in Leticia City, Colombian Amazon Biome. INSECTS 2025; 16:195. [PMID: 40003826 PMCID: PMC11856942 DOI: 10.3390/insects16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Aedes aegypti is a key vector in the transmission of arboviral diseases in the Colombian Amazon. This study aimed to characterize microbiota composition using DNA extracted from water in artificial breeding sites, immature stages, and adults of Ae. aegypti in Leticia, Amazonas. Additionally, the physicochemical water variables were correlated with the bacterial communities present. Eight artificial breeding sites were identified, with bucket, plant pot, and tire being the most frequent. The breeding sites exhibited similar physicochemical profiles, with significant temperature and salinity differences (p-value < 0.03). The most representative bacterial genera included Ottowia (82%), Xanthobacter (70.59%), and Rhodocyclaceae (92.78%) in breeding site water; Aquabacterium (61.07%), Dechloromonas (82.85%), and Flectobacillus (58.94%) in immature stages; and Elizabethkingia (70.89%) and Cedecea (39.19%) in males and females of Ae. aegypti. Beta diversity analysis revealed distinct clustering between adults and the water and immature communities (p-value < 0.001). Multivariate analysis showed strong correlations among bacterial communities, breeding sites, and physicochemical variables such as tire and drum cover which exhibited high levels of total dissolved solids, conductivity, and salinity associated with Flectobacillus, Leifsonia, Novosphingobium, Ottowia, and Rhodobacter. Bacterial genera such as Mycobacterium, Escherichia, Salmonella, and Clostridium, present in artificial breeding sites, are associated with public health relevance. This study provides insights into bacterial community dynamics across Ae. aegypti's life cycle and underscores the importance of water physicochemical and biological characteristics for developing new vector control strategies.
Collapse
Affiliation(s)
- Alejandro Castañeda-Espinosa
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Daniela Duque-Granda
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública del Amazonas (GESPA), Laboratorio de Salud Pública Departamental del Amazonas, St. 10 #6-127 a 6-1, Leticia 910001, Colombia;
| | - Howard Junca
- Microbiomas Foundation, Div. Ecogenomics & Holobionts, RG Microbial Ecology, Metabolism, Genomics & Evolution, LT11A, Chía 250008, Colombia;
| | - Claudia X. Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| | - Rafael J. Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, St. 65 #59a-110, Medellín 050034, Colombia; (A.C.-E.); (D.D.-G.); (G.C.-R.)
| |
Collapse
|
2
|
Viafara-Campo JD, Vivero-Gómez RJ, Fernando-Largo D, Manjarrés LM, Moreno-Herrera CX, Cadavid-Restrepo G. Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin. INSECTS 2025; 16:181. [PMID: 40003811 PMCID: PMC11856030 DOI: 10.3390/insects16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The Aedes aegypti mosquito serves as a vector for several diseases, including dengue, Zika, chikungunya, and yellow fever. This species is well adapted to urban environments and poses a significant threat to public health. Some studies suggest that the gut bacteria of insect vectors may play a crucial role in developing resistance to insecticides. This study assessed the resistance of Ae. aegypti from Florencia, Caquetá, to temephos and deltamethrin and analyzed the diversity of gut bacteria in resistant larvae and adult females. Larvae exhibited resistance to temephos at a lethal concentration 50 (LC50) of 0.034 µg/mL, while females showed resistance to deltamethrin at a discriminant concentration of 10 µg/mL. The bacterial load in the guts of deltamethrin-treated females (3.42 × 106 CFU/mL) was significantly higher compared to temephos-treated larvae (9.4 × 105 CFU/mL) and untreated females (8 × 104 CFU/mL). A total of sixty-eight bacterial strains were isolated from the guts of both larval and resistant females Ae. aegypti, with 31 strains identified through 16S rRNA gene analysis and 11 confirmed by gyrB gene sequencing. In untreated females, Bacillus comprised 12.55% of the gut bacteria and was identified as an exclusive genus. In resistant larvae, Serratia was the most abundant and exclusive genus, accounting for 35.29%, while in resistant females, Cedecea was the predominant genus, representing 66.67%. These findings suggest that gut bacteria may influence the resistance of Ae. aegypti to temephos and deltamethrin. Furthermore, this research provides valuable information that can be considered for the design of local vector control strategies. The results highlight new research focused on the study of insecticide tolerance and degradation within the gut microbiota of insect vectors of arboviruses.
Collapse
Affiliation(s)
- Jennifer D. Viafara-Campo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Rafael José Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Daniel Fernando-Largo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Lina Marcela Manjarrés
- Secretaría de Salud Departamental, Laboratorio de Entomología Departamental, Gobernación del Caquetá, Florencia 180001, Colombia;
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| |
Collapse
|
3
|
Čukajne T, Štravs P, Sahin O, Zhang Q, Berlec A, Klančnik A. Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence. Appl Microbiol Biotechnol 2024; 108:546. [PMID: 39731621 PMCID: PMC11682011 DOI: 10.1007/s00253-024-13383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C. jejuni biofilms on various substrates, such as polystyrene plates, mucin-coated surfaces, and chicken juice matrices. Introduction of NanoLuc luciferase in a pathogenic C. jejuni strain enables rapid non-invasive holistic observation, capturing a spectrum of cell states that may comprise live, damaged, and viable but non-culturable populations. Our comparative analysis with established biofilm quantification methods highlights the specificity, sensitivity, and simplicity of the NanoLuc assay. The assay is efficient and offers precise cell quantification and thus represents an important complementary or alternative method to conventional biofilm monitoring methods. The findings of this study highlight the need for a versatile approach and suggest combining the NanoLuc assay with other methods to gain comprehensive insight into biofilm dynamics. KEY POINTS: • Innovative NanoLuc bioluminescence assay for sophisticated biofilm quantification. • Holistic monitoring of C. jejuni biofilm by capturing live, damaged and VBNC cells. • Potential for improving understanding of biofilm development and structure.
Collapse
Affiliation(s)
- Tjaša Čukajne
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Štravs
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Orhan Sahin
- College of Veterinary Medicine, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Qijing Zhang
- College of Veterinary Medicine, Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, Chair of Pharmaceutical Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Foo A, Brettell LE, Nichols HL, 2022 UW-Madison Capstone in Microbiology Students, Medina Muñoz M, Lysne JA, Dhokiya V, Hoque AF, Brackney DE, Caragata EP, Hutchinson ML, Jacobs-Lorena M, Lampe DJ, Martin E, Valiente Moro C, Povelones M, Short SM, Steven B, Xu J, Paustian TD, Rondon MR, Hughes GL, Coon KL, Heinz E. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLoS Biol 2024; 22:e3002897. [PMID: 39546548 PMCID: PMC11633956 DOI: 10.1371/journal.pbio.3002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.
Collapse
Affiliation(s)
- Aidan Foo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura E. Brettell
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Holly L. Nichols
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Miguel Medina Muñoz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica A. Lysne
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vishaal Dhokiya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ananya F. Hoque
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Doug E. Brackney
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Eric P. Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Michael L. Hutchinson
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, United States of America
- Division of Plant Health, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Timothy D. Paustian
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Rondon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
5
|
Tang X, Liu Z, Li D, Xiong Y, Liao K, Chen Y. A Rare Case of Infective Endocarditis with Recurrent Fever Caused by Elizabethkingia anophelis. Infect Drug Resist 2024; 17:4625-4632. [PMID: 39469093 PMCID: PMC11514048 DOI: 10.2147/idr.s483796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Background Elizabethkingia anophelis, an opportunistic pathogen that can cause infections in multiple parts of the human body, has multiple drug resistance and a high mortality rate. However, there have been few reports of infective endocarditis (IE) caused by Elizabethkingia anophelis, which means that diagnosis and treatment face challenges that cannot be ignored. Rapid and accurate identification and drug sensitivity results are needed to make timely treatment adjustments. Case Presentation An 81-year-old man presented with recurrent fever and increased infection index for more than a month. Based on his clinical symptoms, infection index, reduplicative blood cultures, and results of transesophageal echocardiography, he was ultimately diagnosed with infective endocarditis caused by Elizabethkingia anophelis. The patient had a favorable outcome with a 6-week course of intravenous antibiotic therapy. Conclusion This is a rare and successfully cured case of IE caused by the pathogen of Elizabethkingia anophelis, which is difficult not only in diagnosis but also in treatment. This case provides a certain referential significance to the treatment of Elizabethkingia anophelis-caused IE in clinical practice.
Collapse
Affiliation(s)
- Xiuxin Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiyun Liu
- Department of Clinical Laboratory, Huizhou Central People ‘s Hospital, Huizhou, Guangdong, 516001, People’s Republic of China
| | - Danni Li
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yan Xiong
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Singh A, Misser S, Allam M, Chan WY, Ismail A, Munhenga G, Oliver SV. The Effect of Larval Exposure to Heavy Metals on the Gut Microbiota Composition of Adult Anopheles arabiensis (Diptera: Culicidae). Trop Med Infect Dis 2024; 9:249. [PMID: 39453276 PMCID: PMC11510740 DOI: 10.3390/tropicalmed9100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Anopheles arabiensis is a highly adaptable member of the An. gambiae complex. Its flexible resting behaviour and diverse feeding habits make conventional vector control methods less effective in controlling this species. Another emerging challenge is its adaptation to breeding in polluted water, which impacts various life history traits relevant to epidemiology. The gut microbiota of mosquitoes play a crucial role in their life history, and the larval environment significantly influences the composition of this bacterial community. Consequently, adaptation to polluted breeding sites may alter the gut microbiota of adult mosquitoes. This study aimed to examine how larval exposure to metal pollution affects the gut microbial dynamics of An. arabiensis adults. Larvae of An. arabiensis were exposed to either cadmium chloride or copper nitrate, with larvae reared in untreated water serving as a control. Two laboratory strains (SENN: insecticide unselected, SENN-DDT: insecticide selected) and F1 larvae sourced from KwaZulu-Natal, South Africa, were exposed. The gut microbiota of the adults were sequenced using the Illumina Next Generation Sequencing platform and compared. Larval metal exposure affected alpha diversity, with a more marked difference in beta diversity. There was evidence of core microbiota shared between the untreated and metal-treated groups. Bacterial genera associated with metal tolerance were more prevalent in the metal-treated groups. Although larval metal exposure led to an increase in pesticide-degrading bacterial genera in the laboratory strains, this effect was not observed in the F1 population. In the F1 population, Plasmodium-protective bacterial genera were more abundant in the untreated group compared to the metal-treated group. This study therefore highlights the importance of considering the larval environment when searching for local bacterial symbionts for paratransgenesis interventions.
Collapse
Affiliation(s)
- Ashmika Singh
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shristi Misser
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa;
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
7
|
Salgado JFM, Premkrishnan BNV, Oliveira EL, Vettath VK, Goh FG, Hou X, Drautz-Moses DI, Cai Y, Schuster SC, Junqueira ACM. The dynamics of the midgut microbiome in Aedes aegypti during digestion reveal putative symbionts. PNAS NEXUS 2024; 3:pgae317. [PMID: 39157462 PMCID: PMC11327924 DOI: 10.1093/pnasnexus/pgae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/02/2024] [Indexed: 08/20/2024]
Abstract
Blood-feeding is crucial for the reproductive cycle of the mosquito Aedes aegypti, as well as for the transmission of arboviruses to hosts. It is postulated that blood meals may influence the mosquito microbiome but shifts in microbial diversity and function during digestion remain elusive. We used whole-genome shotgun metagenomics to monitor the midgut microbiome in 60 individual females of A. aegypti throughout digestion, after 12, 24, and 48 h following blood or sugar meals. Additionally, ten individual larvae were sequenced, showing microbiomes dominated by Microbacterium sp. The high metagenomic coverage allowed for microbial assignments at the species taxonomic level, also providing functional profiling. Females in the post-digestive period and larvae displayed low microbiome diversities. A striking proliferation of Enterobacterales was observed during digestion in blood-fed mosquitoes. The compositional shift was concomitant with enrichment in genes associated with carbohydrate and protein metabolism, as well as virulence factors for antimicrobial resistance and scavenging. The bacterium Elizabethkingia anophelis (Flavobacteriales), a known human pathogen, was the dominant species at the end of blood digestion. Phylogenomics suggests that its association with hematophagous mosquitoes occurred several times. We consider evidence of mutually beneficial host-microbe interactions raised from this association, potentially pivotal for the mosquito's resistance to arbovirus infection. After digestion, the observed shifts in blood-fed females' midguts shifted to a sugar-fed-like microbial profile. This study provides insights into how the microbiome of A. aegypti is modulated to fulfil digestive roles following blood meals, emphasizing proliferation of potential symbionts in response to the dynamic midgut environment.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch str. 10, Marburg 35043, Germany
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| | - Balakrishnan N V Premkrishnan
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Elaine L Oliveira
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vineeth Kodengil Vettath
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Daniela I Drautz-Moses
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Stephan C Schuster
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
8
|
Pastusiak A, Reddy MR, Chen X, Hoyer I, Dorman J, Gebhardt ME, Carpi G, Norris DE, Pipas JM, Jackson EK. A metagenomic analysis of the phase 2 Anopheles gambiae 1000 genomes dataset reveals a wide diversity of cobionts associated with field collected mosquitoes. Commun Biol 2024; 7:667. [PMID: 38816486 PMCID: PMC11139907 DOI: 10.1038/s42003-024-06337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
The Anopheles gambiae 1000 Genomes (Ag1000G) Consortium previously utilized deep sequencing methods to catalogue genetic diversity across African An. gambiae populations. We analyzed the complete datasets of 1142 individually sequenced mosquitoes through Microsoft Premonition's Bayesian mixture model based (BMM) metagenomics pipeline. All specimens were confirmed as either An. gambiae sensu stricto (s.s.) or An. coluzzii with a high degree of confidence ( > 98% identity to reference). Homo sapiens DNA was identified in all specimens indicating contamination may have occurred either at the time of specimen collection, preparation and/or sequencing. We found evidence of vertebrate hosts in 162 specimens. 59 specimens contained validated Plasmodium falciparum reads. Human hepatitis B and primate erythroparvovirus-1 viral sequences were identified in fifteen and three mosquito specimens, respectively. 478 of the 1,142 specimens were found to contain bacterial reads and bacteriophage-related contigs were detected in 27 specimens. This analysis demonstrates the capacity of metagenomic approaches to elucidate important vector-host-pathogen interactions of epidemiological significance.
Collapse
Affiliation(s)
| | - Michael R Reddy
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA.
| | - Xiaoji Chen
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA
| | - Isaiah Hoyer
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Mary E Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ethan K Jackson
- Microsoft Premonition, Microsoft Research, Redmond, WA, 98052, USA
| |
Collapse
|
9
|
Chen S, Pham S, Terrapon N, Blom J, Walker ED. Elizabethkingia anophelis MSU001 Isolated from Anopheles stephensi: Molecular Characterization and Comparative Genome Analysis. Microorganisms 2024; 12:1079. [PMID: 38930461 PMCID: PMC11206156 DOI: 10.3390/microorganisms12061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Elizabethkingia anophelis MSU001, isolated from Anopheles stephensi in the laboratory, was characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF/MS), biochemical testing, and genome sequencing. Average nucleotide identity analysis revealed 99% identity with the type species E. anophelis R26. Phylogenetic placement showed that it formed a clade with other mosquito-associated strains and departed from a clade of clinical isolates. Comparative genome analyses further showed that it shared at least 98.6% of genes with mosquito-associated isolates (except E. anophelis As1), while it shared at most 88.8% of common genes with clinical isolates. Metabolites from MSU001 significantly inhibited growth of E. coli but not the mosquito gut symbionts Serratia marcescens and Asaia sp. W12. Insect-associated E. anophelis carried unique glycoside hydrolase (GH) and auxiliary activities (AAs) encoding genes distinct from those of clinical isolates, indicating their potential role in reshaping chitin structure and other components involved in larval development or formation of the peritrophic matrix. Like other Elizabethkingia, MSU001 also carried abundant genes encoding two-component system proteins (51), transcription factor proteins (188), and DNA-binding proteins (13). E. anophelis MSU001 contains a repertoire of antibiotic resistance genes and several virulence factors. Its potential for opportunistic infections in humans should be further evaluated prior to implementation as a paratransgenesis agent (by transgenesis of a symbiont of the vector).
Collapse
Affiliation(s)
- Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Steven Pham
- Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA;
| | - Nicolas Terrapon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR7257 CNRS AMU, USC 1408 INRAE, 13009 Marseille, France;
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392 Giessen, Germany;
| | - Edward D. Walker
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
10
|
Chen CY, Chan WY, Ismail A, Oliver SV. Characterization of the Tissue and Strain-Specific Microbiota of Anopheles funestus Giles (Diptera: Culicidae). Trop Med Infect Dis 2024; 9:84. [PMID: 38668545 PMCID: PMC11053693 DOI: 10.3390/tropicalmed9040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The mosquito microbiota is a critical determinant of mosquito life history. It is therefore a target for novel vector control strategies like paratransgenesis. However, the microbiota in Anopheles funestus, a major African malaria vector, is poorly characterized. Thus, the study aimed to investigate the overall bacterial landscape in the salivary glands, ovaries and midguts of three laboratory strains of An. funestus differing in insecticide-resistant phenotype by sequencing the V3-V4 hypervariable region of bacterial 16S rRNA genes. When examining alpha diversity, the salivary glands harbored significantly more bacteria in terms of species richness and evenness compared to ovaries and midguts. On the strain level, the insecticide-susceptible FANG strain had significantly lower bacterial diversity than the insecticide-resistant FUMOZ and FUMOZ-R strains. When looking at beta diversity, the compositions of microbiota between the three tissues as well as between the strains were statistically different. While there were common bacteria across all three tissues and strains of interest, each tissue and strain did exhibit differentially abundant bacterial genera. However, overall, the top five most abundant genera across all tissues and strains were Elizabethkingia, Acinetobacter, Aeromonas, Cedecea and Yersinia. The presence of shared microbiota suggests a core microbiota that could be exploited for paratransgenesis efforts.
Collapse
Affiliation(s)
- Chia-Yu Chen
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Wai-Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa; (W.-Y.C.); (A.I.)
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa; (W.-Y.C.); (A.I.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
11
|
Egyirifa RK, Akorli J. Two promising candidates for paratransgenesis, Elizabethkingia and Asaia, increase in both sexes of Anopheles gambiae mosquitoes after feeding. Malar J 2024; 23:45. [PMID: 38347591 PMCID: PMC10863137 DOI: 10.1186/s12936-024-04870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The male mosquito microbiome may be important for identifying ideal candidates for disease control. Among other criteria, mosquito-associated symbionts that have high localization in both male and female mosquitoes and are transmissible through both vertical and sexual routes are desirable. However, mosquito microbiome studies have mainly been female-focused. In this study, the microbiota of male and female Anopheles gambiae sensu lato (s.l.) were compared to identify shared or unique bacteria. METHODS Late larval instars of Anopheles mosquitoes were collected from the field and raised to adults. Equal numbers of males and females of 1-day-old non-sugar-fed, 4-5-day-old sugar-fed and post-blood-fed females were randomly selected for whole-body analyses of bacteria 16S rRNA. RESULTS Results revealed that male and female mosquitoes generally share similar microbiota except when females were blood-fed. Compared to newly emerged unfed mosquitoes, feeding on sugar and/or blood increased variability in microbial composition (⍺-diversity), with a higher disparity among females (39% P = 0.01) than in males (29% P = 0.03). Elizabethkingia meningoseptica and Asaia siamensis were common discriminants between feeding statuses in both males and females. While E. meningoseptica was particularly associated with sugar-fed mosquitoes of both sexes and sustained after blood feeding in females, A. siamensis was also increased in sugar-fed mosquitoes but decreased significantly in blood-fed females (LDA score > 4.0, P < 0.05). Among males, A. siamensis did not differ significantly after sugar meals. CONCLUSIONS Results indicate the opportunities for stable infection in mosquitoes should these species be used in bacteria-mediated disease control. Further studies are recommended to investigate possible host-specific tissue tropism of bacteria species which will inform selection of the most appropriate microbes for effective transmission-blocking strategies.
Collapse
Affiliation(s)
- Richardson K Egyirifa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana.
| |
Collapse
|
12
|
Hyde J, Brackney DE, Steven B. Three species of axenic mosquito larvae recruit a shared core of bacteria in a common garden experiment. Appl Environ Microbiol 2023; 89:e0077823. [PMID: 37681948 PMCID: PMC10537770 DOI: 10.1128/aem.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023] Open
Abstract
In this study, we describe the generation of two new species of axenic mosquito, Aedes albopictus and Aedes triseriatus. Along with Aedes aegypti, axenic larvae of these three species were exposed to an environmental water source to document the assembly of the microbiome in a common garden experiment. Additionally, the larvae were reared either individually or combinatorially with the other species to characterize the effects of co-rearing on the composition of the microbiome. We found that the microbiome of the larvae was composed of a relatively low-diversity collection of bacteria from the colonizing water. The abundance of bacteria in the water was a poor predictor of their abundance in the larvae, suggesting the larval microbiome is made up of a subset of relatively rare aquatic bacteria. We found 11 bacterial 16S rRNA gene amplicon sequence variants (ASVs) that were conserved among ≥90% of the mosquitoes sampled, including 2 found in 100% of the larvae, pointing to a conserved core of bacteria capable of colonizing all three species of mosquito. Yet, the abundance of these ASVs varied widely between larvae, suggesting individuals harbored largely unique microbiome structures, even if they overlapped in membership. Finally, larvae reared in a tripartite mix of the host-species consistently showed a convergence in the structure of their microbiome, indicating that multi-species interactions between hosts potentially lead to shifts in the composition of their respective microbiomes. IMPORTANCE This study is the first report of the axenic (free of external microbes) rearing of two species of mosquito, Aedes albopictus and Aedes triseriatus. Our previous report of axenic Aedes aegypti brings the number of axenic species to three. We designed a method to perform a common garden experiment to characterize the bacteria the three species of axenic larvae assemble from their surroundings. Furthermore, species could be reared in isolation or in multi-species combinations to assess how host-species interactions influence the composition of the microbiome. We found all three species recruited a common core of bacteria from their rearing water, with a large contingent of rare and sporadically detected bacteria. Finally, we also show that co-rearing of mosquito larvae leads to a coalescence in the composition of their microbiome, indicating that host-species interactions potentially influence the composition of the microbiome.
Collapse
Affiliation(s)
- Josephine Hyde
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Doug E. Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Filipović I, Rašić G. De novo circular genome assembly of Elizabethkingia anophelis found in the mosquito Aedes aegypti from an Australian colony. Microbiol Resour Announc 2023; 12:e0031023. [PMID: 37623319 PMCID: PMC10508104 DOI: 10.1128/mra.00310-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
We report the complete circular genome assembly of Elizabethkingia anophelis (Flavobacteriales) generated with the ONT and Illumina sequences from a laboratory-reared Aedes aegypti mosquito. This genome sequence does not belong to the lineage of known isolates from Anopheles mosquitoes, indicating that E. anophelis is genomically diverse across mosquito disease vectors.
Collapse
Affiliation(s)
- Igor Filipović
- The University of Queensland, School of Biological Sciences, St. Lucia, Australia
| | - Gordana Rašić
- Population Health, QIMR Berghofer Medical Research Institute, Mosquito Genomics, Herston, Australia
| |
Collapse
|
14
|
Roy A, Houot B, Kushwaha S, Anderson P. Impact of transgenerational host switch on gut bacterial assemblage in generalist pest, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Microbiol 2023; 14:1172601. [PMID: 37520373 PMCID: PMC10374326 DOI: 10.3389/fmicb.2023.1172601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Diet composition is vital in shaping gut microbial assemblage in many insects. Minimal knowledge is available about the influence of transgenerational diet transition on gut microbial community structure and function in polyphagous pests. This study investigated transgenerational diet-induced changes in Spodoptera littoralis larval gut bacteriome using 16S ribosomal sequencing. Our data revealed that 88% of bacterial populations in the S. littoralis larval gut comprise Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The first diet transition experiment from an artificial diet (F0) to a plant diet (F1), cabbage and cotton, caused an alteration of bacterial communities in the S. littoralis larval gut. The second transgenerational diet switch, where F1 larvae feed on the same plant in the F2 generation, displayed a significant variation suggesting further restructuring of the microbial communities in the Spodoptera larval gut. F1 larvae were also challenged with the plant diet transition at the F2 generation (cabbage to cotton or cotton to cabbage). After feeding on different plant diets, the microbial assemblage of F2 larvae pointed to considerable differences from other F2 larvae that continued on the same diet. Our results showed that S. littoralis larval gut bacteriome responds rapidly and inexplicably to different diet changes. Further experiments must be conducted to determine the developmental and ecological consequences of such changes. Nevertheless, this study improves our perception of the impact of transgenerational diet switches on the resident gut bacteriome in S. littoralis larvae and could facilitate future research to understand the importance of symbiosis in lepidopteran generalists better.
Collapse
Affiliation(s)
- Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czechia
| | - Benjamin Houot
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep Kushwaha
- Department of Bioinformatics, National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
15
|
Chen TY, Bozic J, Mathias D, Smartt CT. Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations. Parasit Vectors 2023; 16:166. [PMID: 37208697 PMCID: PMC10199558 DOI: 10.1186/s13071-023-05784-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. METHODS In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. RESULTS Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene's involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. CONCLUSIONS The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Department of Entomology, The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| |
Collapse
|
16
|
dos Santos NAC, de Carvalho VR, Souza-Neto JA, Alonso DP, Ribolla PEM, Medeiros JF, Araujo MDS. Bacterial Microbiota from Lab-Reared and Field-Captured Anopheles darlingi Midgut and Salivary Gland. Microorganisms 2023; 11:1145. [PMID: 37317119 PMCID: PMC10224351 DOI: 10.3390/microorganisms11051145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Anopheles darlingi is a major malaria vector in the Amazon region and, like other vectors, harbors a community of microorganisms with which it shares a network of interactions. Here, we describe the diversity and bacterial composition from the midguts and salivary glands of lab-reared and field-captured An. darlingi using metagenome sequencing of the 16S rRNA gene. The libraries were built using the amplification of the region V3-V4 16S rRNA gene. The bacterial community from the salivary glands was more diverse and richer than the community from the midguts. However, the salivary glands and midguts only showed dissimilarities in beta diversity between lab-reared mosquitoes. Despite that, intra-variability was observed in the samples. Acinetobacter and Pseudomonas were dominant in the tissues of lab-reared mosquitoes. Sequences of Wolbachia and Asaia were both found in the tissue of lab-reared mosquitoes; however, only Asaia was found in field-captured An. darlingi, but in low abundance. This is the first report on the characterization of microbiota composition from the salivary glands of An. darlingi from lab-reared and field-captured individuals. This study can provide invaluable insights for future investigations regarding mosquito development and interaction between mosquito microbiota and Plasmodium sp.
Collapse
Affiliation(s)
- Najara Akira Costa dos Santos
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Vanessa Rafaela de Carvalho
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Diego Peres Alonso
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Paulo Eduardo Martins Ribolla
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Jansen Fernandes Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais–PPGReN, Departament of Biology, Fundação Universidade Federal de Rondônia, Campus José Ribeiro Filho, Porto Velho 76801-059, RO, Brazil
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho 76812-329, RO, Brazil
| |
Collapse
|
17
|
Mosquera KD, Martínez Villegas LE, Rocha Fernandes G, Rocha David M, Maciel-de-Freitas R, A Moreira L, Lorenzo MG. Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites. BMC Biol 2023; 21:97. [PMID: 37101136 PMCID: PMC10134544 DOI: 10.1186/s12915-023-01605-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness. RESULTS To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae. CONCLUSIONS Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Luis Eduardo Martínez Villegas
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH, 43210, USA
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana Rocha David
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Luciano A Moreira
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Abstract
The mosquito microbiota has a profound impact on multiple biological processes ranging from reproduction to disease transmission. Interestingly, the adult mosquito microbiota is largely derived from the larval microbiota, which in turn is dependent on the microbiota of their water habitat. The larval microbiota not only plays a crucial role in larval development but also has a significant impact on the adult stage of the mosquito. By precisely engineering the larval microbiota, it is feasible to alter larval development and other life history traits of the mosquitoes. Bacteriophages, given their host specificity, can serve as a tool for modulating the microbiota. For this proof-of-principle study, we selected representative strains of five common Anopheles mosquito-associated bacterial genera, namely, Enterobacter, Serratia, Pseudomonas, Elizabethkingia, and Asaia. Our results with monoaxenic cultures showed that Anopheles larvae with Enterobacter and Pseudomonas displayed normal larval development with no significant mortality. However, monoaxenic Anopheles larvae with Elizabethkingia showed delayed larval development and higher mortality. Serratia and Asaia gnotobiotic larvae failed to develop past the first instar. We isolated and characterized three novel bacteriophages (EP1, SP1, and EKP1) targeting Enterobacter, Serratia, and Elizabethkingia, respectively, and utilized a previously characterized bacteriophage (GH1) targeting Pseudomonas to modulate larval water microbiota. Gnotobiotic Anopheles larvae with all five bacterial genera showed reduced survival and larval development with the addition of bacteriophages EP1 and GH1, targeting Enterobacter and Pseudomonas, respectively. The effect was synergistic when both EP1 and GH1 were added together. Our results demonstrate a novel application of bacteriophages for mosquito control. IMPORTANCE Mosquitoes are efficient vectors of multiple human and animal pathogens. The biology of mosquitoes is strongly affected by their associated microbiota. Because of the important role of the larval microbiota in mosquito biology, the microbiota can potentially serve as a target for altering mosquito life-history traits. Our study provides proof of principle that bacteriophages can be used as tools to modulate the mosquito larval habitat microbiota and can, in turn, affect larval development and survival. These results highlight the utility of bacteriophages in mosquito microbiota research and also provide a new potential mosquito control tool.
Collapse
|
19
|
Chen K, Ponnusamy L, Mouhamadou CS, Fodjo BK, Sadia GC, Affoue FPK, Deguenon JM, Roe RM. Internal and external microbiota of home-caught Anopheles coluzzii (Diptera: Culicidae) from Côte d'Ivoire, Africa: Mosquitoes are filthy. PLoS One 2022; 17:e0278912. [PMID: 36520830 PMCID: PMC9754230 DOI: 10.1371/journal.pone.0278912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Over the past 10 years, studies using high-throughput 16S rRNA gene sequencing have shown that mosquitoes harbor diverse bacterial communities in their digestive system. However, no previous research has examined the total bacteria community inside versus outside of mosquitoes and whether bacteria found on the outside could represent a potential health threat through mechanical transfer. We examined the bacterial community of the external surface and internal body of female Anopheles coluzzii adults collected from homes in Côte d'Ivoire, Africa, by Illumina sequencing of the V3 to V4 region of 16S rRNA gene. Anopheles coluzzii is in the Anopheles gambiae sensu lato (s.l.) species complex and important in the transmission of malaria. The total 16S rRNA reads were assigned to 34 phyla, 73 orders, 325 families, and 700 genera. At the genus level, the most abundant genera inside and outside combined were Bacillus, Staphylococcus, Enterobacter, Corynebacterium, Kocuria, Providencia, and Sphingomonas. Mosquitoes had a greater diversity of bacterial taxa internally compared to the outside. The internal bacterial communities were similar between homes, while the external body samples were significantly different between homes. The bacteria on the external body were associated with plants, human and animal skin, and human and animal infections. Internally, Rickettsia bellii and Rickettsia typhi were found, potentially of importance, since this genus is associated with human diseases. Based on these findings, further research is warranted to assess the potential mechanical transmission of bacteria by mosquitoes moving into homes and the importance of the internal mosquito microbiota in human health.
Collapse
Affiliation(s)
- Kaiying Chen
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States of America
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
- * E-mail: (LP); (RMR)
| | - Chouaïbou S. Mouhamadou
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Behi Kouadio Fodjo
- Centre Suisse de Recherches Scientifiques, Abidjan, Cote d’Ivoire, Africa
| | | | | | - Jean M. Deguenon
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
- * E-mail: (LP); (RMR)
| |
Collapse
|
20
|
Gómez-Govea MA, Ramírez-Ahuja MDL, Contreras-Perera Y, Jiménez-Camacho AJ, Ruiz-Ayma G, Villanueva-Segura OK, Trujillo-Rodríguez GDJ, Delgado-Enciso I, Martínez-Fierro ML, Manrique-Saide P, Puerta-Guardo H, Flores-Suárez AE, Ponce-García G, Rodríguez-Sánchez IP. Suppression of Midgut Microbiota Impact Pyrethroid Susceptibility in Aedes aegypti. Front Microbiol 2022; 13:761459. [PMID: 35979482 PMCID: PMC9376455 DOI: 10.3389/fmicb.2022.761459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Aedes aegypti is a mosquito that transmits viral diseases such as dengue, chikungunya, Zika, and yellow fever. The insect’s microbiota is recognized for regulating several biological processes, including digestion, metabolism, egg production, development, and immune response. However, the role of the bacteria involved in insecticide susceptibility has not been established. Therefore, the objective of this study was to characterize the resident microbiota in a field population of A. aegypti to evaluate its role associated with susceptibility to the insecticides permethrin and deltamethrin. Mosquitoes were fed 10% sucrose mixed with antibiotics and then exposed to insecticides using a diagnostic dose. DNA was extracted, and sequencing of bacterial 16S rRNA was carried out on Illumina® MiSeq™. Proteobacteria (92.4%) and Bacteroidetes (7.6%) were the phyla, which are most abundant in mosquitoes fed with sucrose 10%. After exposure to permethrin, the most abundant bacterial species were Pantoea agglomerans (38.4%) and Pseudomonas azotoformans-fluorescens-synxantha (14.2%). Elizabethkingia meningoseptica (38.4%) and Ps. azotoformans-fluorescens-synxantha (26.1%) were the most abundant after exposure to deltamethrin. Our results showed a decrease in mosquitoes’ survival when exposed to permethrin, while no difference in survival when exposed to deltamethrin when the microbiota was modified. We found that the change in microbiota modifies the response of mosquitoes to permethrin. These results are essential for a better understanding of mosquito physiology in response to insecticides.
Collapse
Affiliation(s)
- Mayra A. Gómez-Govea
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, San Nicolás de los Garza, Mexico
| | - María de Lourdes Ramírez-Ahuja
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, San Nicolás de los Garza, Mexico
| | - Yamili Contreras-Perera
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Mérida, Mexico
| | - Armando J. Jiménez-Camacho
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, San Nicolás de los Garza, Mexico
| | - Gabriel Ruiz-Ayma
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biologicas, Laboratorio de Biológía de la Conservación, San Nicolás de los Garza, Mexico
| | - Olga Karina Villanueva-Segura
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, San Nicolás de los Garza, Mexico
| | - Gerardo de Jesús Trujillo-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, San Nicolás de los Garza, Mexico
| | | | - Margarita L. Martínez-Fierro
- Universidad Autónoma de Zacatecas, Laboratorio de Medicina Molecular, Unidad Académica de Medicina Humana, Zacatecas, Mexico
| | - Pablo Manrique-Saide
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Mérida, Mexico
| | - Henry Puerta-Guardo
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Mérida, Mexico
| | - Adriana E. Flores-Suárez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Zoología de Invertebrados, San Nicolás de los Garza, Mexico
| | - Gustavo Ponce-García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Zoología de Invertebrados, San Nicolás de los Garza, Mexico
| | - Iram P. Rodríguez-Sánchez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, San Nicolás de los Garza, Mexico
- *Correspondence: Iram P. Rodríguez-Sánchez,
| |
Collapse
|
21
|
Hu S, Lv Y, Xu H, Zheng B, Xiao Y. Biofilm formation and antibiotic sensitivity in Elizabethkingia anophelis. Front Cell Infect Microbiol 2022; 12:953780. [PMID: 35967866 PMCID: PMC9366890 DOI: 10.3389/fcimb.2022.953780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia anophelis has recently gained global attention and is emerging as a cause of life-threatening nosocomial infections. The present study aimed to investigate the association between antimicrobial resistance and the ability to form biofilm among E. anophelis isolated from hospitalized patients in China. Over 10 years, a total of 197 non-duplicate E. anophelis strains were collected. Antibiotic susceptibility was determined by the standard agar dilution method as a reference assay according to the Clinical and Laboratory Standards Institute. The biofilm formation ability was assessed using a culture microtiter plate method, which was determined using a crystal violet assay. Culture plate results were cross-checked by scanning electron microscopy imaging analysis. Among the 197 isolates, all were multidrug-resistant, and 20 were extensively drug-resistant. Clinical E. anophelis showed high resistance to current antibiotics, and 99% of the isolates were resistant to at least seven antibiotics. The resistance rate for aztreonam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, cefepime, and tetracycline was high as 100%, 99%, 99%, 99%, 99%, 95%, and 90%, respectively. However, the isolates exhibited the highest susceptibility to minocycline (100%), doxycycline (96%), and rifampin (94%). The biofilm formation results revealed that all strains could form biofilm. Among them, the proportions of strong, medium, and weak biofilm-forming strains were 41%, 42%, and 17%, respectively. Furthermore, the strains forming strong or moderate biofilm presented a statistically significant higher resistance than the weak formers (p < 0.05), especially for piperacillin, piperacillin-tazobactam, cefepime, amikacin, and ciprofloxacin. Although E. anophelis was notoriously resistant to large antibiotics, minocycline, doxycycline, and rifampin showed potent activity against this pathogen. The data in the present report revealed a positive association between biofilm formation and antibiotic resistance, which will provide a foundation for improved therapeutic strategies against E. anophelis infections in the future.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| |
Collapse
|
22
|
Andriyanov PA, Zhurilov PA, Kashina DD, Tutrina AI, Liskova EA, Razheva IV, Kolbasov DV, Ermolaeva SA. Antimicrobial Resistance and Comparative Genomic Analysis of Elizabethkingia anophelis subsp. endophytica Isolated from Raw Milk. Antibiotics (Basel) 2022; 11:648. [PMID: 35625292 PMCID: PMC9137776 DOI: 10.3390/antibiotics11050648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Elizabethkingia anophelis is an emerging multidrug-resistant pathogen that causes severe nosocomial and community-acquired infections worldwide. We report the first case of E. anophelis isolation in Russia and the first isolation from raw cow's milk. The ML-44 demonstrated resistance to 28 antimicrobials of 33 tested in the disk-diffusion test. Whole genome-based phylogeny showed ML-44 strain clustered together with the F3201 strain isolated from a human patient in Kuwait in 1982. Both strains were a part of the "endophytica" clade. Another clade was formed by subsp. anophelis strains. Each of the E. anophelis compared genomes carried 18 to 21 antibiotic resistance determinants. The ML-44 chromosome harbored nine efflux system genes and three beta-lactamase genes, along with six other antimicrobial resistance genes. In total, 72 virulence genes were revealed. The set of virulence factors was quite similar between different E. anophelis strains and included LPS and capsule encoded genes, type IV pili, oxidative stress response genes, and genes encoding TIVSS and TVISS effectors. The particular interest caused the mip and zmp1 gene homologs, which can be essential for intracellular survival. In sum, our findings suggest that raw milk might be a source of E. anophelis harboring a set of virulence factors and a broad resistance to generally used antimicrobials.
Collapse
Affiliation(s)
- Pavel A. Andriyanov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Pavel A. Zhurilov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Daria D. Kashina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Anastasia I. Tutrina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Elena A. Liskova
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Irina V. Razheva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Denis V. Kolbasov
- Federal Research Center for Virology and Microbiology, 601125 Volginsky, Russia;
| | - Svetlana A. Ermolaeva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| |
Collapse
|
23
|
Elizabethkingia anophelis: An Important Emerging Cause of Neonatal Sepsis and Meningitis in China. Pediatr Infect Dis J 2022; 41:e228-e232. [PMID: 35067644 DOI: 10.1097/inf.0000000000003464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae in 2011, is an important cause of sepsis in adults and children and meningitis in newborns, with several reported outbreaks worldwide. Accumulating molecular biological and whole-genome sequencing (WGS) evidence suggests that E. anophelis is the major human pathogen belonging to the genus Elizabethkingia. The source of infection, routes of transmission and pathogenicity of E. anophelis are unclear and should be better understood as the bacterium is capable of causing sepsis and meningitis in newborns, with complications and high mortality rates. Here, we describe two healthy neonates who developed meningitis caused by Elizabethkingia infection. Initial conventional laboratory results revealed that the pathogen was E. meningoseptica; metagenomic findings later confirmed it as E. anophelis. We also summarize reported E. anophelis infections among newborns in China and elsewhere and describe the clinical, pathogenic and genetic characteristics of this bacillus.
Collapse
|
24
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
25
|
Hem S, Jarocki VM, Baker DJ, Charles IG, Drigo B, Aucote S, Donner E, Burnard D, Bauer MJ, Harris PNA, Wyrsch ER, Djordjevic SP. Genomic analysis of Elizabethkingia species from aquatic environments: Evidence for potential clinical transmission. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100083. [PMID: 34988536 PMCID: PMC8703026 DOI: 10.1016/j.crmicr.2021.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of closely related (< 50 SNV) clinical and environmental aquatic Elizabethkingia anophelis isolates. Identification of a provisional novel species Elizabethkingia umaracha. Novel blaGOB and blaB carbapenemases and extended spectrum β-lactamase blaCME alleles identified in Elizabethkingia spp. Analysis of the global phylogeny and pangenome of Elizabethkingia spp. Identification of novel ICE elements carrying uncharacterised genetic cargo in 67 / 94 (71.3%) of the aquatic environments Elizabethkingia spp.
Elizabethkingia species are ubiquitous in aquatic environments, colonize water systems in healthcare settings and are emerging opportunistic pathogens with reports surfacing in 25 countries across six continents. Elizabethkingia infections are challenging to treat, and case fatality rates are high. Chromosomal blaB, blaGOB and blaCME genes encoding carbapenemases and cephalosporinases are unique to Elizabethkingia spp. and reports of concomitant resistance to aminoglycosides, fluoroquinolones and sulfamethoxazole-trimethoprim are known. Here, we characterized whole-genome sequences of 94 Elizabethkingia isolates carrying multiple wide-spectrum metallo-β-lactamase (blaBand blaGOB) and extended-spectrum serine‑β-lactamase (blaCME) genes from Australian aquatic environments and performed comparative phylogenomic analyses against national clinical and international strains. qPCR was performed to quantify the levels of Elizabethkingia species in the source environments. Antibiotic MIC testing revealed significant resistance to carbapenems and cephalosporins but susceptibility to fluoroquinolones, tetracyclines and trimethoprim-sulfamethoxazole. Phylogenetics show that three environmental E. anophelis isolates are closely related to E. anophelis from Australian clinical isolates (∼36 SNPs), and a new species, E. umeracha sp. novel, was discovered. Genomic signatures provide insight into potentially shared origins and a capacity to transfer mobile genetic elements with both national and international isolates.
Collapse
Affiliation(s)
- Sopheak Hem
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Veronica M Jarocki
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich, United Kingdom.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Sarah Aucote
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Delaney Burnard
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Michelle J Bauer
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Ethan R Wyrsch
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
26
|
Schrieke H, Maignien L, Constancias F, Trigodet F, Chakloute S, Rakotoarivony I, Marie A, L'Ambert G, Makoundou P, Pages N, Murat Eren A, Weill M, Sicard M, Reveillaud J. The mosquito microbiome includes habitat-specific but rare symbionts. Comput Struct Biotechnol J 2021; 20:410-420. [PMID: 35140881 PMCID: PMC8803474 DOI: 10.1016/j.csbj.2021.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022] Open
Abstract
Microbial communities are known to influence mosquito lifestyles by modifying essential metabolic and behavioral processes that affect reproduction, development, immunity, digestion, egg survival, and the ability to transmit pathogens. Many studies have used 16S rRNA gene amplicons to characterize mosquito microbiota and investigate factors that influence host-microbiota dynamics. However, a relatively low taxonomic resolution due to clustering methods based on arbitrary threshold and the overall dominance of Wolbachia or Asaia symbionts obscured the investigation of rare members of mosquito microbiota in previous studies. Here, we used high resolution Shannon entropy-based oligotyping approach to analyze the microbiota of Culex pipiens, Culex quinquefasciatus and Aedes individuals from continental Southern France and overseas Guadeloupe as well as from laboratories with or without antibiotics treatment. Our experimental design that resulted in a series of mosquito samples with a gradient of Wolbachia density and relative abundance along with high-resolution analyses of amplicon sequences enabled the recovery of a robust signal from typically less accessible bacterial taxa. Our data confirm species-specific mosquito-bacteria associations with geography as a primary factor that influences bacterial community structure. But interestingly, they also reveal co-occurring symbiotic bacterial variants within single individuals for both Elizabethkingia and Erwinia genera, distinct and specific Asaia and Chryseobacterium in continental and overseas territories, and a putative rare Wolbachia variant. Overall, our study reveals the presence of previously overlooked microdiversity and multiple closely related symbiotic strains within mosquito individuals with a remarkable habitat-specificity.
Collapse
Affiliation(s)
- Hans Schrieke
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Loïs Maignien
- Univ Brest, CNRS, IFREMER, Microbiology of Extreme Environments Laboratory, Plouzané, France
| | | | | | - Sarah Chakloute
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | | | - Albane Marie
- EID Méditerranée, 165 Avenue Paul Rimbaud, 34184 Montpellier, France
| | - Gregory L'Ambert
- EID Méditerranée, 165 Avenue Paul Rimbaud, 34184 Montpellier, France
| | - Patrick Makoundou
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nonito Pages
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Guadeloupe, France
| | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Julie Reveillaud
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| |
Collapse
|
27
|
The Integrative and Conjugative Element ICE CspPOL2 Contributes to the Outbreak of Multi-Antibiotic-Resistant Bacteria for Chryseobacterium Spp. and Elizabethkingia Spp. Microbiol Spectr 2021; 9:e0200521. [PMID: 34937181 PMCID: PMC8694125 DOI: 10.1128/spectrum.02005-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance genes (ARGs) and horizontal transfer of ARGs among bacterial species in the environment can have serious clinical implications as such transfers can lead to disease outbreaks from multidrug-resistant (MDR) bacteria. Infections due to antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the multi-antibiotic-resistant strain Chryseobacterium sp. POL2 was isolated from the wastewater of a livestock farm. Whole-genome sequencing and annotation revealed that the POL2 genome encodes dozens of ARGs. The integrative and conjugative element (ICE) ICECspPOL2, which encodes ARGs associated with four types of antibiotics, including carbapenem, was identified in the POL2 genome, and phylogenetic affiliation analysis suggested that ICECspPOL2 evolved from related ICEEas of Elizabethkingia spp. Conjugation assays verified that ICECspPOL2 can horizontally transfer to Elizabethkingia species, suggesting that ICECspPOL2 contributes to the dissemination of multiple ARGs among Chryseobacterium spp. and Elizabethkingia spp. Because Elizabethkingia spp. is associated with clinically significant infections and high mortality, there would be challenges to clinical treatment if these bacteria acquire ICECspPOL2 with its multiple ARGs, especially the carbapenem resistance gene. Therefore, the results of this study support the need for monitoring the dissemination of this type of ICE in Chryseobacterium and Elizabethkingia strains to prevent further outbreaks of MDR bacteria. IMPORTANCE Infections with multiple antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the mobile integrative and conjugative element ICECspPOL2, which was associated with the transmission of a carbapenem resistance gene, was identified in the genome of the multi-antibiotic-resistant strain Chryseobacterium sp. POL2. ICECspPOL2 is closely related to the ICEEas from Elizabethkingia species, and ICECspPOL2 can horizontally transfer to Elizabethkingia species with the tRNA-Glu-TTC gene as the insertion site. Because Elizabethkingia species are associated with clinically significant infections and high mortality, the ability of ICECspPOL2 to transfer carbapenem resistance from environmental strains of Chryseobacterium to Elizabethkingia is of clinical concern.
Collapse
|
28
|
Onyango MG, Lange R, Bialosuknia S, Payne A, Mathias N, Kuo L, Vigneron A, Nag D, Kramer LD, Ciota AT. Zika virus and temperature modulate Elizabethkingia anophelis in Aedes albopictus. Parasit Vectors 2021; 14:573. [PMID: 34772442 PMCID: PMC8588690 DOI: 10.1186/s13071-021-05069-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vector-borne pathogens must survive and replicate in the hostile environment of an insect's midgut before successful dissemination. Midgut microbiota interfere with pathogen infection by activating the basal immunity of the mosquito and by synthesizing pathogen-inhibitory metabolites. METHODS The goal of this study was to assess the influence of Zika virus (ZIKV) infection and increased temperature on Aedes albopictus midgut microbiota. Aedes albopictus were reared at diurnal temperatures of day 28 °C/night 24 °C (L) or day 30 °C/night 26 °C (M). The mosquitoes were given infectious blood meals with 2.0 × 108 PFU/ml ZIKV, and 16S rRNA sequencing was performed on midguts at 7 days post-infectious blood meal exposure. RESULTS Our findings demonstrate that Elizabethkingia anophelis albopictus was associated with Ae. albopictus midguts exposed to ZIKV infectious blood meal. We observed a negative correlation between ZIKV and E. anophelis albopictus in the midguts of Ae. albopictus. Supplemental feeding of Ae. albopictus with E. anophelis aegypti and ZIKV resulted in reduced ZIKV infection rates. Reduced viral loads were detected in Vero cells that were sequentially infected with E. anophelis aegypti and ZIKV, dengue virus (DENV), or chikungunya virus (CHIKV). CONCLUSIONS Our findings demonstrate the influence of ZIKV infection and temperature on the Ae. albopictus microbiome along with a negative correlation between ZIKV and E. anophelis albopictus. Our results have important implications for controlling vector-borne pathogens.
Collapse
Affiliation(s)
- Maria G. Onyango
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Rachel Lange
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Sean Bialosuknia
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Anne Payne
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Nicholas Mathias
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Lili Kuo
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Aurelien Vigneron
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dilip Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Laura D. Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Alexander T. Ciota
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| |
Collapse
|
29
|
Native Wolbachia influence bacterial composition in the major vector mosquito Aedes aegypti. Arch Microbiol 2021; 203:5225-5240. [PMID: 34351459 DOI: 10.1007/s00203-021-02506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
Bacterial species that inhabit mosquito microbiota play an essential role in determining vector competence. In addition to critical factors such as host genotype, feeding habit and geography, intracellular endosymbiont Wolbachia pipientis modulates microbial composition considerably. In the present study, we assessed the midgut bacterial diversity of Aedes aegypti mosquitoes that is either naturally carrying Wolbachia (wAegB+) or antibiotic cured (wAegB-) through a culture-independent approach. Towards this, 16S rRNA gene libraries were constructed from midgut bacterial DNA of laboratory-reared larvae and adult female mosquitoes fed with sugar or blood. Among them 33 genera comprising 65 distinct species were identified, where > 75% of bacterial taxa were commonly shared by both groups (wAegB+ and wAegB-), implying a subtle shift in the bacterial composition influenced by Wolbachia. Though the change was mostly restricted to minimally represented species, predominant taxa were observed unaltered except for certain genera. While Serratia sp. was abundant in Wolbachia carrying mosquitoes, Pseudomonas sp. and Acinetobacter sp. were predominant in Wolbachia free mosquitoes. This result demonstrates the influence of Wolbachia that could modulate the colonization of certain resident bacterial taxa through competitive interactions. Overall, this study shed more light on the impact of wAegB in altering the gut microbiota of Ae. aegypti mosquito, which might challenge host fitness and vector competence.
Collapse
|
30
|
Steven B, Hyde J, LaReau JC, Brackney DE. The Axenic and Gnotobiotic Mosquito: Emerging Models for Microbiome Host Interactions. Front Microbiol 2021; 12:714222. [PMID: 34322111 PMCID: PMC8312643 DOI: 10.3389/fmicb.2021.714222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
The increasing availability of modern research tools has enabled a revolution in studies of non-model organisms. Yet, one aspect that remains difficult or impossible to control in many model and most non-model organisms is the presence and composition of the host-associated microbiota or the microbiome. In this review, we explore the development of axenic (microbe-free) mosquito models and what these systems reveal about the role of the microbiome in mosquito biology. Additionally, the axenic host is a blank template on which a microbiome of known composition can be introduced, also known as a gnotobiotic organism. Finally, we identify a "most wanted" list of common mosquito microbiome members that show the greatest potential to influence host phenotypes. We propose that these are high-value targets to be employed in future gnotobiotic studies. The use of axenic and gnotobiotic organisms will transition the microbiome into another experimental variable that can be manipulated and controlled. Through these efforts, the mosquito will be a true model for examining host microbiome interactions.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Josephine Hyde
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jacquelyn C. LaReau
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Doug E. Brackney
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| |
Collapse
|
31
|
Zhang D, Chen S, Abd-Alla AMM, Bourtzis K. The Effect of Radiation on the Gut Bacteriome of Aedes albopictus. Front Microbiol 2021; 12:671699. [PMID: 34305838 PMCID: PMC8299835 DOI: 10.3389/fmicb.2021.671699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The sterile insect technique (SIT) has been developed as a component of area-wide integrated pest management approaches to control the populations of Aedes albopictus, a mosquito vector capable of transmission of dengue, Zika and chikungunya viruses. One of the key factors for the success of SIT is the requirement of high biological quality sterile males, which upon their release would be able to compete with wild males for matings with wild females in the field. In insects, gut bacteriome have played a catalytic role during evolution significantly affecting several aspects of their biology and ecology. Given the importance of gut-associated bacterial species for the overall ecological fitness and biological quality of their hosts, it is of interest to understand the effects of radiation on the gut-associated bacteriome of Ae. albopictus. In this study, the effect of radiation on the composition and density levels of the gut-associated bacterial species at the pupal stage as well as at 1- and 4-day-old males and females was studied using 16S rRNA gene-based next generation sequencing (NGS) and quantitative PCR (qPCR) approaches. Age, diet, sex, and radiation were shown to affect the gut-associated bacterial communities, with age having the highest impact triggering significant changes on bacterial diversity and clustering among pupae, 1- and 4-day-old adult samples. qPCR analysis revealed that the relative density levels of Aeromonas are higher in male samples compared to all other samples and that the irradiation triggers an increase in the density levels of both Aeromonas and Elizabethkingia in the mosquito gut at specific stages. Our results suggest that Aeromonas could potentially be used as probiotics to enhance protandry and sex separation in support of SIT applications against Ae. albopictus, while the functional role of Elizabethkingia in respect to oxidative stress and damage in irradiated mosquitoes needs further investigation.
Collapse
Affiliation(s)
- Dongjing Zhang
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Shi Chen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria.,Institute of Biological Control, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
32
|
E Silva B, Matsena Zingoni Z, Koekemoer LL, Dahan-Moss YL. Microbiota identified from preserved Anopheles. Malar J 2021; 20:230. [PMID: 34022891 PMCID: PMC8141131 DOI: 10.1186/s12936-021-03754-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mosquito species from the Anopheles gambiae complex and the Anopheles funestus group are dominant African malaria vectors. Mosquito microbiota play vital roles in physiology and vector competence. Recent research has focused on investigating the mosquito microbiota, especially in wild populations. Wild mosquitoes are preserved and transported to a laboratory for analyses. Thus far, microbial characterization post-preservation has been investigated in only Aedes vexans and Culex pipiens. Investigating the efficacy of cost-effective preservatives has also been limited to AllProtect reagent, ethanol and nucleic acid preservation buffer. This study characterized the microbiota of African Anopheles vectors: Anopheles arabiensis (member of the An. gambiae complex) and An. funestus (member of the An. funestus group), preserved on silica desiccant and RNAlater® solution. Methods Microbial composition and diversity were characterized using culture-dependent (midgut dissections, culturomics, MALDI-TOF MS) and culture-independent techniques (abdominal dissections, DNA extraction, next-generation sequencing) from laboratory (colonized) and field-collected mosquitoes. Colonized mosquitoes were either fresh (non-preserved) or preserved for 4 and 12 weeks on silica or in RNAlater®. Microbiota were also characterized from field-collected An. arabiensis preserved on silica for 8, 12 and 16 weeks. Results Elizabethkingia anophelis and Serratia oryzae were common between both vector species, while Enterobacter cloacae and Staphylococcus epidermidis were specific to females and males, respectively. Microbial diversity was not influenced by sex, condition (fresh or preserved), preservative, or preservation time-period; however, the type of bacterial identification technique affected all microbial diversity indices. Conclusions This study broadly characterized the microbiota of An. arabiensis and An. funestus. Silica- and RNAlater®-preservation were appropriate when paired with culture-dependent and culture-independent techniques, respectively. These results broaden the selection of cost-effective methods available for handling vector samples for downstream microbial analyses. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03754-7.
Collapse
Affiliation(s)
- Bianca E Silva
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zvifadzo Matsena Zingoni
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Parktown, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
33
|
Genome Features of Asaia sp. W12 Isolated from the Mosquito Anopheles stephensi Reveal Symbiotic Traits. Genes (Basel) 2021; 12:genes12050752. [PMID: 34067621 PMCID: PMC8156966 DOI: 10.3390/genes12050752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/29/2023] Open
Abstract
Asaia bacteria commonly comprise part of the microbiome of many mosquito species in the genera Anopheles and Aedes, including important vectors of infectious agents. Their close association with multiple organs and tissues of their mosquito hosts enhances the potential for paratransgenesis for the delivery of antimalaria or antivirus effectors. The molecular mechanisms involved in the interactions between Asaia and mosquito hosts, as well as Asaia and other bacterial members of the mosquito microbiome, remain underexplored. Here, we determined the genome sequence of Asaia strain W12 isolated from Anopheles stephensi mosquitoes, compared it to other Asaia species associated with plants or insects, and investigated the properties of the bacteria relevant to their symbiosis with mosquitoes. The assembled genome of strain W12 had a size of 3.94 MB, the largest among Asaia spp. studied so far. At least 3585 coding sequences were predicted. Insect-associated Asaia carried more glycoside hydrolase (GH)-encoding genes than those isolated from plants, showing their high plant biomass-degrading capacity in the insect gut. W12 had the most predicted regulatory protein components comparatively among the selected Asaia, indicating its capacity to adapt to frequent environmental changes in the mosquito gut. Two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases (cyoABCD-1 and cyoABCD-2) were found in most Asaia genomes, possibly offering alternative terminal oxidases and allowing the flexible transition of respiratory pathways. Genes involved in the production of 2,3-butandiol and inositol have been found in Asaia sp. W12, possibly contributing to biofilm formation and stress tolerance.
Collapse
|
34
|
Ghafoori SM, Robles AM, Arada AM, Shirmast P, Dranow DM, Mayclin SJ, Lorimer DD, Myler PJ, Edwards TE, Kuhn ML, Forwood JK. Structural characterization of a Type B chloramphenicol acetyltransferase from the emerging pathogen Elizabethkingia anophelis NUHP1. Sci Rep 2021; 11:9453. [PMID: 33947893 PMCID: PMC8096840 DOI: 10.1038/s41598-021-88672-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Elizabethkingia anophelis is an emerging multidrug resistant pathogen that has caused several global outbreaks. E. anophelis belongs to the large family of Flavobacteriaceae, which contains many bacteria that are plant, bird, fish, and human pathogens. Several antibiotic resistance genes are found within the E. anophelis genome, including a chloramphenicol acetyltransferase (CAT). CATs play important roles in antibiotic resistance and can be transferred in genetic mobile elements. They catalyse the acetylation of the antibiotic chloramphenicol, thereby reducing its effectiveness as a viable drug for therapy. Here, we determined the high-resolution crystal structure of a CAT protein from the E. anophelis NUHP1 strain that caused a Singaporean outbreak. Its structure does not resemble that of the classical Type A CATs but rather exhibits significant similarity to other previously characterized Type B (CatB) proteins from Pseudomonas aeruginosa, Vibrio cholerae and Vibrio vulnificus, which adopt a hexapeptide repeat fold. Moreover, the CAT protein from E. anophelis displayed high sequence similarity to other clinically validated chloramphenicol resistance genes, indicating it may also play a role in resistance to this antibiotic. Our work expands the very limited structural and functional coverage of proteins from Flavobacteriaceae pathogens which are becoming increasingly more problematic.
Collapse
Affiliation(s)
| | - Alyssa M Robles
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Angelika M Arada
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Paniz Shirmast
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Stephen J Mayclin
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, USA
- UCB Pharma, Bainbridge Island, WA, USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
35
|
Chang Y, Zhang D, Niu S, Chen Q, Lin Q, Zhang X. MBLs, Rather Than Efflux Pumps, Led to Carbapenem Resistance in Fosfomycin and Aztreonam/Avibactam Resistant Elizabethkingia anophelis. Infect Drug Resist 2021; 14:315-327. [PMID: 33551643 PMCID: PMC7856348 DOI: 10.2147/idr.s294149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/14/2021] [Indexed: 01/23/2023] Open
Abstract
Objective To assess the risk factors associated with infections and in-hospital mortality, antimicrobial susceptibility patterns and carbapenem resistance mechanisms in E. anophelis. Methods This retrospective case-control study was conducted to reveal the risk factors associated with Elizabethkingia anophelis (E. anophelis) infection and in-hospital mortality in a university tertiary hospital in southwest China, using multivariable logistic-regression analyses. Complete 16S rRNA gene sequencing was used to reconfirm the identity of all isolates. We employed the broth microdilution method to investigate the antimicrobial susceptibility profiles. The presence of resistance genes was confirmed by polymerase chain reaction and DNA sequencing. Full-length resistance genes were cloned into the pET-28a vector for further functional studies. Results Our multivariate analysis indicated that coronary artery disease, chronic obstructive pulmonary disease, surgery in the past 6 months, anemia and systemic steroid use were independent risk factors for the acquisition of E. anophelis. Additionally, anemia was the only independent risk factor associated with in-hospital mortality in patients with E. anophelis infections. E. anophelis isolates showed high in-vitro susceptibility towards minocycline (100%) and piperacillin/tazobactam (71.8%), but were resistant to colistin, fosfomycin, ceftazidime/avibactam and aztreonam/avibactam. The PCR revealed the presence of blaGOB and blaBlaB in 37 isolates, and blaCME β-lactamase genes in 36 isolates out of 39 E. anophelis isolates. Additionally, we showed that two metallo-β-lactamases (MBLs) BlaB and GOB, were responsible for carbapenem resistance and the serine-β-lactamase, CME, was functionally involved in resistance to cephalosporins and monobactams. Interestingly, the various putative efflux pumps in E. anophelis were not responsible for resistance. Conclusion Our findings will help clinicians to identify high-risk patients and suggests that minocycline should be considered as a therapeutic option for E. anophelis infections. Additionally, carbapenem resistance in E. anophelis is mainly associated with the MBLs, BlaB and GOB, rather than various putative efflux pumps.
Collapse
Affiliation(s)
- Yanbin Chang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Daiqin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiuxia Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Onyango GM, Bialosuknia MS, Payne FA, Mathias N, Ciota TA, Kramer DL. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep 2020; 10:19135. [PMID: 33154438 PMCID: PMC7644690 DOI: 10.1038/s41598-020-76188-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Insect midgut microbial symbionts have been considered as an integral component in thermal adaptation due to their differential thermal sensitivity. Altered midgut microbial communities can influence both insect physiology and competence for important vector-borne pathogens. This study sought to gain insights into how Aedes aegypti midgut microbes and life history traits are affected by increase in baseline diurnal temperature. Increase in temperature resulted in the enrichment of specific taxa with Bacillus being the most enriched. Bacillus is known to be heat tolerant. It also resulted in a dissimilar microbial assemblage (Bray-Curtis Index, PERMANOVA, F = 2.2063; R2 = 0.16706; P = 0.002) and reduced survivorship (Log-rank [Mantel-Cox] test, Chi-square = 35.66 df = 5, P < 0.0001). Blood meal intake resulted in proliferation of pathogenic bacteria such as Elizabethkingia in the midgut of the mosquitoes. These results suggest that alteration of temperature within realistic parameters such as 2 °C for Ae. aegypti in nature may impact the midgut microbiome favoring specific taxa that could alter mosquito fitness, adaptation and vector-pathogen interactions.
Collapse
Affiliation(s)
- Gorreti Maria Onyango
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - M Sean Bialosuknia
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - F Anne Payne
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Nicholas Mathias
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - T Alexander Ciota
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - D Laura Kramer
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA.
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
37
|
Stability of the Virome in Lab- and Field-Collected Aedes albopictus Mosquitoes across Different Developmental Stages and Possible Core Viruses in the Publicly Available Virome Data of Aedes Mosquitoes. mSystems 2020; 5:5/5/e00640-20. [PMID: 32994288 PMCID: PMC7527137 DOI: 10.1128/msystems.00640-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aedes mosquitoes can efficiently transmit many pathogenic arboviruses, placing a great burden on public health worldwide. In addition, they also carry a number of insect-specific viruses (ISVs), and it was recently suggested that some of these ISVs might form a stable species-specific "core virome" in mosquito populations. However, little is known about such a core virome in laboratory colonies and if it is present across different developmental stages. In this study, we compared the viromes in eggs, larvae, pupae, and adults of Aedes albopictus mosquitoes collected from a lab colony and compared each to the virome of different developmental stages collected in the field. The virome in lab-derived A. albopictus was very stable across all stages, consistent with a vertical transmission route of these viruses, and formed a possible "vertically transmitted core virome." The different stages of field-collected A. albopictus mosquitoes also contained this stable vertically transmitted core virome, as well as another set of viruses (e.g., viruses distantly related to Guadeloupe mosquito virus, Hubei virga-like virus 2, and Sarawak virus) shared by mosquitoes across different stages, which might represent an "environment-derived core virome." To further study this core set of ISVs, we screened 48 publicly available SRA viral metagenomic data sets of mosquitoes belonging to the genus Aedes, showing that some of the identified ISVs were identified in the majority of SRAs and providing further evidence supporting the core-virome concept.IMPORTANCE Our study revealed that the virome was very stable across all developmental stages of both lab-derived and field-collected Aedes albopictus The data representing the core virome in lab A. albopictus proved the vertical transmission route of these viruses, forming a "vertically transmitted core virome." Field mosquitoes also contained this stable vertically transmitted core virome as well as additional viruses, which probably represented "environment-derived core virome" and which therefore were less stable over time and geography. By further screening publicly available SRA viral metagenomic data sets from mosquitoes belonging to the genus Aedes, some of the identified core ISVs were shown to be present in the majority of SRAs, such as Phasi Charoen-like phasivirus and Guadeloupe mosquito virus. How these core ISVs influence the biology of the mosquito host and arbovirus infection and evolution deserves to be further explored.
Collapse
|
38
|
Sharma P, Rani J, Chauhan C, Kumari S, Tevatiya S, Das De T, Savargaonkar D, Pandey KC, Dixit R. Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi. Front Immunol 2020; 11:609. [PMID: 32477320 PMCID: PMC7240202 DOI: 10.3389/fimmu.2020.00609] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/17/2020] [Indexed: 02/05/2023] Open
Abstract
Blood-feeding enriched gut-microbiota boosts mosquitoes' anti-Plasmodium immunity. Here, we ask how Plasmodium vivax alters gut-microbiota, anti-Plasmodial immunity, and impacts tripartite Plasmodium-mosquito-microbiota interactions in the gut lumen. We used a metagenomics and RNAseq strategy to address these questions. In naïve mosquitoes, Elizabethkingia meningitis and Pseudomonas spp. are the dominant bacteria and blood-feeding leads to a heightened detection of Elizabethkingia, Pseudomonas and Serratia 16S rRNA. A parallel RNAseq analysis of blood-fed midguts also shows the presence of Elizabethkingia-related transcripts. After, P. vivax infected blood-meal, however, we do not detect bacterial 16S rRNA until circa 36 h. Intriguingly, the transcriptional expression of a selected array of antimicrobial arsenal cecropins 1-2, defensin-1, and gambicin remained low during the first 36 h-a time frame when ookinetes/early oocysts invaded the gut. We conclude during the preinvasive phase, P. vivax outcompetes midgut-microbiota. This microbial suppression likely negates the impact of mosquito immunity which in turn may enhance the survival of P. vivax. Detection of sequences matching to mosquito-associated Wolbachia opens a new inquiry for its exploration as an agent for "paratransgenesis-based" mosquito control.
Collapse
Affiliation(s)
- Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
- Bio and Nanotechnology Department, Guru Jambheshwar University of Science and Technology, Haryana, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Deepali Savargaonkar
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
39
|
Chen S, Johnson BK, Yu T, Nelson BN, Walker ED. Elizabethkingia anophelis: Physiologic and Transcriptomic Responses to Iron Stress. Front Microbiol 2020; 11:804. [PMID: 32457715 PMCID: PMC7221216 DOI: 10.3389/fmicb.2020.00804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the global gene expression responses of Elizabethkingia anophelis to iron fluxes in the midgut of female Anopheles stephensi mosquitoes fed sucrose or blood, and in iron-poor or iron-rich culture conditions. Of 3,686 transcripts revealed by RNAseq technology, 218 were upregulated while 112 were down-regulated under iron-poor conditions. Hemolysin gene expression was significantly repressed when cells were grown under iron-rich or high temperature (37°C) conditions. Furthermore, hemolysin gene expression was down-regulated after a blood meal, indicating that E. anophelis cells responded to excess iron and its associated physiological stress by limiting iron loading. By contrast, genes encoding respiratory chain proteins were up-regulated under iron-rich conditions, allowing these iron-containing proteins to chelate intracellular free iron. In vivo studies showed that growth of E. anophelis cells increased 3-fold in blood-fed mosquitoes over those in sucrose-fed ones. Deletion of siderophore synthesis genes led to impaired cell growth in both iron-rich and iron-poor media. Mutants showed more susceptibility to H2O2 toxicity and less biofilm formation than did wild-type cells. Mosquitoes with E. anophelis experimentally colonized in their guts produced more eggs than did those treated with erythromycin or left unmanipulated, as controls. Results reveal that E. anophelis bacteria respond to varying iron concentration in the mosquito gut, harvest iron while fending off iron-associated stress, contribute to lysis of red blood cells, and positively influence mosquito host fecundity.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Benjamin K. Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Ting Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Brooke N. Nelson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
40
|
Influences of a Prolific Gut Fungus ( Zancudomyces culisetae) on Larval and Adult Mosquito (Aedes aegypti)-Associated Microbiota. Appl Environ Microbiol 2020; 86:AEM.02334-19. [PMID: 31757825 DOI: 10.1128/aem.02334-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022] Open
Abstract
Adult mosquitoes inherit a bacterial community from larvae via transstadial transmission, an understudied process that may influence host-microbe interactions. Microbes contribute to important host life history traits, and analyzing transmitted microbial communities, the interrelationship between larval and adult-associated microbiota, and factors influencing host-microbe relationships provides targets for research. During its larval stage, the yellow fever mosquito (Aedes aegypti) hosts the trichomycete gut fungus Zancudomyces culisetae, and fungal colonization coincides with environmental perturbations in the digestive tract microecosystem. Natural populations are differentially exposed to fungi, thereby potentially harboring distinct microbiota and experiencing disparate host-microbe interactions. This study's objectives were to characterize larval and initial adult microbiomes, investigate variation in diversity and distribution of microbial communities across individuals, and assess whether larval fungal colonization impacted microbiomes at these developmental stages. Laboratory-based fungal infestation assays, sequencing of 16S rRNA gene amplicons, and bacterial load quantification protocols revealed that initial adult microbiomes varied in diversity and distribution. Larval fungal colonization had downstream effects on initial adult microbiomes, significantly reducing microbial community variation, shifting relative abundances of certain bacterial families, and influencing transstadial transmission outcomes of particular genera. Further, abundances of several families consistently decreased in adults relative to levels in larvae, possibly reflecting impacts of host development on specific bacterial taxa. These findings demonstrated that a prolific gut fungus impacted mosquito-associated microbiota at two developmental stages in an insect connected with global human health.IMPORTANCE Mosquitoes are widespread vectors of numerous human pathogens and harbor microbiota known to affect host phenotypic traits. However, little research has directly investigated how bacterial communities associated with larvae and adults are connected. We characterized whole-body bacterial communities in mosquito larvae preceding pupation and in newly emerged adults, and investigated whether a significant biotic factor, fungal colonization of the larval hindgut, impacted these microbiomes. Results showed that fungal colonization reduced microbial community variation across individuals and differentially impacted the outcomes of transstadial transmission for certain bacterial genera, revealing downstream effects of the fungus on initial adult microbiomes. The importance of our research is in providing a thorough comparative analysis of whole-body microbiota harbored in larvae and adults of the yellow fever mosquito (Aedes aegypti) and in demonstrating the important role a widespread gut fungus played in a host-associated microbiome.
Collapse
|
41
|
Hegde S, Nilyanimit P, Kozlova E, Anderson ER, Narra HP, Sahni SK, Heinz E, Hughes GL. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007883. [PMID: 31790395 PMCID: PMC6907859 DOI: 10.1371/journal.pntd.0007883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/12/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Symbiotic bacteria are pervasive in mosquitoes and their presence can influence many host phenotypes that affect vectoral capacity. While it is evident that environmental and host genetic factors contribute in shaping the microbiome of mosquitoes, we have a poor understanding regarding how bacterial genetics affects colonization of the mosquito gut. The CRISPR/Cas9 gene editing system is a powerful tool to alter bacterial genomes facilitating investigations into host-microbe interactions but has yet to be applied to insect symbionts. METHODOLOGY/PRINCIPAL FINDINGS To investigate the role of bacterial genetic factors in mosquito biology and in colonization of mosquitoes we used CRISPR/Cas9 gene editing system to mutate the outer membrane protein A (ompA) gene of a Cedecea neteri symbiont isolated from Aedes mosquitoes. The ompA mutant had an impaired ability to form biofilms and poorly infected Ae. aegypti when reared in a mono-association under gnotobiotic conditions. In adult mosquitoes, the mutant had a significantly reduced infection prevalence compared to the wild type or complement strains, while no differences in prevalence were seen in larvae, suggesting genetic factors are particularly important for adult gut colonization. We also used the CRISPR/Cas9 system to integrate genes (antibiotic resistance and fluorescent markers) into the symbionts genome and demonstrated that these genes were functional in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE Our results shed insights into the role of ompA gene in host-microbe interactions in Ae. aegypti and confirm that CRISPR/Cas9 gene editing can be employed for genetic manipulation of non-model gut microbes. The ability to use this technology for site-specific integration of genes into the symbiont will facilitate the development of paratransgenic control strategies to interfere with arboviral pathogens such Chikungunya, dengue, Zika and Yellow fever viruses transmitted by Aedes mosquitoes.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Elena Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Enyia R. Anderson
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sanjeev K. Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Eva Heinz
- Department of Vector Biology and Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
42
|
Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains. PLoS One 2019; 14:e0222648. [PMID: 31600234 PMCID: PMC6786605 DOI: 10.1371/journal.pone.0222648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Three human clinical isolates of bacteria (designated strains Em1, Em2 and Em3) had high average nucleotide identity (ANI) to Elizabethkingia meningoseptica. Their genome sizes (3.89, 4.04 and 4.04 Mb) were comparable to those of other Elizabethkingia species and strains, and exhibited open pan-genome characteristics, with two strains being nearly identical and the third divergent. These strains were susceptible only to trimethoprim/sulfamethoxazole and ciprofloxacin amongst 16 antibiotics in minimum inhibitory tests. The resistome exhibited a high diversity of resistance genes, including 5 different lactamase- and 18 efflux protein- encoding genes. Forty-four genes encoding virulence factors were conserved among the strains. Sialic acid transporters and curli synthesis genes were well conserved in E. meningoseptica but absent in E. anophelis and E. miricola. E. meningoseptica carried several genes contributing to biofilm formation. 58 glycoside hydrolases (GH) and 25 putative polysaccharide utilization loci (PULs) were found. The strains carried numerous genes encoding two-component system proteins (56), transcription factor proteins (187~191), and DNA-binding proteins (6~7). Several prophages and CRISPR/Cas elements were uniquely present in the genomes.
Collapse
|
43
|
Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol 2019; 37:26-36. [PMID: 31176069 PMCID: PMC6768729 DOI: 10.1016/j.coviro.2019.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Mosquitoes naturally harbor a diverse community of microorganisms that play a crucial role in their biology. Mosquito-microbiota interactions are abundant and complex. They can dramatically alter the mosquito immune response, and impede or enhance a mosquito's ability to transmit medically important arboviral pathogens. Yet critically, given the massive public health impact of arboviral disease, few such interactions have been well characterized. In this review, we describe the current state of knowledge of the role of microorganisms in mosquito biology, how microbial-induced changes to mosquito immunity moderate infection with arboviruses, cases of mosquito-microbial-virus interactions with a defined mechanism, and the molecular interactions that underlie the endosymbiotic bacterium Wolbachia's ability to block virus infection in mosquitoes.
Collapse
Affiliation(s)
- Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
44
|
Xue Q, Xiang Y, Wu XQ, Li MJ. Bacterial Communities and Virulence Associated with Pine Wood Nematode Bursaphelenchus xylophilus from Different Pinus spp. Int J Mol Sci 2019; 20:ijms20133342. [PMID: 31284685 PMCID: PMC6650965 DOI: 10.3390/ijms20133342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Bursaphelenchus xylophilus, the causal agent of pine wilt disease, is a destructive threat to pine forests. The role of bacteria associated with B. xylophilus in pine wilt disease has attracted widespread attention. This study investigated variation in bacterial communities and the virulence of surface-sterilized B. xylophilus from different Pinus spp. The predominant culturable bacteria of nematodes from different pines were Stenotrophomonas and Pseudomonas. Biolog EcoPlate analysis showed that metabolic diversity of bacteria in B. xylophilus from P. massoniana was the highest, followed by P. thunbergii and P. densiflora. High-throughput sequencing analysis indicated that bacterial diversity and community structure in nematodes from the different pine species varied, and the dominant bacteria were Stenotrophomonas and Elizabethkingia. The virulence determination of B. xylophilus showed that the nematodes from P. massoniana had the greatest virulence, followed by the nematodes from P. thunbergii and P. densiflora. After the nematodes were inoculated onto P. thunbergii, the relative abundance of the predominant bacteria changed greatly, and some new bacterial species emerged. Meanwhile, the virulence of all the nematode isolates increased after passage through P. thunbergii. These inferred that some bacteria associated with B. xylophilus isolated from different pine species might be helpful to adjust the PWN’s parasitic adaptability.
Collapse
Affiliation(s)
- Qi Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yang Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Ming-Jie Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
45
|
Telang A, Skinner J. Effects of host blood meal source on reproductive output, nutrient reserves and gut microbiome of West Nile virus vector Culex quinquefasciatus. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:15-22. [PMID: 30735684 DOI: 10.1016/j.jinsphys.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Female mosquitoes feed on blood from vertebrates, including humans, as a protein source to provision eggs. Through blood feeding, mosquitoes may transmit pathogens to humans and other animals. In diseases like malaria and dengue, humans are the main hosts and mosquitoes that preferentially feed on humans transmit the pathogens. We know relatively less about mosquitoes that switch between different vertebrate hosts and their underlying physiologic to utilize blood from different vertebrate hosts. Our study focuses on the Southern house mosquito Culex quinquefasciatus Say (Diptera: Culicidae), a vector that opportunistically feeds on birds and mammals when available, increasing the probability of transmitting bird pathogens to humans. Key factors examined encompassed gut physiology and reproductive fitness associated with switching host blood source. Our results indicate that the gut microbiome of Cx. quinquefasciatus is dynamic in response to switching between food sources and that blood meal source affects her macronutrient stores and reproductive output. This research will help advance our understanding of the effects of host blood source on important life history parameters for this mosquito vector to add to our understanding of the interaction between mosquito vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Aparna Telang
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL 34243, USA.
| | - Jessica Skinner
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL 34243, USA
| |
Collapse
|
46
|
Jian MJ, Perng CL, Sun JR, Cheng YH, Chung HY, Cheng YH, Lee SY, Kuo SC, Shang HS. Multicentre MDR Elizabethkingia anophelis isolates: Novel random amplified polymorphic DNA with capillary electrophoresis systems to rapid molecular typing compared to genomic epidemiology analysis. Sci Rep 2019; 9:1806. [PMID: 30755714 PMCID: PMC6372666 DOI: 10.1038/s41598-019-38819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022] Open
Abstract
Elizabethkingia species are ubiquitous bacteria that uncommonly cause human infection. Elizabethkingia anophelis was first identified in 2011 from the mosquito Anopheles gambiae. The currently available bacterial typing systems vary greatly with respect to labour, cost, reliability, and ability to discriminate among bacterial strains. Polymerase chain reaction (PCR)-based fingerprinting using random amplified polymorphic DNA (RAPD) is commonly used to identify genetic markers. To our knowledge, no system coupling RAPD-PCR and capillary gel electrophoresis (CGE) has been utilized for the epidemiological typing of E. anophelis. Thus, the aim of the present study was to establish a reliable and reproducible molecular typing technique for E. anophelis isolates based on a multi-centre assessment of bacteraemia patients. Here, we used a rapid CGE-light-emitting diode-induced fluorescence (LEDIF)-based method in conjunction with RAPD-PCR to genotype E. anophelis with a high level of discrimination. All clinical isolates of E. anophelis were found to be typeable, and isolates from two hospitals formed two distinct clusters. The results demonstrated the potential of coupling RAPD and CGE as a rapid and efficient molecular typing tool, providing a reliable method for surveillance and epidemiological investigations of bacterial infections. The proposed method shows promise as a novel, cost-effective, high-throughput, first-pass typing method.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsuan Cheng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yi Lee
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hung-Sheng Shang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan. .,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
47
|
Coatsworth H, Caicedo PA, Van Rossum T, Ocampo CB, Lowenberger C. The Composition of Midgut Bacteria in Aedes aegypti (Diptera: Culicidae) That Are Naturally Susceptible or Refractory to Dengue Viruses. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5228717. [PMID: 30508201 PMCID: PMC6276830 DOI: 10.1093/jisesa/iey118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 06/09/2023]
Abstract
The composition, abundance, and diversity of midgut bacteria in mosquitoes can influence pathogen transmission. We used 16S rRNA microbiome profiling to survey midgut microbial diversity in pooled samples of laboratory colonized dengue-refractory, Cali-MIB, and dengue-susceptible, Cali-S Aedes aegypti (Linnaeus). The 16S rRNA sequences from the sugar-fed midguts of adult females clustered to 63 amplicon sequence variants (ASVs), primarily from Proteobacteria, Firmicutes, Flavobacteria, and Actinobacteria. An average of five ASVs dominated the midguts, and most ASVs were present in both Cali-MIB and Cali-S midguts. No differences in abundance were noted at any phylogenetic level (Phylum, Class, Order, Family, Genus) by analysis of composition of microbiome (w = 0). No community diversity metrics were significantly different between refractory and susceptible mosquitoes. These data suggest that phenotypic differences in the susceptibility to dengue virus between Cali-MIB and Cali-S are not likely due to major differences in midgut bacterial communities.
Collapse
Affiliation(s)
- Heather Coatsworth
- C2D2 Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Paola A Caicedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Thea Van Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Clara B Ocampo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Carl Lowenberger
- C2D2 Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
48
|
Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, Rojas MM, Hornett EA, Motl GC, Fredregill CL, Dennett JA, Debboun M, Fofanov Y, Hughes GL. Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors. Front Microbiol 2018; 9:2160. [PMID: 30250462 PMCID: PMC6140713 DOI: 10.3389/fmicb.2018.02160] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial interactions are an underappreciated force in shaping insect microbiome communities. Although pairwise patterns of symbiont interactions have been identified, we have a poor understanding regarding the scale and the nature of co-occurrence and co-exclusion interactions within the microbiome. To characterize these patterns in mosquitoes, we sequenced the bacterial microbiome of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus caught in the field or reared in the laboratory and used these data to generate interaction networks. For collections, we used traps that attracted host-seeking or ovipositing female mosquitoes to determine how physiological state affects the microbiome under field conditions. Interestingly, we saw few differences in species richness or microbiome community structure in mosquitoes caught in either trap. Co-occurrence and co-exclusion analysis identified 116 pairwise interactions substantially increasing the list of bacterial interactions observed in mosquitoes. Networks generated from the microbiome of Ae. aegypti often included highly interconnected hub bacteria. There were several instances where co-occurring bacteria co-excluded a third taxa, suggesting the existence of tripartite relationships. Several associations were observed in multiple species or in field and laboratory-reared mosquitoes indicating these associations are robust and not influenced by environmental or host factors. To demonstrate that microbial interactions can influence colonization of the host, we administered symbionts to Ae. aegypti larvae that either possessed or lacked their resident microbiota. We found that the presence of resident microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that microbial interactions in mosquitoes are complex and influence microbiome composition.
Collapse
Affiliation(s)
- Shivanand Hegde
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Computer Science, University of Houston, Houston, TX, United States
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Miguel A. Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark M. Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Emily A. Hornett
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Greg C. Motl
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Chris L. Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - James A. Dennett
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Mustapha Debboun
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Grant L. Hughes
- Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
49
|
Telang A, Skinner J, Nemitz RZ, McClure AM. Metagenome and Culture-Based Methods Reveal Candidate Bacterial Mutualists in the Southern House Mosquito (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1170-1181. [PMID: 29668956 DOI: 10.1093/jme/tjy056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 06/08/2023]
Abstract
Mosquitoes are intensely studied as vectors of disease-causing pathogens, but we know relatively less about microbes that naturally reside in mosquitoes. Profiling resident bacteria in mosquitoes can help identify bacterial groups that can be exploited as a strategy of controlling mosquito populations. High-throughput 16S rRNA gene sequencing and traditional culture-based methods were used to identify bacterial assemblages in Culex quinquefasciatus Say (Diptera: Culicidae) in a tissue- and stage-specific design. In parallel, wild host Cx. quinquefasciatus was compared with our domestic strain. 16S rRNA genes survey finds that Cx. quinquefasciatus has taxonomically restricted bacterial communities, with 90% of its bacterial microbiota composed of eight distinctive bacterial groups: Nocardioidaceae (Actinomycetales), Microbacteriaceae (Actinomycetales), Flavobacteriaceae, Rhizobiales, Acetobacteraceae, Rickettsiaceae, Comamondaceae (Burkholderiales), and Enterobacteriaceae. Taking into account both metagenome- and culture-based methods, we suggest three bacterial groups, Acetobacteraceae, Flavobacteriaceae, and Enterobacteriaceae, as candidates for mutualists in Cx. quinquefasciatus. Members of these three bacterial families have been studied as mutualists, or even as symbionts, in other insect groups, so it is quite possible they play similar roles in mosquitoes.
Collapse
Affiliation(s)
- Aparna Telang
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL
| | - Jessica Skinner
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL
| | - Robert Z Nemitz
- Biology Program, University of South Florida Sarasota-Manatee, Sarasota, FL
| | | |
Collapse
|
50
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|