1
|
Inability to Catabolize Rhamnose by Sinorhizobium meliloti Rm1021Affects Competition for Nodule Occupancy. Microorganisms 2022; 10:microorganisms10040732. [PMID: 35456783 PMCID: PMC9025865 DOI: 10.3390/microorganisms10040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizobium leguminosarum strains unable to grow on rhamnose as a sole carbon source are less competitive for nodule occupancy. To determine if the ability to use rhamnose as a sole carbon source affects competition for nodule occupancy in Sinorhizobium meliloti, Tn5 mutants unable to use rhamnose as a sole carbon source were isolated. S. meliloti mutations affecting rhamnose utilization were found in two operons syntenous to those of R. leguminosarum. Although the S. meliloti Tn5 mutants were complemented using an R. leguminosarum cosmid that contains the entire wild-type rhamnose catabolic locus, complementation did not occur if the cosmids carried Tn5 insertions within the locus. Through a series of heterologous complementation experiments, enzyme assays, gene fusion, and transport experiments, we show that the S. meliloti regulator, RhaR, is dominant to its R. leguminosarum counterpart. In addition, the data support the hypothesis that the R. leguminosarum kinase is capable of directly phosphorylating rhamnose and rhamnulose, whereas the S. meliloti kinase does not possess rhamnose kinase activity. In nodule competition assays, S. meliloti mutants incapable of rhamnose transport were shown to be less competitive than the wild-type and had a decreased ability to bind plant roots in the presence of rhamnose. The data suggests that rhamnose catabolism is a general determinant in competition for nodule occupancy that spans across rhizobial species.
Collapse
|
2
|
Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200471. [PMID: 34839705 PMCID: PMC8628070 DOI: 10.1098/rstb.2020.0471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium-legume symbiosis requires a 'mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Grace E. Wardell
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| | - Michael F. Hynes
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Peter J. Young
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| |
Collapse
|
3
|
Yudistira H, Geddes BA, Geddes CM, Gulden RH, Oresnik IJ. qPCR assay targeting Bradyrhizobium japonicum shows that row spacing and soybean density affects Bradyrhizobium population. Can J Microbiol 2021; 67:529-536. [PMID: 33049159 DOI: 10.1139/cjm-2020-0334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability for a soybean plant to be efficiently nodulated when grown as a crop is dependent on the number of effective Bradyrhizobium japonicum that can be found in close proximity to the developing seedling shortly after planting. In Manitoba, the growing of soybean as a crop has increased from less than 500 000 acres in 2008 to over 2.3 million acres in 2017. Since the large increase in soybean production is relatively recent, populations of B. japonicum have not yet developed. In response to this, we developed a primer pair that can identify B. japonicum, and be used to determine the titre found in field soil. Their utility was demonstrated by being used to determine whether row spacing of soybean affects B. japonicum populations, as well as to follow B. japonicum populations in a soybean field over the course of a field season. The data show that plant density can affect B. japonicum populations. Moreover, evidence is presented that suggests plant development affects overall B. japonicum populations.
Collapse
Affiliation(s)
- Harry Yudistira
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Charles M Geddes
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Robert H Gulden
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
5
|
Ramírez-Puebla ST, Hernández MAR, Guerrero Ruiz G, Ormeño-Orrillo E, Martinez-Romero JC, Servín-Garcidueñas LE, Núñez-de la Mora A, Amescua-Villela G, Negrete-Yankelevich S, Martínez-Romero E. Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid. Syst Appl Microbiol 2018; 42:373-382. [PMID: 30612723 DOI: 10.1016/j.syapm.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
Phaseolus dumosus is an endemic species from mountain tops in Mexico that was found in traditional agriculture areas in Veracruz, Mexico. P. dumosus plants were identified by ITS sequences and their nodules were collected from agricultural fields or from trap plant experiments in the laboratory. Bacteria from P. dumosus nodules were identified as belonging to the phaseoli-etli-leguminosarum (PEL) or to the tropici group by 16S rRNA gene sequences. We obtained complete closed genomes from two P. dumosus isolates CCGE531 and CCGE532 that were phylogenetically placed within the tropici group but with a distinctive phylogenomic position and low average nucleotide identity (ANI). CCGE531 and CCGE532 had common phenotypic characteristics with tropici type B rhizobial symbionts. Genome synteny analysis and ANI showed that P. dumosus isolates had different chromids and our analysis suggests that chromids have independently evolved in different lineages of the Rhizobium genus. Finally, we considered that P. dumosus and Phaseolus vulgaris plants belong to the same cross-inoculation group since they have conserved symbiotic affinites for rhizobia.
Collapse
Affiliation(s)
| | | | | | - Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | | | | | | | | | | |
Collapse
|
6
|
Atieno M, Lesueur D. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 2018. [DOI: 10.1007/s13199-018-0585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
|
8
|
Oliveira MAS, Gerhardt ECM, Huergo LF, Souza EM, Pedrosa FO, Chubatsu LS. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins. FEBS J 2015; 282:4797-809. [PMID: 26433003 DOI: 10.1111/febs.13542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 11/29/2022]
Abstract
Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state.
Collapse
Affiliation(s)
- Marco A S Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Edileusa C M Gerhardt
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Emanuel M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Fábio O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Leda S Chubatsu
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| |
Collapse
|
9
|
The Sugar Kinase That Is Necessary for the Catabolism of Rhamnose in Rhizobium leguminosarum Directly Interacts with the ABC Transporter Necessary for Rhamnose Transport. J Bacteriol 2015; 197:3812-21. [PMID: 26416834 DOI: 10.1128/jb.00510-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhamnose catabolism in Rhizobium leguminosarum was found to be necessary for the ability of the organism to compete for nodule occupancy. Characterization of the locus necessary for the catabolism of rhamnose showed that the transport of rhamnose was dependent upon a carbohydrate uptake transporter 2 (CUT2) ABC transporter encoded by rhaSTPQ and on the presence of RhaK, a protein known to have sugar kinase activity. A linker-scanning mutagenesis analysis of rhaK showed that the kinase and transport activities of RhaK could be separated genetically. More specifically, two pentapeptide insertions defined by the alleles rhaK72 and rhaK73 were able to uncouple the transport and kinase activities of RhaK, such that the kinase activity was retained, but cells carrying these alleles did not have measurable rhamnose transport rates. These linker-scanning alleles were localized to the C terminus and N terminus of RhaK, respectively. Taken together, the data led to the hypothesis that RhaK might interact either directly or indirectly with the ABC transporter defined by rhaSTPQ. In this work, we show that both N- and C-terminal fragments of RhaK are capable of interacting with the N-terminal fragment of the ABC protein RhaT using a 2-hybrid system. Moreover, if RhaK fragments carrying either the rhaK72 or rhaK73 allele were used, this interaction was abolished. Phylogenetic and bioinformatic analysis of the RhaK fragments suggested that a conserved region in the N terminus of RhaK may represent a putative binding domain. Alanine-scanning mutagenesis of this region followed by 2-hybrid analysis revealed that a substitution of any of the conserved residues greatly affected the interaction between RhaT and RhaK fragments, suggesting that the sugar kinase RhaK and the ABC protein RhaT interact directly. IMPORTANCE ABC transporters involved in the transport of carbohydrates help define the overall physiological fitness of bacteria. The two largest groups of transporters are the carbohydrate uptake transporter classes 1 and 2 (CUT1 and CUT2, respectively). This work provides the first evidence that a kinase that is necessary for the catabolism of a sugar can directly interact with a domain from the ABC protein that is necessary for its transport.
Collapse
|
10
|
Characterization of the temperate phage vB_RleM_PPF1 and its site-specific integration into the Rhizobium leguminosarum F1 genome. Mol Genet Genomics 2015; 291:349-62. [PMID: 26377943 DOI: 10.1007/s00438-015-1113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
Bacteriophages may play an important role in regulating population size and diversity of the root nodule symbiont Rhizobium leguminosarum, as well as participating in horizontal gene transfer. Although phages that infect this species have been isolated in the past, our knowledge of their molecular biology, and especially of genome composition, is extremely limited, and this lack of information impacts on the ability to assess phage population dynamics and limits potential agricultural applications of rhizobiophages. To help address this deficit in available sequence and biological information, the complete genome sequence of the Myoviridae temperate phage PPF1 that infects R. leguminosarum biovar viciae strain F1 was determined. The genome is 54,506 bp in length with an average G+C content of 61.9 %. The genome contains 94 putative open reading frames (ORFs) and 74.5 % of these predicted ORFs share homology at the protein level with previously reported sequences in the database. However, putative functions could only be assigned to 25.5 % (24 ORFs) of the predicted genes. PPF1 was capable of efficiently lysogenizing its rhizobial host R. leguminosarum F1. The site-specific recombination system of the phage targets an integration site that lies within a putative tRNA-Pro (CGG) gene in R. leguminosarum F1. Upon integration, the phage is capable of restoring the disrupted tRNA gene, owing to the 50 bp homologous sequence (att core region) it shares with its rhizobial host genome. Phage PPF1 is the first temperate phage infecting members of the genus Rhizobium for which a complete genome sequence, as well as other biological data such as the integration site, is available.
Collapse
|
11
|
Stasiak G, Mazur A, Wielbo J, Marczak M, Zebracki K, Koper P, Skorupska A. Functional relationships between plasmids and their significance for metabolism and symbiotic performance of Rhizobium leguminosarum bv. trifolii. J Appl Genet 2014; 55:515-27. [PMID: 24839164 PMCID: PMC4185100 DOI: 10.1007/s13353-014-0220-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 12/31/2022]
Abstract
Rhizobium leguminosarum bv. trifolii TA1 (RtTA1) is a soil bacterium establishing a highly specific symbiotic relationship with clover, which is based on the exchange of molecular signals between the host plant and the microsymbiont. The RtTA1 genome is large and multipartite, composed of a chromosome and four plasmids, which comprise approximately 65 % and 35 % of the total genome, respectively. Extrachromosomal replicons were previously shown to confer significant metabolic versatility to bacteria, which is important for their adaptation in the soil and nodulation competitiveness. To investigate the contribution of individual RtTA1 plasmids to the overall cell phenotype, metabolic properties and symbiotic performance, a transposon-based elimination strategy was employed. RtTA1 derivatives cured of pRleTA1b or pRleTA1d and deleted in pRleTA1a were obtained. In contrast to the in silico predictions of pRleTA1b and pRleTA1d, which were described as chromid-like replicons, both appeared to be completely curable. On the other hand, for pRleTA1a (symbiotic plasmid) and pRleTA1c, which were proposed to be unessential for RtTA1 viability, it was not possible to eliminate them at all (pRleTA1c) or entirely (pRleTA1a). Analyses of the phenotypic traits of the RtTA1 derivatives obtained revealed the functional significance of individual plasmids and their indispensability for growth, certain metabolic pathways, production of surface polysaccharides, autoaggregation, biofilm formation, motility and symbiotic performance. Moreover, the results allow us to suggest broad functional cooperation among the plasmids in shaping the phenotypic properties and symbiotic capabilities of rhizobia.
Collapse
Affiliation(s)
- Grażyna Stasiak
- Department of Genetics and Microbiology, Maria-Curie Skłodowska University, 19 Akademicka St., 20-033, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
12
|
García-de Los Santos A, Brom S, Romero D. Rhizobium plasmids in bacteria-legume interactions. World J Microbiol Biotechnol 2014; 12:119-25. [PMID: 24415159 DOI: 10.1007/bf00364676] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The functional analysis of plasmids in Rhizobium strains has concentrated mainly on the symbiotic plasmid (pSym). However, genetic information relevant to both symbiotic and saprophytic Rhizobium life cycles, localized on other 'cryptic' replicons, has also been reported. Information is reviewed which concerns functional features encoded in plasmids other than the pSym: biosynthesis of cell surface polysaccharides, metabolic processes, the utilization of plant exudates, aromatic compounds and diverse sugars, and features involved symbiotic performance. In addition, factors which affect plasmid evolution through their influence on structural features of the plasmids, such as conjugative transfer and genomic rearrangements, is discussed. Based on the overall data, we propose that together the plasmids and the chromosome constitute a fully integrated genomic complex, entailing structural features as well as saprophytic and cellular functions.
Collapse
|
13
|
Vanderlinde EM, Hynes MF, Yost CK. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ Microbiol 2014; 16:205-17. [PMID: 23859230 DOI: 10.1111/1462-2920.12196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/24/2023]
Abstract
Homoserine represents a substantial component of pea root exudate that may be important for plant-microbe interactions in the rhizosphere. We identified a gene cluster on plasmid pRL8JI that is required for homoserine utilization by Rhizobium leguminosarum bv. viciae. The genes are arranged as two divergently expressed predicted operons that were induced by L-homoserine, pea root exudate, and were expressed on pea roots. A mutation in gene pRL80083 that prevented utilization of homoserine as a sole carbon and energy source affected the mutant's ability to nodulate peas and lentils competitively. The homoserine gene cluster was present in approximately 47% of natural R. leguminosarum isolates (n = 59) and was strongly correlated with homoserine utilization. Conjugation of pRL8JI to R. leguminosarum 4292 or Agrobacterium tumefaciens UBAPF2 was sufficient for homoserine utilization. The presence of L-homoserine increased conjugation efficiency of pRL8JI from R. leguminosarum to a pRL8JI-cured derivative of R. leguminosarum 1062 and to A. tumefaciens UBAPF2, and induced expression of the plasmid transfer gene trbB; however, there was no difference in conjugation efficiency or trbB expression with A. tumefaciens UBAPF2pRL8-Gm as the donor suggesting that other genes in R. leguminosarum may contribute to regulating conjugation of pRL8 in the presence of homoserine.
Collapse
|
14
|
Identification of genes involved in salt tolerance and symbiotic nitrogen fixation in chickpea rhizobium Mesorhizobium ciceri Ca181. Symbiosis 2013. [DOI: 10.1007/s13199-013-0264-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities. J Bacteriol 2013; 195:3424-32. [PMID: 23708135 DOI: 10.1128/jb.00289-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhizobium leguminosarum the ABC transporter responsible for rhamnose transport is dependent on RhaK, a sugar kinase that is necessary for the catabolism of rhamnose. This has led to a working hypothesis that RhaK has two biochemical functions: phosphorylation of its substrate and affecting the activity of the rhamnose ABC transporter. To address this hypothesis, a linker-scanning random mutagenesis of rhaK was carried out. Thirty-nine linker-scanning mutations were generated and mapped. Alleles were then systematically tested for their ability to physiologically complement kinase and transport activity in a strain carrying an rhaK mutation. The rhaK alleles generated could be divided into three classes: mutations that did not affect either kinase or transport activity, mutations that eliminated both transport and kinase activity, and mutations that affected transport activity but not kinase activity. Two genes of the last class (rhaK72 and rhaK73) were found to have similar biochemical phenotypes but manifested different physiological phenotypes. Whereas rhaK72 conferred a slow-growth phenotype when used to complement rhaK mutants, the rhaK73 allele did not complement the inability to use rhamnose as a sole carbon source. To provide insight to how these insertional variants might be affecting rhamnose transport and catabolism, structural models of RhaK were generated based on the crystal structure of related sugar kinases. Structural modeling suggests that both rhaK72 and rhaK73 affect surface-exposed residues in two distinct regions that are found on one face of the protein, suggesting that this protein's face may play a role in protein-protein interaction that affects rhamnose transport.
Collapse
|
16
|
Ormeño-Orrillo E, Martínez-Romero E. Phenotypic tests in Rhizobium species description: An opinion and (a sympatric speciation) hypothesis. Syst Appl Microbiol 2013; 36:145-7. [DOI: 10.1016/j.syapm.2012.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
17
|
Phenotype profiling of Rhizobium leguminosarum bv. trifolii clover nodule isolates reveal their both versatile and specialized metabolic capabilities. Arch Microbiol 2013; 195:255-67. [PMID: 23417392 PMCID: PMC3597991 DOI: 10.1007/s00203-013-0874-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/07/2012] [Accepted: 02/01/2013] [Indexed: 11/24/2022]
Abstract
Rhizobium leguminosarum bv. trifolii (Rlt) are soil bacteria inducing nodules on clover, where they fix nitrogen. Genome organization analyses of 22 Rlt clover nodule isolates showed that they contained 3–6 plasmids and majority of them possessed large (>1 Mb), chromid-like replicon with exception of four Rlt strains. The Biolog phenotypic profiling comprising utilization of C, N, P, and S sources and tolerance to osmolytes and pH revealed metabolic versatility of the Rlt strains. Statistical analyses of our results showed a clear bias toward specific metabolic preferences, tolerance to unfavorable osmotic conditions, and increased nodulation activity of the strains having smaller amount of extrachromosomal DNA. The K5.4 and K4.15 lacking a large megaplasmid possessed substantially diverse metabolism and belonged to effective clover inoculants. In conclusion, besides overall metabolic versatility, some metabolic specialization may enable rhizobia to persist in variable environments and to compete successfully with other bacteria.
Collapse
|
18
|
Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae strain VF39SM. J Bacteriol 2012; 195:328-39. [PMID: 23144250 DOI: 10.1128/jb.01234-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum strain VF39SM contains two plasmids that have previously been shown to be self-transmissible by conjugation. One of these plasmids, pRleVF39b, is shown in this study to carry a set of plasmid transfer genes that differs significantly from conjugation systems previously studied in the rhizobia but is similar to an uncharacterized set of genes found in R. leguminosarum bv. trifolii strain WSM2304. The entire sequence of the transfer region on pRleVF39b was determined as part of a genome sequencing project, and the roles of the various genes were examined by mutagenesis. The transfer region contains a complete set of mating pair formation (Mpf) genes, a traG gene, and a relaxase gene, traA, all of which appear to be necessary for plasmid transfer. Experimental evidence suggested the presence of two putative origins of transfer within the gene cluster. A regulatory gene, trbR, was identified in the region between traA and traG and was mutated. TrbR was shown to function as a repressor of both trb gene expression and plasmid transfer.
Collapse
|
19
|
Abstract
AbstractSoil bacteria, collectively named rhizobia, can establish mutualistic relationships with legume plants. Rhizobia often have multipartite genome architecture with a chromosome and several extrachromosomal replicons making these bacteria a perfect candidate for plasmid biology studies. Rhizobial plasmids are maintained in the cells using a tightly controlled and uniquely organized replication system. Completion of several rhizobial genome-sequencing projects has changed the view that their genomes are simply composed of the chromosome and cryptic plasmids. The genetic content of plasmids and the presence of some important (or even essential) genes contribute to the capability of environmental adaptation and competitiveness with other bacteria. On the other hand, their mosaic structure results in the plasticity of the genome and demonstrates a complex evolutionary history of plasmids. In this review, a genomic perspective was employed for discussion of several aspects regarding rhizobial plasmids comprising structure, replication, genetic content, and biological role. A special emphasis was placed on current post-genomic knowledge concerning plasmids, which has enriched the view of the entire bacterial genome organization by the discovery of plasmids with a potential chromosome-like role.
Collapse
|
20
|
López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, Martínez-Romero E. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 2012; 68:149-58. [PMID: 22813963 DOI: 10.1016/j.plasmid.2012.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
In bacteria, niche adaptation may be determined by mobile extrachromosomal elements. A remarkable characteristic of Rhizobium and Ensifer (Sinorhizobium) but also of Agrobacterium species is that almost half of the genome is contained in several large extrachromosomal replicons (ERs). They encode a plethora of functions, some of them required for bacterial survival, niche adaptation, plasmid transfer or stability. In spite of this, plasmid loss is common in rhizobia upon subculturing. Rhizobial gene-expression studies in plant rhizospheres with novel results from transcriptomic analysis of Rhizobium phaseoli in maize and Phaseolus vulgaris roots highlight the role of ERs in natural niches and allowed the identification of common extrachromosomal genes expressed in association with plant rootlets and the replicons involved.
Collapse
|
21
|
Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. MICROBIOLOGY (READING, ENGLAND) 2012; 158:1369-1378. [PMID: 22343359 DOI: 10.1099/mic.0.057281-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Plasmid curing has shown that the ability to use glycerol as a carbon source is plasmid-encoded in Rhizobium leguminosarum. We isolated the locus responsible for glycerol utilization from plasmid pRleVF39c in R. leguminosarum bv. viciae VF39. This region was analyzed by DNA sequencing and mutagenesis. The locus encompasses a gene encoding GlpR (a DeoR regulator), genes encoding an ABC transporter, and genes glpK and glpD, encoding a kinase and dehydrogenase, respectively. All the genes except the regulatory gene glpR were organized into a single operon, and were required for growth on glycerol. The glp operon was strongly induced by both glycerol and glycerol 3-phosphate, as well as by pea seed exudate. GlpR repressed the operon in the absence of inducer. Mutation of genes encoding the ABC transporter abolished all transport of glycerol in transport assays using radiolabelled glycerol. This confirms that, unlike in other organisms such as Escherichia coli and Pseudomonas aeruginosa, which use facilitated diffusion, glycerol uptake occurs by an active process in R. leguminosarum. Since the glp locus is highly conserved in all sequenced R. leguminosarum and Rhizobium etli strains, as well as in Sinorhizobium spp. and Agrobacterium spp. and other alphaproteobacteria, this process for glycerol uptake is probably widespread. Mutants unable to use glycerol were deficient in competitiveness for nodulation of peas compared with the wild-type, suggesting that glycerol catabolism confers an advantage upon the bacterium in the rhizosphere or in the infection thread.
Collapse
Affiliation(s)
- Hao Ding
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Cynthia B Yip
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
22
|
Abstract
Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.
Collapse
|
23
|
Abstract
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes (tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources.
Collapse
|
24
|
Kuhn S, Stiens M, Pühler A, Schlüter A. Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S. meliloti strains. FEMS Microbiol Ecol 2008; 63:118-31. [DOI: 10.1111/j.1574-6941.2007.00399.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Abstract
Of the nine genes comprising the L-rhamnose operon of Rhizobium leguminosarum, rhaU has not been assigned a function. The construction of a Delta rhaU strain revealed a growth phenotype that was slower than that of the wild-type strain, although the ultimate cell yields were equivalent. The transport of L-rhamnose into the cell and the rate of its phosphorylation were unaffected by the mutation. RhaU exhibits weak sequence similarity to the formerly hypothetical protein YiiL of Escherichia coli that has recently been characterized as an L-rhamnose mutarotase. To characterize RhaU further, a His-tagged variant of the protein was prepared and subjected to mass spectrometry analysis, confirming the subunit size and demonstrating its dimeric structure. After crystallization, the structure was refined to a 1.6-A resolution to reveal a dimer in the asymmetric unit with a very similar structure to that of YiiL. Soaking a RhaU crystal with L-rhamnose resulted in the appearance of beta-L-rhamnose in the active site.
Collapse
|
26
|
Richardson JS, Oresnik IJ. L-Rhamnose transport is sugar kinase (RhaK) dependent in Rhizobium leguminosarum bv. trifolii. J Bacteriol 2007; 189:8437-46. [PMID: 17890304 PMCID: PMC2168956 DOI: 10.1128/jb.01032-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Rhizobium leguminosarum which are unable to catabolize l-rhamnose, a methyl-pentose sugar, are compromised in the ability to compete for nodule occupancy versus wild-type strains. Previous characterization of the 11-kb region necessary for the utilization of rhamnose identified a locus carrying catabolic genes and genes encoding the components of an ABC transporter. Genetic evidence suggested that the putative kinase RhaK carried out the first step in the catabolism of rhamnose. Characterization of this kinase led to the observation that strains carrying rhamnose kinase mutations were unable to transport rhamnose into the cell. The absence of a functional rhamnose kinase did not stop the transcription and translation of the ABC transporter components. By developing an in vitro assay for RhaK activity, we have been able to show that (i) RhaK activity is consistent with RhaK phosphorylating rhamnose and (ii) biochemical activity of RhaK is necessary for rhamnose transport.
Collapse
Affiliation(s)
- Jason S Richardson
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | |
Collapse
|
27
|
Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, Poole PS. Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 2006; 188:6661-8. [PMID: 16952958 PMCID: PMC1595474 DOI: 10.1128/jb.00641-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/10/2006] [Indexed: 12/21/2022] Open
Abstract
In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.
Collapse
Affiliation(s)
- R Karunakaran
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Yost CK, Rath AM, Noel TC, Hynes MF. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. MICROBIOLOGY-SGM 2006; 152:2061-2074. [PMID: 16804181 DOI: 10.1099/mic.0.28938-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Christopher K Yost
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Amber M Rath
- Department of Biology, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada
| | - Tanya C Noel
- Department of Biology, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada
| | - Michael F Hynes
- Department of Biology, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
29
|
Perrine FM, Hocart CH, Hynes MF, Rolfe BG. Plasmid-associated genes in the model micro-symbiont Sinorhizobium meliloti 1021 affect the growth and development of young rice seedlings. Environ Microbiol 2005; 7:1826-38. [PMID: 16232297 DOI: 10.1111/j.1462-2920.2005.00927.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sinorhizobium meliloti strain 1021 and its closely related strain Rm2011 inhibit rice seedling (Oryza sativa L. cv. Pelde) growth and development under certain rice-growing conditions. Experiments showed that inoculation of seedlings with approximately less than 10 cells of 1021 was sufficient to cause this inhibition. By using a series of plasmid-cured and plasmid-deleted derivatives of Rm2011, it was found that interactions between genes encoded on pSymA, and possibly pSymB, of Rm2011, affected rice growth and development by affecting both/either the plant and/or the bacteria. Further studies found that genes potentially related to indole-3-acetic acid (IAA) synthesis and nitrate metabolism, encoded on pSymA, were involved in rice growth inhibition in Sm1021- and Sm2011-treated rice seedlings. We conclude that the rice growth inhibition by S. meliloti Sm1021 is pSymA-associated and is induced by environmental nitrate.
Collapse
Affiliation(s)
- Francine M Perrine
- Genomic Interactions Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
30
|
Richardson JS, Hynes MF, Oresnik IJ. A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J Bacteriol 2005; 186:8433-42. [PMID: 15576793 PMCID: PMC532407 DOI: 10.1128/jb.186.24.8433-8442.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways.
Collapse
Affiliation(s)
- Jason S Richardson
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada
| | | | | |
Collapse
|
31
|
Quandt J, Clark RG, Venter AP, Clark SRD, Twelker S, Hynes MF. Modified RP4 and Tn5-Mob derivatives for facilitated manipulation of large plasmids in Gram-negative bacteria. Plasmid 2004; 52:1-12. [PMID: 15212888 DOI: 10.1016/j.plasmid.2004.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/07/2004] [Indexed: 11/23/2022]
Abstract
We have constructed a set of RP4 (NmS/TcS) and Tn5-Mob derivatives which have applications in experiments involving mobilization of replicons in many Gram-negative organisms. The different selection markers of the RP4 and Tn5-Mob derivatives include streptomycin, chloramphenicol, gentamicin, and spectinomycin resistance as well as mercury resistance, and a constitutively expressed lacZ gene. This choice of markers allows the use of these derivatives in bacteria which are naturally resistant to many antibiotics, and in strains which contain pre-existing resistance plasmids, transposons, or antibiotic cassette insertions. In addition, a RP4 derivative carrying the sacB gene of Bacillus subtilis was constructed. This allows the selection for the loss of RP4 after it has been used to mobilize other plasmids. A Tn5-Mob-sacB derivative with a new marker (Gm) was also developed, as were vectors which take advantage of the sacB gene to facilitate replacement of existing Tn5 inserts with other Tn5 derivatives. As an example of the use of these tools, three Rhizobium leguminosarum bv. viciae VF39 plasmids which have been shown to be involved in symbiosis were differentially tagged and mobilized (individually and in various combinations) to the plasmid-free Agrobacterium tumefaciens strain UBAPF2. None of the resultant Agrobacterium strains was able to fix nitrogen in symbiosis with peas.
Collapse
Affiliation(s)
- Jürgen Quandt
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB, Canada T2N 1N4
| | | | | | | | | | | |
Collapse
|
32
|
Del Carmen Vargas M, Encarnación S, Dávalos A, Reyes-Pérez A, Mora Y, García-de Los Santos A, Brom S, Mora J. Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1165-1176. [PMID: 12724378 DOI: 10.1099/mic.0.25909-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The plasmid-borne Rhizobium etli katG gene encodes a dual-function catalase-peroxidase (KatG) (EC 1.11.1.7) that is inducible and heat-labile. In contrast to other rhizobia, katG was shown to be solely responsible for catalase and peroxidase activity in R. etli. An R. etli mutant that did not express catalase activity exhibited increased sensitivity to hydrogen peroxide (H(2)O(2)). Pre-exposure to a sublethal concentration of H(2)O(2) allowed R. etli to adapt and survive subsequent exposure to higher concentrations of H(2)O(2). Based on a multiple sequence alignment with other catalase-peroxidases, it was found that the catalytic domains of the R. etli KatG protein had three large insertions, two of which were typical of KatG proteins. Like the katG gene of Escherichia coli, the R. etli katG gene was induced by H(2)O(2) and was important in sustaining the exponential growth rate. In R. etli, KatG catalase-peroxidase activity is induced eightfold in minimal medium during stationary phase. It was shown that KatG catalase-peroxidase is not essential for nodulation and nitrogen fixation in symbiosis with Phaseolus vulgaris, although bacteroid proteome analysis indicated an alternative compensatory mechanism for the oxidative protection of R. etli in symbiosis. Next to, and divergently transcribed from the catalase promoter, an ORF encoding the regulator OxyR was found; this is the first plasmid-encoded oxyR gene described so far. Additionally, the katG promoter region contained sequence motifs characteristic of OxyR binding sites, suggesting a possible regulatory mechanism for katG expression.
Collapse
Affiliation(s)
- María Del Carmen Vargas
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Sergio Encarnación
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Araceli Dávalos
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Agustín Reyes-Pérez
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Yolanda Mora
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Alejandro García-de Los Santos
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Jaime Mora
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| |
Collapse
|
33
|
Yost CK, Clark KT, Del Bel KL, Hynes MF. Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiol 2003; 3:1. [PMID: 12553885 PMCID: PMC149452 DOI: 10.1186/1471-2180-3-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 01/28/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In general, chemotaxis in Rhizobium has not been well characterized. Methyl accepting chemotaxis proteins are sensory proteins important in chemotaxis of numerous bacteria, but their involvement in Rhizobium chemotaxis is unclear and merits further investigation. RESULTS A putative methyl accepting chemotaxis protein gene (mcpG) of Rhizobium leguminosarum VF39SM was isolated and characterized. The gene was found to reside on the nodulation plasmid, pRleVF39d. The predicted mcpG ORF displayed motifs common to known methyl-accepting chemotaxis proteins, such as two transmembrane domains and high homology to the conserved methylation and signaling domains of well-characterized MCPs. Phenotypic analysis of mcpG mutants using swarm plates did not identify ligands for this putative receptor. Additionally, gene knockouts of mcpG did not affect a mutant strain's ability to compete for nodulation with the wild type. Notably, mcpG was found to be plasmid-encoded in all strains of R. leguminosarum and R. etli examined, though it was found on the nodulation plasmid only in a minority of strains. CONCLUSIONS Based on sequence homology R. leguminosarum mcpG gene codes for a methyl accepting chemotaxis protein. The gene is plasmid localized in numerous Rhizobium spp. Although localized to the sym plasmid of VF39SM mcpG does not appear to participate in early nodulation events. A ligand for McpG remains to be found. Apparent McpG orthologs appear in a diverse range of proteobacteria. Identification and characterization of mcpG adds to the family of mcp genes already identified in this organism.
Collapse
Affiliation(s)
- Christopher K Yost
- Department of Biological Sciences, University of Calgary, Alberta, Canada, T2N 1N4.
| | | | | | | |
Collapse
|
34
|
Brom S, Girard L, García-de los Santos A, Sanjuan-Pinilla JM, Olivares J, Sanjuan J. Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species. Appl Environ Microbiol 2002; 68:2555-61. [PMID: 11976134 PMCID: PMC127552 DOI: 10.1128/aem.68.5.2555-2561.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not only the pSym plasmid but also other plasmids containing symbiosis-related genes, with a similar organization. In contrast, strains belonging to other bean-nodulating species seem to have acquired only the pSym plasmid from R. etli.
Collapse
Affiliation(s)
- Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | |
Collapse
|
35
|
Janecka J, Jenkins MB, Brackett NS, Lion LW, Ghiorse WC. Characterization of a Sinorhizobium isolate and its extracellular polymer implicated in pollutant transport in soil. Appl Environ Microbiol 2002; 68:423-6. [PMID: 11772656 PMCID: PMC126573 DOI: 10.1128/aem.68.1.423-426.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Accepted: 10/22/2001] [Indexed: 11/20/2022] Open
Abstract
A bacterium isolated from soil (designated 9702-M4) synthesizes an extracellular polymer that facilitates the transport of such hydrophobic pollutants as polynuclear aromatic hydrocarbons, as well as the toxic metals lead and cadmium in soil. Biolog analysis, growth rate determinations, and percent G+C content identify 9702-M4 as a strain of Sinorhizobium meliloti. Sequence analysis of a 16S rDNA fragment gives 9702-M4 a phylogenetic designation most closely related to Sinorhizobium fredii. The extracellular polymer of isolate 9702-M4 is composed of both an extracellular polysaccharide (EPS) and a rough lipopolysaccharide. The EPS component is composed mainly of 4-glucose linkages with monomers of galactose, mannose, and glucuronic acid and has pyruval and acetyl constituents. The lipid fraction and the negative charge associated with carbonyl groups of the exopolymer are thought to account for the binding of polynuclear aromatic hydrocarbons and cationic metals.
Collapse
Affiliation(s)
- J Janecka
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
36
|
Brom S, García-de los Santos A, Cervantes L, Palacios R, Romero D. In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 2000; 44:34-43. [PMID: 10873525 DOI: 10.1006/plas.2000.1469] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria belonging to the genus Rhizobium are able to develop two different lifestyles, in symbiotic association with plant roots or through saprophytic growth. The genome of Rhizobium strains is constituted by a chromosome and several large plasmids, one of them containing most of the genes involved in symbiosis (symbiotic plasmid or pSym). Our model strain Rhizobium etli CFN42 contains six plasmids. We have constructed multiple plasmid-cured derivatives of this strain and used them to analyze the contribution of these plasmids to free-living cellular viability, competitivity for nodulation, plasmid transfer, and utilization of diverse carbon sources. Our results show that the transfer of the pSym is strictly dependent on the presence of another plasmid; consequently under conditions where pSym transfer is required, nodulation relies on the presence of a plasmid devoid of nodulation genes. We also found a drastic decrease in competitivity for nodulation in multiple plasmid-cured derivatives when compared with single plasmid-cured strains. Cellular growth and viability were greatly diminished in some multiple plasmid-cured strains. The utilization of a number of carbon sources depends on the presence of specific plasmids. The results presented in this work indicate that functional interactions among sequences scattered in the different plasmids are required for successful completion of both lifestyles.
Collapse
Affiliation(s)
- S Brom
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | | | | | |
Collapse
|
37
|
Oresnik IJ, Liu SL, Yost CK, Hynes MF. Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability. J Bacteriol 2000; 182:3582-6. [PMID: 10852892 PMCID: PMC101967 DOI: 10.1128/jb.182.12.3582-3586.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the curing of the 1,360-kb megaplasmid pRme2011a from Sinorhizobium meliloti strain Rm2011. With a positive selection strategy that utilized Tn5B12-S containing the sacB gene, we were able to cure this replicon by successive rounds of selecting for deletion formation in vivo. Subsequent Southern blot, Eckhardt gel, and pulsed-field gel electrophoresis analyses were consistent with the hypothesis that the resultant strain was indeed missing pRme2011a. The cured derivative grew as well as the wild-type strain in both complex and defined media but was unable to use a number of substrates as a sole source of carbon on defined media.
Collapse
Affiliation(s)
- I J Oresnik
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
38
|
Oresnik IJ, Twelker S, Hynes MF. Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl Environ Microbiol 1999; 65:2833-40. [PMID: 10388672 PMCID: PMC91425 DOI: 10.1128/aem.65.7.2833-2840.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3-kb region containing the determinant for bacteriocin activity from Rhizobium leguminosarum 248 was isolated and characterized by Tn5 insertional mutagenesis and DNA sequencing. Southern hybridizations showed that this bacteriocin was encoded on the plasmid pRL1JI and that homologous loci were not found in other unrelated R. leguminosarum strains. Tn5 insertional mutagenesis showed that mutations in the C-terminal half of the bacteriocin open reading frame apparently did not abolish bacteriocin activity. Analysis of the deduced amino acid sequence revealed that, similarly to RTX proteins (such as hemolysin and leukotoxin), this protein contains a characteristic nonapeptide repeated up to 18 times within the protein. In addition, a novel 19- to 25-amino-acid motif that occurred every 130 amino acids was detected. Bacteriocin bioactivity was correlated with the presence of a protein of approximately 100 kDa in the culture supernatants, and the bacteriocin bioactivity demonstrated a calcium dependence in both R. leguminosarum and Sinorhizobium meliloti. A mutant of strain 248 unable to produce this bacteriocin was found to have a statistically significant reduction in competitiveness for nodule occupancy compared to two test strains in coinoculation assays. However, this strain was unable to compete any more successfully with a third test strain, 3841, than was wild-type 248.
Collapse
Affiliation(s)
- I J Oresnik
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
39
|
Pinto PP, Raposeiras R, Macedo AM, Seldin L, Paiva E, Sá NM. Effects of high temperature on survival, symbiotic performance and genomic modifications of bean nodulating Rhizobium strains. ACTA ACUST UNITED AC 1998. [DOI: 10.1590/s0001-37141998000400012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High temperatures can affect the survival, establishment and symbiotic properties of Rhizobium strains. Bean nodulating Rhizobium strains are considered particularly sensitive because on this strains genetic recombinations and/or deletions occur frequently, thus compromising the use of these bacteria as inoculants. In this study R. tropici and R. leguminosarum bv. phaseoli strains isolated from Cerrado soils were exposed to thermal stress and the strains’ growth, survival and symbiotic relationships as well as alterations in their genotypic and phenotypic characteristics were analyzed. After successive thermal shocks at 45ºC for four hours, survival capacity appeared to be strain-specific, independent of thermo-tolerance and was more apparent in R. tropici strains. Certain R. leguminosarum bv. phaseoli strains had significant alterations in plant dry weight and DNA patterns obtained by AP-PCR method. R. tropici strains (with the exception of FJ2.21) were more stable than R. leguminosarum bv. phaseoli strains because no significant phenotypic alterations were observed following thermal treatments and they maintained their original genotypic pattern after inoculation in plants.
Collapse
Affiliation(s)
| | | | | | - Lucy Seldin
- Universidade Federal do Rio de Janeiro, Brasil
| | | | | |
Collapse
|
40
|
Guerreiro N, Stepkowski T, Rolfe BG, Djordjevic MA. Determination of plasmid-encoded functions in Rhizobium leguminosarum biovar trifolii using proteome analysis of plasmid-cured derivatives. Electrophoresis 1998; 19:1972-9. [PMID: 9740057 DOI: 10.1002/elps.1150191115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have used proteome analysis of derivatives of R. leguminosarum biovar trifolii strain ANU843, cured of indigenous plasmids by a direct selection system, to investigate plasmid-encoded functions. Under the conditions used, the plasmid-encoded gene products contributed to only a small proportion of the 2000 proteins visualised in the two-dimensional (2-D) protein map of strain ANU843. The level of synthesis of thirty-nine proteins was affected after curing of either plasmid a, c or e. The differences observed upon plasmid curing included: protein loss, up/down-regulation of specific proteins and novel synthesis of some proteins. This suggests that a complex interplay between the cured plasmid and the remaining replicons is occurring. Twenty-two proteins appeared to be absent in the cured strains and these presumably are encoded by plasmid genes. Of these, a small heat shock protein, a cold shock protein, a hypothetical YTFG-29.7 kDa protein, and the alpha and beta subunits of the electron transfer flavoprotein were identified by N-terminal microsequencing and predicted to be encoded by plasmid e. Four of the sequenced proteins putatively encoded on plasmid e and two encoded on plasmid c were novel. In addition, curing of plasmid e and c consistently decreased the levels of 3-isopropylmalate dehydratase and malate dehydrogenase, respectively, suggesting that levels of these proteins may be influenced by plasmid-encoded functions. A protein with homology to 4-oxalocrotonate tautomerase, which is involved in the biodegradation of phenolic compounds, was found to be newly synthesised in the strain cured of plasmid e. Proteome analysis provides a sensitive tool to examine the functional organisation of the Rhizobium genome and the global gene interactions which occur between the different replicons.
Collapse
Affiliation(s)
- N Guerreiro
- Plant-Microbe Interaction Group, Research School of Biological Sciences, Australian National University, Canberra City
| | | | | | | |
Collapse
|
41
|
Yost CK, Rochepeau P, Hynes MF. Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1945-1956. [PMID: 9695927 DOI: 10.1099/00221287-144-7-1945] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methyl-accepting chemotaxis proteins (MCPs) play important roles in the chemotactic response of many bacteria. Oligonucleotide primers designed to amplify the conserved signalling domain of MCPs by PCR were used to identify potential MCP-encoding genes in Rhizobium leguminosarum. Using a PCR-derived probe created from these primers a genomic library of R. leguminosarum VF39SM was screened; at least five putative MCP-encoding genes (termed mcpB to mcpF) were identified and isolated from the library. One of these putative genes (mcpC) is located on one of the indigenous plasmids of VF39SM. Fifteen different cosmids showing homology to an mcpD probe were also isolated from a genomic library. The complete DNA sequences of mcpB, mcpC and mcpD were obtained. All three genes code for proteins with characteristics typical of MCPs. However, the protein encoded by mcpB has a relatively large periplasmic domain compared to that in other MCPs. Partial DNA sequences of mcpE and mcpF had strong similarity to sequences from the methylation domains of known MCPs. Mutants defective in mcpB, mcpC, mcpD or mcpE were created using insertional mutagenesis strategies. Mutation of mcpB resulted in impairment of chemotaxis to a wide range of carbon sources on swarm plates; phenotypes for the other three mutants have yet to be elucidated. The mcpB, mcpC and mcpD mutants were tested for loss of nodulation competitiveness. When co-inoculated with the wild-type, the mcpB and mcpC mutants formed fewer nodules than the wild-type, whereas the mcpD mutant was just as competitive as the wild-type. The results overall suggest that R. leguminosarum possesses mcp-like genes, and that at least some of these play a role in early steps in the plant-microbe interaction.
Collapse
|
42
|
Rigottier-Gois L, Turner SL, Young JPW, Amarger N. Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium leguminosarum bv. viciae from field populations. Microbiology (Reading) 1998; 144:771-780. [DOI: 10.1099/00221287-144-3-771] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of four classes of related plasmid replication genes (repC) within three field populations of Rhizobium leguminosarum in France, Germany and the UK was investigated using RFLP, PCR-RFLP and plasmid profile analysis. The results suggest that the four repC classes are compatible: when two or more different repC sequences are present in a strain they are usually associated with different plasmids. Furthermore, classical incompatibility studies in which a Tn5-labelled plasmid with a group IV repC sequence was transferred into field isolates by conjugation demonstrated that group IV sequences are incompatible with each other, but compatible with the other repC groups. This supports the idea that the different repC groups represent different incompatibility groups. The same field isolates were also screened for chromosomal (plac12) and symbiotic gene (nodD-F region) variation. Comparison of these and the plasmid data suggest that plasmid transfer does occur within field populations of R. leguminosarum but that certain plasmid-chromosome combinations are favoured.
Collapse
Affiliation(s)
- Lionel Rigottier-Gois
- Laboratoire de Microbiologie des Sols, Institut National de la Recherche Agronomique,17 rue Sully, BV 1540, 21034 Dijon cedex,France
| | - Sarah L. Turner
- Department of Biology, University of York,PO Box 373, York YO1 5YW,UK
| | - J. Peter W. Young
- Department of Biology, University of York,PO Box 373, York YO1 5YW,UK
| | - Noëlle Amarger
- Laboratoire de Microbiologie des Sols, Institut National de la Recherche Agronomique,17 rue Sully, BV 1540, 21034 Dijon cedex,France
| |
Collapse
|
43
|
Zahran HH. Chemotaxonomic characterization of some fast-growing rhizobia nodulating leguminous trees. Folia Microbiol (Praha) 1997. [DOI: 10.1007/bf02816952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Wernegreen JJ, Harding EE, Riley MA. Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum. Proc Natl Acad Sci U S A 1997; 94:5483-8. [PMID: 9144264 PMCID: PMC24705 DOI: 10.1073/pnas.94.10.5483] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lateral transfer of bacterial plasmids is thought to play an important role in microbial evolution and population dynamics. However, this assumption is based primarily on investigations of medically or agriculturally important bacterial species. To explore the role of lateral transfer in the evolution of bacterial systems not under intensive, human-mediated selection, we examined the association of genotypes at plasmid-encoded and chromosomal loci of native Rhizobium, the nitrogen-fixing symbiont of legumes. To this end, Rhizobium leguminosarum strains nodulating sympatric species of native Trifolium were characterized genetically at plasmid-encoded symbiotic (sym) regions (nodulation AB and nodulation CIJT loci) and a repeated chromosomal locus not involved in the symbiosis with legumes. Restriction fragment length polymorphism analysis was used to distinguish genetic groups at plasmid and chromosomal loci. The correlation between major sym and chromosomal genotypes and the distribution of genotypes across host plant species and sampling location were determined using chi2 analysis. In contrast to findings of previous studies, a strict association existed between major sym plasmid and chromosomal genetic groups, suggesting a lack of successful sym plasmid transfer between major Rhizobium chromosomal types. These data indicate that previous observations of sym plasmid transfer in agricultural settings may seriously overestimate the rates of successful conjugation in systems not impacted by human activities. In addition, a nonrandom distribution of Rhizobium genotypes across host plant species and sampling site demonstrates the importance of both factors in shaping Rhizobium population dynamics.
Collapse
Affiliation(s)
- J J Wernegreen
- Department of Biology, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
45
|
Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 1996; 42:279-83. [PMID: 8868235 DOI: 10.1139/m96-040] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Early seedling root growth of the nonlegumes canola (Brassica campestris cv. Tobin, Brassica napus cv. Westar) and lettuce (Lactuca sativa cv. Grand Rapids) was significantly promoted by inoculation of seeds with certain strains of Rhizobium leguminosarum, including nitrogen- and nonnitrogen-fixing derivatives under gnotobiotic conditions. The growth-promotive effect appears to be direct, with possible involvement of the plant growth regulators indole-3-acetic acid and cytokinin. Auxotrophic Rhizobium mutants requiring tryptophan or adenosine (precursors for indole-3-acetic acid and demonstrate a new facet of the Rhizobium-plant relationship and that Rhizobium leguminosarum can be considered a plant growth-promoting rhizobacterium (PGPR).
Collapse
Affiliation(s)
- T C Noel
- Department of Biological Sciences, University of Calgary, Canada
| | | | | | | | | |
Collapse
|
46
|
Moënne-Loccoz Y, Weaver R. Plasmids and saprophytic growth of Rhizobium leguminosarum bv. trifolii W14-2 in soil. FEMS Microbiol Ecol 1995. [DOI: 10.1111/j.1574-6941.1995.tb00171.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Velazquez E, Mateos PF, Pedrero P, Dazzo FB, Martinez-Molina E. Attenuation of Symbiotic Effectiveness by Rhizobium meliloti SAF22 Related to the Presence of a Cryptic Plasmid. Appl Environ Microbiol 1995; 61:2033-6. [PMID: 16535033 PMCID: PMC1388451 DOI: 10.1128/aem.61.5.2033-2036.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several wild-type strains of Rhizobium meliloti isolated from alfalfa nodules exhibited different plasmid profiles, yet did not differ in growth rate in yeast-mannitol medium, utilization of 43 different carbon sources, intrinsic resistance to 14 antibiotics, or detection of 16 enzyme activities. In contrast, three measures of effectiveness in symbiotic nitrogen fixation with alfalfa (shoot length, dry weight, and nitrogen content) indicated that R. meliloti SAF22, whose plasmid profile differs from those of the other strains tested, is significantly less effective than other wild-type strains in symbiotic nitrogen fixation. Light microscopy of nodules infected with strain SAF22 showed an abnormal center of nitrogen fixation zone III, with bacteria occupying a smaller portion of the infected host cells and vacuoles occupying a significantly larger portion of adjacent uninfected host cells. In contrast, the effective nodules infected with other wild types or plasmid pRmSAF22c-cured segregants of SAF22 did not display this cytological abnormality.
Collapse
|
48
|
Moënne-Loccoz Y, Baldani J, Weaver R. Sequential heat-curing of Tn5-Mob-sac labelled plasmids from Rhizobium to obtain derivatives with various combinations of plasmids and no plasmid. Lett Appl Microbiol 1995. [DOI: 10.1111/j.1472-765x.1995.tb00420.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Eardly BD, Wang FS, Whittam TS, Selander RK. Species limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris). Appl Environ Microbiol 1995; 61:507-12. [PMID: 7574588 PMCID: PMC167310 DOI: 10.1128/aem.61.2.507-512.1995] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Evolutionary genetic relationships among 146 bean-nodulating Rhizobium strains, including 94 field isolates from three localities in Colombia and 36 strains from Mexico, were examined by multilocus enzyme electrophoresis and restriction fragment length polymorphism analysis of a PCR-amplified 260-bp segment of the 16S rRNA gene. Seventy-five electrophoretic types (ETs), corresponding to multilocus enzyme genotypes, were identified, including a genotypically diverse group of 18 ETs in Colombia that is strongly differentiated from the ETs of R. etli, which occur in Mexico, Colombia, and Brazil. Most strains of the distinctive Colombian ETs carried the same 16S rRNA allele as did strains of R. etli, but, surprisingly, 17 isolates of two of these ETs had the allele that is characteristic of R. leguminosarum, and strains of two other divergent groups of ETs were also polymorphic for the two alleles. No fully satisfactory explanation for the occurrence of the R. leguminosarum 16S rRNA allele in three distantly related groups of strains is available, but horizontal transfer and recombination of the gene, in whole or in part, would seem to be more plausible than convergence in nucleotide sequence.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Biological Evolution
- Colombia
- Enzymes/genetics
- Fabaceae/microbiology
- Genes, Bacterial
- Mexico
- Molecular Sequence Data
- Nitrogen Fixation/genetics
- Nucleic Acid Conformation
- Plants, Medicinal
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Recombination, Genetic
- Rhizobium/classification
- Rhizobium/genetics
- Rhizobium/isolation & purification
- Serotyping
- Species Specificity
- Symbiosis
Collapse
Affiliation(s)
- B D Eardly
- Penn State Berks Campus, Reading 19610, USA
| | | | | | | |
Collapse
|
50
|
Kuykendall L, Abdel-Wahab S, Hashem F, Berkum P. Symbiotic competence and genetic diversity of Rhizobium strains used as inoculants for alfalfa and berseem clover. Lett Appl Microbiol 1994. [DOI: 10.1111/j.1472-765x.1994.tb00986.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|