1
|
Zhang C, Zhang J, Cao S, Tang Y, Wang M, Qu C. Photodynamic bactericidal nanomaterials in food packaging: From principle to application. J Food Sci 2025; 90:e17606. [PMID: 39801222 DOI: 10.1111/1750-3841.17606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 05/02/2025]
Abstract
Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation. Furthermore, we delve into the application potential of PDI nanomaterials, such as quantum dots, titanium dioxide, and graphene, in packaging and films. Special attention is given to the impact of PDI treatment on food quality and the potential for microbial tolerance development. Last, we discuss the migration and safety of PDI nanomaterials. The chemical basis of PDI involves the generation of reactive oxygen species through the activation of endogenous or exogenous photosensitizers. Its primary antibacterial mechanisms encompass the disruption of cell membranes, impairment of cellular functions, and inhibition of quorum sensing. The multi-target action of PDI significantly reduces the likelihood of resistance development. PDI has great potential for application in the field of antibacterial packaging. The information contained in this paper will provide effective reference for the design of new antibacterial packaging.
Collapse
Affiliation(s)
- Chushu Zhang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Jiancheng Zhang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Shining Cao
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Yueyi Tang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Mian Wang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Chunjuan Qu
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| |
Collapse
|
2
|
Willmott T, Kelly PP, Jadaan L, Gifford DR, Mercer SD, Humphreys GJ, Knight CG, Lu JR, McBain AJ. Investigations of microbial adaptation to singular, binary, and fully formulated quaternary ammonium compounds. Appl Environ Microbiol 2024; 90:e0066624. [PMID: 39320084 PMCID: PMC11497780 DOI: 10.1128/aem.00666-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
The study was conducted to inform risk assessments concerning microbial exposure to quaternary ammonium biocides (QUATs) by investigating their effects on 10 microbial strains of hygiene relevance. Biocides were divided into three categories: simple aqueous solutions, biocide mixtures, and formulated biocides. Organisms were grown in the presence of biocides for 10 generations and then subsequently for another 10 generations in biocide-free media. Control organisms were passaged 20 times in biocide-free media. Strains were then assessed for biocide and antibiotic susceptibility, changes in growth dynamics, and single nucleotide polymorphisms (SNPs). Biocide mixtures demonstrated greater antimicrobial potency than singular and formulated biocides. Susceptibility changes of under twofold were observed for all biocides tested. Susceptibility decreased significantly for organisms passaged with singular biocides (1.29- to 4.35-fold) and biocide mixtures (1.4- to 1.5-fold), but not for formulated biocides (1.3- to 1.84-fold) compared to controls. Antibiotic susceptibility both increased and decreased in passaged organisms, with heightened susceptibility occurring more frequently in the singular biocide group. Changes in susceptibility and growth dynamics were similar in the passaged and unexposed controls for fitness measures of adapted bacteria; there were no significant differences between biocide groups, but significantly lower generation and doubling times in organisms exposed to singular biocides. Similar frequencies in SNPs occurred for the three biocide groups and unexposed controls. While some adaptations occurred, particularly with singular biocides, the impact on antibiotic resistance and genomic mutations was limited. These findings suggest that the use of formulated QUATs may pose a comparatively lower risk for antimicrobial resistance.IMPORTANCEBiocides are used globally to control microbial growth and effective assessment of the risks and benefits of their use is therefore a high priority. Much of the data used to assess risk has been based on sub-lethal exposure of bacteria to singular biocides in simple aqueous solutions. This work builds on limited prior realism-based studies to demonstrate enhanced potency in biocidal mixtures; the mitigation of resistance selection by formulations and inconsistent cross-resistance effects with both increases and decreases in susceptibility for a wide range of antibiotics. These data can be used to better inform risk assessments of biocide deployment.
Collapse
Affiliation(s)
- Thomas Willmott
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Paul P. Kelly
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Layali Jadaan
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Danna R. Gifford
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Steven D. Mercer
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J. Humphreys
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Jian R. Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Pîndaru AM, Măruțescu L, Popa M, Chifiriuc MC. A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants' Bactericidal Activity. Int J Mol Sci 2024; 25:7158. [PMID: 39000264 PMCID: PMC11241575 DOI: 10.3390/ijms25137158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Selecting the appropriate disinfectant to control and prevent healthcare-associated infections (HAIs) is a challenging task for environmental health experts due to the large number of available disinfectant products. This study aimed to develop a label-free flow cytometry (FCM) method for the rapid evaluation of bactericidal activity and to compare its efficacy with that of standard qualitative/quantitative suspension tests. The bactericidal efficiency of eight commercial disinfectants containing quaternary ammonium compounds (QACs) was evaluated against four strains recommended by EN 13727 (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae) and four multidrug-resistant pathogens. The proposed FCM protocol measures changes in scattered light and counts following disinfectant exposure, neutralization, and culture steps. Unlike other available FCM-based methods, this approach does not rely on autofluorescence measurements, impedance cytometry, or fluorescent dyes. The FCM scattered light signals revealed both decreased count rates and morphological changes after treatment with minimum inhibitory concentrations (MICs) and higher concentrations for all tested bacteria. The results from the FCM measurements showed excellent correlation with those from standard assays, providing a rapid tool for monitoring the susceptibility profile of clinical, multidrug-resistant pathogens to chemical disinfectants, which could support infection prevention and control procedures for healthcare environments. This label-free FCM protocol offers a novel and rapid tool for environmental health experts, aiding in the optimization of disinfectant selection for the prevention and control of HAIs.
Collapse
Affiliation(s)
- Andreea Maria Pîndaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
| | - Luminița Măruțescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Marcela Popa
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| |
Collapse
|
4
|
Shepherd JA, Parker MD. Repeat-exposure in vitro protocol to assess the risk of antimicrobial resistance (AMR) development from use of personal care products: Case study using an antibacterial liquid handwash. J Microbiol Methods 2023; 215:106851. [PMID: 37907118 DOI: 10.1016/j.mimet.2023.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The global crisis we are facing with regard to antibiotic resistance has been largely attributed to the overuse and misuse of antibiotics in healthcare and agriculture. However, there is also growing global concern about cross-resistance between biocides and antibiotics. This has made clear the need for more research in this area along with easy-to-perform, but realistic, methods to characterise the potential risk associated with cross-resistance to antibiotics due to biocide use. The primary aim of this work was to develop a repeat-exposure method for predicting bacterial resistance to microbicides, including their cross-resistance to antibiotics. Realism is incorporated in the presented protocol through the use of relevant concentrations and contact times, validated neutralisers, appropriate test organisms and repeat-exposures. The protocol can be applied to formulated microbicides, as shown in the liquid handwash case study presented here. Five bacterial strains were included in the study: Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 15442, Staphylococcus epidermidis ATCC 14990, Escherichia coli ATCC 10536 and Enterococcus hirae ATCC 10541. The protocol parameters used in the case study reflected a worst-case exposure scenario (in terms of contact time and concentration). The results demonstrated that repeated exposure to the liquid handwash would not be expected to lead to development of bacterial resistance or cross-resistance to antibiotics. It is envisaged that this protocol could be used by manufacturers of microbicidal formulations to assess whether repeated use of the test products would contribute to bacterial resistance development or cross-resistance to antibiotics.
Collapse
Affiliation(s)
- J A Shepherd
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.
| | - M D Parker
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| |
Collapse
|
5
|
Coombs K, Rodriguez-Quijada C, Clevenger JO, Sauer-Budge AF. Current Understanding of Potential Linkages between Biocide Tolerance and Antibiotic Cross-Resistance. Microorganisms 2023; 11:2000. [PMID: 37630560 PMCID: PMC10459251 DOI: 10.3390/microorganisms11082000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobials (e.g., antibiotics and biocides) are invaluable chemicals used to control microbes in numerous contexts. Because of the simultaneous use of antibiotics and biocides, questions have arisen as to whether environments commonly treated with biocides (e.g., hospitals, food processing, wastewater, agriculture, etc.) could act as a reservoir for the development of antibiotic cross-resistance. Theoretically, cross-resistance could occur if the mechanism of bacterial tolerance to biocides also resulted in antibiotic resistance. On the other hand, biocides would likely present a higher evolutionary barrier to the development of resistance given the different modes of action between biocides and antibiotics and the broad-based physicochemical effects associated with most biocides. Published studies have shown that the induction of biocide tolerance in a laboratory can result in cross-resistance to some antibiotics, most commonly hypothesized to be due to efflux pump upregulation. However, testing of environmental isolates for biocide tolerance and antibiotic cross-resistance has yielded conflicting results, potentially due to the lack of standardized testing. In this review, we aim to describe the state of the science on the potential linkage between biocide tolerance and antibiotic cross-resistance. Questions still remain about whether the directed evolution of biocide tolerance and the associated antibiotic cross-resistance in a laboratory are or are not representative of real-world settings. Thus, research should continue to generate informative data to guide policies and preserve these tools' utility and availability.
Collapse
|
6
|
Boyce JM. Quaternary ammonium disinfectants and antiseptics: tolerance, resistance and potential impact on antibiotic resistance. Antimicrob Resist Infect Control 2023; 12:32. [PMID: 37055844 PMCID: PMC10099023 DOI: 10.1186/s13756-023-01241-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Due to the substantial increase in the use of disinfectants containing quaternary ammonion compounds (QACs) in healthcare and community settings during the COVID-19 pandemic, there is increased concern that heavy use might cause bacteria to develop resistance to QACs or contribute to antibiotic resistance. The purpose of this review is to briefly discuss the mechanisms of QAC tolerance and resistance, laboratory-based evidence of tolerance and resistance, their occurrence in healthcare and other real-world settings, and the possible impact of QAC use on antibiotic resistance. METHODS A literature search was conducted using the PubMed database. The search was limited to English language articles dealing with tolerance or resistance to QACs present in disinfectants or antiseptics, and potential impact on antibiotic resistance. The review covered the period from 2000 to mid-Jan 2023. RESULTS Mechanisms of QAC tolerance or resistance include innate bacterial cell wall structure, changes in cell membrane structure and function, efflux pumps, biofilm formation, and QAC degradation. In vitro studies have helped elucidate how bacteria can develop tolerance or resistance to QACs and antibiotics. While relatively uncommon, multiple episodes of contaminated in-use disinfectants and antiseptics, which are often due to inappropriate use of products, have caused outbreaks of healthcare-associated infections. Several studies have identified a correlation between benzalkonium chloride (BAC) tolerance and clinically-defined antibiotic resistance. The occurrence of mobile genetic determinants carrying multiple genes that encode for QAC or antibiotic tolerance raises the concern that widespread QAC use might facilitate the emergence of antibiotic resistance. Despite some evidence from laboratory-based studies, there is insufficient evidence in real-world settings to conclude that frequent use of QAC disinfectants and antiseptics has promoted widespread emergence of antibiotic resistance. CONCLUSIONS Laboratory studies have identified multiple mechanisms by which bacteria can develop tolerance or resistance to QACs and antibiotics. De novo development of tolerance or resistance in real-world settings is uncommon. Increased attention to proper use of disinfectants is needed to prevent contamination of QAC disinfectants. Additional research is needed to answer many questions and concerns related to use of QAC disinfectants and their potential impact on antibiotic resistance.
Collapse
Affiliation(s)
- John M Boyce
- J.M. Boyce Consulting, LLC, 5123 Town Place, Middletown, CT, Connecticut, USA.
| |
Collapse
|
7
|
Sarwar S, Saleem S, Shahzad F, Jahan S. Identifying and elucidating the resistance of Staphylococcus aureus isolated from hospital environment to conventional disinfectants. Am J Infect Control 2023; 51:178-183. [PMID: 35644295 DOI: 10.1016/j.ajic.2022.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Staphylococcus aureus is a nosocomial pathogen, detection and elucidation of its resistance mechanisms to conventional disinfectants may aid in limiting its spread on environmental surfaces in health care settings. In the current study, disinfectant susceptibility of S. aureus strains isolated from the hospital environment as well as possible associations between the presence of disinfectant-resistance genes and reduced susceptibility to disinfectants was investigated. METHODS A total of 245 samples were collected from the hospital environmental surfaces. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of disinfectants against S. aureus isolates were determined using the micro-broth dilution method. The qac genes (qacA, qacE, and qacΔE1) were detected by PCR and confirmed by sanger sequencing. RESULTS A total of 47 S. aureus strains were isolated, with more than 85% of them showing methicillin resistance. The qacA, qacE, and qac∆E1 genes were found in 23.4%, 29.7%, and 4.2% isolates respectively. All the isolates with qac genes had higher MIC and MBC values to selected disinfectants. CONCLUSIONS Significant methicillin resistant S. aureus (MRSA) contamination in the hospital environment was detected. Furthermore, higher qac gene frequencies were found in MRSA isolates that also correlated with higher MIC/MBC values to different disinfectants. The study proposes that hospitals should develop policies to determine disinfectant MICs against the common environmental isolates to contain the spread of resistant strains.
Collapse
Affiliation(s)
- Samreen Sarwar
- Department of Microbiology, University of Health Sciences, Lahore, Punjab, Pakistan.
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, Punjab, Pakistan
| | - Faheem Shahzad
- Department of Immunology, University of Health Sciences, Lahore, Punjab, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
8
|
Neuhaus S, Feßler AT, Dieckmann R, Thieme L, Pletz MW, Schwarz S, Al Dahouk S. Towards a Harmonized Terminology: A Glossary for Biocide Susceptibility Testing. Pathogens 2022; 11:1455. [PMID: 36558789 PMCID: PMC9780826 DOI: 10.3390/pathogens11121455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Disinfection is a key strategy to reduce the burden of infections. The contact of bacteria to biocides-the active substances of disinfectants-has been linked to bacterial adaptation and the development of antimicrobial resistance. Currently, there is no scientific consensus on whether the excessive use of biocides contributes to the emergence and spread of multidrug resistant bacteria. The comprehensive analysis of available data remains a challenge because neither uniform test procedures nor standardized interpretive criteria nor harmonized terms are available to describe altered bacterial susceptibility to biocides. In our review, we investigated the variety of criteria and the diversity of terms applied to interpret findings in original studies performing biocide susceptibility testing (BST) of field isolates. An additional analysis of reviews summarizing the knowledge of individual studies on altered biocide susceptibility provided insights into currently available broader concepts for data interpretation. Both approaches pointed out the urgent need for standardization. We, therefore, propose that the well-established and approved concepts for interpretation of antimicrobial susceptibility testing data should serve as a role model to evaluate biocide resistance mechanisms on a single cell level. Furthermore, we emphasize the adaptations necessary to acknowledge the specific needs for the evaluation of BST data. Our approach might help to increase scientific awareness and acceptance.
Collapse
Affiliation(s)
- Szilvia Neuhaus
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Andrea T. Feßler
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Dieckmann
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Lara Thieme
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, 07747 Jena, Germany
- Leibniz Center for Photonics in Infection Research, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, 07747 Jena, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
9
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
10
|
Stair MI, Carrasco SE, Annamalai D, Jordan EB, Mannion A, Feng Y, Fabian N, Ge Z, Muthupalani S, Dzink-Fox J, Krzisch MA, Fox JG. The Epidemiology of Invasive, Multipleantibiotic-resistant Klebsiella pneumoniae Infection in a Breeding Colony of Immunocompromised NSG Mice. Comp Med 2022; 72:220-229. [PMID: 35882504 PMCID: PMC9413526 DOI: 10.30802/aalas-cm-21-000088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 02/21/2022] [Indexed: 02/03/2023]
Abstract
Klebsiella pneumoniae (Kp) is a gram-negative opportunistic pathogen that causes severe pneumonia, pyelonephritis, and sepsis in immunocompromised hosts. During a 4-mo interval, several NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) breeders and pups in our facilities were diagnosed with Kp infections. An initial 6 adult and 1 juvenile NSG mice were submitted for necropsy and histologic examination because of acute onset of diarrhea and death. The evaluation revealed typhlocolitis in 2 of the mice and tritrichomoniasis in all 7. Escherichia coli positive for polyketide synthase (pks+) and Kp were isolated from the intestines. Given a history of sepsis due to pks+ E. coli in NSG mice in our facilities and determination of its antimicrobial susceptibility, trimethoprim-sulfamethoxazole (TMP-SMX) was administered to the colony in the drinking water for 4 wk. After this intervention, an additional 21 mice became ill or died; 11 of these mice had suppurative pneumonia, meningoencephalitis, hepatitis, metritis, pyelonephritis, or sepsis. Kp was cultured from pulmonary abscesses or blood of 10 of the mice. Whole-genome sequencing (WGS) indicated that the Kp isolates contained genes associated with phenotypes found in pore-forming Kp isolates cultured from humans with ulcerative colitis and primary sclerosing cholangitis. None of the Kp isolates exhibited a hyperviscous phenotype, but 13 of 14 were resistant to TMP-SMX. Antimicrobial susceptibility testing indicated sensitivity of the Kp to enrofloxacin, which was administered in the drinking water. Antibiotic sensitivity profiles were confirmed by WGS of the Kp strains; key virulence and resistance genes to quaternary ammonia compounds were also identified. Enrofloxacin treatment resulted in a marked reduction in mortality, and the study using the NSG mice was completed successfully. Our findings implicate intestinal translocation of Kp as the cause of pneumonia and systemic infections in NSG mice and highlight the importance of identification of enteric microbial pathogens and targeted antibiotic selection when treating bacterial infections in immunocompromised mice.
Collapse
Affiliation(s)
- Melissa I Stair
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Damodaran Annamalai
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ellen B Jordan
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Niora Fabian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| |
Collapse
|
11
|
Adkin P, Hitchcock A, Smith LJ, Walsh SE. Priming with biocides: A pathway to antibiotic resistance? J Appl Microbiol 2022; 133:830-841. [PMID: 35384175 PMCID: PMC9543593 DOI: 10.1111/jam.15564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/08/2021] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the priming effects of sub-inhibitory concentrations of biocides on antibiotic resistance in bacteria. METHODS AND RESULTS Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were exposed to sub-inhibitory concentrations of biocides via a gradient plate method. Minimum inhibitory concentration (MIC) and antibiotic susceptibility were determined, and efflux pump inhibitors (thioridazine and chlorpromazine) were used to investigate antibiotic resistance mechanism(s). Escherichia coli displayed a twofold increase in MIC (32-64 mg l-1 ) to H2 O2 which was stable after 15 passages, but lost after 6 weeks, and P. aeruginosa displayed a twofold increase in MIC (64-128 mg l-1 ) to BZK which was also stable for 15 passages. There were no other tolerances observed to biocides in E. coli, P. aeruginosa or S. aureus; however, stable cross-resistance to antibiotics was observed in the absence of a stable increased tolerance to biocides. Sixfold increases in MIC to cephalothin and fourfold to ceftriaxone and ampicillin were observed in hydrogen peroxide primed E. coli. Chlorhexidine primed S. aureus showed a fourfold increase in MIC to oxacillin, and glutaraldehyde-primed P. aeruginosa showed fourfold (sulphatriad) and eightfold (ciprofloxacin) increases in MIC. Thioridazine increased the susceptibility of E. coli to cephalothin and cefoxitin by fourfold and twofold, respectively, and both thioridazine and chlorpromazine increased the susceptibility S. aureus to oxacillin by eightfold and fourfold, respectively. CONCLUSIONS These findings demonstrate that sub-inhibitory concentrations of biocides can prime bacteria to become resistant to antibiotics even in the absence of stable biocide tolerance and suggests activation of efflux mechanisms may be a contributory factor. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the effects of low-level exposure of biocides (priming) on antibiotic resistance even in the absence of obvious increased biocidal tolerance.
Collapse
Affiliation(s)
- Pat Adkin
- Leicester School of PharmacyHawthorn Building, De Montfort UniversityLeicesterUK
| | | | - Laura J. Smith
- Leicester School of PharmacyHawthorn Building, De Montfort UniversityLeicesterUK
| | - Susannah E. Walsh
- Leicester School of PharmacyHawthorn Building, De Montfort UniversityLeicesterUK
- School of Pharmacy and Life SciencesRobert Gordon UniversityAberdeenUK
| |
Collapse
|
12
|
Evaluating the Effectiveness of Hospital Antiseptics on Multidrug-Resistant Acinetobacter baumannii: Understanding the Relationship between Microbicide and Antibiotic Resistance. Antibiotics (Basel) 2022; 11:antibiotics11050614. [PMID: 35625258 PMCID: PMC9137960 DOI: 10.3390/antibiotics11050614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii hospital infections are difficult to treat due to the rapid emergence of multidrug-resistant (MDR) strains. In addition, A. baumannii can survive in numerous adverse environments, including in the presence of common hospital antiseptics. We hypothesized that in addition to accumulating drug resistance determinants, MDR A. baumannii strains also accumulate mutations that allow for greater microbicide tolerance when compared to pan-susceptible (PS) strains. To test this hypothesis, we compared the survival of five MDR and five PS patient isolates when exposed to bleach, ethanol, quaternary ammonium compounds, chlorhexidine gluconate, and povidone. We evaluated bacteria in a free-living planktonic state and under biofilm conditions. Each disinfectant eliminated 99.9% of planktonic bacteria, but this was not the case for bacterial biofilms. Next, we characterized strains for the presence of the known microbicide-resistance genes cepA, qacEΔ1, qacE, and qacA. MDR strains did not survive more than PS strains in the presence of microbicides, but microbicide-resistant strains had higher survival rates under some conditions. Interestingly, the PS strains were more likely to possess microbicide-resistance genes. Microbicide resistance remains an important topic in healthcare and may be independent of antimicrobial resistance. Hospitals should consider stricter isolation precautions that take pan-susceptible strains into account.
Collapse
|
13
|
Fox LJ, Kelly PP, Humphreys GJ, Waigh TA, Lu JR, McBain AJ. Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. J Ind Microbiol Biotechnol 2022; 49:kuab074. [PMID: 34718634 PMCID: PMC9113109 DOI: 10.1093/jimb/kuab074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The control of microorganisms is a key objective in disease prevention and in medical, industrial, domestic, and food-production environments. Whilst the effectiveness of biocides in these contexts is well-evidenced, debate continues about the resistance risks associated with their use. This has driven an increased regulatory burden, which in turn could result in a reduction of both the deployment of current biocides and the development of new compounds and formulas. Efforts to balance risk and benefit are therefore of critical importance and should be underpinned by realistic methods and a multi-disciplinary approach, and through objective and critical analyses of the literature. The current literature on this topic can be difficult to navigate. Much of the evidence for potential issues of resistance generation by biocides is based on either correlation analysis of isolated bacteria, where reports of treatment failure are generally uncommon, or laboratory studies that do not necessarily represent real biocide applications. This is complicated by inconsistencies in the definition of the term resistance. Similar uncertainties also apply to cross-resistance between biocides and antibiotics. Risk assessment studies that can better inform practice are required. The resulting knowledge can be utilised by multiple stakeholders including those tasked with new product development, regulatory authorities, clinical practitioners, and the public. This review considers current evidence for resistance and cross-resistance and outlines efforts to increase realism in risk assessment. This is done in the background of the discussion of the mode of application of biocides and the demonstrable benefits as well as the potential risks.
Collapse
Affiliation(s)
- Laura J Fox
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Paul P Kelly
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Jian R Lu
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Microorganisms 2021; 9:microorganisms9030651. [PMID: 33801066 PMCID: PMC8003927 DOI: 10.3390/microorganisms9030651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Biocides are frequently applied as disinfectants in animal husbandry to prevent the transmission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised, that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria. Especially, extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli have become a global health threat. In our study, 29 ESBL-/AmpC-producing and 64 NON-ESBL-/AmpC-producing E.coli isolates from three German broiler fattening farms collected in 2016 following regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing, analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence determinants associated with extraintestinal pathogenic E.coli showed variable phylogenetic distribution patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benzalkonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most prevalent. The majority of ESBL-/AmpC-producing isolates carried blaCTX-M (55%) or blaCMY-2 (24%) genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and metal resistance determinants were found on mobile genetic elements together with antibiotic resistance genes raising concerns that biocides used in the food industry may lead to selection pressure for strains carrying acquired resistance determinants to different antimicrobials.
Collapse
|
15
|
Ethylzingerone, a Novel Compound with Antifungal Activity. Antimicrob Agents Chemother 2021; 65:AAC.02711-20. [PMID: 33468481 DOI: 10.1128/aac.02711-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Preservatives increase the shelf life of cosmetic products by preventing growth of contaminating microbes, including bacteria and fungi. In recent years, the Scientific Committee on Consumer Safety (SCCS) has recommended the ban or restricted use of a number of preservatives due to safety concerns. Here, we characterize the antifungal activity of ethylzingerone (hydroxyethoxyphenyl butanone [HEPB]), an SCCS-approved new preservative for use in rinse-off, oral care, and leave-on cosmetic products. We show that HEPB significantly inhibits growth of Candida albicans, Candida glabrata, and Saccharomyces cerevisiae, acting fungicidally against C. albicans Using transcript profiling experiments, we found that the C. albicans transcriptome responded to HEPB exposure by increasing the expression of genes involved in amino acid biosynthesis while activating pathways involved in chemical detoxification/oxidative stress response. Comparative analyses revealed that C. albicans phenotypic and transcriptomic responses to HEPB treatment were distinguishable from those of two widely used preservatives, triclosan and methylparaben. Chemogenomic analyses, using a barcoded S. cerevisiae nonessential mutant library, revealed that HEPB antifungal activity strongly interfered with the biosynthesis of aromatic amino acids. The trp1Δ mutants in S. cerevisiae and C. albicans were particularly sensitive to HEPB treatment, a phenotype rescued by exogenous addition of tryptophan to the growth medium, providing a direct link between HEPB mode of action and tryptophan availability. Collectively, our study sheds light on the antifungal activity of HEPB, a new molecule with safe properties for use as a preservative in the cosmetic industry, and exemplifies the powerful use of functional genomics to illuminate the mode of action of antimicrobial agents.
Collapse
|
16
|
Rapacka-Zdonczyk A, Wozniak A, Nakonieczna J, Grinholc M. Development of Antimicrobial Phototreatment Tolerance: Why the Methodology Matters. Int J Mol Sci 2021; 22:2224. [PMID: 33672375 PMCID: PMC7926562 DOI: 10.3390/ijms22042224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Due to rapidly growing antimicrobial resistance, there is an urgent need to develop alternative, non-antibiotic strategies. Recently, numerous light-based approaches, demonstrating killing efficacy regardless of microbial drug resistance, have gained wide attention and are considered some of the most promising antimicrobial modalities. These light-based therapies include five treatments for which high bactericidal activity was demonstrated using numerous in vitro and in vivo studies: antimicrobial blue light (aBL), antimicrobial photodynamic inactivation (aPDI), pulsed light (PL), cold atmospheric plasma (CAP), and ultraviolet (UV) light. Based on their multitarget activity leading to deleterious effects to numerous cell structures-i.e., cell envelopes, proteins, lipids, and genetic material-light-based treatments are considered to have a low risk for the development of tolerance and/or resistance. Nevertheless, the most recent studies indicate that repetitive sublethal phototreatment may provoke tolerance development, but there is no standard methodology for the proper evaluation of this phenomenon. The statement concerning the lack of development of resistance to these modalities seem to be justified; however, the most significant motivation for this review paper was to critically discuss existing dogma concerning the lack of tolerance development, indicating that its assessment is more complex and requires better terminology and methodology.
Collapse
Affiliation(s)
- Aleksandra Rapacka-Zdonczyk
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Agata Wozniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.R.-Z.); (A.W.); (J.N.)
| |
Collapse
|
17
|
Zhelev G. Bacterial resistance to antiseptics and disinfectants – minireview. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The appearance of bacterial resistance to disinfectants and antiseptics is an issue of substantial health concern, resulting in low efficiency of epidemic control activities and emergence of microorganisms with cross-resistance to antibiotics and biocides. A synopsis of the main mechanisms of development of resistance to biocides is presented. The emphasis is placed to health risks and impact on medical practice. The main methods for detection of resistance, and prevention measures of key importance for its control are outlined.
Collapse
Affiliation(s)
- G. Zhelev
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine , Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
18
|
Elekhnawy E, Sonbol F, Abdelaziz A, Elbanna T. Potential impact of biocide adaptation on selection of antibiotic resistance in bacterial isolates. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00119-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Antibiotic resistance in pathogenic bacterial isolates has increased worldwide leading to treatment failures.
Main body
Many concerns are being raised about the usage of biocidal products (including disinfectants, antiseptics, and preservatives) as a vital factor that contributes to the risk of development of antimicrobial resistance which has many environmental and economic impacts.
Conclusion
Consequently, it is important to recognize the different types of currently used biocides, their mechanisms of action, and their potential impact to develop cross-resistance and co-resistance to various antibiotics. The use of biocides in medical or industrial purposes should be monitored and regulated. In addition, new agents with biocidal activity should be investigated from new sources like phytochemicals in order to decrease the emergence of resistance among bacterial isolates.
Collapse
|
19
|
Effect of Exposure to Chlorhexidine Residues at "During Use" Concentrations on Antimicrobial Susceptibility Profile, Efflux, Conjugative Plasmid Transfer, and Metabolism of Escherichia coli. Antimicrob Agents Chemother 2020; 64:AAC.01131-20. [PMID: 32928737 DOI: 10.1128/aac.01131-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
There is no standardized protocol to predict the concentration levels of microbicides that are left on surfaces as a result of the use of these products, and there is no standardized method to predict the potential risk that such levels pose to emerging antibacterial resistance. The ability to distinguish between selection and adaption processes for antimicrobial resistance in bacteria and the impact of different concentrations of microbicide exposure have not been fully investigated to date. This study considers the effect of exposure to a low concentration of chlorhexidine digluconate (CHX) on selected phenotypes of Escherichia coli and relates the findings to the risk of emerging antimicrobial resistance. A concentration of 0.006 mg/ml CHX is a realistic "during use" exposure concentration measured on surfaces. At this concentration, it was possible for CHX-susceptible bacteria to survive, adapt through metabolic alterations, exhibit a transient decrease in antimicrobial susceptibility, and express stable clinical cross-resistance to front-line antibiotics. Efflux activity was present naturally in tested isolates, and it increased in the presence of 0.00005 mg/ml CHX but ceased with 0.002 mg/ml CHX. Phenotypic microarray assays highlighted a difference in metabolic regulation at 0.00005 mg/ml and 0.002 mg/ml CHX; more changes occurred after growth with the latter concentration. Metabolic phenotype changes were observed for substrates involved with the metabolism of some amino acids, cofactors, and secondary metabolites. It was possible for one isolate to continue transferring ampicillin resistance in the presence of 0.00005 mg/ml CHX, whilst 0.002 mg/ml CHX prevented conjugative transfer. In conclusion, E. coli phenotype responses to CHX exposure are concentration dependent, with realistic residual CHX concentrations resulting in stable clinical cross-resistance to antibiotics.
Collapse
|
20
|
Wesgate R, Evangelista C, Atkinson R, Shepard A, Adegoke O, Maillard JY. Understanding the risk of emerging bacterial resistance to over the counter antibiotics in topical sore throat medicines. J Appl Microbiol 2020; 129:916-925. [PMID: 32352619 DOI: 10.1111/jam.14682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/26/2020] [Indexed: 11/27/2022]
Abstract
AIMS The aims of this study were to explore the development of bacterial resistance and cross-resistance in four common human pathogens following realistic exposure to antibiotics found in over-the-counter (OTC) sore throat medicines: gramicidin, neomycin, bacitracin and tyrothricin. METHODS AND RESULTS Bacterial exposure to in-use (concentration in the product before use) and diluted concentration (i.e. during use) of antibiotic where conducted in broth for 24 h or until growth was visible. The changes in bacterial susceptibility profile before and after exposure was determined using standardized ISO microdilution broth. Antibiotic testing was performed according to EUCAST guidelines. We demonstrated that test bacteria were able to survive exposure to the in-use concentrations of some antibiotics used in OTC medicines. Exposure to during use concentrations of bacitracin resulted in stable increase in minimal inhibitory concentration (MIC) (>8-fold) in Staphylococcus aureus and Acinetobacter baumannii. Exposure to tyrothricin resulted in a stable increase in MIC (2·4-fold) in Klebsiella pneumoniae, and exposure to neomycin resulted in a stable increase MIC (5000-fold higher than the baseline) in Streptococcus pyogenes. Clinical cross-resistance to other antibiotics (ciprofloxacin, fusidic acid, gentamicin, cefpodoxime, amoxicillin/clavulanic acid and cefotaxime) was also demonstrated following exposure to bacitracin or tyrothricin. Bacitracin exposure lead to a stable bacterial resistance after 10 passages. CONCLUSIONS Our results indicate that OTC antibiotic medicines have the potential to drive resistance and cross-resistance in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY Tackling antibiotic resistance is a high worldwide priority. It is widely accepted that the overuse and misuse of antibiotics increase the risk of the development and spread of antibiotic resistance within communities. A number of OTC sore throat products, widely available across the world for topical use in respiratory indications, contain locally delivered antibiotics. Our findings showed that these antibiotics in OTC medicines present a risk for emerging cross-resistance in a number of bacterial respiratory pathogens.
Collapse
Affiliation(s)
- R Wesgate
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - C Evangelista
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | - J-Y Maillard
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Mapping the Efficacy and Mode of Action of Ethylzingerone [4-(3-Ethoxy-4-Hydroxyphenyl) Butan-2-One] as an Active Agent against Burkholderia Bacteria. Appl Environ Microbiol 2020; 86:AEM.01808-20. [PMID: 32737133 PMCID: PMC7499027 DOI: 10.1128/aem.01808-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria are intrinsically antimicrobial-resistant opportunistic pathogens and key risk species in the contamination of nonfood industrial products. New agents and formulations to prevent growth of Burkholderia in home care (cleaning agents) and personal-care (cosmetics and toiletries) products are required. We characterized how ethylzingerone [4-(3-ethoxy-4-hydroxyphenyl) butan-2-one] (HEPB) acts as a preservative with activity against Burkholderia species encountered in industry. Burkholderia (n = 58) and non-Burkholderia (n = 7) bacteria were screened for susceptibility to HEPB, and its mode of action and resistance were determined for a model Burkholderia vietnamiensis strain using transposon mutagenesis, transcriptomics, and genome resequencing analysis. The susceptibility of Burkholderia spp. to HEPB (MIC = 0.45% ± 0.11% [wt/vol]; MBC = 0.90% ± 0.3% [wt/vol]) was characterized, with limited inter- and intraspecies differences. HEPB (1% [wt/vol]) was rapidly bactericidal, producing a 6-log reduction in viability within 4 h. Spontaneous resistance to HEPB did not develop, but transient phenotypes with altered growth characteristics and susceptibility to antibiotics were identified after prolonged exposure to sublethal HEPB concentrations. Transposon mutagenesis and RNA-sequencing analysis identified multiple genetic pathways associated with HEPB exposure, including stress response mechanisms, altered permeability, regulation of intracellular pH, damage and repair of intracellular components, and alteration and repair of lipopolysaccharides. Key pathways included the stringent response, homeostasis of intracellular pH by the kdp operon, protection against electrophiles by KefC, and repair of oxidized proteins by methionine sulfoxide reductase enzymes. In summary, we show that HEPB has potent, targeted efficacy against Burkholderia bacteria without promoting wider stable antimicrobial resistance. The mode of action of HEPB against Burkholderia is multifactorial, but killing by intracellular oxidation is a key mechanism of this promising agent.IMPORTANCE Burkholderia bacteria are opportunistic pathogens that can overcome preservatives used in the manufacture of nonsterile industrial products and occasionally cause contamination. Consequently, new preservatives to prevent the growth of key risk Burkholderia cepacia complex bacteria in nonfood industrial products are urgently required. Here, we show that ethylzingerone is active against these problematic bacteria, killing them via a multifactorial mode of action which involves intracellular oxidation.
Collapse
|
22
|
Maertens H, Van Coillie E, Millet S, Van Weyenberg S, Sleeckx N, Meyer E, Zoons J, Dewulf J, De Reu K. Repeated disinfectant use in broiler houses and pig nursery units does not affect disinfectant and antibiotic susceptibility in Escherichia coli field isolates. BMC Vet Res 2020; 16:140. [PMID: 32423466 PMCID: PMC7236461 DOI: 10.1186/s12917-020-02342-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Disinfectants are frequently used in animal production to reduce or eliminate the load of infectious agents and parasites in buildings and equipment associated with the housing or transportation of animals. There are growing concerns that the use of disinfectants would select for resistance to antibiotics and disinfectants. The aim of this study was to determine the effect of repeated use of different disinfectants on the disinfectant and antibiotic susceptibility under practical conditions in a broiler and pig pilot farm. Therefore, the susceptibility of Escherichia coli (E. coli) to 14 antibiotics and 4 disinfectants was monitored over a one-year period. RESULTS High (20-50%) to very high (> 50%) resistance levels for ampicillin, sulfamethoxazole, trimethoprim and tetracycline were observed in both animal production types. Disinfectant susceptibility did not change over time and did not depend on the used disinfection product. Compared to in-use concentrations of formaldehyde, benzalkoniumchloride and a peracetic acid - hydrogen peroxide formulation, all E. coli strains remained susceptible indicating that the use of disinfectants did not select for disinfectant resistance. Moreover, no association could be found between the use of disinfectants and antibiotic resistance. CONCLUSIONS These findings suggest that repeated use of disinfectants in agricultural environments does not select for antibiotic resistance nor does it reduce disinfectant susceptibility.
Collapse
Affiliation(s)
- H Maertens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - E Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - S Millet
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - S Van Weyenberg
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - N Sleeckx
- Experimental Poultry Center (EPC), Poiel 77, 2440, Geel, Belgium
| | - E Meyer
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - J Zoons
- Experimental Poultry Center (EPC), Poiel 77, 2440, Geel, Belgium
| | - J Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - K De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.
| |
Collapse
|
23
|
Roedel A, Dieckmann R, Makarewicz O, Hartung A, Noll M, Pletz MW, Dahouk SA, Vincze S. Evaluation of a Newly Developed Vacuum Dried Microtiter Plate for Rapid Biocide Susceptibility Testing of Clinical Enterococcus Faecium Isolates. Microorganisms 2020; 8:E551. [PMID: 32290364 PMCID: PMC7232460 DOI: 10.3390/microorganisms8040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022] Open
Abstract
We investigated the suitability of a newly developed biocide susceptibility test system based on microtiter plates containing vacuum dried biocides as a fast and reliable screening method. The evaluated substances included the cationic biocides benzalkonium chloride (BAC), chlorhexidine dihydrochloride (CHX), cetylpyridinium chloride, didecyldimethylammonium chloride, and octenidine dihydrochloride. Testing a selection of Escherichia coli and enterococci, the biocide microtiter plates provided results comparable to those obtained from broth microdilution according to ISO 20776-1. Broad MIC ranges allowed for testing gram-positive and gram-negative species with the same plate design. In the second part of our study, we applied the established method to analyze the susceptibility of 90 clinical Enterococcus faecium isolates from a German university hospital, as previous studies have indicated a link between reduced susceptibility to substances such as CHX and BAC and vancomycin resistance. We therefore determined MIC and minimum bactericidal concentrations (MBC) for 48 non-clonal vancomycin susceptible and 42 non-clonal vancomycin resistant isolates, but MIC95 and MBC95 were quite similar in both groups. Our easy to handle and ready to use test system enables the routine surveillance of bacterial tolerance towards disinfectants in hospitals. As a result, hygiene measures can be adapted and nosocomial infections controlled despite increasing prevalence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Alice Roedel
- German Federal Institute for Risk Assessment, Department of Biological Safety, 10589 Berlin, Germany
| | - Ralf Dieckmann
- German Federal Institute for Risk Assessment, Department of Biological Safety, 10589 Berlin, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
- Research Campus Infectognostics, 07743 Jena, Germany
| | - Anita Hartung
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
- Research Campus Infectognostics, 07743 Jena, Germany
| | - Matthias Noll
- Institute for Bioanalysis, University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
- Research Campus Infectognostics, 07743 Jena, Germany
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, Department of Biological Safety, 10589 Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Szilvia Vincze
- German Federal Institute for Risk Assessment, Department of Biological Safety, 10589 Berlin, Germany
| |
Collapse
|
24
|
Wesgate R, Menard-Szczebara F, Khodr A, Cupferman S, Maillard JY. Hydroxyethoxy phenyl butanone, a new cosmetic preservative, does not cause bacterial cross-resistance to antimicrobials. J Med Microbiol 2020; 69:670-675. [PMID: 32186482 PMCID: PMC7451044 DOI: 10.1099/jmm.0.001147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Introduction. Biocide-induced cross-resistance to antimicrobials in bacteria has been described and is a concern for regulators. We have recently reported on a new protocol to predict the propensity of biocide to induce phenotypic resistance in bacteria. Aim. To measure bacterial propensity to develop antimicrobial resistance following exposure to a new cosmetic preservative developed by L’Oréal R and I. Methodology. Well-established antimicrobials including triclosan (TRI) and benzalkonium chloride (BZC) and a new molecule hydroxyethoxy phenyl butanone (HEPB) were investigated for their antimicrobial efficacy, effect on bacterial growth, and their potential to induce resistance to chemotherapeutic antibiotics using a new predictive protocol. Results. The use of this predictive protocol with Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa showed that TRI and BZC significantly affected bacterial growth, MICs and minimum bactericidal concentrations (MBCs). There was no change in antibiotic susceptibility profile following exposure to BZC, but E. coli became intermediate resistant to tobramycin following treatment with TRI (0.00002 % w/v). HEPB did not change the antimicrobial susceptibility profile in P. aeruginosa and S. aureus but E. coli became susceptible to gentamicin. TRI exposure resulted in bacterial susceptibility profile alteration consistent with the literature and confirmed the use of TRI as a positive control in such a test. Conclusion. Data produced on the propensity of a molecule to induce bacterial resistance is useful and appropriate when launching a new preservative.
Collapse
Affiliation(s)
- Rebecca Wesgate
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Ahmad Khodr
- L'Oréal Research and Innovation, Chevilly-Larue, France
| | | | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
25
|
Roedel A, Dieckmann R, Brendebach H, Hammerl JA, Kleta S, Noll M, Al Dahouk S, Vincze S. Biocide-Tolerant Listeria monocytogenes Isolates from German Food Production Plants Do Not Show Cross-Resistance to Clinically Relevant Antibiotics. Appl Environ Microbiol 2019; 85:e01253-19. [PMID: 31375490 PMCID: PMC6805086 DOI: 10.1128/aem.01253-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023] Open
Abstract
Contamination of food during processing is recognized as a main transmission route of Listeria monocytogenes To prevent microbial contamination, biocides are widely applied as disinfectants in food processing plants. However, there are concerns about the development of antimicrobial resistance in foodborne pathogens due to widespread biocide usage. In our study, 93 L. monocytogenes isolates from German food production facilities were (i) tested for biocide and antibiotic susceptibility using broth microdilution assays, (ii) analyzed for links between reduced biocide susceptibility and antibiotic resistance, and (iii) characterized by whole-genome sequencing, including the detection of genes coding for biocide tolerance, antibiotic resistance, and other virulence factors. Fifteen L. monocytogenes isolates were tolerant to benzalkonium chloride (BAC), and genes conferring BAC tolerance were found in 13 of them. Antibiotic resistance was not associated with biocide tolerance. BAC-tolerant isolates were assigned to 6 multilocus sequence type (MLST) clonal complexes, and most of them harbored internalin A pseudogenes with premature stop codons or deletions (n = 9). Our study demonstrated a high genetic diversity among the investigated isolates including genotypes that are frequently involved in human infections. Although in vitro adaptation studies to biocides have raised concerns about increasing cross-resistance to antibiotics, our results do not provide evidence for this phenomenon in field isolates.IMPORTANCE Foodborne pathogens such as L. monocytogenes can persist in food production environments for a long time, causing perennial outbreaks. Hence, bacterial pathogens are able to survive cleaning and disinfection procedures. Accordingly, they may be repeatedly exposed to sublethal concentrations of disinfectants, which might result in bacterial adaptation to these biocides. Furthermore, antibiotic coresistance and cross-resistance are known to evolve under biocide selection pressure in vitro Hence, antimicrobial tolerance seems to play a crucial role in the resilience and persistence of foodborne pathogens in the food chain and might reduce therapeutic options in infectious diseases.
Collapse
Affiliation(s)
- A Roedel
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - R Dieckmann
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - H Brendebach
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - J A Hammerl
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - S Kleta
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - M Noll
- University of Applied Sciences and Arts, Institute for Bioanalysis, Coburg, Germany
| | - S Al Dahouk
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - S Vincze
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
26
|
Maertens H, De Reu K, Meyer E, Van Coillie E, Dewulf J. Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry. BMC Vet Res 2019; 15:310. [PMID: 31477099 PMCID: PMC6721165 DOI: 10.1186/s12917-019-2044-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Farm disinfectants are widely used in primary production, but questions have been raised if their use can select for antimicrobial resistance. The present study examined the use of disinfectants in poultry and pig husbandry and its contribution to the antibiotic and disinfectant susceptibility of Escherichia coli (E. coli) strains obtained after cleaning and disinfection. On those field isolates antibiotic susceptibility was monitored and susceptibility to commonly used active components of farm disinfectants (i.e. glutaraldehyde, benzalkoniumchloride, formaldehyde, and a formulation of peracetic acid and hydrogen peroxide) was tested. RESULTS This study showed a high resistance prevalence (> 50%) for ampicillin, sulfamethoxazole, trimethoprim and tetracycline for both production animal categories, while for ciprofloxacin only a high resistance prevalence was found in broiler houses. Disinfectant susceptibility results were homogenously distributed within a very small concentration range. Furthermore, all E. coli strains were susceptible to in-use concentrations of formaldehyde, benzalkoniumchloride and a formulation of peracetic acid and hydrogen peroxide, indicating that the practical use of disinfectants did not select for disinfectant resistance. Moreover, the results showed no indications for the selection of antibiotic resistant bacteria through the use of disinfectants in agricultural environments. CONCLUSION Our study suggests that the proper use of disinfectants in agricultural environments does not promote antibiotic resistance nor reduce E. coli disinfectant susceptibility.
Collapse
Affiliation(s)
- Helder Maertens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Evelyne Meyer
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Els Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
27
|
Maertens H, De Reu K, Meyer E, Van Weyenberg S, Dewulf J, Van Coillie E. Exposure of ciprofloxacin-resistant Escherichia coli broiler isolates to subinhibitory concentrations of a quaternary ammonium compound does not increase antibiotic resistance gene transfer. Poult Sci 2019; 98:2972-2976. [PMID: 30993325 DOI: 10.3382/ps/pez185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Resistance to antibiotics threatens to become a worldwide health problem. An important attributing phenomenon in this context is that pathogens can acquire antibiotic resistance genes through conjugative transfer of plasmids. To prevent bacterial infections in agricultural settings, the use of veterinary hygiene products, such as disinfectants, has gained popularity and questions have been raised about their contribution to such spreading of antibiotic resistance. Therefore, this study investigated the effect of subinhibitory concentrations of benzalkoniumchloride (BKC), a quaternary ammonium compound (QAC), on the conjugative transfer of antibiotic resistance genes. Five Escherichia coli field strains originating from broiler chickens and with known transferable plasmid-mediated ciprofloxacin resistance were exposed to subinhibitory BKC concentrations: 1/3, 1/10 and 1/30 of the minimum bactericidal concentration. Antibiotic resistance transfer was assessed by liquid mating for 4 h at 25°C using E. coli K12 MG1655 as recipient strain. The transfer ratio was calculated as the number of transconjugants divided by the number of recipients. Without exposure to BKC, the strains showed a ciprofloxacin resistance transfer ratio ranging from 10-4 to 10-7. No significant effect of exposure to subinhibitory concentrations of BKC was observed on this transfer ratio.
Collapse
Affiliation(s)
- H Maertens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - K De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E Meyer
- Veterinary Biochemistry Unit, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S Van Weyenberg
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - J Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
28
|
Navel to Knees With Chlorhexidine Gluconate: Preventing Catheter-Associated Urinary Tract Infections. Dimens Crit Care Nurs 2019; 38:236-240. [PMID: 31369441 DOI: 10.1097/dcc.0000000000000371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Urinary tract infections are the most common type of health care-associated infection, and greater than 75% of them are attributed to an indwelling urinary catheter. A catheter-associated urinary infection may lead to a longer hospital length of stay by as many as 4 days. A new patient care standard requiring twice-daily chlorhexidine cleansing from umbilicus to knees was implemented on all patients of the pilot unit with a urinary catheter. This same technique was used after a patient with a urinary catheter had an incontinent bowel movement. The 9-month average catheter-associated urinary infection rate decreased from 3.06/1000 urinary catheter days to 0.46/1000 urinary catheter days after implementation of the new standard. The use of chlorhexidine for routine urinary catheter care and after bowel movements from umbilicus to knees for patients with urinary catheters may significantly decrease catheter-associated urinary tract infections when compared with the standard of care using soap and water. Standards for Quality Improvement Reporting Excellence guidelines were used in reporting these data.
Collapse
|
29
|
Rapacka-Zdonczyk A, Wozniak A, Pieranski M, Woziwodzka A, Bielawski KP, Grinholc M. Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment. Sci Rep 2019; 9:9423. [PMID: 31263139 PMCID: PMC6603016 DOI: 10.1038/s41598-019-45962-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) and antimicrobial blue light (aBL) are considered low-risk treatments for the development of bacterial resistance and/or tolerance due to their multitargeted modes of action. In this study, we assessed the development of Staphylococcus aureus tolerance to these phototreatments. Reference S. aureus USA300 JE2 was subjected to 15 cycles of both sub-lethal aPDI (employing an exogenously administered photosensitizer (PS), i.e., rose Bengal (RB)) and sub-lethal aBL (employing endogenously produced photosensitizing compounds, i.e., porphyrins). We demonstrate substantial aPDI/aBL tolerance development and tolerance stability after 5 cycles of subculturing without aPDI/aBL exposure (the development of aPDI/aBL tolerance was also confirmed with the employment of clinical MRSA and MSSA strain as well as other representatives of Gram-positive microbes, i.e. Enterococcus faecium and Streptococcus agalactiae). In addition, a rifampicin-resistant (RIFR) mutant selection assay showed an increased mutation rate in S. aureus upon sub-lethal phototreatments, indicating that the increased aPDI/aBL tolerance may result from accumulated mutations. Moreover, qRT-PCR analysis following sub-lethal phototreatments demonstrated increased expression of umuC, which encodes stress-responsive error-prone DNA polymerase V, an enzyme that increases the rate of mutation. Employment of recA and umuC transposon S. aureus mutants confirmed SOS-induction dependence of the tolerance development. Interestingly, aPDI/aBL-tolerant S. aureus exhibited increased susceptibility to gentamicin (GEN) and doxycycline (DOX), supporting the hypothesis of genetic alterations induced by sub-lethal phototreatments. The obtained results indicate that S. aureus may develop stable tolerance to studied phototreatments upon sub-lethal aPDI/aBL exposure; thus, the risk of tolerance development should be considered significant when designing aPDI/aBL protocols for infection treatments in vitro and in clinical settings.
Collapse
Affiliation(s)
- Aleksandra Rapacka-Zdonczyk
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Agata Wozniak
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Michal Pieranski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Woziwodzka
- Laboratory of Biophysics, Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
30
|
González F, Araque M. Molecular typing, antibiotic resistance profiles and biocide susceptibility in Salmonella enterica serotypes isolated from raw chicken meat marketed in Venezuela. Germs 2019; 9:81-88. [PMID: 31341835 DOI: 10.18683/germs.2019.1161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 11/08/2022]
Abstract
Introduction Salmonella is a common bacterial cause of foodborne diarrhea worldwide. The purpose of this study was to characterize antimicrobial resistance and susceptibility to biocides in Salmonella enterica serotypes isolated from raw chicken meat, as well as to study the genetic relationship between strains and virulence profiles. Methods Nine Salmonella enterica strains (5 S. Heidelberg; 2 S. Enteritidis; 1 S. Typhimurium and 1 S. Meleagridis) recovered from raw chicken meat marketed in the urban area of Mérida, Venezuela, were studied. Phenotypic characterization was based on antimicrobial susceptibility testing as well as detection of extended-spectrum β-lactamases (ESBLs) by double-disc synergy. The susceptibility to biocides was determined using the dilution-neutralization methods. The detection of quinolone resistance-determining regions of gyrA, gyrB, and parC genes, bla ESBLs genes, plasmid-mediated quinolone resistance determinants and virulence genes (invA and spvC) was carried out by PCR. All strains were typed using PFGE. Results Multidrug-resistance was evident in 6 of 9 strains studied. However, all Salmonella serotypes were susceptible to the tested biocides. Genotypic characterization determined that 5 strains harbored the bla CTXM-2, 4 bla TEM-1 and 3 qnrB19 genes. All strains were positive for the invA gene. The spvC gene was detected in 4 of them. PFGE grouped Salmonella strains into 4 different patterns that represented individual serotypes. Conclusions This study provides valuable information on antibiotic resistance, biocide susceptibility profiles, virulence gene content and genetic diversity of Salmonella enterica serotypes isolated from raw chicken meat marketed in Venezuela, and evidenced a health risk for consumers.
Collapse
Affiliation(s)
- Fanny González
- MSc, Laboratorio de Microbiología Molecular, Departamento de Microbiología, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - María Araque
- MD, PhD, Laboratorio de Microbiología Molecular, Departamento de Microbiología, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
31
|
Kampf G. Adaptive bacterial response to low level chlorhexidine exposure and its implications for hand hygiene. MICROBIAL CELL 2019; 6:307-320. [PMID: 31294043 PMCID: PMC6600115 DOI: 10.15698/mic2019.07.683] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlorhexidine digluconate (CHG) is commonly used in healthcare, e.g. in skin antiseptics, antimicrobial soaps, alcohol-based hand rubs and oral or wound antiseptics. Aim of the literature review was to evaluate the potential of bacteria to adapt to low level CHG exposure. A maximum 4fold MIC increase to CHG was found after low level exposure in most of the 71 evaluated bacterial species. A strong adaptive mostly stable MIC change was described in strains or isolates of the healthcare-associated species E. coli, S. marcescens and P. aeruginosa (up to 500fold, 128fold or 32fold, respectively). The highest MIC values after adaptation were 2,048 mg/l (S. marcescens) and 1,024 mg/l (P. aeruginosa). A new resistance to tetracycline, gentamicin, meropeneme or triclosan was found in some adapted isolates. In E. coli horizontal gene transfer was induced (sulfonamide resistance by conjugation), pointing out an additional risk of sublethal CHG. The use of CHG in patient care - but also all other settings such as consumer products and households - should therefore be critically assessed and restricted to indications with a proven health benefit or justifiable public health benefits. Additional CHG has no health benefit when used in alcohol-based hand rubs and is not recommended by the WHO. For routine hand washing of soiled hands the use of plain soap is sufficient, CHG in soaps has no health benefit. In surgical hand antisepsis alcohol-based hand rubs should be preferred to CHG soaps. Implementation of these principles will help to reduce avoidable selection pressure.
Collapse
Affiliation(s)
- Günter Kampf
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straβe, 17475 Greifswald, Germany
| |
Collapse
|
32
|
Forbes S, Morgan N, Humphreys GJ, Amézquita A, Mistry H, McBain AJ. Loss of Function in Escherichia coli Exposed to Environmentally Relevant Concentrations of Benzalkonium Chloride. Appl Environ Microbiol 2019; 85:e02417-18. [PMID: 30530708 PMCID: PMC6365820 DOI: 10.1128/aem.02417-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Assessing the risk of resistance associated with biocide exposure commonly involves exposing microorganisms to biocides at concentrations close to the MIC. With the aim of representing exposure to environmental biocide residues, Escherichia coli MG1655 was grown for 20 passages in the presence or absence of benzalkonium chloride (BAC) at 100 ng/liter and 1,000 ng/liter (0.0002% and 0.002% of the MIC, respectively). BAC susceptibility, planktonic growth rates, motility, and biofilm formation were assessed, and differentially expressed genes were determined via transcriptome sequencing. Planktonic growth rate and biofilm formation were significantly reduced (P < 0.001) following BAC adaptation, while BAC minimum bactericidal concentration increased 2-fold. Transcriptomic analysis identified 289 upregulated and 391 downregulated genes after long-term BAC adaptation compared with the respective control organism passaged in BAC-free medium. When the BAC-adapted bacterium was grown in BAC-free medium, 1,052 genes were upregulated and 753 were downregulated. Repeated passage solely in biocide-free medium resulted in 460 upregulated and 476 downregulated genes compared with unexposed bacteria. Long-term exposure to environmentally relevant BAC concentrations increased the expression of genes associated with efflux and reduced the expression of genes associated with outer-membrane porins, motility, and chemotaxis. This was manifested phenotypically through the loss of function (motility). Repeated passage in a BAC-free environment resulted in the upregulation of multiple respiration-associated genes, which was reflected by increased growth rate. In summary, repeated exposure of E. coli to BAC residues resulted in significant alterations in global gene expression that were associated with minor decreases in biocide susceptibility, reductions in growth rate and biofilm formation, and loss of motility.IMPORTANCE Exposure to very low concentrations of biocides in the environment is a poorly understood risk factor for antimicrobial resistance. Repeated exposure to trace levels of the biocide benzalkonium chloride (BAC) resulted in loss of function (motility) and a general reduction in bacterial fitness but relatively minor decreases in susceptibility. These changes were accompanied by widespread changes in the Escherichia coli transcriptome. These results demonstrate the importance of including phenotypic characterization in studies designed to assess the risks of biocide exposure.
Collapse
Affiliation(s)
- Sarah Forbes
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Nicola Morgan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alejandro Amézquita
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Hitesh Mistry
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Adaptive microbial response to low-level benzalkonium chloride exposure. J Hosp Infect 2018; 100:e1-e22. [DOI: 10.1016/j.jhin.2018.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
|
34
|
Abstract
Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB United Kingdom
| |
Collapse
|
35
|
Kadry AA, Serry FM, El-Ganiny AM, El-Baz AM. Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Br J Biomed Sci 2017; 74:78-84. [DOI: https:/doi.org/10.1080/09674845.2017.1278884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Affiliation(s)
- Ashraf A. Kadry
- Faculty of Pharmacy, Microbiology and Immunology Department, Zagazig University, Zagazig, Egypt
| | - Fathy M. Serry
- Faculty of Pharmacy, Microbiology and Immunology Department, Zagazig University, Zagazig, Egypt
| | - Amira M. El-Ganiny
- Faculty of Pharmacy, Microbiology and Immunology Department, Zagazig University, Zagazig, Egypt
| | - Ahmed M. El-Baz
- Faculty of Pharmacy, Microbiology and biotechnology Department, Delta University, Gamasa, Egypt
| |
Collapse
|
36
|
Kadry AA, Serry FM, El-Ganiny AM, El-Baz AM. Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Br J Biomed Sci 2017; 74:78-84. [PMID: 28281934 DOI: 10.1080/09674845.2017.1278884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Integrons are gene acquisition systems commonly found in bacterial genomes that play a major role in the dissemination of resistance to antibiotics. This work aimed to study the relationship between the presence of integrons and the reduced susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa isolates towards different groups of biocides. METHODS The antimicrobial susceptibility patterns of 104 clinical isolates were determined against different antibiotics by the disk diffusion method. The isolates were also tested for their susceptibility to six biocides (glutaraldehyde, benzalkonium chloride, cetrimide, chlorhexidine gluconate, chlorocresol and gluconate, and phenyl mercuric nitrate) by agar dilution. The presence of integrons and resistance genes in MDR isolates were detected by polymerase chain reaction. RESULTS Thirty-six Pseudomonas isolates were MDR, and the majority of these isolates showed reduced susceptibility to biocides. In the MDR isolates, Class I integron was detected in 22 isolates (61.1%), while Class II and III integrons were identified in only four isolates (11.1%), In addition, aacA4 and qacE genes were detected in 22 (61.1%) and 11 (30.5%) isolates, respectively. Integron I-positive isolates showed reduced susceptibility to tested biocides. CONCLUSIONS The current study reveals the presence of different classes of integrons, with class I being predominant. Class I integron may be responsible for generating MDR P. aeruginosa isolates with reduced susceptibility to biocides. This linkage between integrons and biocide resistance in MDR-Pseudomonas isolates is notable and could be clinically important. Strict antibiotic prescription policies and the adequate use of biocides could help in controlling this problem.
Collapse
Affiliation(s)
- Ashraf A Kadry
- a Faculty of Pharmacy, Microbiology and Immunology Department , Zagazig University , Zagazig , Egypt
| | - Fathy M Serry
- a Faculty of Pharmacy, Microbiology and Immunology Department , Zagazig University , Zagazig , Egypt
| | - Amira M El-Ganiny
- a Faculty of Pharmacy, Microbiology and Immunology Department , Zagazig University , Zagazig , Egypt
| | - Ahmed M El-Baz
- b Faculty of Pharmacy, Microbiology and biotechnology Department , Delta University , Gamasa , Egypt
| |
Collapse
|
37
|
Luyckx K, Van Coillie E, Dewulf J, Van Weyenberg S, Herman L, Zoons J, Vervaet E, Heyndrickx M, De Reu K. Identification and biocide susceptibility of dominant bacteria after cleaning and disinfection of broiler houses. Poult Sci 2016; 96:938-949. [PMID: 28158762 DOI: 10.3382/ps/pew355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022] Open
Affiliation(s)
- K Luyckx
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E Van Coillie
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - J Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Van Weyenberg
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - L Herman
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - J Zoons
- Experimental Poultry Center (EPC), Geel, Belgium
| | - E Vervaet
- Experimental Poultry Center (EPC), Geel, Belgium
| | | | - K De Reu
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
38
|
Variable Effects of Exposure to Formulated Microbicides on Antibiotic Susceptibility in Firmicutes and Proteobacteria. Appl Environ Microbiol 2016; 82:3591-3598. [PMID: 27060123 DOI: 10.1128/aem.00701-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Microbicides are broad-spectrum antimicrobial agents that generally interact with multiple pharmacological targets. While they are widely deployed in disinfectant, antiseptic, and preservative formulations, data relating to their potential to select for microbicide or antibiotic resistance have been generated mainly by testing the compounds in much simpler aqueous solutions. In the current investigation, antibiotic susceptibility was determined for bacteria that had previously exhibited decreased microbicide susceptibility following repeated exposure to microbicides either in formulation with sequestrants and surfactants or in simple aqueous solution. Statistically significant increases in antibiotic susceptibility occurred for 12% of bacteria after exposure to microbicides in formulation and 20% of bacteria after exposure to microbicides in aqueous solutions, while 22% became significantly less susceptible to the antibiotics, regardless of formulation. Of the combinations of a bacterium and an antibiotic for which British Society for Antimicrobial Chemotherapy breakpoints are available, none became resistant. Linear modeling taking into account phylogeny, microbicide, antibiotic, and formulation identified small but significant effects of formulation that varied depending on the bacterium and microbicide. Adaptation to formulated benzalkonium chloride in particular was more likely to increase antibiotic susceptibility than adaptation to the simple aqueous solution. In conclusion, bacterial adaptation through repeated microbicide exposure was associated with both increases and decreases in antibiotic susceptibility. Formulation of the microbicide to which the bacteria had previously adapted had an identifiable effect on antibiotic susceptibility, but it effect was typically small relative to the differences observed among microbicides. Susceptibility changes resulting in resistance were not observed. IMPORTANCE The safety of certain microbicide applications has been questioned due to the possibility that microbicide exposure could select for microbicide and antibiotic resistance. Evidence that this may happen is based mainly on in vitro experiments where bacteria have been exposed to microbicides in aqueous solution. Microbicides are, however, normally deployed in products formulated with surfactants, sequestrants, and other compounds. While this may influence the frequency and extent of susceptibility changes, few studies reported in the literature have assessed this. In the current investigation, therefore, we have investigated changes in antibiotic susceptibility in bacteria which exhibited decreased microbicide susceptibility following repeated exposure to microbicides in simple aqueous solutions and in formulation. We report that the microbicide formulation had an identifiable effect on antibiotic susceptibility, but it was typically small relative to the differences observed among microbicides. We did not observe susceptibility changes resulting in resistance.
Collapse
|
39
|
Wesgate R, Grasha P, Maillard JY. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am J Infect Control 2016; 44:458-64. [PMID: 26810885 DOI: 10.1016/j.ajic.2015.11.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND In this study we assessed the propensity of biocide exposure in the development of antimicrobial resistance in bacteria. METHODS Our protocol is based on reporting changes in established antimicrobial susceptibility profiles in biocides and antibiotics after during use exposure to a product. The during use exposure reflects worse conditions of product use during application. It differs from the term low concentration, which usually reflects a concentration below the minimal inhibitory concentration, but not necessarily a concentration that occurs in practice. RESULTS Our results showed that exposure to triclosan (0.0004%) was associated with a high risk of developing resistance and cross-resistance in Staphylococcus aureus and Escherichia coli. This was not observed with exposure to chlorhexidine (0.00005%) or a hydrogen peroxide-based biocidal product (in during use conditions). Interestingly, exposure to a low concentration of hydrogen peroxide (0.001%) carried a risk of emerging resistance to antibiotics if the presence of the oxidizing agent was maintained. We observed a number of unstable clinical resistances to antibiotics after exposure to the cationic biocide and oxidizing agent, notably to tobramycin and ticarcillin-clavulanic acid. CONCLUSIONS Using a decision tree based on the change in antimicrobial susceptibility test results, we were able to provide information on the effect of biocide exposure on the development of bacterial resistance to antimicrobials. Such information should address the call from the U.S. Food and Drug Administration and European Union Biocidal Products Regulation for manufacturers to provide information on antimicrobial resistance and cross-resistance in bacteria after the use of their product.
Collapse
Affiliation(s)
- Rebecca Wesgate
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
40
|
Buffet-Bataillon S, Tattevin P, Maillard JY, Bonnaure-Mallet M, Jolivet-Gougeon A. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol 2016; 11:81-92. [DOI: 10.2217/fmb.15.131] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.
Collapse
Affiliation(s)
| | - Pierre Tattevin
- Service des Maladies Infectieuses, Pontchaillou, 35043 Rennes, France
- INSERM U835, Université de Rennes 1, 35000 Rennes, France
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Martine Bonnaure-Mallet
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
- Pôle Odontologie, Teaching Hospital, 35043 Rennes, France
| | - Anne Jolivet-Gougeon
- Pôle Biologie, Teaching Hospital Pontchaillou, 35043 Rennes, France
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
| |
Collapse
|