1
|
Cheshomi N, Alum A, Smith MF, Lim ES, Conroy-Ben O, Abbaszadegan M. Viral concentration method biases in the detection of viral profiles in wastewater. Appl Environ Microbiol 2025; 91:e0133924. [PMID: 39641602 PMCID: PMC11784009 DOI: 10.1128/aem.01339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Viral detection methodologies used for wastewater-based epidemiology (WBE) studies have a broad range of efficacies. The complex matrix and low viral particle load in wastewater emphasize the importance of the concentration method. This study focused on comparing three commonly used virus concentration methods: polyethylene glycol precipitation (PEG), immuno-magnetic nanoparticles (IMNP), and electronegative membrane filtration (EMF). Influent and effluent wastewater samples were processed by the methods and analyzed by DNA/RNA quantification and sequencing for the detection of human viruses. SARS-COV-2, Astrovirus, and Hepatitis C virus were detected by all the methods in both sample types. PEG precipitation resulted in the detection of 20 types of viruses in influent and 16 types in effluent samples. The corresponding number of virus types detected was 21 and 11 for IMNP, and 16 and 8 for EMF. Certain viruses were unique to only one concentration method. For example, PEG detected three types of viruses in influent and six types in effluent compared to IMNP, which detected seven types in influent and one type in effluent samples. However, the EMF method appeared to be the least effective, detecting three types in influent and none in effluent samples. Rotavirus was detected in influent sample using IMNP method, whereas EMF and PEG methods failed to yield a similar outcome. Consequently, the potential false negative results pose a risk to the credibility of WBE applications. Therefore, implementation of a proper concentration technique is critical to minimize method biases and ensure accurate viral profiling in WBE studies.IMPORTANCEIn recent years, significant research efforts have been focused on the development of viral detection methodology for wastewater-based epidemiology studies, showing a range of variability in detection efficacies. A proper methodology is essential for an appropriate evaluation of disease prevalence and community health in such studies and necessitates designing a concentration method based on the target pathogenic virus. There remains a need for comparative performance evaluations of methods in the context of detection efficiencies. This study highlights the significant impact of sample matrix, viral structure, and nucleic acid composition on the efficacy of viral concentration methods. Assessing WBE techniques to ensure accurate detection and understanding of viral presence within wastewater samples is critical for revealing viral profiles in municipality wastewater samples.
Collapse
Affiliation(s)
- Naeema Cheshomi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Kevill JL, Li X, Garcia-Delgado A, Herridge K, Farkas K, Gaze W, Robins P, Malham SK, Jones DL. Microcosm experiment investigating climate-induced thermal effects on human virus viability in seawater: qPCR vs capsid integrity for enhanced risk management. MARINE POLLUTION BULLETIN 2024; 208:117006. [PMID: 39342910 DOI: 10.1016/j.marpolbul.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Climate change is intensifying extreme weather events in coastal areas, leading to more frequent discharge of untreated wastewater containing human viruses into coastal waters. This poses a health risk, especially during heatwaves when bathing activity increases. A study examined the survival and viability of seven common wastewater viruses in seawater at different temperatures. Viral genomes were quantified using direct qPCR, whilst viability was assessed using Capsid Integrity qPCR. Results showed that T90 values from direct qPCR were much higher than those from CI-qPCR, suggesting that risk mitigation should be based on viral integrity tests. All viruses remained potentially viable for at least 72 h in environmental seawater and longer in sterile artificial seawater, highlighting the importance of biotic processes in viral inactivation. Viral persistence decreased with increasing temperature. Whilst heatwaves may partially reduce risks from human viral pathogens in coastal waters, they do not eliminate them entirely.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Xiaorong Li
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alvaro Garcia-Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - William Gaze
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
3
|
Norese C, Nicosia E, Cortese K, Gentili V, Rizzo R, Rizzo S, Grasselli E, De Negri Atanasio G, Gagliani MC, Tiso M, Zinni M, Pulliero A, Izzotti A. SARS-CoV-2 presence in recreational seawater and evaluation of intestine permeability: experimental evidence of low impact on public health. Front Public Health 2024; 12:1326453. [PMID: 38500723 PMCID: PMC10944960 DOI: 10.3389/fpubh.2024.1326453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Coastal seawater pollution poses a public health risk due to the potential ingestion of contaminated water during recreational activities. Wastewater-based epidemiology has revealed the abundant presence of SARS-CoV-2 in seawater emitted from wastewater outlets. The objective of this research was to investigate the impact of seawater on SARS-CoV-2 infectivity to assess the safety of recreational activities in seawater. Methods Wild SARS-CoV-2 was collected from oral swabs of COVID-19 affected patients and incubated for up to 90 min using the following solutions: (a) standard physiological solution (control), (b) reconstructed seawater (3.5% NaCl), and (c) authentic seawater (3.8%). Samples were then exposed to two different host systems: (a) Vero E6 cells expressing the ACE2 SARS-CoV-2 receptor and (b) 3D multi-tissue organoids reconstructing the human intestine. The presence of intracellular virus inside the host systems was determined using plaque assay, quantitative real-time PCR (qPCR), and transmission electron microscopy. Results Ultrastructural examination of Vero E6 cells revealed the presence of virus particles at the cell surface and in replicative compartments inside cells treated with seawater and/or reconstituted water only for samples incubated up to 2 min. After a 90-min incubation, the presence of the virus and its infectivity in Vero E6 cells was reduced by 90%. Ultrastructural analysis performed in 3D epi-intestinal tissue did not reveal intact viral particles or infection signs, despite the presence of viral nucleic acid detected by qPCR. Indeed, viral genes (Orf1ab and N) were found in the intestinal luminal epithelium but not in the enteric capillaries. These findings suggest that the intestinal tissue is not a preferential entry site for SARS-CoV-2 in the human body. Additionally, the presence of hypertonic saline solution did not increase the susceptibility of the intestinal epithelium to virus penetration; rather, it neutralized its infectivity. Conclusion Our results indicate that engaging in recreational activities in a seawater environment does not pose a significant risk for COVID-19 infection, despite the possible presence of viral nucleic acid deriving from degraded and fragmented viruses.
Collapse
Affiliation(s)
- Clelia Norese
- DIMES, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elena Nicosia
- Regione Liguria, Environmental Department, Ligurian Region, Genoa, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
- LTTA, Clinical Research Center, University of Ferrara, Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Grasselli
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | | | - Micaela Tiso
- MICAMO, Spin-Off Department of Earth Sciences, University of Genoa, Genoa, Italy
| | - Matteo Zinni
- MICAMO, Spin-Off Department of Earth Sciences, University of Genoa, Genoa, Italy
| | | | - Alberto Izzotti
- DIMES, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- HSM, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
Larivé O, Torii S, Derlon N, Kohn T. Selective elimination of enterovirus genotypes by activated sludge and chlorination. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:1620-1633. [PMID: 37274621 PMCID: PMC10233425 DOI: 10.1039/d3ew00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023]
Abstract
Enteroviruses, which are commonly circulating viruses shed in the stool, are released into the sewage system and only partially removed or inactivated, resulting in the discharge of infectious enteroviruses into the environment. Activated sludge and chlorination remove or inactivate enterovirus genotypes to different extents, and thus have the potential to shape the population that will be discharged. The goal of this study was to evaluate how activated sludge and chlorination treatment shape an enterovirus population at the genotype level, using a population of eight genotypes commonly found in sewage: CVA9, CVB1, CVB2, CVB3, CVB4, CVB5, E25, E30. Our results show that the extent of inactivation varied among genotypes, but also across sludge samples. We find that the effluent of activated sludge systems will be depleted in CVA9, CVB1 and CVB2 while E25 together with CVB3, CVB4 and CVB5 will be prevalent. Furthermore, we found that microbial inactivation was the main mechanism of infectivity loss in the activated sludge, while adsorption to the sludge flocs was not significant. During effluent chlorination, we also observed that CVB5, CVB3 and to a lesser extent E25 were less susceptible to chlorination while E30 was readily inactivated, and activated sludge-derived EPS provided further protection against chlorination. This study contributes to a better understanding of the variability of sewage treatment efficacy against different enteroviruses.
Collapse
Affiliation(s)
- Odile Larivé
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland +41 21 69 30891
| | - Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland +41 21 69 30891
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 CH-8600 Dübendorf Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland +41 21 69 30891
| |
Collapse
|
5
|
Kim KH, Kang G, Woo WS, Sohn MY, Son HJ, Park CI. Development of a Propidium Monoazide-Based Viability Quantitative PCR Assay for Red Sea Bream Iridovirus Detection. Int J Mol Sci 2023; 24:ijms24043426. [PMID: 36834834 PMCID: PMC9958570 DOI: 10.3390/ijms24043426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Red sea bream iridovirus (RSIV) is an important aquatic virus that causes high mortality in marine fish. RSIV infection mainly spreads through horizontal transmission via seawater, and its early detection could help prevent disease outbreaks. Although quantitative PCR (qPCR) is a sensitive and rapid method for detecting RSIV, it cannot differentiate between infectious and inactive viruses. Here, we aimed to develop a viability qPCR assay based on propidium monoazide (PMAxx), which is a photoactive dye that penetrates damaged viral particles and binds to viral DNA to prevent qPCR amplification, to distinguish between infectious and inactive viruses effectively. Our results demonstrated that PMAxx at 75 μM effectively inhibited the amplification of heat-inactivated RSIV in viability qPCR, allowing the discrimination of inactive and infectious RSIV. Furthermore, the PMAxx-based viability qPCR assay selectively detected the infectious RSIV in seawater more efficiently than the conventional qPCR and cell culture methods. The reported viability qPCR method will help prevent the overestimation of red sea bream iridoviral disease caused by RSIV. Furthermore, this non-invasive method will aid in establishing a disease prediction system and in epidemiological analysis using seawater.
Collapse
|
6
|
Wu X, Moyne AL, Ramos TDM, Harris LJ, DiCaprio E. Impact of irrigation water quality on human norovirus surrogate survival during leafy green production. FRONTIERS IN PLANT SCIENCE 2023; 14:1128579. [PMID: 37077630 PMCID: PMC10106680 DOI: 10.3389/fpls.2023.1128579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction The impact of water quality on the survival of human norovirus (NoV) was determined in irrigation water field run-off (tail water) and well water from a representative Central Coast vegetable production site in the Salinas Valley, California. Methods Tail water, well water, and ultrapure water samples were inoculated separately with two surrogate viruses for human NoV-Tulane virus (TV) and murine norovirus (MNV)-to achieve a titer of 1×105 plaque forming units (PFU)/ml. Samples were stored at 11, 19, and 24°C for 28 days. Additionally, inoculated water was applied to soil collected from a vegetable production site in the Salinas Valley or to the surface of growing romaine lettuce leaves, and virus infectivity was evaluated for 28 days in a growth chamber. Results Virus survival was similar for water stored at 11, 19, and 24°C and there was no difference in infectivity based on water quality. After 28 days, a maximum 1.5 log reduction was observed for both TV and MNV. TV decreased by 1.97-2.26 log and MNV decreased by 1.28- 1.48 logs after 28 days in soil; infectivity was not influenced by water type. Infectious TV and MNV were recovered from lettuce surfaces for up to 7 and 10 days after inoculation, respectively. Across the experiments there was no significant impact of water quality on the stability of the human NoV surrogates. Discussion Overall, the human NoV surrogates were highly stable in water with a less than 1.5 log reduction over 28 days and no difference observed based on the water quality. In soil, the titer of TV declined by approximately 2 logs over 28 days, while MNV declined by 1 log during the same time interval, suggesting surrogate-specific inactivation dynamics in the soil tested in this study. A 5-log reduction in MNV (day 10 post inoculation) and TV (day 14 post inoculation) was observed on lettuce leaves, and the inactivation kinetics were not significantly impacted by the quality of water used. These results suggest that human NoV would be highly stable in water, and the quality of the water (e.g., nutrient content, salinity, and turbidity) does not significantly impact viral infectivity.
Collapse
Affiliation(s)
- Xi Wu
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Anne-laure Moyne
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States
| | - Thais De Melo Ramos
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Linda J. Harris
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States
| | - Erin DiCaprio
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- *Correspondence: Erin DiCaprio,
| |
Collapse
|
7
|
Sala-Comorera L, Reynolds LJ, Martin NA, O'Sullivan JJ, Meijer WG, Fletcher NF. Decay of infectious SARS-CoV-2 and surrogates in aquatic environments. WATER RESEARCH 2021; 201:117090. [PMID: 34111729 PMCID: PMC8005746 DOI: 10.1016/j.watres.2021.117090] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/03/2023]
Abstract
The introduction of SARS-CoV-2 containing human stool and sewage into water bodies may raise public health concerns. However, assessment of public health risks by faecally contaminated water is limited by a lack of knowledge regarding the persistence of infectious SARS-CoV-2 in water. In the present study the decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA were determined in river and seawater at 4 and 20°C. These decay rates were compared to S. typhimurium bacteriophage MS2 and pepper mild mottle virus (PMMoV). Persistence of viable SARS-CoV-2 was temperature dependent, remaining infectious for significantly longer periods of time in both freshwater and seawater at 4°C than at 20°C. T90 for infectious SARS-CoV-2 in river water was 2.3 days and 3.8 days at 20°C and 4°C, respectively. The T90 values were 1.1 days and 2.2 days in seawater at 20°C and 4°C, respectively. In contrast to the rapid inactivation of infectious SARS-CoV-2 in river and sea water, viral RNA was relatively stable. The RNA decay rates were increased in non-sterilised river and seawater, presumably due to the presence of microbiota. The decay rates of infectious MS2, MS2 RNA and PMMoV RNA differed significantly from the decay rate of SARS-CoV-2 RNA, suggesting that their use as surrogate markers for the persistence of SARS-CoV-2 in the environment is limited.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Nicola F Fletcher
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Ahmed W, Bertsch PM, Bibby K, Haramoto E, Hewitt J, Huygens F, Gyawali P, Korajkic A, Riddell S, Sherchan SP, Simpson SL, Sirikanchana K, Symonds EM, Verhagen R, Vasan SS, Kitajima M, Bivins A. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2020; 191:110092. [PMID: 32861728 PMCID: PMC7451058 DOI: 10.1016/j.envres.2020.110092] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology (WBE) demonstrates potential for COVID-19 community transmission monitoring; however, data on the stability of SARS-CoV-2 RNA in wastewater are needed to interpret WBE results. The decay rates of RNA from SARS-CoV-2 and a potential surrogate, murine hepatitis virus (MHV), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in untreated wastewater, autoclaved wastewater, and dechlorinated tap water stored at 4, 15, 25, and 37 °C. Temperature, followed by matrix type, most greatly influenced SARS-CoV-2 RNA first-order decay rates (k). The average T90 (time required for 1-log10 reduction) of SARS-CoV-2 RNA ranged from 8.04 to 27.8 days in untreated wastewater, 5.71 to 43.2 days in autoclaved wastewater, and 9.40 to 58.6 days in tap water. The average T90 for RNA of MHV at 4 to 37 °C ranged from 7.44 to 56.6 days in untreated wastewater, 5.58-43.1 days in autoclaved wastewater, and 10.9 to 43.9 days in tap water. There was no statistically significant difference between RNA decay of SARS-CoV-2 and MHV; thus, MHV is suggested as a suitable persistence surrogate. Decay rate constants for all temperatures were comparable across all matrices for both viral RNAs, except in untreated wastewater for SARS-CoV-2, which showed less sensitivity to elevated temperatures. Therefore, SARS-CoV-2 RNA is likely to persist long enough in untreated wastewater to permit reliable detection for WBE application.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN, 46656, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4 - 3 -11 Takeda, Kofu, Yamanashi, 400 -8511, Japan
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Flavia Huygens
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH, 45268, USA
| | - Shane Riddell
- CSIRO Australian Centre for Disease Preparedness, Geelong, VIC, 3220, Australia
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | | | | | - Erin M Symonds
- College of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, FL, 33701, USA
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Seshadri S Vasan
- CSIRO Australian Centre for Disease Preparedness, Geelong, VIC, 3220, Australia; Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North West 8, Kita-ku, Sapporo, Hokkaido, 060-0032, Japan
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN, 46656, USA
| |
Collapse
|
9
|
Rowell CER, Dobrovolny HM. Energy Requirements for Loss of Viral Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:281-294. [PMID: 32757142 PMCID: PMC7405386 DOI: 10.1007/s12560-020-09439-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Outside the host, viruses will eventually lose their ability to infect cells due to conformational changes that occur to proteins on the viral capsid. In order to undergo a conformational change, these proteins require energy to activate the chemical reaction that leads to the conformational change. In this study, data from the literature is used to calculate the energy required for viral inactivation for a variety of different viruses by means of the Arrhenius equation. We find that some viruses (rhinovirus, poliovirus, human immunodeficiency virus, Alkhumra hemorrhagic fever virus, and hepatitis A virus) have high inactivation energies, indicative of breaking of a chemical double bond. We also find that several viruses (respiratory syncytial virus, poliovirus, and norovirus) have nonlinear Arrhenius plots, suggesting that there is more than a single pathway for inactivation of these viruses.
Collapse
Affiliation(s)
- Caroline E R Rowell
- Department of Chemistry, Wingate University, Hendersonville, NC, USA
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
10
|
Labadie T, Batéjat C, Leclercq I, Manuguerra JC. Historical Discoveries on Viruses in the Environment and Their Impact on Public Health. Intervirology 2020; 63:17-32. [PMID: 33238280 DOI: 10.1159/000511575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/14/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transmission of many viruses occurs by direct transmission during a close contact between two hosts, or by an indirect transmission through the environment. Several and often interconnected factors, both abiotic and biotic, determine the persistence of these viruses released in the environment, which can last from a few seconds to several years. Moreover, viruses in the environment are able to travel short to very long distances, especially in the air or in water. SUMMARY Although well described now, the role of these environments as intermediaries or as reservoirs in virus transmission has been extensively studied and debated in the last century. The majority of these discoveries, such as the pioneer work on bacteria transmission, the progressive discoveries of viruses, as well as the persistence of the influenza virus in the air varying along with droplet sizes, or the role of water in the transmission of poliovirus, have contributed to the improvement of public health. Recent outbreaks of human coronavirus, influenza virus, and Ebola virus have also demonstrated the contemporaneity of these research studies and the need to study virus persistence in the environment. Key Messages: In this review, we discuss historical discoveries that contributed to describe biotic and abiotic factors determining viral persistence in the environment.
Collapse
Affiliation(s)
- Thomas Labadie
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France.,Centre de Biochimie Structurale (CBS), UMR 5048, University of Montpellier, CNRS, Montpellier, France
| | - Christophe Batéjat
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France
| | - India Leclercq
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France, .,Université de Paris, Cellule Pasteur, Paris, France,
| | - Jean-Claude Manuguerra
- Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence (CIBU), Paris, France
| |
Collapse
|
11
|
Abstract
Fecal microorganisms can enter water bodies in diverse ways, including runoff, sewage discharge, and direct fecal deposition. Once in water, the microorganisms experience conditions that are very different from intestinal habitats. The transition from host to aquatic environment may lead to rapid inactivation, some degree of persistence, or growth. Microorganisms may remain planktonic, be deposited in sediment, wash up on beaches, or attach to aquatic vegetation. Each of these habitats offers a panoply of different stressors or advantages, including UV light exposure, temperature fluctuations, salinity, nutrient availability, and biotic interactions with the indigenous microbiota (e.g., predation and/or competition). The host sources of fecal microorganisms are likewise numerous, including wildlife, pets, livestock, and humans. Most of these microorganisms are unlikely to affect human health, but certain taxa can cause waterborne disease. Others signal increased probability of pathogen presence, e.g., the fecal indicator bacteria Escherichia coli and enterococci and bacteriophages, or act as fecal source identifiers (microbial source tracking markers). The effects of environmental factors on decay are frequently inconsistent across microbial species, fecal sources, and measurement strategies (e.g., culture versus molecular). Therefore, broad generalizations about the fate of fecal microorganisms in aquatic environments are problematic, compromising efforts to predict microbial decay and health risk from contamination events. This review summarizes the recent literature on decay of fecal microorganisms in aquatic environments, recognizes defensible generalizations, and identifies knowledge gaps that may provide particularly fruitful avenues for obtaining a better understanding of the fates of these organisms in aquatic environments.
Collapse
|
12
|
Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2842. [PMID: 30551597 PMCID: PMC6313479 DOI: 10.3390/ijerph15122842] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022⁻0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
13
|
Abstract
Enteric viruses are those human viruses that are primarily transmitted by the fecal-oral route, either by person-to-person contact or by ingestion of contaminated food or water. The importance of viral foodborne diseases is increasingly being recognized, and several international organizations have found that there is an upward trend in their incidence. Thus, in this review, state-of-the-art information regarding virus persistence in food and the environment is compiled.
Collapse
|
14
|
Long AM, Short SM. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME JOURNAL 2016; 10:1602-12. [PMID: 26943625 DOI: 10.1038/ismej.2015.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022]
Abstract
To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.
Collapse
Affiliation(s)
- Andrew M Long
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Short
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
15
|
Yoshida N, Sasaki RK, Kasai H, Yoshimizu M. Inactivation of koi-herpesvirus in water using bacteria isolated from carp intestines and carp habitats. JOURNAL OF FISH DISEASES 2013; 36:997-1005. [PMID: 24102339 DOI: 10.1111/j.1365-2761.2012.01449.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 06/02/2023]
Abstract
Since its first outbreak in Japan in 2003, koi-herpesvirus (KHV) remains a challenge to the carp Cyprinus carpio L. breeding industry. In this study, inactivation of KHV in water from carp habitats (carp habitat water) was investigated with the aim of developing a model for rapidly inactivating the pathogen in aquaculture effluent. Experiments with live fish showed that, in carp habitat water, KHV lost its infectivity within 3 days. Indications were that inactivation of KHV was caused by the antagonistic activity of bacteria (anti-KHV bacteria) in the water from carp habitats. Carp habitat water and the intestinal contents of carp were therefore screened for anti-KHV bacteria. Of 581 bacterial isolates, 23 showed anti-KHV activity. An effluent treatment model for the disinfection of KHV in aquaculture effluent water using anti-KHV bacteria was developed and evaluated. The model showed a decrease in cumulative mortality and in the number of KHV genome copies in kidney tissue of fish injected with treated effluent compared with a positive control. It is thought that anti-KHV bacteria isolated from the intestinal contents of carp and from carp habitat water can be used to control KHV outbreaks.
Collapse
Affiliation(s)
- N Yoshida
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | | | | |
Collapse
|
16
|
Bertrand I, Schijven JF, Sánchez G, Wyn-Jones P, Ottoson J, Morin T, Muscillo M, Verani M, Nasser A, de Roda Husman AM, Myrmel M, Sellwood J, Cook N, Gantzer C. The impact of temperature on the inactivation of enteric viruses in food and water: a review. J Appl Microbiol 2012; 112:1059-74. [PMID: 22380614 DOI: 10.1111/j.1365-2672.2012.05267.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Temperature is considered as the major factor determining virus inactivation in the environment. Food industries, therefore, widely apply temperature as virus inactivating parameter. This review encompasses an overview of viral inactivation and virus genome degradation data from published literature as well as a statistical analysis and the development of empirical formulae to predict virus inactivation. A total of 658 data (time to obtain a first log(10) reduction) were collected from 76 published studies with 563 data on virus infectivity and 95 data on genome degradation. Linear model fitting was applied to analyse the effects of temperature, virus species, detection method (cell culture or molecular methods), matrix (simple or complex) and temperature category (<50 and ≥50°C). As expected, virus inactivation was found to be faster at temperatures ≥50°C than at temperatures <50°C, but there was also a significant temperature-matrix effect. Virus inactivation appeared to occur faster in complex than in simple matrices. In general, bacteriophages PRD1 and PhiX174 appeared to be highly persistent whatever the matrix or the temperature, which makes them useful indicators for virus inactivation studies. The virus genome was shown to be more resistant than infectious virus. Simple empirical formulas were developed that can be used to predict virus inactivation and genome degradation for untested temperatures, time points or even virus strains.
Collapse
Affiliation(s)
- I Bertrand
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), Université de Lorraine, CNRS, Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ming HX, Zhu L, Zhang Y. Rapid quantification of infectious enterovirus from surface water in Bohai Bay, China using an integrated cell culture-qPCR assay. MARINE POLLUTION BULLETIN 2011; 62:2047-2054. [PMID: 21889173 DOI: 10.1016/j.marpolbul.2011.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
To rapidly quantify infectious enteroviruses polluting the coastal seawaters, a newly developed integrated cell culture and reverse transcription quantitative PCR (ICC-RT-qPCR) assay was used to identify the contamination by enteroviruses in winter seawater samples of Bohai Bay, Tianjin, China. The gene copies of enteroviral 5'UTRs correlated to the initial inoculum numbers across the concentration range of 0.05-500 PFU mL(-1) (correlation coefficient (R(2)) was 0.9667). ICC-qPCR revealed that five of seven samples (70.4%) were positive for infectious enteroviruses. The concentration of enteroviruses was estimated at 0.2-21 PFU L(-1). The result demonstrated that the contamination of enteroviruses in this coastal area may constitute a potential public health risk. This study established a practical assay for widespread monitoring studies of aquatic environments for viral contamination and provided meaningful data for human waterborne viral risk assessment.
Collapse
Affiliation(s)
- Hong-Xia Ming
- College of Environmental Science and Engineering, Key Laboratory of Pollution and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|
18
|
Wyn-Jones AP, Carducci A, Cook N, D'Agostino M, Divizia M, Fleischer J, Gantzer C, Gawler A, Girones R, Höller C, de Roda Husman AM, Kay D, Kozyra I, López-Pila J, Muscillo M, Nascimento MSJ, Papageorgiou G, Rutjes S, Sellwood J, Szewzyk R, Wyer M. Surveillance of adenoviruses and noroviruses in European recreational waters. WATER RESEARCH 2011; 45:1025-38. [PMID: 21093010 PMCID: PMC7112131 DOI: 10.1016/j.watres.2010.10.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/20/2010] [Accepted: 10/13/2010] [Indexed: 05/17/2023]
Abstract
Exposure to human pathogenic viruses in recreational waters has been shown to cause disease outbreaks. In the context of Article 14 of the revised European Bathing Waters Directive 2006/7/EC (rBWD, CEU, 2006) a Europe-wide surveillance study was carried out to determine the frequency of occurrence of two human enteric viruses in recreational waters. Adenoviruses were selected based on their near-universal shedding and environmental survival, and noroviruses (NoV) selected as being the most prevalent gastroenteritis agent worldwide. Concentration of marine and freshwater samples was done by adsorption/elution followed by molecular detection by (RT)-PCR. Out of 1410 samples, 553 (39.2%) were positive for one or more of the target viruses. Adenoviruses, detected in 36.4% of samples, were more prevalent than noroviruses (9.4%), with 3.5% GI and 6.2% GII, some samples being positive for both GI and GII. Of 513 human adenovirus-positive samples, 63 (12.3%) were also norovirus-positive, whereas 69 (7.7%) norovirus-positive samples were adenovirus-negative. More freshwater samples than marine water samples were virus-positive. Out of a small selection of samples tested for adenovirus infectivity, approximately one-quarter were positive. Sixty percent of 132 nested-PCR adenovirus-positive samples analysed by quantitative PCR gave a mean value of over 3000 genome copies per L of water. The simultaneous detection of infectious adenovirus and of adenovirus and NoV by (RT)PCR suggests that the presence of infectious viruses in recreational waters may constitute a public health risk upon exposure. These studies support the case for considering adenoviruses as an indicator of bathing water quality.
Collapse
|
19
|
|
20
|
|
21
|
Williamson KE, Radosevich M, Smith DW, Wommack KE. Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 2008; 9:2563-74. [PMID: 17803780 DOI: 10.1111/j.1462-2920.2007.01374.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A companion study indicated that approximately 30% of cultivable soil bacteria may contain inducible prophage; however, the degree to which this cultivation-based estimate applies to autochthonous communities of soil bacteria is unknown. To estimate the prevalence of lysogeny within soil bacterial communities, induction assays were carried out by extracting bacteria from soil and subsequently exposing extracts to mitomycin C (MC; 0.5 microg ml(-1)), or by exposing bacteria to MC (1.0 microg ml(-1)) through direct addition to soil slurries. Induction was assessed as an increase in viral direct counts relative to those obtained in controls, as detected by epifluorescence microscopy. Extracting bacteria from soils followed by 18 h MC exposure generated significantly higher prophage induction than all other treatments (P < 0.05). For three Antarctic soil samples, estimates of inducible fraction (IF) were statistically indistinguishable across two independent assays (P = 0.82), indicating that this approach is highly reproducible. Although IF was lower in Antarctic soils (4-20%) and higher in temperate Delaware soils (22-68%), no clear correlations were found between lysogeny and soil physical properties. For Delaware soils, IF estimates were similar between whole soil assays (44%) and cultivation-based approaches (30%). While these data suggest that lysogeny is common among soil bacteria, the specific factors which promote temperate interactions remain unclear.
Collapse
Affiliation(s)
- Kurt E Williamson
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
22
|
Love DC, Vinjé J, Khalil SM, Murphy J, Lovelace GL, Sobsey MD. Evaluation of RT-PCR and reverse line blot hybridization for detection and genotyping F+ RNA coliphages from estuarine waters and molluscan shellfish. J Appl Microbiol 2007; 104:1203-12. [PMID: 18028362 DOI: 10.1111/j.1365-2672.2007.03646.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate a PCR-based detection and typing method for faecal indicator viruses (F+ RNA coliphages) in water and shellfish, and apply the method for better understanding of the ecology and microbial source tracking potential of these viruses. METHODS AND RESULTS Water and shellfish samples were collected over 3 years at nine estuaries in the East, West and Gulf Coasts of the USA, providing 1033 F+ RNA coliphage isolates. F+ RNA coliphage genotyping rates by reverse transcriptase-PCR-reverse line blot (RLB) hybridization ranged from 94.7% to 100% among estuaries, and were not significantly different in oysters, clams, mussels or water (P = 0.8427). Twenty samples negative by RLB were nucleotide sequenced for confirmation, and to refine RLB probes. More F+ RNA coliphages were genotyped from colder water than warmer waters, while the water salinity did not affect F+ RNA coliphage levels. CONCLUSIONS RT-PCR-RLB was a robust method for detecting and genotyping F+ RNA coliphages from diverse coastal areas, which provided new information on the ecology of F+ RNA coliphages. SIGNIFICANCE AND IMPACT OF THE STUDY This performance-validated F+ RNA coliphage method can be used for faecal indicator monitoring and microbial source tracking, to protect recreational bathers and shellfish consumers from exposure to pathogenic virus and their disease risks.
Collapse
Affiliation(s)
- D C Love
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Mattana A, Serra C, Mariotti E, Delogu G, Fiori PL, Cappuccinelli P. Acanthamoeba castellanii promotion of in vitro survival and transmission of coxsackie b3 viruses. EUKARYOTIC CELL 2006; 5:665-71. [PMID: 16607014 PMCID: PMC1459673 DOI: 10.1128/ec.5.4.665-671.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 01/18/2006] [Indexed: 11/20/2022]
Abstract
This work was undertaken to determine whether Acanthamoeba could play a role in the survival and transmission of coxsackieviruses and focused on in vitro interactions between Acanthamoeba castellanii and coxsackie B3 viruses (CVB-3). Residual virus titer evaluations and immunofluorescence experiments revealed a remarkable CVB-3 adsorption on amoeba surfaces and accumulation inside cells. The survival of viruses was independent of the dynamics of amoeba replication and encystment. In addition, our results indicated that virus-infected amoebas can release infectious viruses during interaction with human macrophages. On the basis of these data, Acanthamoeba appears to be a potential promoter of the survival of coxsackieviruses and their transmission to human hosts.
Collapse
Affiliation(s)
- A Mattana
- Dipartimento di Scienze del Farmaco, Via Muroni 23/A, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Awareness is growing that fresh or minimally processed fruit and vegetables can be sources of disease-causing bacteria, viruses, protozoa, and helminths. Irrigation with poor-quality water is one way that fruit and vegetables can become contaminated with foodborne pathogens. Groundwater, surface water, and human wastewater are commonly used for irrigation. The risk of disease transmission from pathogenic microorganisms present in irrigation water is influenced by the level of contamination; the persistence of pathogens in water, in soil, and on crops; and the route of exposure. Groundwater is generally of good microbial quality, unless it is contaminated with surface runoff; human wastewater is usually of very poor microbial quality and requires extensive treatment before it can be used safely to irrigate crops; surface water is of variable microbial quality. Bacteria and protozoa tend to show the poorest survival outside a human host, whereas viruses and helminths can remain infective for months to years. Guidelines governing irrigation water quality and strategies to reduce the risk of disease transmission by foodborne pathogens in irrigation are discussed.
Collapse
Affiliation(s)
- Marina Steele
- University of Guelph, Guelph, Ontario, Canada N1H 8J7
| | | |
Collapse
|
26
|
Abstract
Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.
Collapse
Affiliation(s)
- Gilbert Greub
- Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
27
|
|
28
|
Lotlikar MS, Lipson SM. Survival of spumavirus, a primate retrovirus, in laboratory media and water. FEMS Microbiol Lett 2002; 211:207-11. [PMID: 12076814 DOI: 10.1111/j.1574-6968.2002.tb11226.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The persistence of a previously characterized spumavirus strain (strain SV-522) was investigated utilizing various laboratory media and waters, including Eagle's minimal essential medium (EMEM) plus 0% fetal bovine serum (EMEM-0%), EMEM-2%, EMEM-10%, Chlamydia transport medium (CTM), phosphate-buffered saline, distilled, estuarine, and marine water, human serum, and the germicides, ethyl alcohol (70%) and sodium hypochlorite (10%). Experiments were performed at 4 degrees C and/or 23 degrees C. Infectivity endpoints were determined in stock aliquots upon initiation of testing and then after 3, 5, 7, and 10 days. The virus was reisolated from all diluents after 5 days at 23 degrees C and in EMEM-10% after 7 days. The virus was detected in CTM, EMEM-2%, EMEM-10%, and estuarine and marine waters after 7 days at 4 degrees C. Differences in the persistence of the virus may be ascribed to temperature and organic load. Water ionic strengths (e.g., estuarine vs. marine water) had no effect on modifying persistence of viral particles. Infectivity of spumavirus was undetectable after 30 s in 70% ethanol or 10% sodium hypochlorite. After 30 min at 23 degrees C, spumavirus infectivity in normal but not heat-inactivated human serum increased by almost 100-fold. Persistence of infectivity of primate spumavirus after 7 days in media and waters, and the agent's infectious potential in the human host, emphasize a need for cautious recognition during the manipulation of primate cells/organs and in the handling of primates themselves.
Collapse
Affiliation(s)
- Madhavi S Lotlikar
- Department of Laboratories, North Shore University Hospital - NYU School of Medicine, Manhasset, NY, USA
| | | |
Collapse
|
29
|
Burkhardt W, Calci KR. Selective accumulation may account for shellfish-associated viral illness. Appl Environ Microbiol 2000; 66:1375-8. [PMID: 10742214 PMCID: PMC91995 DOI: 10.1128/aem.66.4.1375-1378.2000] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Accepted: 01/17/2000] [Indexed: 01/22/2023] Open
Abstract
From 1991 through 1998, 1,266 cases of shellfish-related illnesses were attributed to Norwalk-like viruses. Seventy-eight percent of these illnesses occurred following consumption of oysters harvested from the Gulf Coast during the months of November through January. This study investigated the ability of eastern oysters (Crassostrea virginica) to accumulate indicator microorganisms (i.e., fecal coliforms, Escherichia coli, Clostridium perfringens, and F(+) coliphage) from estuarine water. One-week trials over a 1-year period were used to determine if these indicator organisms could provide insight into the seasonal occurrence of these gastrointestinal illnesses. The results demonstrate that oysters preferentially accumulated F(+) coliphage, an enteric viral surrogate, to their greatest levels from late November through January, with a concentration factor of up to 99-fold. However, similar increases in accumulation of the other indicator microorganisms were not observed. These findings suggest that the seasonal occurrence of shellfish-related illnesses by enteric viruses is, in part, the result of seasonal physiological changes undergone by the oysters that affect their ability to accumulate viral particles from estuarine waters.
Collapse
Affiliation(s)
- W Burkhardt
- U.S. Food and Drug Administration, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama 36528-0158, USA.
| | | |
Collapse
|
30
|
Abstract
The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities.
Collapse
Affiliation(s)
- K E Wommack
- Center of Marine Biotechnology, Baltimore, Maryland 21202, USA
| | | |
Collapse
|
31
|
Wommack KE, Hill RT, Muller TA, Colwell RR. Effects of sunlight on bacteriophage viability and structure. Appl Environ Microbiol 1996; 62:1336-41. [PMID: 8919794 PMCID: PMC167899 DOI: 10.1128/aem.62.4.1336-1341.1996] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current estimates of viral abundance in natural waters rely on direct counts of virus-like particles (VLPs), using either transmission or epifluorescence microscopy. Direct counts of VLPs, while useful in studies of viral ecology, do not indicate whether the observed VLPs are capable of infection and/or replication. Rapid decay in bacteriophage viability under environmental conditions has been observed. However, it has not been firmly established whether there is a corresponding degradation of the virus particles. To address this question, viable and direct counts were carried out employing two Chesapeake Bay bacteriophages in experimental microcosms incubated for 56 h at two depths in the York River estuary. Viruses incubated in situ in microcosms at the surface yielded decay rates in full sunlight of 0.11 and 0.06 h-1 for CB 38 phi and CB 7 phi, respectively. The number of infective particles in microcosms in the dark and at a depth of 1 m was not significantly different from laboratory controls, with decay rates averaging 0.052 h-1 for CB 38 phi and 0.037 h-1 for CB 7 phi. Direct counts of bacteriophages decreased in teh estuarine microcosms, albeit only at a rate of 0.028 h-1, and were independent of treatment. Destruction of virus particles is concluded to be a process separate from loss of infectivity. It is also concluded that strong sunlight affects the viability of bacteriophages in surface waters, with the result that direct counts of VLPs overestimate the number of bacteriophage capable of both infection and replication. However, in deeper waters, where solar radiation is not a significant factor, direct counts should more accurately estimate numbers of viable bacteriophage.
Collapse
Affiliation(s)
- K E Wommack
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202, USA
| | | | | | | |
Collapse
|
32
|
Burkhardt W, Watkins WD, Rippey SR. Seasonal effects on accumulation of microbial indicator organisms by Mercenaria mercenaria. Appl Environ Microbiol 1992; 58:826-31. [PMID: 1575484 PMCID: PMC195341 DOI: 10.1128/aem.58.3.826-831.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ability of hard-shelled clams (Mercenaria mercenaria) to accumulate fecal coliforms and other microorganisms (Escherichia coli, Clostridium perfringens, and male-specific bacteriophages) was determined over a 1-year period. Twenty separate trails were conducted during different seasons to encompass a wide range of water temperatures. The greatest accumulation of microorganisms in hard-shelled clams occurred during certain periods in the spring, at temperatures ranging from 11.5 to 21.5 degrees C. These periods of hyperaccumulation did not always coincide for all organisms; the accumulation of bacteriophages was not predicted by the accumulation of either fecal coliforms or C. perfringens. Bacteriophages and C. perfringens showed significantly higher rates of accumulation than either the fecal coliform group or E. coli, especially during the spring. The higher incidence of human viral gastroenteritis associated with the consumption of shellfish during this period may be a result of the extraordinary concentration of certain microorganisms, including enteric viral pathogens.
Collapse
Affiliation(s)
- W Burkhardt
- Department of Microbiology, University of Rhode Island, Kingston 02881
| | | | | |
Collapse
|
33
|
Yates MV, Stetzenbach LD, Gerba CP, Sinclair NA. The effect of indigenous bacteria on virus survival in ground water. ACTA ACUST UNITED AC 1990. [DOI: 10.1080/10934529009375541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Biziagos E, Passagot J, Crance JM, Deloince R. Long-term survival of hepatitis A virus and poliovirus type 1 in mineral water. Appl Environ Microbiol 1988; 54:2705-10. [PMID: 2850763 PMCID: PMC204359 DOI: 10.1128/aem.54.11.2705-2710.1988] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The survival in mineral water of hepatitis A virus (HAV) and poliovirus type 1 was compared, under controlled experimental conditions, at 4 degrees C and room temperature. Viral infectivity titers were determined by cell culture titration, while HAV antigenicity was monitored by radioimmunoassay-endpoint titration. Both viruses persisted longest at 4 degrees C. At this temperature, after 1 year of exposure, the inactivation of either HAV or poliovirus type 1 was not important. At room temperature, poliovirus type 1 was not detected after 300 days, whereas HAV was still infectious. For both temperatures, the computed regression coefficients of best-fit lines for inactivation rates for the two viruses were significantly different. The survival of HAV was also studied at 4 degrees C and room temperature in mineral water with 5- and 50-micrograms/ml protein concentrations (i.e., purity of the virus suspension) for 120 days. As shown by a comparison of the regression coefficients for the inactivation rates, the stability of HAV in mineral water depends on protein concentration and temperature. Radioimmunoassay-endpoint titration results showed inactivation patterns similar to those of cell culture titration, with the most significant reduction in HAV antigenicity at room temperature. At the two temperatures, the infectivity of HAV declined at a faster rate than the antigenicity.
Collapse
Affiliation(s)
- E Biziagos
- Section de Biologie Cellulaire, Centre de Recherches du Service de Santé des Armées, Lyon, France
| | | | | | | |
Collapse
|
35
|
Yates MV, Yates SR, Gerba CP. Modeling microbial fate in the subsurface environment. ACTA ACUST UNITED AC 1988. [DOI: 10.1080/10643388809388339] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Abstract
A comprehensive study was carried out to determine the properties of agents responsible for loss of virus infectivity in mixed-liquor suspended solids (MLSS) of activated sludge. Initial experiments revealed that model enteric viruses (poliovirus-1 and rotavirus SA-11) were irreversibly inactivated in MLSS and released their RNA genomes. Enteric viruses belonging to other genera (echovirus-12, coxsackievirus A13, reovirus-3) were also shown to lose infectivity in MLSS. Although the virucidal activity decreased at reduced temperatures, MLSS still retained significant activity at 4 degrees C. The virucidal agents in MLSS were stable for months at 4 degrees C, but their activity decreased approximately 50% during 4 days of aeration at 26 degrees C. Primary effluent, the nutrient source for activated sludge, also contained virucidal activity. After centrifugation of MLSS, almost all virucidal activity was found in the particulate fraction because of inhibitory substances retained in the supernatant fraction. Decreasing or increasing the solids concentration of the particulate fraction did not increase the virucidal activity of the fraction. The effects of heat and antibiotics on the virucidal activity of MLSS, coupled with the finding that the activity can be produced in autoclaved primary effluent seeded with MLSS, strongly support the conclusion that microorganisms are responsible for this activity. Attempts to characterize the virucidal microbial components of MLSS indicated that treatments that resulted in the inactivation or removal of microorganisms also caused a loss of virucidal activity. Thus, it appears that the virucidal components of microorganisms are either short-lived or active only while bound to the organisms themselves.
Collapse
|
37
|
Goyal SM, Adams WN, O'Malley ML, Lear DW. Human pathogenic viruses at sewage sludge disposal sites in the Middle Atlantic region. Appl Environ Microbiol 1984; 48:758-63. [PMID: 6334495 PMCID: PMC241609 DOI: 10.1128/aem.48.4.758-763.1984] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human enteric viruses were detected in samples of water, crabs, and bottom sediments obtained from two sewage sludge disposal sites in the Atlantic Ocean. Viruses were isolated from sediments 17 months after the cessation of sludge dumping. These findings indicate that, under natural conditions, viruses can survive for a long period of time in the marine environment and that they may present potential public health problems to humans using these resources for food and recreation. The isolation of viruses in the absence of fecal indicator bacteria reinforces previous observations on the inadequacy of these bacteria for predicting the virological quality of water and shellfish.
Collapse
|
38
|
|
39
|
Abstract
Virus loss in activated sludge appeared to be caused by microorganisms. This conclusion is supported by the finding that poliovirus infectivity decreased during incubation in mixed-liquor suspended solids, primarily because of a sedimentable, heat-sensitive component. Furthermore, broth spiked with mixed-liquor suspended solids acquired antiviral activity during incubation.
Collapse
|
40
|
Abstract
The effect of estuarine sediment on the thermoinactivation of poliovirus type 1 and echovirus type 1 was evaluated. Poliovirus survival was prolonged at 24 and 37 degrees C but not at 4 degrees C in the presence of sediment over the time periods observed. Further inactivation studies were performed at 50 and 55 degrees C to maximize the thermal effects, and similar protection was observed. The supernatant fluid from a mixture of seawater and sediment lacked the protective effect against thermoinactivation, suggesting that prolonged virus survival in the presence of sediment was due to adsorption to particulates. From these observations, it appears that the adsorption of enteroviruses to estuarine sediments may play a significant role in protecting them against thermoinactivation.
Collapse
|
41
|
Fujioka RS, Loh PC, Lau LS. Survival of human enteroviruses in the Hawaiian ocean environment: evidence for virus-inactivating microorganisms. Appl Environ Microbiol 1980; 39:1105-10. [PMID: 6250472 PMCID: PMC291490 DOI: 10.1128/aem.39.6.1105-1110.1980] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The stability of certain human enteroviruses in the Hawaiian ocean environment was examined. The present data indicated that the time for 90% reduction of poliovirus type 1 at 24 +/- 1 degree C in seawater samples obtained from different sites in Hawaii ranged from 24 to 48 h, and complete inactivation occurred within 72 to 96 h. The accumulated evidence also strongly indicated that a virus-inactivating agent(s) of a microbiological nature was present in both clean and sewage-polluted seawaters, but not in fresh, mountain stream waters. The antiviral activity was lost when the seawater samples were subjected to boiling, autoclaving, or filtration through a 0.22- or 0.45-micrometer, but not a 1.0-micrometer, membrane filter. That the antiviral activity of the seawater was related to the growth activities of microorganisms was corroborated by the observed effects of added nutrients, a lower temperature of incubation, and the presence of certain antibiotics. Other enteric viruses, such as coxsackie virus B-4 and echo virus-7, were also shown to be similarly inactivated in seawater.
Collapse
|
42
|
Abstract
The rates of inactivation of poliovirus 1, echovirus 7, coxsackievirus B3, and simian rotavirus SA11 were compared in polluted and nonpolluted fresh and estaurine water samples. The study was done in two parts, comparing virus survival in samples taken 1 year apart from the same sites. The survival studies were performed at 20 degrees C and at the natural pH of the water samples. In the first part of the study, the time required for a 3-log10 reduction in the initial virus titers was 2 to 3 days in the estaurine water samples and varied from 3 to greater than 14 days in the freshwater samples. In the second part of the study, no clear distinction was found between survival of viruses in freshwater samples and survival in estaurine water samples. The time required for a 3-log10 reduction in the initial virus titers in the second part of the study varied from 12 to greater than 14 days. This indicates that there is a nonseasonal change in factors in the water which affect virus survival. In this study SA11 survival time (used as a model for human virus) was well within the range exhibited by the enteroviruses, indicating that it also is environmentally stable in natural waters.
Collapse
|
43
|
Vaughn JM, Landry EF, Thomas MZ, Vicale TJ, Penello WF. Survey of human enterovirus occurrence in fresh and marine surface waters on Long Island. Appl Environ Microbiol 1979; 38:290-6. [PMID: 229767 PMCID: PMC243479 DOI: 10.1128/aem.38.2.290-296.1979] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of surface water systems, including a lake, a creek, and two marine embayments, were analyzed on a monthly basis for indigenous human enteroviruses and coliform bacteria. Findings are discussed in terms of the probable pollution sources to each system and their relationship to data from previous studies.
Collapse
|
44
|
Smith EM, Gerba CP, Melnick JL. Role of sediment in the persistence of enteroviruses in the estuarine environment. Appl Environ Microbiol 1978; 35:685-9. [PMID: 206204 PMCID: PMC242906 DOI: 10.1128/aem.35.4.685-689.1978] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The survival of four enteroviruses commonly found in sewage effluents was examined when the viruses were adsorped to marine sediments in estuarine water and compared with virus survival in estuarine water alone. Echovirus 1, coxsackieviruses B3 and A9, and poliovirus 1 survived longer when associated with marine sediment. When the estuarine water was polluted with secondarily treated sewage effluent, virus survived for prolonged periods in sediments, but not in the overlaying estuarine water.
Collapse
|
45
|
Ward RL, Ashley CS. Discovery of an agent in wastewater sludge that reduces the heat required to inactivate reovirus. Appl Environ Microbiol 1977; 34:681-8. [PMID: 23072 PMCID: PMC242730 DOI: 10.1128/aem.34.6.681-688.1977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An agent that causes heat inactivation of reovirus to occur at reduced temperatures has been found in both raw and anaerobically digested sludge. This agent is originally associated with sludge solids but can be washed from these solids by blending with water. The activity of the agent was considerably greater in alkaline than in acid solutions, probably because it is insoluble at low pH. The agent was shown to be nonvolatile and heat stable up to 300 degrees C but was inactivated within 30 min at 400 degrees C. The rate of heat inactivation of reovirus by the agent was found to occur in a bimodal fashion and to be relatively rapid, even at 35 degrees C. Finally, it was found that this agent did not accelerate heat inactivation of poliovirus, but instead may be the component of sludge previously found to protect poliovirus against inactivation by heat.
Collapse
|