1
|
Fiaboe KR, Fening KO, Gbewonyo WSK, Deshmukh S. Bionomic responses of Spodoptera frugiperda (J. E. Smith) to lethal and sublethal concentrations of selected insecticides. PLoS One 2023; 18:e0290390. [PMID: 37967118 PMCID: PMC10650980 DOI: 10.1371/journal.pone.0290390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/08/2023] [Indexed: 11/17/2023] Open
Abstract
Since 2016, the invasive insect Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) from the Americas has made maize production unattainable without pesticides in parts of Sub-Saharan Africa and Asia. To counteract this pest, farmers often resort to the use hazardous pesticides. This study aimed to investigate botanicals, microbials, and semi-synthetic insecticides in Ghana for pest control without harming local ecosystems. Under laboratory and on-station conditions, the present study evaluated the acute and sublethal responses of S. frugiperda to: (i) Pieris rapae Granulovirus (PrGV) + Bacillus thuringiensis sub sp. kurstaki (Btk) 5 WP, (ii) Btk + monosultap 55 WP, (iii) ethyl palmitate 5 SC, (iv) azadirachtin 0.3 SC, (v) acetamiprid (20 g/l) + λ-cyhalothrin (15 g/l) 35 EC, (vi) acetamiprid (30 g/l) + indoxacarb (16 g/l) 46 EC, and (vii) emamectin benzoate 1.9 EC. The results showed that at 96 hours post-exposure emamectin benzoate-based formulation has the highest acute larvicidal effect with lower LC50 values of 0.019 mL/L. However, the results suggested strong sublethal effects of PrGV + Btk, azadirachtin, and ethyl palmitate on the bionomics of S. frugiperda. Two seasons on-station experiments, showed that the semi-synthetic emamectin benzoate and the bioinsecticide PrGV + Btk are good candidates for managing S. frugiperda. The promising efficacy of emamectin benzoate and PrGV + Btk on the bionomics of S. frugiperda in the laboratory and on-station demonstrated that they are viable options for managing this pest.
Collapse
Affiliation(s)
- Kokou Rodrigue Fiaboe
- African Regional Postgraduate Programme in Insect Science (ARPPIS), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Soil and Irrigation Research Centre (SIREC), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ken Okwae Fening
- African Regional Postgraduate Programme in Insect Science (ARPPIS), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Soil and Irrigation Research Centre (SIREC), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Winfred Seth Kofi Gbewonyo
- African Regional Postgraduate Programme in Insect Science (ARPPIS), School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
| | - Sharanabasappa Deshmukh
- Department of Entomology, College of Agriculture, Keladi Shivappa Nayak University of Agricultural and Horticultural Sciences (UAHS), Shivamogga, Karnataka, India
| |
Collapse
|
2
|
Ramasubramanian R, Karthi S, Senthil-Nathan S, Sivanesh H, Shyam Sundar N, Stanley-Raja V, Ramkumar G, Chanthini KMP, Vasantha-Srinivasan P, Alarjani KM, Elshikh MS, Abdel-Megeed A, Krutmuang P. Effect of bacterial toxin identified from the Bacillus subtilis against the Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae). TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Narayanan Shyam Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Abdel-Megeed
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Centre, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Park MG, Choi JY, Kim JH, Park DH, Wang M, Kim HJ, Kim SH, Lee HY, Je YH. Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. PEST MANAGEMENT SCIENCE 2022; 78:2976-2984. [PMID: 35419912 DOI: 10.1002/ps.6922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) has been widely used as a biological control agent for lepidopteran pests. However, resistance to Bt is a major concern associated with Spodoptera spp. (Noctuidae) and Plutella xylostella (Plutellidae). For efficient control of Noctuidae and Plutellidae, novel Bt strains which have high toxicity and a broad host range are needed. RESULTS To develop novel Bt strains as used for bio-insecticides, the Bt IMBL-B9 with high toxicity against Spodoptera exigua, Spodoptera frugiperda and P. xylostella was isolated and characterized. The Bt kurstaki IMBL-B9 strain produced bipyramidal and cuboidal crystals consisting of cry toxins with molecular weights of 130 and 65 kDa, respectively. This strain harbors eight crystal protein genes in total, including cry1Ea and one vegetative insecticidal protein gene. The median lethal concentration (LC50 ) values of IMBL-B9 against S. exigua and S. frugiperda were 21.8- and 19.3-fold lower than those of the Bt kusrstaki strain, and 5.6- and 4.9-fold lower than those of Bt aizawai strain, respectively. To evaluate the insecticidal activity of Cry proteins from IMBL-B9, cry gene-sourced recombinant Bt strains were constructed. These strains have insecticidal activity and synergic action against lepidopteran pests. CONCLUSION In this study, a novel Bt kurstaki IMBL-B9 strain was isolated and this could be useful for the development of new bio-insecticide or cry gene-based recombinant products as an alternative solution against lepidopterans, including Noctuidae and Plutellidae. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Gu Park
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong Hwan Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minghui Wang
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ji Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Hee Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ho Yeon Lee
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Yeon Ho Je
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Reavey CE, Walker AS, Joyce SP, Broom L, Willse A, Ercit K, Poletto M, Barnes ZH, Marubbi T, Troczka BJ, Treanor D, Beadle K, Granville B, de Mello V, Teal J, Sulston E, Ashton A, Akilan L, Naish N, Stevens O, Humphreys-Jones N, Warner SAJ, Spinner SAM, Rose NR, Head G, Morrison NI, Matzen KJ. Self-limiting fall armyworm: a new approach in development for sustainable crop protection and resistance management. BMC Biotechnol 2022; 22:5. [PMID: 35086540 PMCID: PMC8793274 DOI: 10.1186/s12896-022-00735-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt-susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. RESULTS Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non-Bt 'refuge' crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. CONCLUSIONS This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.
Collapse
Affiliation(s)
| | - Adam S Walker
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Stephen P Joyce
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Lucy Broom
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford, OX3 7DQ, UK
| | - Alan Willse
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Kyla Ercit
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Mattia Poletto
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Zoe H Barnes
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Thea Marubbi
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | | | - David Treanor
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Katherine Beadle
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Ben Granville
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Vanessa de Mello
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Joss Teal
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Edward Sulston
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Anna Ashton
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Luxziyah Akilan
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Neil Naish
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Oliver Stevens
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | | | - Simon A J Warner
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
- Oxford University Innovation, Buxton Court, 3 West Way, Oxford, OX2 0JB, UK
| | - Sian A M Spinner
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Nathan R Rose
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK.
| | - Graham Head
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Neil I Morrison
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Kelly J Matzen
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK.
| |
Collapse
|
5
|
Resistance in the Genus Spodoptera: Key Insect Detoxification Genes. INSECTS 2021; 12:insects12060544. [PMID: 34208014 PMCID: PMC8230579 DOI: 10.3390/insects12060544] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.
Collapse
|
6
|
Huang JM, Zhao YX, Sun H, Ni H, Liu C, Wang X, Gao CF, Wu SF. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104831. [PMID: 33838702 DOI: 10.1016/j.pestbp.2021.104831] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
The beet armyworm, Spodoptera exigua, is a major lepidopteran pest of global importance in cultivation of numerous crops including cotton, maize, soybean, onion, cabbage, and ornamentals. It has evolved resistance to different insecticides. However, the current status of insecticide resistance in S. exigua has not been well examined in China. In this study, concentration-mortality responses of S. exigua to seven insecticides, including chlorantraniliprole, tetraniliprole, methoxyfenozide, indoxacarb, chlorfenapyr, emamectin benzoate and beta-cypermethrin were evaluated. The results showed that most of the tested populations had developed moderate to high resistance to chlorantraniliprole, with resistance ratios ranging from 6.3 to 2477.3-fold. Our results also showed that chlorantraniliprole have cross-resistance with tetraniliprole in S. exigua. The AY19 population collected from Anyang in Henan Province in 2019 exhibited a high resistance level to beta-cypermethrin (RR = 277.5). Methoxyfenozide and chlorfenapyr were highly effective against all of the tested populations with resistance ratios (RR) ranging from 0.1 to 2.2-fold. One of the tested populations showed moderate resistance to indoxacarb and emamectin benzoate. We detected the known ryanodine receptor target site resistance mutation, I4743M, in the field populations of S. exigua with different levels of diamide resistance.
Collapse
Affiliation(s)
- Jing-Mei Huang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Yun-Xia Zhao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Huan Ni
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Chong Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Xin Wang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
7
|
Genomics and Proteomics Analyses Revealed Novel Candidate Pesticidal Proteins in a Lepidopteran-Toxic Bacillus thuringiensis Strain. Toxins (Basel) 2020; 12:toxins12110673. [PMID: 33114565 PMCID: PMC7693509 DOI: 10.3390/toxins12110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Discovery and identification of novel insecticidal proteins in Bacillus thuringiensis (Bt) strains are of crucial importance for efficient biological control of pests and better management of insect resistance. In this study, the Bt strain KhF, toxic for Plodia interpunctella and Grapholita molesta larvae, underwent genomics and proteomics analyses to achieve a better understanding of the bases of its pathogenicity. The whole-genome sequencing results revealed that the KhF strain contained nine coding sequences with homologies to Bt insecticidal genes. The lepidopteran toxic mixture of spores and crystals of this Bt strain was subjected to liquid chromatography and tandem mass spectrometry (LC-MS/MS) to assess the protein composition. The results of the proteomic analyses, combined with the toxin gene sequences, revealed that two of the main components of the crystals were two new candidate pesticidal proteins, named KhFA and KhFB. These proteins showed a similarity lower than 36% to the other known Bt toxins. The phylogenetic analysis showed that the KhFA and KhFB grouped with the newly denominated Xpp and Mpp (former ETX/Mtx) pesticidal protein groups, respectively. Altogether, this study has led to the discovery of two novel candidate pesticidal toxins in the lepidopteran toxic KhF strain.
Collapse
|
8
|
Huang J, Xu Y, Zuo Y, Yang Y, Tabashnik BE, Wu Y. Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103361. [PMID: 32199887 DOI: 10.1016/j.ibmb.2020.103361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 05/29/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) can provide safe and effective control of some major pests, but evolution of resistance by pests diminishes these benefits. Better understanding of the genetics and mechanisms of resistance is urgently needed to improve methods for monitoring, managing, and countering pest resistance to Bt toxins. Here we used CRISPR-mediated knockouts to evaluate the role of five genes encoding candidate Bt toxin receptors in Spodoptera exigua (beet armyworm), a devastating pest of vegetable, field and flower crops. We compared susceptibility to Bt toxins Cry1Ac, Cry1Fa, and Cry1Ca between the parent susceptible strain and each of five strains homozygous for the knockout of one of the candidate genes (SeAPN1, SeCad1, SeABCC1, SeABCC2 or SeABCC3). The results from the 15 pairwise comparisons reveal that SeABCC2 has a major role and SeCad1 a minor role in mediating toxicity of Cry1Ac and Cry1Fa. SeABCC2 also has a minor role in toxicity of Cry1Ca. In addition, the results imply little or no role for the other three candidate receptors in toxicity of Cry1Ac or Cry1Fa; or for the four candidate receptors other than SeABCC2 in toxicity of Cry1Ca.
Collapse
Affiliation(s)
- Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanjun Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Wei J, Zhang Y, An S. The progress in insect cross-resistance among Bacillus thuringiensis toxins. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21547. [PMID: 30864250 DOI: 10.1002/arch.21547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Bt crop pyramids produce two or more Bt proteins active to broaden the spectrum of action and to delay the development of resistance in exposed insect populations. The cross-resistance between Bt toxins is a vital restriction factor for Bt crop pyramids, which may reduce the effect of pyramid strategy. In this review, the status of the cross-resistance among more than 20 Bt toxins that are most commonly used against 13 insect pests was analyzed. The potential mechanisms of cross-resistance are discussed. The corresponding measures, including pyramid RNA interference and Bt toxin, "high dose/refuge," and so on are advised to be taken for adopting the pyramided strategy to delay the Bt evolution of resistance and control the target pest insect.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaling Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
de Bortoli CP, Jurat-Fuentes JL. Mechanisms of resistance to commercially relevant entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2019; 33:56-62. [PMID: 31358196 DOI: 10.1016/j.cois.2019.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/29/2023]
Abstract
Bacteria represent the most commercially successful entomopathogenic microbial group, with most commercialized insecticides containing gram-positive bacteria in the Bacillaceae family. Resistance to entomopathogenic bacteria threatens sustainable agriculture, and information on the mechanisms and genes involved is vital to develop management practices aimed at reducing this risk. We provide an integrative summary on mechanisms responsible for resistance to commercialized entomopathogenic bacteria, including information on resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt crops). The available experimental evidence identifies alterations in binding of insecticidal proteins to receptors in the host as the main mechanism for high levels of resistance to entomopathogenic bacteria.
Collapse
Affiliation(s)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
11
|
Tang H, Chen G, Chen F, Han L, Peng Y. Development and relative fitness of Cry1C resistance in Chilo suppressalis. PEST MANAGEMENT SCIENCE 2018; 74:590-597. [PMID: 28941326 DOI: 10.1002/ps.4740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Chilo suppressalis is an important lepidopteran rice pest in the rice-growing areas of China, and the development of transgenic rice expressing the Cry1C insecticidal protein has provided a useful strategy for controlling this pest. However, insect resistance is a major threat to the durability of cry1C rice. Thus, evaluation of the risk of insect resistance before the commercial use of cry1C rice is crucial. RESULTS This study investigated the development of C. suppressalis resistance to Cry1C protein and the relative fitness of Cry1C-resistant and -susceptible strains on different Bt rice lines. The LC50 value of the Cry1C-resistant strain increased 42.6-fold after 41 generations of selection, and the estimated realized heritability (h2 ) of Cry1C resistance was 0.096 in C. suppressalis. Moreover, the Cry1C-resistant strain displayed high fitness on the cry1C line, but not on the cry1Ab and cry1Ab + cry1C lines and was not cross-resistant to Cry1Ab. CONCLUSIONS These findings suggest that C. suppressalis has the potential to develop resistance to Cry1C, although the rate of evolution is low. The pyramiding of the cry1A and cry1C genes in Bt rice is an effective strategy for delaying the evolution of resistance in C. suppressalis and sustainably maintaining the utility of Bt rice. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Vatanparast M, Kim Y. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. PLoS One 2017; 12:e0183054. [PMID: 28800614 PMCID: PMC5553977 DOI: 10.1371/journal.pone.0183054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022] Open
Abstract
Double-stranded RNA (dsRNA) has been applied to control insect pests due to its induction of RNA interference (RNAi) of a specific target gene expression. However, developing dsRNA-based insecticidal agent has been a great challenge especially against lepidopteran insect pests due to variations in RNAi efficiency. The objective of this study was to screen genes of chymotrypsins (SeCHYs) essential for the survival of the beet armyworm, Spodoptera exigua, to construct insecticidal dsRNA. In addition, an optimal oral delivery method was developed using recombinant bacteria. At least 7 SeCHY genes were predicted from S. exigua transcriptomes. Subsequent analyses indicated that SeCHY2 was widely expressed in different developmental stages and larval tissues by RT-PCR and its expression knockdown by RNAi caused high mortality along with immunosuppression. However, a large amount of dsRNA was required to efficiently kill late instars of S. exigua because of high RNase activity in their midgut lumen. To minimize dsRNA degradation, bacterial expression and formulation of dsRNA were performed in HT115 Escherichia coli using L4440 expression vector. dsRNA (300 bp) specific to SeCHY2 overexpressed in E. coli was toxic to S. exigua larvae after oral administration. To enhance dsRNA release from E. coli, bacterial cells were sonicated before oral administration. RNAi efficiency of sonicated bacteria was significantly increased, causing higher larval mortality at oral administration. Moreover, targeting young larvae possessing weak RNase activity in the midgut lumen significantly enhanced RNAi efficiency and subsequent insecticidal activity against S. exigua.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- Department of Plant Protection, College of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
- * E-mail:
| |
Collapse
|
13
|
Peterson B, Bezuidenhout CC, Van den Berg J. An Overview of Mechanisms of Cry Toxin Resistance in Lepidopteran Insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:362-377. [PMID: 28334065 DOI: 10.1093/jee/tow310] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Arthropods have the capacity to evolve resistance to insecticides and insecticidal traits in genetically modified crops. Resistance development among Lepidoptera is a common phenomenon, and a repertoire of resistance mechanisms to various Cry toxins have been identified from laboratory, greenhouse, and field studies in this insect order. Elucidation of such resistance mechanisms is crucial for developing IRM (insect resistance management) strategies to ensure sustainable use of genetically modified crops. This mini review provides a comprehensive overview of mechanisms of resistance that have been reported for lepidopteran pests. This study demonstrated that resistance mechanisms are highly complex, and the most common mechanism of resistance is altered binding sites. It is yet to be established whether all these altered binding sites are regulated by an MAPK signaling pathway, which might suggest a universal mechanism of resistance in lepidopterans.
Collapse
Affiliation(s)
- B Peterson
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| | - C C Bezuidenhout
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| | - J Van den Berg
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| |
Collapse
|
14
|
Kim E, Kim Y, Yeam I, Kim Y. Transgenic Expression of a Viral Cystatin Gene CpBV-CST1 in Tobacco Confers Insect Resistance. ENVIRONMENTAL ENTOMOLOGY 2016; 45:1322-1331. [PMID: 27550161 DOI: 10.1093/ee/nvw105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
A viral gene, CpBV-CST1, was identified from a polydnavirus Cotesia plutellae bracovirus (CpBV). Its protein product was significantly toxic to lepidopteran insects. This study generated a transgenic tobacco plant expressing CpBV-CST1 Expression of transgene CpBV-CST1 was confirmed in T1 generation (second generation after transgenesis) in both mRNA and protein levels. Young larvae of Spodoptera exigua (Hübner) suffered high mortalities after feeding on transgenic tobacco. All 10 T1 transgenic tobacco plants had no significant variation in speed-to-kill. In order to further explore insect resistance of these transgenic tobaccos, bioassays were performed by assessing antixenosis and antibiosis. S. exigua larvae significantly avoided T1 plants in a choice test. Larvae fed with T1 plant exhibited significant decrease in protease activity in the midgut due to consuming CpBV-CST1 protein produced by the transgenic plant. Furthermore, the transgenic tobacco exhibited similar insect resistance to other tobacco-infesting insects, including a leaf-feeding insect, Helicoverpa assulta, and a sap-feeding insect, Myzus persicae These results demonstrate that a viral cystatin gene can be used to develop insect-resistant transgenic plant, suggesting a prospective possibility of expanding the current transgenic approach to high-valued crops.
Collapse
Affiliation(s)
- E Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Korea (; ; )
| | - Y Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Korea (; ; )
| | - I Yeam
- Department of Horticulture and Breeding, Andong National University, Andong 36729, Korea
| | - Y Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Korea (; ; )
| |
Collapse
|
15
|
Jakka SRK, Shrestha RB, Gassmann AJ. Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm (Diabrotica virgifera virgifera). Sci Rep 2016; 6:27860. [PMID: 27297953 PMCID: PMC4906537 DOI: 10.1038/srep27860] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
The evolution of resistance and cross-resistance threaten the sustainability of genetically engineered crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of maize and has been managed with Bt maize since 2003. We conducted laboratory bioassays with maize hybrids producing Bt toxins Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1, which represent all commercialized Bt toxins for management of western corn rootworm. We tested populations from fields where severe injury to Cry3Bb1 maize was observed, and populations that had never been exposed to Bt maize. Consistent with past studies, bioassays indicated that field populations were resistant to Cry3Bb1 maize and mCry3A maize, and that cross-resistance was present between these two types of Bt maize. Additionally, bioassays revealed resistance to eCry3.1Ab maize and cross-resistance among Cry3Bb1, mCry3A and eCry3.1Ab. However, no resistance or cross-resistance was detected for Cry34/35Ab1 maize. This broad-spectrum resistance illustrates the potential for insect pests to develop resistance rapidly to multiple Bt toxins when structural similarities are present among toxins, and raises concerns about the long-term durability of Bt crops for management of some insect pests.
Collapse
Affiliation(s)
- Siva R. K. Jakka
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ram B. Shrestha
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Aaron J. Gassmann
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
16
|
Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm (Diabrotica virgifera virgifera). Sci Rep 2016. [PMID: 27297953 DOI: 10.1038/srep27860.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The evolution of resistance and cross-resistance threaten the sustainability of genetically engineered crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of maize and has been managed with Bt maize since 2003. We conducted laboratory bioassays with maize hybrids producing Bt toxins Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1, which represent all commercialized Bt toxins for management of western corn rootworm. We tested populations from fields where severe injury to Cry3Bb1 maize was observed, and populations that had never been exposed to Bt maize. Consistent with past studies, bioassays indicated that field populations were resistant to Cry3Bb1 maize and mCry3A maize, and that cross-resistance was present between these two types of Bt maize. Additionally, bioassays revealed resistance to eCry3.1Ab maize and cross-resistance among Cry3Bb1, mCry3A and eCry3.1Ab. However, no resistance or cross-resistance was detected for Cry34/35Ab1 maize. This broad-spectrum resistance illustrates the potential for insect pests to develop resistance rapidly to multiple Bt toxins when structural similarities are present among toxins, and raises concerns about the long-term durability of Bt crops for management of some insect pests.
Collapse
|
17
|
Herrero S, Bel Y, Hernández-Martínez P, Ferré J. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp. CURRENT OPINION IN INSECT SCIENCE 2016; 15:89-96. [PMID: 27436737 DOI: 10.1016/j.cois.2016.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
Bioinsecticides based on Bacillus thuringiensis have long been used as an alternative to synthetic insecticides to control insect pests. In this review, we focus on insects of the genus Spodoptera, including relevant polyphagous species that are primary and secondary pests of many crops, and how B. thuringiensis toxins can be used for Spodoptera spp. pest management. We summarize the main findings related to susceptibility, midgut binding specificity, mechanisms of response and resistance of this insect genus to B. thuringiensis toxins.
Collapse
Affiliation(s)
- Salvador Herrero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Yolanda Bel
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Patricia Hernández-Martínez
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Juan Ferré
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
18
|
Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol 2015. [DOI: 10.1016/j.jip.2015.07.009] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Kim E, Park Y, Kim Y. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua. PLoS One 2015; 10:e0132631. [PMID: 26171783 DOI: 10.1371/journal.pone.00132631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/16/2015] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. PRINCIPAL FINDINGS The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). CONCLUSIONS This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.
Collapse
Affiliation(s)
- Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Republic of Korea
| | - Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Republic of Korea
| |
Collapse
|
20
|
Kim E, Park Y, Kim Y. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua. PLoS One 2015; 10:e0132631. [PMID: 26171783 PMCID: PMC4501564 DOI: 10.1371/journal.pone.0132631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/16/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. PRINCIPAL FINDINGS The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). CONCLUSIONS This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.
Collapse
Affiliation(s)
- Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760–749, Republic of Korea
| | - Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong, 760–749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760–749, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez-Ferber M. Resistance to bio-insecticides or how to enhance their sustainability: a review. FRONTIERS IN PLANT SCIENCE 2015; 6:381. [PMID: 26150820 PMCID: PMC4472983 DOI: 10.3389/fpls.2015.00381] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/12/2015] [Indexed: 05/12/2023]
Abstract
After more than 70 years of chemical pesticide use, modern agriculture is increasingly using biological control products. Resistances to conventional insecticides are wide spread, while those to bio-insecticides have raised less attention, and resistance management is frequently neglected. However, a good knowledge of the limitations of a new technique often provides greater sustainability. In this review, we compile cases of resistance to widely used bio-insecticides and describe the associated resistance mechanisms. This overview shows that all widely used bio-insecticides ultimately select resistant individuals. For example, at least 27 species of insects have been described as resistant to Bacillus thuringiensis toxins. The resistance mechanisms are at least as diverse as those that are involved in resistance to chemical insecticides, some of them being common to bio-insecticides and chemical insecticides. This analysis highlights the specific properties of bio-insecticides that the scientific community should use to provide a better sustainability of these products.
Collapse
Affiliation(s)
- Myriam Siegwart
- Institut National de la Recherche Agronomique, UR1115, Plantes et Systèmes de Culture Horticoles UnitAvignon, France
- *Correspondence: Myriam Siegwart, Institut National de la Recherche Agronomique, – Plantes et Systèmes de Culture Horticoles Unit – Bât B, 228 Route de L'aérodrome, CS 40509, Domaine St Paul – Site Agroparc, 84914 Avignon, France
| | - Benoit Graillot
- Laboratoire de Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Institut Mines-Telecom et Université de Montpellier Sud de FranceAlès, France
- Natural Plant Protection, Arysta LifeScience GroupPau, France
| | | | - Samantha Besse
- Natural Plant Protection, Arysta LifeScience GroupPau, France
| | - Marc Bardin
- Institut National de la Recherche Agronomique, UR407, Plant Pathology UnitMontfavet, France
| | - Philippe C. Nicot
- Institut National de la Recherche Agronomique, UR407, Plant Pathology UnitMontfavet, France
| | - Miguel Lopez-Ferber
- Laboratoire de Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Institut Mines-Telecom et Université de Montpellier Sud de FranceAlès, France
| |
Collapse
|
22
|
Han JH, Jin BR, Kim JJ, Lee SY. Virulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua. MYCOBIOLOGY 2014; 42:385-390. [PMID: 25606011 PMCID: PMC4298843 DOI: 10.5941/myco.2014.42.4.385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
The beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) is difficult to control using chemical insecticides because of the development of insecticide resistance. Several pest control agents are used to control the beet armyworm. Entomopathogenic fungi are one of the candidates for eco-friendly pest control instead of chemical control agents. In this study, among various entomopathogenic fungal strains isolated from soil two isolates were selected as high virulence pathogens against larva of beet armyworm. Control efficacy of fungal conidia was influenced by conidia concentration, temperature, and relative humidity (RH). The isolates Metarhizium anisopliae FT83 showed 100% cumulative mortality against second instar larvae of S. exigua 3 days after treatment at 1 × 10(7) conidia/mL and Paecilomyces fumosoroseus FG340 caused 100% mortality 6 days after treatment at 1 × 10(4) conidia/mL. Both M. anisopliae FT83 and P. fumosoroseus FG340 effectively controlled the moth at 20~30℃. M. anisopliae FT83 was significantly affected mortality by RH: mortality was 86.7% at 85% RH and 13.4% at 45% RH. P. fumosoroseus FG340 showed high mortality as 90% at 45% RH and 100% at 75% RH 6 days after conidia treatments. These results suggest that P. fumosoroseus FG340 and M. anisopliae FT83 have high potential to develop as a biocontrol agent against the beet armyworm.
Collapse
Affiliation(s)
- Ji Hee Han
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 565-851, Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-704, Korea
| | - Jeong Jun Kim
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 565-851, Korea
| | - Sang Yeob Lee
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 565-851, Korea
| |
Collapse
|
23
|
Zhang T, He M, Gatehouse AMR, Wang Z, Edwards MG, Li Q, He K. Inheritance patterns, dominance and cross-resistance of Cry1Ab- and Cry1Ac-selected Ostrinia furnacalis (Guenée). Toxins (Basel) 2014; 6:2694-707. [PMID: 25216083 PMCID: PMC4179155 DOI: 10.3390/toxins6092694] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 01/18/2023] Open
Abstract
Two colonies of Asian corn borer, Ostrinia furnacalis (Guenée), artificially selected from a Bt-susceptible colony (ACB-BtS) for resistance to Cry1Ab (ACB-AbR) and Cry1Ac (ACB-AcR) toxins, were used to analyze inheritance patterns of resistance to Cry1 toxins. ACB-AbR and ACB-AcR evolved significant levels of resistance, with resistance ratios (RR) of 39-fold and 78.8-fold to Cry1Ab and Cry1Ac, respectively. The susceptibility of ACB-AbR larvae to Cry1Ac and Cry1F toxins, which had not previously been exposed, were significantly reduced, being >113-fold and 48-fold, respectively. Similarly, susceptibility of ACB-AcR larvae to Cry1Ab and Cry1F were also significantly reduced (RR > nine-fold, RR > 18-fold, respectively), indicating cross-resistance among Cry1Ab, Cry1Ac, and Cry1F toxins. However, ACB-AbR and ACB-AcR larvae were equally susceptible to Cry1Ie as were ACB-BtS larvae, indicating no cross-resistance between Cry1Ie and Cry1Ab or Cry1Ac toxins; this may provide considerable benefits in preventing or delaying the evolution of resistance in ACB to Cry1Ab and Cry1Ac toxins. Backcrossing studies indicated that resistance to Cry1Ab toxin was polygenic in ACB-AbR, but monogenic in ACB-AcR, whilst resistance to Cry1Ac toxin was primarily monogenic in both ACB-AbR and ACB-AcR, but polygenic as resistance increased.
Collapse
Affiliation(s)
- Tiantao Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxia He
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Angharad M R Gatehouse
- Newcastle Institute for Research on Sustainability, School of Biology, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
| | - Zhenying Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Martin G Edwards
- Newcastle Institute for Research on Sustainability, School of Biology, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
| | - Qing Li
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kanglai He
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
24
|
Caccia S, Chakroun M, Vinokurov K, Ferré J. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:76-84. [PMID: 24979528 DOI: 10.1016/j.jinsphys.2014.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Vip3 proteins have been described to be secreted by Bacillus thuringiensis during the vegetative growth phase and to display a broad insecticidal spectrum against lepidopteran larvae. Vip3Aa protoxin has been reported to be significantly more toxic to Spodoptera frugiperda than to Spodoptera exigua and differences in the midgut processing have been proposed to be responsible. In contrast, we have found that Vip3Ae is essentially equally toxic against these two species. Proteolysis experiments were performed to study the stability of Vip3A proteins to peptidase digestion and to see whether the differences found could explain differences in toxicity against these two Spodoptera species. It was found that activation of the protoxin form and degradation of the 62kDa band took place at lower concentrations of trypsin when using Vip3Aa than when using Vip3Ae. The opposite effect was observed for chymotrypsin. Vip3Aa and Vip3Ae protoxins were effectively processed by midgut content extracts from the two Spodoptera species and the proteolytic activation did not produce a peptidase resistant core under these in vitro conditions. Digestion experiments performed with S. frugiperda chromatography-purified digestive serine peptidases showed that the degradation of the Vip3A toxins active core is mainly due to the action of cationic chymotrypsin-like peptidase. Although the digestion patterns of Vip3A proteins do not always correlate with toxicity, the peptidase stability of the 62kDa core is in agreement with intraspecific differences of toxicity of the Vip3Aa protein.
Collapse
Affiliation(s)
- Silvia Caccia
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Maissa Chakroun
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Konstantin Vinokurov
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Juan Ferré
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain.
| |
Collapse
|
25
|
RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. J Invertebr Pathol 2013; 114:285-91. [DOI: 10.1016/j.jip.2013.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 01/19/2023]
|
26
|
Exploring lower limits of plant elemental defense by cobalt, copper, nickel, and zinc. J Chem Ecol 2013; 39:666-74. [PMID: 23584612 DOI: 10.1007/s10886-013-0279-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Elemental defense is a relatively newly recognized phenomenon in which plants use elements present in their tissue to reduce damage by herbivores or pathogens. In the present study, neonates of the generalist herbivore, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), were fed artificial diets amended with varying concentrations of Co, Cu, Ni, and Zn that are hyperaccumulated by plants to determine minimum lethal concentrations (MLC) and minimum sublethal concentrations (MSC) for each metal. MLC values (dry mass) for Co (45 μg/g), Ni (230 μg/g), and Zn (280 μg/g) were below published minimum hyperaccumulator levels. MSC levels (dry mass) for Co (15 μg/g), Ni (140 μg/g), and Zn (200 μg/g) were at concentrations lower than published minimum accumulator levels. Furthermore, both MLC and MSC values for Zn were within normal tissue concentrations. These results indicate that elemental defense for Co, Ni, and Zn may be effective at concentrations lower than hyperaccumulator levels and so may be more widespread than previously believed.
Collapse
|
27
|
Lee WW, Shin TY, Ko SH, Choi JB, Bae SM, Woo SD. Characteristics and Virulence Assay of Entomopathogenic Fungus Nomuraea rileyi for the Microbial Control of Spodoptera exigua (Lepidoptera: Noctuidae). ACTA ACUST UNITED AC 2012. [DOI: 10.7845/kjm.2012.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Pascual L, Jakubowska AK, Blanca JM, Cañizares J, Ferré J, Gloeckner G, Vogel H, Herrero S. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:557-570. [PMID: 22564783 DOI: 10.1016/j.ibmb.2012.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 05/31/2023]
Abstract
We have obtained and characterized the transcriptome of Spodoptera exigua larvae with special emphasis on pathogen-induced genes. In order to obtain a highly representative transcriptome, we have pooled RNA from diverse insect colonies, conditions and tissues. Sequenced cDNA included samples from 3 geographically different colonies. Enrichment of RNA from pathogen-related genes was accomplished by exposing larvae to different pathogenic and non-pathogenic microbial agents such as the bacteria Bacillus thuringiensis, Micrococcus luteus, and Escherichia coli, the yeast Saccharomyces cerevisiae, and the S. exigua nucleopolyhedrovirus (SeMNPV). In addition, to avoid the loss of tissue-specific genes we included cDNA from the midgut, fat body, hemocytes and integument derived from pathogen exposed insects. RNA obtained from the different types of samples was pooled, normalized and sequenced. Analysis of the sequences obtained using the Roche 454 FLX and Sanger methods has allowed the generation of the largest public set of ESTs from S. exigua, including a large group of immune genes, and the identification of an important number of SSR (simple sequence repeats) and SNVs (single nucleotide variants: SNPs and INDELs) with potential use as genetic markers. Moreover, data mining has allowed the discovery of novel RNA viruses with potential influence in the insect population dynamics and the larval interactions with the microbial pesticides that are currently in use for the biological control of this pest.
Collapse
Affiliation(s)
- Laura Pascual
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
George DM, Rind FC, Bendall MW, Taylor MA, Gatehouse AMR. Developmental studies of transgenic maize expressing Cry1Ab on the African stem borer, Busseola fusca; effects on midgut cellular structure. PEST MANAGEMENT SCIENCE 2012; 68:330-339. [PMID: 21842526 DOI: 10.1002/ps.2260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Busseola fusca is a major pest of maize in Africa but unfortunately is difficult to control using chemical insecticides. Insect-resistant transgenic crops may provide an alternative viable strategy to control this pest. RESULTS Recombinant Cry1Ab (1%) reduced larval weight by 60% over the trial period, while larval weight in the control group increased by 25%; no effects on mortality were observed. Insect survival, developmental rate and pupal and adult weight were significantly reduced (P < 0.05) on maize expressing Cry1Ab (MON810) compared with the non-transformed parental line. These differences were more pronounced with second-instar larvae than with third-instar larvae. Leaf area consumed by Bacillus thuringiensis (Bt)-fed larvae was significantly lower (0.5 cm(2) larva(-1) day(-1)) compared with the area consumed by control-fed insects (3.3 cm(2) larva(-1) day(-1)). EM studies revealed that consumption of Bt maize deleteriously affected gut integrity. Effects were observed in columnar cells of the midgut epithelium, with the cytoplasm becoming highly vacuolated; the microvilli were disorganised, the mitochondria were abnormal and there was an increase in the number of lysosomal bodies. The rough endoplasmic reticulum had also become dilated. CONCLUSION This study confirms the potential for Bt maize, when used as part of an IPM programme, for control of B. fusca.
Collapse
Affiliation(s)
- Derick M George
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
30
|
Increase of the Bacillus thuringiensis Secreted Toxicity Against Lepidopteron Larvae by Homologous Expression of the vip3LB Gene During Sporulation Stage. Curr Microbiol 2011; 63:289-94. [DOI: 10.1007/s00284-011-9976-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
31
|
Yang Z, Chen H, Tang W, Hua H, Lin Y. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. PEST MANAGEMENT SCIENCE 2011; 67:414-22. [PMID: 21394874 DOI: 10.1002/ps.2079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 09/05/2010] [Accepted: 10/07/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND Transgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bt) were first commercialised in 1996. The risk that pests have the potential to evolve resistance to Bt toxins is one of the most serious challenges to this technology. Gene stacking, pyramiding two Bt genes into one variety, is considered to be an effective insect resistance management (IRM) strategy. In this study, insect-resistant rice expressing two Bt genes was developed by sexual crossing, and then characterised. RESULTS Homozygous rice lines of two pyramided Bt genes were obtained in the F(3) generation. Quantification of Bt toxin showed that protein concentrations of Cry1Ab, Cry1Ac and Cry2A in the two-gene lines were comparable with their single-gene parents, while the expression of cry1C gene decreased after gene stacking. Four two-gene lines showed higher activity to striped stem borer (Chilo suppressalis Walker) than parental lines in the laboratory bioassay. All pyramided lines and their hybrids exhibited excellent efficacy against stemborers and leaffolders in field evaluation, while most pyramided lines had no significant differences from original variety in yield under spraying of insecticide. CONCLUSION These results demonstrate that the two-gene lines have commercial potential and could serve as a valuable IRM strategy.
Collapse
Affiliation(s)
- Zhou Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | |
Collapse
|
32
|
Temporal allocation of metabolic tolerance to transgenic Bt cotton in beet armyworm, Spodoptera exigua (Hübner). SCIENCE CHINA-LIFE SCIENCES 2011; 54:152-8. [DOI: 10.1007/s11427-010-4133-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/31/2009] [Indexed: 10/18/2022]
|
33
|
|
34
|
Georghiou GP, Wirth MC. Influence of Exposure to Single versus Multiple Toxins of Bacillus thuringiensis subsp. israelensis on Development of Resistance in the Mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 2010; 63:1095-101. [PMID: 16535542 PMCID: PMC1389136 DOI: 10.1128/aem.63.3.1095-1101.1997] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impending widespread use of transgenic crop plants encoding a single insecticidal toxin protein of Bacillus thuringiensis has focused attention on the perceived risk of rapid selection of resistance in target insects. We have used Bacillus thuringiensis subsp. israelensis toxins as a model system and determined the speed and magnitude of evolution of resistance in colonies of the mosquito Culex quinquefasciatus during selection for 28 consecutive generations with single or multiple toxins. The parental strain was synthesized by combining approximately 500 larvae from each of 19 field collections obtained from the states of California, Oregon, Louisiana, and Tennessee. At least 10,000 larvae were selected in each generation of each line at an average mortality level of 84%. The susceptibilities of the parental and selected lines were compared in parallel tests in every third generation by using fresh suspensions of toxin powders. The normal toxin complement of B. thuringiensis subsp. israelensis consists of four toxins, CryIVA, CryIVB, CryIVD, and CytA. Resistance became evident first in the line that was selected with a single toxin (CryIVD), attaining the highest level (resistance ratio [RR], >913 at 95% lethal concentration) by generation F(inf28) when the study was completed. Resistance evolved more slowly and to a lower level (RR, >122 by F(inf25)) in the line selected with two toxins (CryIVA+CryIVB) and lower still (RR, 91 by F(inf28)) in the line selected with three toxins (CryIVA+CryIVB+ CryIVD). Resistance was remarkably low (RR, 3.2) in the line selected with all four toxins. The results reveal the importance of the full complement of toxins found in natural populations of B. thuringiensis subsp. israelensis as an effective approach to resistance management.
Collapse
|
35
|
Tang JD, Shelton AM, Van Rie J, De Roeck S, Moar WJ, Roush RT, Peferoen M. Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth (Plutella xylostella). Appl Environ Microbiol 2010; 62:564-9. [PMID: 16535241 PMCID: PMC1388779 DOI: 10.1128/aem.62.2.564-569.1996] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A colony of Plutella xylostella from crucifer fields in Florida was used in mortality bioassays with HD-1 spore, CryIA(a), CryIA(b), CryIA(c), CryIB, CryIC, CryID, CryIE, or CryIIA. The data revealed high levels of field-evolved resistance to HD-1 spore and all CryIA protoxins and no resistance to CryIB, CryIC, or CryID. CryIE and CryIIA were essentially not toxic. When HD-1 spore was combined 1:1 with protoxin and fed to susceptible larvae, spore synergized the activity of CryIA and CryIC 5- to 8-fold and 1.7-fold, respectively, and did not synergize the mortality of CryIIA. When fed to Florida larvae, spore failed to synergize the activity of all three CryIA protoxins, synergized the activity of CryIC 5.3-fold, and did not synergize the mortality for CryIIA. Binding studies with CryIA(b), CryIB, and CryIC were performed to determine possible mechanisms of resistance. The two techniques used were (i) binding of biotinylated toxin to tissue sections of larval midguts and (ii) binding of biotinylated toxin to brush border membrane vesicles prepared from whole larvae. Both showed dramatically reduced binding of CryIA(b) in resistant larvae compared with that in susceptible larvae but no differences in binding of CryIB or CryIC.
Collapse
|
36
|
Wright DJ, Iqbal M, Granero F, Ferre J. A Change in a Single Midgut Receptor in the Diamondback Moth (Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Appl Environ Microbiol 2010; 63:1814-9. [PMID: 16535597 PMCID: PMC1389152 DOI: 10.1128/aem.63.5.1814-1819.1997] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.
Collapse
|
37
|
Inheritance of Cry1Ac resistance and associated biological traits in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Invertebr Pathol 2010; 104:31-8. [PMID: 20097203 DOI: 10.1016/j.jip.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/01/2009] [Accepted: 01/19/2010] [Indexed: 11/24/2022]
Abstract
The analysis of reciprocal genetic crosses between resistant Helicoverpa armigera strain (BH-R) (227.9-fold) with susceptible Vadodara (VA-S) strain showed dominance (h) of 0.65-0.89 and degree of dominance (D) of 0.299-0.782 suggesting Cry1Ac resistance as a semi-dominant trait. The D and h values of F(1) hybrids of female resistant parent were higher than female susceptible parent, showing maternally enhanced dominance of Cry1Ac resistance. The progeny of F(2) crosses, backcrosses of F(1) hybrid with resistant BH-R parent did not differ significantly in respect of mortality response with resistant parent except for backcross with female BH-R and male of F(1) (BH-RxVA-S) cross, suggesting dominant inheritance of Cry1Ac resistance. Evaluation of some biological attributes showed that larval and pupal periods of progenies of reciprocal F(1) crosses, backcrosses and F(2) crosses were either at par with resistant parent or lower than susceptible parent on treated diet (0.01 microg/g). The susceptible strain performed better in terms of pupation and adult formation than the resistant strain on untreated diet. In many backcrosses and F(2) crosses, Cry1Ac resistance favored emergence of more females than males on untreated diet. The normal larval period and the body weight (normal larval growth) were the dominant traits associated with susceptible strain as contrast to longer larval period and the lower body weight (slow growth) associated with resistance trait. Further, inheritance of larval period in F(2) and backcross progeny suggested existence of a major resistant gene or a set of tightly linked loci associated with Cry1Ac sensitivity.
Collapse
|
38
|
Synergistic Interactions Between Cry1Ac and Natural Cotton Defenses Limit Survival of Cry1Ac-resistant Helicoverpa Zea (Lepidoptera: Noctuidae) on Bt Cotton. J Chem Ecol 2009; 35:785-95. [DOI: 10.1007/s10886-009-9665-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 06/25/2009] [Indexed: 12/30/2022]
|
39
|
Hernández-Martínez P, Ferré J, Escriche B. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. PEST MANAGEMENT SCIENCE 2009; 65:645-650. [PMID: 19253909 DOI: 10.1002/ps.1725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Spodoptera exigua (Hübner) has developed resistance to a wide range of chemical insecticides. Products based on Bacillus thuringiensis Cry toxins are used in integrated pest management as an ecologically friendly alternative for pest control. Since there are few B. thuringiensis Cry proteins highly active against S. exigua, it is desirable to apply appropriate resistance management strategies to prevent the evolution of resistance to these proteins. RESULTS Spodoptera exigua larvae were selected with Cry1Ab, a protein with low activity against this pest. Selected larvae developed > 30-fold resistance to Cry1Ab in 13 generations, relative to an unselected strain. The estimated realised heritability (h(2)) for the first five generations of selection was 0.15. Cross-resistance was also observed to the more active proteins Cry1Ca, Cry1Da and Cry1Fa (>20, 26 and > 8 respectively). The activity of midgut proteases to degrade the ingested toxin was tested, although no differences in activity were found between selected and unselected larvae. CONCLUSION Spodoptera exigua is able to evolve cross-resistance to highly active Cry proteins when exposed to a protein with marginal toxicity to this species. It is important to take this into account in areas where S. exigua is a secondary pest and B. thuringiensis Cry1A toxins are used to control other pests.
Collapse
|
40
|
Gassmann AJ, Carrière Y, Tabashnik BE. Fitness costs of insect resistance to Bacillus thuringiensis. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:147-63. [PMID: 19067630 DOI: 10.1146/annurev.ento.54.110807.090518] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Evolution of resistance by insect pests threatens the continued effectiveness of Bacillus thuringiensis (Bt) toxins in sprays and transgenic crops. Fitness costs of Bt resistance occur when, in the absence of Bt toxins, fitness is lower for resistant insects than for susceptible insects. Modeling results show that fitness costs can delay resistance by selecting against Bt-resistant genotypes in refuges where insects are not exposed to Bt toxins. In 77 studies including 18 species, fitness costs were detected in 62% of experiments testing for declines in resistance and in 34% of fitness component comparisons. Mean fitness costs were 15.5% for survival, 7.4% for development time, and 2.5% for mass. Although most fitness costs were recessive, nonrecessive costs can select more strongly against resistance. Because fitness costs vary with ecological conditions, refuges designed to increase the dominance or magnitude of fitness costs could be especially useful for delaying pest resistance.
Collapse
Affiliation(s)
- Aaron J Gassmann
- Department of Entomology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
41
|
Showalter AM, Heuberger S, Tabashnik BE, Carrière Y. A primer for using transgenic insecticidal cotton in developing countries. JOURNAL OF INSECT SCIENCE (ONLINE) 2009; 9:22. [PMID: 19613464 PMCID: PMC3011844 DOI: 10.1673/031.009.2201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/06/2008] [Indexed: 05/03/2023]
Abstract
Many developing countries face the decision of whether to approve the testing and commercial use of insecticidal transgenic cotton and the task of developing adequate regulations for its use. In this review, we outline concepts and provide information to assist farmers, regulators and scientists in making decisions concerning this technology. We address seven critical topics: 1) molecular and breeding techniques used for the development of transgenic cotton cultivars, 2) properties of transgenic cotton cultivars and their efficacy against major insect pests, 3) agronomic performance of transgenic cotton in developing countries, 4) factors affecting transgene expression, 5) impact of gene flow between transgenic and non-transgenic cotton, 6) non-target effects of transgenic cotton, and 7) management of pest resistance to transgenic cotton.
Collapse
Affiliation(s)
| | | | | | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson AZ
| |
Collapse
|
42
|
|
43
|
Frutos R, Rang C, Royer M. Managing Insect Resistance to Plants ProducingBacillus thuringiensisToxins. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859991229251] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Thamthiankul Chankhamhaengdecha S, Tantichodok A, Panbangred W. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. J Biotechnol 2008; 136:122-8. [PMID: 18602953 DOI: 10.1016/j.jbiotec.2008.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 05/13/2008] [Accepted: 05/28/2008] [Indexed: 11/26/2022]
Abstract
To enhance the toxicity of the Bacillus thuringiensis subsp. aizawai strain SP41 (SP41), the vegetative insecticidal protein (Vip) gene vip3A from SP41 was redirected to the sporulation stage by replacing its native promoter with the strong promoter P19 of the cry11Aa operon. Compared to the wild type, SP41 with PVIP (vip3A with its native promoter and ter) had the relative expression ratios of 457, 548, and 290 at 8, 14, and 20 h of cultivation, respectively, as measured by quantitative reverse transcription polymerase chain reaction (PCR). SP41 transformed by P19VIP (vip3A controlled by P19 promoter with vip3A ter) showed higher expressions (23, 2055, 1831) at the same time points. SP41 with P19VIP20 (vip3A controlled by P19 promoter and containing P20 and operon ter) had the lowest expression levels (3, 11, 9) at any time point. SDS-PAGE analysis of proteins in the culture supernatant of the P19VIP at 8, 14, and 20 h demonstrated a significant increase in Vip3A at the sporulation stage. Using the surface contamination bioassay, the 50% lethal concentration (LC(50)) of whole culture of PVIP, P19VIP, and P19VIP20 at 20 and 48 h of cultivation against Spodoptera exigua larvae were (68.3, 21.2, and 60.2 microg cm(-2)) and (69.8, 41.8, and 74.6 microg cm(-2)), respectively, compared with 86.6 and 104.4 microg cm(-2) for SP41. The results showed that Vip from P19VIP, expressed at spore stage at 20 and 48 h, can increase the toxicity of SP41 for 4.1- and 2.5-fold, respectively.
Collapse
|
45
|
Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. J Invertebr Pathol 2008; 97:245-50. [DOI: 10.1016/j.jip.2007.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 10/10/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
|
46
|
Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol 2007; 74:462-9. [PMID: 18024681 DOI: 10.1128/aem.01612-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.
Collapse
|
47
|
Herrero S, Ansems M, Van Oers MM, Vlak JM, Bakker PL, de Maagd RA. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1109-1118. [PMID: 17916497 DOI: 10.1016/j.ibmb.2007.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 05/25/2023]
Abstract
Insect larvae spend most of their time eating and the digestive tract is the most crucial barrier for the entrance of many pathogens. In our study, suppression subtractive hybridization (SSH) was used to compare Spodoptera exigua midgut gene expression between larvae exposed to the Bacillus thuringiensis Cry1Ca toxin and non-exposed insects. Based on the SSH results, full cDNA sequences coding for four homologous proteins were obtained. Quantitative and semi-quantitative RT-PCR showed the increased expression of the genes coding for these proteins after exposure to different B. thuringiensis toxins as well as after infection with baculovirus. The proteins were named REPAT after their increased expression in Response to Pathogen. REPAT1, a member of this family, was recombinantly expressed using the baculovirus expression system, revealing the glycosylated nature of the protein. Recombinant baculoviruses expressing REPAT1 were used to infect larvae from S. exigua, showing that expression of REPAT1 was reducing the virulence of baculovirus to the infected larvae. Together, these results suggest a role for REPAT1 in mitigating pathological effects.
Collapse
Affiliation(s)
- Salvador Herrero
- Business Unit Bioscience, Plant Research International B.V., Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Armengol G, Escobar MC, Maldonado ME, Orduz S. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J Appl Microbiol 2007; 102:77-88. [PMID: 17184322 DOI: 10.1111/j.1365-2672.2006.03063.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the genetic and molecular diversity and insecticidal activity of Bacillus thuringiensis isolates from all the natural regions of Colombia. METHODS AND RESULTS A total of 445 isolates from a collection of B. thuringiensis were characterized. The parasporal crystal morphology that was most abundant was bipyramidal (60%). Almost 10% of the isolates were toxic to Spodoptera frugiperda and 5.6% against Culex quinquefasciatus larvae. cry gene content determined by PCR indicated that 10.6% of the isolates contained cry1 genes and 1.1% contained cry2, cry4 or cry11 genes. Protein content of the parasporal crystal was determined by SDS-PAGE; 25 and 18 different protein profiles were found in isolates active against S. frugiperda and C. quinquefasciatus, respectively. CONCLUSIONS Bacillus thuringiensis presents great genetic and molecular diversity even in isolates from the same soil sample. Moreover, the diversity and activity of the isolates might have a relationship with the geographical origin of the samples. SIGNIFICANCE AND IMPACT OF THE STUDY The results obtained here indicate that some of the B. thuringiensis isolates characterized in this study are potential control agents that could be used in programmes against mosquitoes and S. frugiperda.
Collapse
Affiliation(s)
- G Armengol
- Biotechnology and Biological Control Unit, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | | | | | | |
Collapse
|
49
|
Khasdan V, Sapojnik M, Zaritsky A, Horowitz AR, Boussiba S, Rippa M, Manasherob R, Ben-Dov E. Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis. Arch Microbiol 2007; 188:643-53. [PMID: 17665174 DOI: 10.1007/s00203-007-0285-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 06/19/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
The genes cry1Ac and cry1Ca from Bacillus thuringiensis subsps. kurstaki HD-73 and aizawai 4J4, respectively, encoding delta-endotoxins against lepidopteran larvae were isolated, cloned and expressed in Escherichia coli, with and without cyt1Aa (encoding cytolytic protein) and p20 (accessory protein) from subsp. israelensis. Nine combinations of the genes under control of an early T7, P A1 inducible promoter, produced the encoding proteins. Toxicities were examined against larvae of three major agricultural pests: Pectinophora gossypiella, Helicoverpa armigera and Spodoptera littoralis. The clones expressing cyt1Aa, with or without p20, were not toxic. The clone expressing cry1Ac (pBt-1A) was the most toxic to P. gossypiella (LC50 of 0.27 x 10(8) cells g(-1)). Clone pBt-1CA expressing cry1Ca and cry1Ac displayed the highest toxicity (LC50 of 0.12 x 10(8) cells ml(-1)) against S. littoralis. Clone pBt-1CARCy expressing all four genes (cry1Ca, cry1Ac, p20, cyt1Aa) in tandem exhibited the highest toxicity to H. armigera (LC50 of 0.16 x 10(8) cells ml(-1)). Cyt1Aa failed to raise the toxicity of these Cry toxins against P. gossypiella and S. littoralis but significantly enhanced toxicity against H. armigera. Two additional clones expressing either cry1Ac or cry1Ca under tandem promoters, P A1 and P psbA (constitutive), displayed significantly higher toxicities (7.5- to 140-fold) than their counterparts with P A1 alone, reducing the LC50 values to below 10(7) cells ml(-1).
Collapse
Affiliation(s)
- Vadim Khasdan
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Heckel DG, Gahan LJ, Baxter SW, Zhao JZ, Shelton AM, Gould F, Tabashnik BE. The diversity of Bt resistance genes in species of Lepidoptera. J Invertebr Pathol 2007; 95:192-7. [PMID: 17482643 DOI: 10.1016/j.jip.2007.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Although the mode of action of Cry1A toxins produced by Bacillus thuringiensis is fairly well understood, knowledge of the molecular mechanisms by which lepidopteran species have evolved resistance to them is still in its infancy. The most common type of resistance has been called "Mode 1" and is characterized by recessive inheritance, >500-fold resistance to and reduced binding by at least one Cry1A toxin, and negligible cross-resistance to Cry1C. In three lepidopteran species, Heliothis virescens, Pectinophora gossypiella, and Helicoverpa armigera, Mode 1 resistance is caused by mutations in a toxin-binding 12-cadherin-domain protein expressed in the larval midgut. These mutations all interrupt the primary sequence of the protein and prevent its normal localization in the membrane, presumably removing a major toxic binding target of the Cry1A toxins. In Plutella xylostella, however, Mode 1 resistance appears to be caused by a different genetic mechanism, as Cry1A resistance is unlinked to the cadherin gene. Mapping studies in H. virescens have detected an additional major Cry1A resistance gene, which on the basis of comparative linkage mapping is distinct from the one in P. xylostella. An additional resistance mechanism supported by genetic data involves a protoxin-processing protease in Plodia interpunctella, and this is likely to be different from the genes mapped in Plutella and Heliothis. Thus, resistance to Cry1A toxins in species of Lepidoptera has a complex genetic basis, with at least four distinct, major resistance genes of which three are mapped in one or more species. The connection between resistance genes and the mechanisms they encode remains a challenging task to elucidate.
Collapse
Affiliation(s)
- David G Heckel
- CESAR, Department of Genetics, University of Melbourne, Parkville, Vic. 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|