1
|
Li P, Zhou X, Wei T, Wang J, Gao Y. Potential mechanisms of synthetic endophytic bacterial community to reduce PAHs accumulation in vegetables. ENVIRONMENT INTERNATIONAL 2024; 194:109129. [PMID: 39556956 DOI: 10.1016/j.envint.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
The functional endophytic bacterial community can effectively degrade polycyclic aromatic hydrocarbons (PAHs), thereby reducing their accumulation in vegetables grown on contaminated sites. However, the biological mechanisms underlying this reduction remain unclear. In this study, we analyzed the efficacy of different colonization methods of the functional endophytic bacterial community m5 in reducing PAHs in vegetables, with a particular focus on the leaf painting method. The results demonstrated that various colonization methods effectively reduced PAHs in vegetables, with leaf painting proving to be a cost-effective and efficient approach. Compared to the non-inoculated control, PAH content in the edible parts of amaranth was reduced by 40.63 % using the leaf painting method. High-throughput sequencing and quantitative PCR revealed that leaf painting altered the bacterial community structure and key components of the bacterial network, enhancing bacterial cooperation. After 20 days of colonization, the abundance of phe and nidA genes in vegetables increased significantly, by tens to hundreds of times, compared to uninoculated controls, thereby promoting the degradation of PAHs in vegetables. This study enhances our understanding of the biological mechanisms by which endophytic bacterial communities reduce PAHs in vegetables.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Wei
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
2
|
Zhou X, Sun Y, Wang T, Tang L, Ling W, Mosa A, Wang J, Gao Y. Remediation potential of an immobilized microbial consortium with corn straw as a carrier in polycyclic aromatic hydrocarbons contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134091. [PMID: 38513440 DOI: 10.1016/j.jhazmat.2024.134091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in soils and threaten human health seriously. The immobilized microorganisms (IM) technique is an effective and environmentally sound approach for remediating PAH-contaminated soil. However, the knowledge of the remedial efficiency and the way IM operates using natural organic materials as carriers in complex soil environments is limited. In this study, we loaded a functional microbial consortium on corn straw to analyze the effect of IM on PAH concentration and explore the potential remediation mechanisms of IM in PAH-contaminated soil. The findings revealed that the removal rate of total PAHs in the soil was 88.25% with the application of IM after 20 days, which was 39.25% higher than the control treatment, suggesting that IM could more easily degrade PAHs in soil. The findings from high-throughput sequencing and quantitative PCR revealed that the addition of IM altered the bacterial community structure and key components of the bacterial network, enhanced cooperative relationships among bacteria, and increased the abundance of bacteria and functional gene copies such as nidA and nahAc in the soil, ultimately facilitating the degradation of PAHs in the soil. This study enhances our understanding of the potential applications of IM for the treatment of PAH-contaminated soil.
Collapse
Affiliation(s)
- Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuhao Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
3
|
Olajide PO, Adeloye AO. Hydrocarbon biodegradation by Proteus and Serratia strains isolated from oil-polluted water in Bonny Community, Niger Delta, Nigeria. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Miri S, Davoodi SM, Robert T, Brar SK, Martel R, Rouissi T. Enzymatic biodegradation of highly p-xylene contaminated soil using cold-active enzymes: A soil column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127099. [PMID: 34523486 DOI: 10.1016/j.jhazmat.2021.127099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic bioremediation is a sustainable and environment-friendly method for the clean-up of contaminated soil and water. In the present study, enzymatic bioremediation was designed using cold-active enzymes (psychrozymes) which catalyze oxidation steps of p-xylene biodegradation in highly contaminated soil (initial concentration of 13,000 mg/kg). The enzymes were obtained via co-culture of two psychrophilic Pseudomonas strains and characterized by kinetic studies and tandem LC-MS/MS. To mimic in situ application of enzyme mixture, bioremediation of p-xylene contaminated soil was carried out in soil column (140 mL) tests with the injection (3 pore volume) of different concentrations of enzyme cocktails (X, X/5, and X/10). Enzyme cocktail in X concentration contained about 10 U/mL of xylene monooxygenase (XMO) and 20 U/mL of catechol 2, 3 dioxygenases (C2,3D). X/5 and X/10 correspond to 5x and 10x dilution of enzyme cocktail respectively. The results showed that around 92-94% p-xylene removal was achieved in the treated soil column with enzyme concentration X, X/5 after second enzyme injection. While the p-xylene removal rate obtained by X/10 concentration of enzyme was less than 30% and near to untreated soil column (22.2%). The analysis of microbial diversity and biotoxicity assay (root elongation and seed germination) confirmed the advantage of using enzymes as a green and environmentally friendly approach for decontamination of pollutants with minimal or even positive effects on microbial community and also enrichment of soil after treatment.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Thomas Robert
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
5
|
Naloka K, Polrit D, Muangchinda C, Thoetkiattikul H, Pinyakong O. Bioballs carrying a syntrophic Rhodococcus and Mycolicibacterium consortium for simultaneous sorption and biodegradation of fuel oil in contaminated freshwater. CHEMOSPHERE 2021; 282:130973. [PMID: 34091296 DOI: 10.1016/j.chemosphere.2021.130973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Nonpathogenic effective bacterial hydrocarbon degraders, Rhodococcus ruber S103, Mycolicibacterium parafortuitum J101 and Mycolicibacterium austroafricanum Y502, were isolated from mixed polycyclic aromatic hydrocarbon (PAH)-enriched river sediments. They possessed broad substrate specificities toward various PAHs and aliphatic compounds as sole carbon sources. These strains exhibited promising characteristics, including biosurfactant production, high cell hydrophobicity, biofilm formation and no antagonistic interactions, and contained genes encoding hydrocarbon-degrading enzymes. The mixed bacterial consortium combining S103, J101 and Y502, showed more effective syntrophic degradation of two types of refined petroleum products, diesel and fuel oils, than monocultures. The defined consortium immobilized on plastic balls achieved over 50% removal efficiency of high fuel oil concentration (3000 mg L-1) in a synthetic medium and contaminated freshwater. Furthermore, the immobilized cells simultaneously degraded more than 46% of total fuel oil adsorbed on plastic balls in both culture systems. SEM imaging confirmed that the immobilized consortium exhibited biofilm formation with the bacterial community covering most of the bioball surface, resulting in high bacterial survival against toxic contaminants. The results of this study showed the potential use of the cooperative interaction between Rhodococcus and Mycolicibacterium as immobilized bioballs for the bioremediation of fuel oil-contaminated environments. Additionally, this research has motivated further investigations into the development of bioremediation products for fuel oil degradation.
Collapse
Affiliation(s)
- Kallayanee Naloka
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Duangporn Polrit
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanokporn Muangchinda
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Honglada Thoetkiattikul
- Technology Management Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Urbanowicz P, Bitar I, Izdebski R, Baraniak A, Literacka E, Hrabák J, Gniadkowski M. Epidemic Territorial Spread of IncP-2-Type VIM-2 Carbapenemase-Encoding Megaplasmids in Nosocomial Pseudomonas aeruginosa Populations. Antimicrob Agents Chemother 2021; 65:e02122-20. [PMID: 33526490 PMCID: PMC8097432 DOI: 10.1128/aac.02122-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
In 2003 to 2004, the first five VIM-2 metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) isolates with an In4-like integron, In461 (aadB-blaVIM-2-aadA6), on conjugative plasmids were identified in three hospitals in Poland. In 2005 to 2015, MPPA expanded much in the country, and as many as 80 isolates in a collection of 454 MPPA (∼18%) had In461, one of the two most common MBL-encoding integrons. The organisms occurred in 49 hospitals in 33 cities of 11/16 main administrative regions. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) classified them into 55 pulsotypes and 35 sequence types (STs), respectively, revealing their remarkable genetic diversity overall, with only a few small clonal clusters. S1 nuclease/hybridization assays and mating of 63 representative isolates showed that ∼85% of these had large In461-carrying plasmids, ∼350 to 550 kb, usually self-transmitting with high efficiency (∼10-1 to 10-2 per donor cell). The plasmids from 19 isolates were sequenced and subjected to structural and single-nucleotide-polymorphism (SNP)-based phylogenetic analysis. These formed a subgroup within a family of IncP-2-type megaplasmids, observed worldwide in pseudomonads from various environments and conferring resistance/tolerance to multiple stress factors, including antibiotics. Their microdiversity in Poland arose mainly from acquisition of different accessory fragments, as well as new resistance genes and multiplication of these. Short-read sequence and/or PCR mapping confirmed the In461-carrying plasmids in the remaining isolates to be the IncP-2 types. The study demonstrated a large-scale epidemic spread of multidrug resistance plasmids in P. aeruginosa populations, creating an epidemiological threat. It contributes to the knowledge on IncP-2 types, which are interesting research objects in resistance epidemiology, environmental microbiology, and biotechnology.
Collapse
Affiliation(s)
- Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Anna Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - Jaroslav Hrabák
- Biomedical Center, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
7
|
Sakshi, Haritash AK. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 2020; 202:2033-2058. [DOI: 10.1007/s00203-020-01929-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023]
|
8
|
Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. CHEMOSPHERE 2019; 222:132-140. [PMID: 30703652 DOI: 10.1016/j.chemosphere.2019.01.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The biodegradation potential of three bacterial cultures isolated from the rhizosphere of maize (Zea mays) and Sudan grass (Sorghum sudanense) grown in PAHs contaminated soils to degrade benzo[a]pyrene (BaP) and pyrene (PYR) was assessed. Of the three bacterial cultures isolated, two belonged to Gram-positive bacteria of phylum Actinobacteria namely Arthrobacter sp. MAL3 and Microbacterium sp. MAL2. The Gram-negative bacterial culture was Stenotrophomonas sp. MAL1, from the phylum Proteobacteria. The cultures were grown in the presence of BaP and PYR as sole carbon sources and with the addition of low molecular weight organic acids (LMWOAs) mixture. After 10-14 days of exposure, all the bacterial isolates exhibited a complete degradation of PYR with the addition of LMWOAs mixture, whereas only 38.7% of BaP was degraded by Stenotrophomonas sp. MAL1 with the addition of LMWOAs mixture. In addition, enhanced PAHs biodegradation by bacterial culture was observed when the PAHs present as mixture (BaP + PYR) with the addition of LMWOAs. Dioxygenase genes were detected in Stenotrophomonas sp. MAL1 (phnAC), and Arthrobacter sp. MAL3 (nidA and PAH-RHDα). Therefore, this study provides new insights on the influence of LMWOAs in enhancing the degradation of high molecular weight (HMW) PAHs in soil by rhizosphere bacterial cultures.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
9
|
Pasumarthi R, Mutnuri S. Horizontal gene transfer versus biostimulation: A strategy for bioremediation in Goa. MARINE POLLUTION BULLETIN 2016; 113:271-276. [PMID: 28029340 DOI: 10.1016/j.marpolbul.2016.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Bioaugmentation, Biostimulation and Horizontal gene transfer (HGT) of catabolic genes have been proven for their role in bioremediation of hydrocarbons. It also has been proved that selection of either biostimulation or bioremediation varies for every contaminated site. The reliability of HGT compared to biostimulation and bioremediation was not tested. The present study focuses on reliability of biostimulatiion, bioaugmentation and HGT during biodegradation of Diesel oil and Non aqueous phase liquids (NAPL). Pseudomonas aeruginosa (AEBBITS1) having alkB and NDO genes was used for bioaugmentation and the experiment was conducted using seawater as medium. Based on Gas chromatography results diesel was found to be degraded to 100% in both presence and absence of AEBBITS1. Denturing gradient gel electrophoresis result showed same pattern in presence and absence of AEBBITS1 indicating no HGT. NAPL degradation was found to be more by Biostimulated Bioaugmentation compared to biostimulation and bioaugmentation alone. This proves that biostimulated bioaugmentation is better strategy for oil contamination (tarabll) in Velsao beach, Goa.
Collapse
Affiliation(s)
- Rajesh Pasumarthi
- Applied and Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, India.
| | - Srikanth Mutnuri
- Applied and Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, India.
| |
Collapse
|
10
|
Wang Z, Pan F, Hesham AEL, Gao Y, Zhang Y, Yang M. Impacts of produced water origin on bacterial community structures of activated sludge. J Environ Sci (China) 2015; 37:192-199. [PMID: 26574104 DOI: 10.1016/j.jes.2015.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to reveal how activated sludge communities respond to influent quality and indigenous communities by treating two produced waters from different origins in a batch reactor in succession. The community shift and compositions were investigated using Polymerase Chain Reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and further 16S ribosomal DNA (rDNA) clone library analysis. The abundance of targeted genes for polycyclic aromatic hydrocarbon (PAH) degradation, nahAc/phnAc and C12O/C23O, was tracked to define the metabolic ability of the in situ microbial community by Most Probable Number (MPN) PCR. The biosystem performed almost the same for treatment of both produced waters in terms of removals of chemical oxygen demand (COD) and PAHs. Sludge communities were closely associated with the respective influent bacterial communities (similarity>60%), while one sludge clone library was dominated by the Betaproteobacteria (38%) and Bacteriodetes (30%) and the other was dominated by Gammaproteobacteria (52%). This suggested that different influent and water quality have an effect on sludge community compositions. In addition, the existence of catabolic genes in sludge was consistent with the potential for degradation of PAHs in the treatment of both produced waters.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory for Microorganisms and Functional Molecules, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Feng Pan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Abd El-Latif Hesham
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Genetics Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Yingxin Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Puntus IF, Ryazanova LP, Zvonarev AN, Funtikova TV, Kulakovskaya TV. The role of mineral phosphorus compounds in naphthalene biodegradation by Pseudomonas putida. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Herrick J, Haynes R, Heringa S, Brooks J, Sobota L. Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria. J Appl Microbiol 2014; 117:380-9. [DOI: 10.1111/jam.12538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J.B. Herrick
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - R. Haynes
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - S. Heringa
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - J.M. Brooks
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - L.T. Sobota
- Department of Biology; James Madison University; Harrisonburg VA USA
| |
Collapse
|
13
|
Kathiravan V, Krishnani KK. Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World J Microbiol Biotechnol 2013; 30:1187-98. [DOI: 10.1007/s11274-013-1543-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
|
14
|
Maqbool F, Wang Z, Xu Y, Zhao J, Gao D, Zhao YG, Bhatti ZA, Xing B. Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. JOURNAL OF HAZARDOUS MATERIALS 2012; 237-238:262-269. [PMID: 22975255 DOI: 10.1016/j.jhazmat.2012.08.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
The present study reports the effect of bioaugmentation by free and immobilized bacterial culture on the rhizodegradation of petroleum-polluted soil using Sesbania cannabina plant. Total petroleum hydrocarbon (TPH), hydrocarbon-degrading bacterial counts, microbial activity and root morphology were assessed during 120 days of plant growth. TPH concentration analyzed by GC-MS showed that bioaugmentation did not improve the TPH degradation. TPH concentration decreased from 2541 mg kg(-1) to 673 mg kg(-1) and 867 mg kg(-1) in the rhizosphere of free (FR) and immobilized bacterial inoculated (IR) soil, respectively at the 120th day while in the rhizosphere of uninoculated soil (CR) concentration decreased to 679 mg kg(-1) only at the 90th day, showing higher and rapid rhizodegradation with indigenous bacteria than bioaugmented bacterial cultures. Various predominant bacterial groups responsible for higher TPH degradation in the rhizosphere of S. cannabina were identified by PCR-DGGE analysis. It is concluded that natural plant-microbe interaction in the rhizosphere of S. cannabina was efficient enough to degrade TPH and plant rhizosphere keeps bacterial community in its surrounding therefore immobilized culture had no obvious effect on petroleum degradation.
Collapse
Affiliation(s)
- Farhana Maqbool
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Shintani M, Takahashi Y, Yamane H, Nojiri H. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 2011; 25:253-65. [PMID: 21576880 DOI: 10.1264/jsme2.me10155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.
Collapse
Affiliation(s)
- Masaki Shintani
- Bioresource Center, Japan Collection of Microorganisms (BRC-JCM), Riken, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | |
Collapse
|
16
|
Anjum R, Grohmann E, Malik A. Exogenous isolation of conjugative plasmids from pesticide contaminated soil. World J Microbiol Biotechnol 2011; 28:567-74. [DOI: 10.1007/s11274-011-0849-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
|
17
|
Akhmetov LI, Filonov AE, Puntus IF, Kosheleva IA, Nechaeva IA, Yonge DR, Petersen JN, Boronin AM. Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261708010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:523-532. [PMID: 20851515 DOI: 10.1016/j.jhazmat.2010.08.067] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 05/06/2023]
Abstract
Twenty-six different plant species were analyzed regarding their performance in soil contaminated with petroleum oil. Two well-performing species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) and the combination of these two plants were selected to study the ecology of plant-associated, culturable alkane-degrading bacteria. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA gene, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Furthermore, we investigated whether alkane hydroxylase genes are plasmid located. Higher numbers of culturable, alkane-degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Degradation genes were found both on plasmids as well as in the chromosome. In regard to application of plants for rhizodegradation, where support of numerous degrading bacteria is essential for efficient break-down of pollutants, Italian ryegrass seems to be more appropriate than Birdsfoot trefoil.
Collapse
Affiliation(s)
- Sohail Yousaf
- Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria
| | - Verania Andria
- Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria
| | - Thomas G Reichenauer
- Unit of Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria
| | - Kornelia Smalla
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, D-38104 Braunschweig, Germany
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria.
| |
Collapse
|
19
|
Khan S, El-Latif Hesham A, Qing G, Shuang L, He J. Biodegradation of pyrene and catabolic genes in contaminated soils cultivated with Lolium multiflorum L. JOURNAL OF SOILS AND SEDIMENTS 2009; 9:482-491. [DOI: 10.1007/s11368-009-0061-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Heinaru E, Vedler E, Jutkina J, Aava M, Heinaru A. Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20. FEMS Microbiol Ecol 2009; 70:563-74. [PMID: 19744238 DOI: 10.1111/j.1574-6941.2009.00763.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The complete 83 042-bp nucleotide sequence of the IncP-9 naphthalene degradation plasmid pNAH20 from Pseudomonas fluorescens PC20 exhibits striking similarity in size and sequence to another naphthalene (NAH) plasmid pDTG1. However, the positions of insertion sequence (IS) elements significantly alter both catabolic and backbone functions provided by the two plasmids. In pDTG1, insertion of a pCAR1 ISPre1-like element disrupts expression of the lower naphthalene operon and this strain utilizes the chromosomal pathway for complete naphthalene degradation. In pNAH20, this operon is intact and functional. The transfer frequency of pNAH20 is 100 times higher than that of pDTG1 probably due to insertion of the pCAR1 ISPre2-like element into the mpfR gene coding for a putative repressor of the mpf operon responsible for mating pilus formation. We also demonstrate in situ plasmid transfer - we isolated a rhizosphere transconjugant strain of pNAH20, P. fluorescens NS8. The plasmid pNS8, a derivative of pNAH20, lacks the ability to self-transfer as a result of an additional insertion event of ISPre2-like element that disrupts the gene coding for VirB2-like major pilus protein MpfA. The characteristics of the strain PC20 and the conjugal transfer/mobilization capacity of pNAH20 (or its backbone) make this strain/plasmid a potentially successful tool for bioremediation applications.
Collapse
Affiliation(s)
- Eeva Heinaru
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia
| | | | | | | | | |
Collapse
|
21
|
Pumphrey GM, Hanson BT, Chandra S, Madsen EL. Dynamic secondary ion mass spectrometry imaging of microbial populations utilizing C-labelled substrates in pure culture and in soil. Environ Microbiol 2008; 11:220-9. [PMID: 18811644 DOI: 10.1111/j.1462-2920.2008.01757.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate that dynamic secondary ion mass spectrometry (SIMS)-based ion microscopy can provide a means of measuring (13)C assimilation into individual bacterial cells grown on (13)C-labelled organic compounds in the laboratory and in field soil. We grew pure cultures of Pseudomonas putida NCIB 9816-4 in minimal media with known mixtures of (12)C- and (13)C-glucose and analysed individual cells via SIMS imaging. Individual cells yielded signals of masses 12, 13, 24, 25, 26 and 27 as negative secondary ions indicating the presence of (12)C(-), (13)C(-), (24)((12)C(2))(-), (25)((12)C(13)C)(-), (26)((12)C(14)N)(-) and (27)((13)C(14)N)(-) ions respectively. We verified that ratios of signals taken from the same cells only changed minimally during a approximately 4.5 min period of primary O(2)(+) beam sputtering by the dynamic SIMS instrument in microscope detection mode. There was a clear relationship between mass 27 and mass 26 signals in Pseudomonas putida cells grown in media containing varying proportions of (12)C- to (13)C-glucose: a standard curve was generated to predict (13)C-enrichment in unknown samples. We then used two strains of Pseudomonas putida able to grow on either all or only a part of a mixture of (13)C-labelled and unlabelled carbon sources to verify that differential (13)C signals measured by SIMS were due to (13)C assimilation into cell biomass. Finally, we made three key observations after applying SIMS ion microscopy to soil samples from a field experiment receiving (12)C- or (13)C-phenol: (i) cells enriched in (13)C were heterogeneously distributed among soil populations; (ii) (13)C-labelled cells were detected in soil that was dosed a single time with (13)C-phenol; and (iii) in soil that received 12 doses of (13)C-phenol, 27% of the cells in the total community were more than 90% (13)C-labelled.
Collapse
Affiliation(s)
- Graham M Pumphrey
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
22
|
Insertion sequence-based cassette PCR: cultivation-independent isolation of γ-hexachlorocyclohexane-degrading genes from soil DNA. Appl Microbiol Biotechnol 2008; 79:627-32. [DOI: 10.1007/s00253-008-1463-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
23
|
Vasylenko SL, Titok MA. Inheritance of biodegradation plasmids in the cells of homo- and heterologous hosts. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Doyle E, Muckian L, Hickey AM, Clipson N. Microbial PAH Degradation. ADVANCES IN APPLIED MICROBIOLOGY 2008; 65:27-66. [DOI: 10.1016/s0065-2164(08)00602-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere. Appl Microbiol Biotechnol 2007; 77:733-9. [DOI: 10.1007/s00253-007-1187-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 08/25/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
|
26
|
Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 2007; 9:1878-89. [PMID: 17635536 DOI: 10.1111/j.1462-2920.2007.01352.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have coupled fluorescence in situ hybridization (FISH) with Raman microscopy for simultaneous cultivation-independent identification and determination of (13)C incorporation into microbial cells. Highly resolved Raman confocal spectra were generated for individual cells which were grown in minimal medium where the ratio of (13)C to (12)C content of the sole carbon source was incrementally varied. Cells which were (13)C-labelled through anabolic incorporation of the isotope exhibited key red-shifted spectral peaks, the calculated 'red shift ratio' (RSR) being highly correlated with the (13)C-content of the cells. Subsequently, Raman instrumentation and FISH protocols were optimized to allow combined epifluorescence and Raman imaging of Fluos, Cy3 and Cy5-labelled microbial populations at the single cell level. Cellular (13)C-content determinations exhibited good congruence between fresh cells and FISH hybridized cells indicating that spectral peaks, including phenylalanine resonance, which were used to determine (13)C-labelling, were preserved during fixation and hybridization. In order to demonstrate the suitability of this technology for structure-function analyses in complex microbial communities, Raman-FISH was deployed to show the importance of Pseudomonas populations during naphthalene degradation in groundwater microcosms. Raman-FISH extends and complements current technologies such as FISH-microautoradiography and stable isotope probing in that it can be applied at the resolution of single cells in complex communities, is quantitative if suitable calibrations are performed, can be used with stable isotopes and has analysis times of typically 1 min per cell.
Collapse
Affiliation(s)
- Wei E Huang
- Biodiversity and Ecosystem Function Group, Molecular Microbial Ecology Section, Centre for Ecology and Hydrology Oxford, Mansfield Road, Oxford, OX1 3SR, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Schlüter A, Szczepanowski R, Pühler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 2007; 31:449-77. [PMID: 17553065 DOI: 10.1111/j.1574-6976.2007.00074.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
28
|
Park M, Jeon Y, Jang HH, Ro HS, Park W, Madsen EL, Jeon CO. Molecular and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase from Polaromonas naphthalenivorans CJ2. Appl Environ Microbiol 2007; 73:5146-52. [PMID: 17586666 PMCID: PMC1950974 DOI: 10.1128/aem.00782-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior research revealed that Polaromonas naphthalenivorans CJ2 carries and expresses genes encoding the gentisate metabolic pathway for naphthalene. These metabolic genes are split into two clusters, comprising nagRAaGHAbAcAdBFCQEDJI'-orf1-tnpA and nagR2-orf2I''KL (C. O. Jeon, M. Park, H. Ro, W. Park, and E. L. Madsen, Appl. Environ. Microbiol. 72:1086-1095, 2006). BLAST homology searches of sequences in GenBank indicated that the orf2 gene from the small cluster likely encoded a salicylate 5-hydroxylase, presumed to catalyze the conversion of salicylate into gentisate. Here, we report physiological and genetic evidence that orf2 does not encode salicylate 5-hydroxylase. Instead, we have found that orf2 encodes 3-hydroxybenzoate 6-hydroxylase, the enzyme which catalyzes the NADH-dependent conversion of 3-hydroxybenzoate into gentisate. Accordingly, we have renamed orf2 nagX. After expression in Escherichia coli, the NagX enzyme had an approximate molecular mass of 43 kDa, as estimated by gel filtration, and was probably a monomeric protein. The enzyme was able to convert 3-hydroxybenzoate into gentisate without salicylate 5-hydroxylase activity. Like other 3-hydroxybenzoate 6-hydroxylases, NagX utilized both NADH and NADPH as electron donors and exhibited a yellowish color, indicative of a bound flavin adenine dinucleotide. An engineered mutant of P. naphthalenivorans CJ2 defective in nagX failed to grow on 3-hydroxybenzoate but grew normally on naphthalene. These results indicate that the previously described small catabolic cluster in strain CJ2 may be multifunctional and is essential for the degradation of 3-hydroxybenzoate. Because nagX and an adjacent MarR-type regulatory gene are both closely related to homologues in Azoarcus species, this study raises questions about horizontal gene transfer events that contribute to operon evolution.
Collapse
Affiliation(s)
- Minjeong Park
- Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Vetrova AA, Nechaeva IA, Ignatova AA, Puntus IF, Arinbasarov MU, Filonov AE, Boronin AM. Effect of catabolic plasmids on physiological parameters and efficiency of oil destruction by Pseudomonas bacteria. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707030071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Ono A, Miyazaki R, Sota M, Ohtsubo Y, Nagata Y, Tsuda M. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Appl Microbiol Biotechnol 2006; 74:501-10. [PMID: 17096121 DOI: 10.1007/s00253-006-0671-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 09/06/2006] [Accepted: 09/10/2006] [Indexed: 10/23/2022]
Abstract
Two different cultivation-independent approaches were applied to isolate genes for naphthalene dioxygenase (NDO) from oil-contaminated soil in Japan. One approach was the construction of a broad-host-range cosmid-based metagenomic DNA library, and the other was the so-called exogenous plasmid isolation technique. Our screening of NDO genes in both approaches was based on the functional complementation of Pseudomonas putida strains which contained Tn4655K, a transposon carrying the entire set of naphthalene-catabolic (nah) genes but lacking the NDO-encoding gene. We obtained in the former approach a cosmid clone (pSLX928-6) that carried an nah upper pathway operon for conversion of naphthalene to salicylate, and this operon showed a significantly high level of similarity to the corresponding operon on an IncP-9 naphthalene-catabolic plasmid, pDTG1. In the latter approach, the microbial fraction from the soil was mated with a plasmid-free P. putida strain containing a chromosomal copy of Tn4655K, and transconjugants were obtained that received either a 200- or 80-kb plasmid containing all the nah genes for the complete degradation of naphthalene. Subsequent analysis revealed that (1) both plasmids belong to the IncP-9 incompatibility group; (2) their nah upper pathway operons are significantly similar, but not completely identical, to those of pDTG1 and pSLX928-6; and (3) these plasmids carried genes for the salicylate metabolism by the meta-cleavage pathway.
Collapse
Affiliation(s)
- Akira Ono
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Leuchuk AA, Bulyha IM, Izmalkova TY, Sevastyanovich YR, Kosheleva IA, Thomas CM, Titok MA. Nah plasmids of the IncP-9 group in natural Pseudomonas strains. Mol Biol 2006. [DOI: 10.1134/s0026893306050098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M. Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in gamma-hexachlorocyclohexane degradation. Appl Environ Microbiol 2006; 72:6923-33. [PMID: 16963556 PMCID: PMC1636184 DOI: 10.1128/aem.01531-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha-proteobacterial strain Sphingobium japonicum UT26 utilizes a highly chlorinated pesticide, gamma-hexachlorocyclohexane (gamma-HCH), as a sole source of carbon and energy, and haloalkane dehalogenase LinB catalyzes the second step of gamma-HCH degradation in UT26. Functional complementation of a linB mutant of UT26, UT26DB, was performed by the exogenous plasmid isolation technique using HCH-contaminated soil, leading to our successful identification of a plasmid, pLB1, carrying the linB gene. Complete sequencing analysis of pLB1, with a size of 65,998 bp, revealed that it carries (i) 50 totally annotated coding sequences, (ii) an IS6100 composite transposon containing two copies of linB, and (iii) potential genes for replication, maintenance, and conjugative transfer with low levels of similarity to other homologues. A minireplicon assay demonstrated that a 2-kb region containing the predicted repA gene and its upstream region of pLB1 functions as an autonomously replicating unit in UT26. Furthermore, pLB1 was conjugally transferred from UT26DB to other alpha-proteobacterial strains but not to any of the beta- or gamma-proteobacterial strains examined to date. These results suggest that this exogenously isolated novel plasmid contributes to the dissemination of at least some genes for gamma-HCH degradation in the natural environment. To the best of our knowledge, this is the first detailed report of a plasmid involved in gamma-HCH degradation.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Park JW, Crowley DE. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils. Appl Microbiol Biotechnol 2006; 72:1322-9. [PMID: 16804694 DOI: 10.1007/s00253-006-0423-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Many bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) contain the nahAc gene that encodes a component of multimeric naphthalene dioxygenases. Because the nahAc gene is highly conserved, this gene serves as a potential biomarker for PAH degradation activity. The aim of this research was to examine the relationship between the rate of naphthalene degradation and the copy number of the nahAc gene in soils using conventional and real-time PCR. Four sets of degenerate primers for real-time PCR were designed based on the nahAc DNA sequences of 33 bacterial species. Before addition of naphthalene, copy numbers of the nahAc gene were below the detection limits of the assay at 5 x 10(3) copy numbers per gram of soil, but increased by over a thousand fold to 10(7) copies after 6 days of exposure to naphthalene vapors (approximately 30 ppm soil water concentration). Two unreported naphthalene dioxygenase homologs were found in the naphthalene-spiked soil by cloning and sequencing of the PCR products from the nahAc primers. Results of these experiments demonstrate the highly dynamic changes that occur in soil microbial communities after exposure to naphthalene and suggest that there is a direct relationship between gene copy numbers and degradation rates for naphthalene in PAH-contaminated soils.
Collapse
Affiliation(s)
- Joong-Wook Park
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
34
|
Shintani M, Yano H, Habe H, Omori T, Yamane H, Tsuda M, Nojiri H. Characterization of the replication, maintenance, and transfer features of the IncP-7 plasmid pCAR1, which carries genes involved in carbazole and dioxin degradation. Appl Environ Microbiol 2006; 72:3206-16. [PMID: 16672459 PMCID: PMC1472330 DOI: 10.1128/aem.72.5.3206-3216.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Accepted: 02/08/2006] [Indexed: 11/20/2022] Open
Abstract
Isolated from Pseudomonas resinovorans CA10, pCAR1 is a 199-kb plasmid that carries genes involved in the degradation of carbazole and dioxin. The nucleotide sequence of pCAR1 has been determined previously. In this study, we characterized pCAR1 in terms of its replication, maintenance, and conjugation. By constructing miniplasmids of pCAR1 and testing their establishment in Pseudomonas putida DS1, we show that pCAR1 replication is due to the repA gene and its upstream DNA region. The repA gene and putative oriV region could be separated in P. putida DS1, and the oriV region was determined to be located within the 345-bp region between the repA and parW genes. Incompatibility testing using the minireplicon of pCAR1 and IncP plasmids indicated that pCAR1 belongs to the IncP-7 group. Monitoring of the maintenance properties of serial miniplasmids in nonselective medium, and mutation and complementation analyses of the parWABC genes, showed that the stability of pCAR1 is attributable to the products of the parWAB genes. In mating assays, the transfer of pCAR1 from CA10 was detected in a CA10 derivative that was cured of pCAR1 (CA10dm4) and in P. putida KT2440 at frequencies of 3 x 10(-1) and 3 x 10(-3) per donor strain, respectively. This is the first report of the characterization of this completely sequenced IncP-7 plasmid.
Collapse
Affiliation(s)
- Masaki Shintani
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Fiett J, Baraniak A, Mrówka A, Fleischer M, Drulis-Kawa Z, Naumiuk Ł, Samet A, Hryniewicz W, Gniadkowski M. Molecular epidemiology of acquired-metallo-beta-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 2006; 50:880-6. [PMID: 16495246 PMCID: PMC1426447 DOI: 10.1128/aac.50.3.880-886.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have analyzed 40 metallo-beta-lactamase (MBL)-producing isolates of Pseudomonas aeruginosa (n = 38), Pseudomonas putida (n = 1), and Acinetobacter genospecies 3 (n = 1) from 17 hospitals in 12 cities in Poland that were identified in 2000 to 2004. Pulsed field gel electrophoresis typing classified the P. aeruginosa isolates into eight types, with two types differentiated further into subtypes. Each of the types was specific either to a given center or to several hospitals of the same or neighboring geographic area. Almost all of the organisms produced beta-lactamase VIM-2; the only exceptions were several P. aeruginosa isolates from two centers which expressed VIM-4. The bla(VIM) genes resided exclusively within class 1 integrons, and these were located in either chromosomal or plasmid DNA. PCR-restriction fragment length polymorphism study of the variable regions of the integrons, followed by DNA sequencing, revealed the presence of eight different, mostly novel gene cassette arrays, six of which contained bla(VIM-2) and two of which contained bla(VIM-4). The occurrence of the integron variants correlated well with the geographic distribution of the MBL-producing organisms, and this suggested that their emergence in particular parts of the country had been likely due to a number of independent events. The following regional dissemination of MBL producers could be attributed to various phenomena, including their clonal spread, horizontal transmission of resistance determinants, or both. All of the data collected in this study revealed that even at this early stage of detection, the epidemiological situation concerning MBL producers in Poland has already been complex and very dynamic.
Collapse
Affiliation(s)
- Janusz Fiett
- National Institute of Public Health, ul. Chełmska 30/34, 00-725 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jeon CO, Park M, Ro HS, Park W, Madsen EL. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 2006; 72:1086-95. [PMID: 16461653 PMCID: PMC1392936 DOI: 10.1128/aem.72.2.1086-1095.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polaromonas naphthalenivorans CJ2, found to be responsible for the degradation of naphthalene in situ at a coal tar waste-contaminated site (C.-O. Jeon et al., Proc. Natl. Acad. Sci. USA 100:13591-13596, 2003), is able to grow on mineral salts agar media with naphthalene as the sole carbon source. Beginning from a 484-bp nagAc-like region, we used a genome walking strategy to sequence genes encoding the entire naphthalene degradation pathway andadditional flanking regions. We found that the naphthalene catabolic genes in P. naphthalenivorans CJ2 were divided into one large and one small gene cluster, separated by an unknown distance. The large gene cluster (nagRAaGHAbAcAdBFCQEDJI'ORF1tnpA) is bounded by a LysR-type regulator (nagR). The small cluster (nagR2ORF2I"KL) is bounded by a MarR-type regulator (nagR2). The catabolic genes of P. naphthalenivorans CJ2 were homologous to many of those of Ralstonia U2, which uses the gentisate pathway to convert naphthalene to central metabolites. However, three open reading frames (nagY, nagM, and nagN), present in Ralstonia U2, were absent. Also, P. naphthalenivorans carries two copies of gentisate dioxygenase (nagI) with 77.4% DNA sequence identity to one another and 82% amino acid identity to their homologue in Ralstonia sp. strain U2. Investigation of the operons using reverse transcription PCR showed that each cluster was controlled independently by its respective promoter. Insertional inactivation and lacZ reporter assays showed that nagR2 is a negative regulator and that expression of the small cluster is not induced by naphthalene, salicylate, or gentisate. Association of two putative Azoarcus-related transposases with the large cluster and one Azoarcus-related putative salicylate 5-hydroxylase gene (ORF2) in the small cluster suggests that mobile genetic elements were likely involved in creating the novel arrangement of catabolic and regulatory genes in P. naphthalenivorans.
Collapse
Affiliation(s)
- Che Ok Jeon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | |
Collapse
|
37
|
Ma Y, Wang L, Shao Z. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 2006; 8:455-65. [PMID: 16478452 DOI: 10.1111/j.1462-2920.2005.00911.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Twenty-two polycyclic aromatic hydrocarbon (PAH)-degrading bacterial strains were isolated from Antarctic soils with naphthalene or phenanthrene as a sole carbon source, while no degrader was obtained from an unpolluted sampling site. Phylogenetic analysis showed that all belonged to the genus Pseudomonas except one that was identified as the genus of Rahnella. Some of them were closely related to previously reported cold-tolerant species, while some were separated in deeply rooted branches and represent new strains. All these strains showed a high efficiency to degrade naphthalene at 4 degrees C, and some additionally degraded phenanthrene. Using degenerate primers and polymerase chain reaction (PCR) amplification, ndo gene encoding naphthalene dioxygenase (NDO) was detected from all the isolates. Phylogenetic analysis grouped these genes into two clusters which shared 94% similarity to each other, and showed about 97% similarity within a cluster. However, no obvious difference was observed with mesophilic ndo genes; this indicates that the host cell is pivotal in cold adaptation. In addition, the mismatch between 16S rRNA and NDO phylogenetic trees strongly indicates horizontal gene transfer among these isolates and may have happened in situ. Further, Southern hybridization and plasmid curing confirmed that ndo genes were located on a large self-transmissible plasmid, which can be transferred to a mesophilic strains. The transconjugants acquired the ability to utilize naphthalene and phenanthrene. Results of this article imply that Pseudomonas plays an important role in PAH biodegradation in Antarctic soils, and the related genes might be originally transferred from outside Antarctica and spread among indigenous species.
Collapse
MESH Headings
- Antarctic Regions
- Blotting, Southern
- Conjugation, Genetic
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dioxygenases
- Gene Transfer, Horizontal
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Naphthalenes/metabolism
- Oxygenases/genetics
- Phenanthrenes/metabolism
- Phylogeny
- Plasmids/genetics
- Polycyclic Aromatic Hydrocarbons/metabolism
- Polymerase Chain Reaction
- Pseudomonas/classification
- Pseudomonas/genetics
- Pseudomonas/isolation & purification
- Pseudomonas/metabolism
- RNA, Ribosomal, 16S/genetics
- Rahnella/classification
- Rahnella/genetics
- Rahnella/isolation & purification
- Rahnella/metabolism
- Sequence Analysis, DNA
- Sequence Homology
- Soil Microbiology
- Temperature
Collapse
Affiliation(s)
- Yingfei Ma
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | | | | |
Collapse
|
38
|
Volkova OV, Anokhina TO, Puntus IF, Kochetkov VV, Filonov AE, Boronin AM. Effects of Naphthalene Degradative Plasmids on the Physiological Characteristics of Rhizosphere Bacteria of the Genus Pseudomonas. APPL BIOCHEM MICRO+ 2005. [DOI: 10.1007/s10438-005-0082-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
The Construction and Monitoring of Genetically Tagged, Plasmid-Containing, Naphthalene-Degrading Strains in Soil. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0088-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
40
|
Peters M, Tomikas A, Nurk A. Organization of the horizontally transferred pheBA operon and its adjacent genes in the genomes of eight indigenous Pseudomonas strains. Plasmid 2005; 52:230-6. [PMID: 15518880 DOI: 10.1016/j.plasmid.2004.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/12/2004] [Indexed: 11/27/2022]
Abstract
Horizontal transfer of genes encoding phenol degradation (pheBA) in the environment has been previously described. Complete or partial phe-operon was redetected in plasmids of several indigenous Pseudomonas strains isolated from the river water. The sequences of up- and downstream regions of the acquired phe-DNA in eight different plasmids were analyzed. In all cases, miniature insertional elements or putative transposase genes were found suggesting transposase dependent pheBA integration into plasmids. In three cases, an open reading frame encoding homologue to the transcription regulator protein (CatR) of the pheBA operon was determined.
Collapse
Affiliation(s)
- Maire Peters
- Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia.
| | | | | |
Collapse
|
41
|
Sokolov SL, Kosheleva IA, Filonov AE, Boronin AM. The effect of transposons on the expression of the naphthalene biodegradation genes in Pseudomonas putida BS202(NPL-1) and derivative strains. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
42
|
Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 133:71-84. [PMID: 15327858 DOI: 10.1016/j.envpol.2004.04.015] [Citation(s) in RCA: 565] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 04/13/2004] [Indexed: 05/13/2023]
Abstract
Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs.
Collapse
Affiliation(s)
- Anders R Johnsen
- National Environmental Research Institute, Department of Environmental Chemistry and Microbiology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | | |
Collapse
|
43
|
Park W, Madsen EL. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil. Appl Microbiol Biotechnol 2004; 66:209-16. [PMID: 15278309 DOI: 10.1007/s00253-004-1630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/24/2004] [Accepted: 04/04/2004] [Indexed: 10/26/2022]
Abstract
Sequencing, RFLP analyses and experiments utilizing a lacZ transcriptional reporter fused to the promoter regions of nahR and nahG in Pseudomonas putida Cg1 confirmed that regulation of naphthalene degradation in both P. putida Cg1 and the type strain, P. putida NCIB 9816-4, is consistent with that of NAH7 from P. putida G7. Two nahR knockout strains (RK1 and Cg1-NAHR from P. putida NCIB 9816-4 and Cg1, respectively) showed a growth defect in the presence of naphthalene as sole carbon and energy source. We hypothesized that nahR influences ecological fitness of bacteria in naphthalene-contaminated soil and tested this hypothesis using both parent and nahR-knockout strains introduced to soil microcosms with and without added naphthalene. After 21 days, loss of cell viability was pronounced in the presence of added naphthalene crystals for nahR mutants of both test bacteria, relative to the wild types. Diminished viable counts were attributed to toxicity. Thus, our data indicated that NahR in P. putida Cg1 is virtually identical to its homologues in other pseudomonads and that nahR is required for resistance to naphthalene toxicity, hence the persistence of bacterial cells in soil with high concentrations of naphthalene.
Collapse
Affiliation(s)
- W Park
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
44
|
Priefert H, O'Brien XM, Lessard PA, Dexter AF, Choi EE, Tomic S, Nagpal G, Cho JJ, Agosto M, Yang L, Treadway SL, Tamashiro L, Wallace M, Sinskey AJ. Indene bioconversion by a toluene inducible dioxygenase of Rhodococcus sp. I24. Appl Microbiol Biotechnol 2004; 65:168-76. [PMID: 15069586 DOI: 10.1007/s00253-004-1589-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/29/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
Rhodococcus sp. I24 can oxygenate indene via at least three independent enzyme activities: (i) a naphthalene inducible monooxygenase (ii) a naphthalene inducible dioxygenase, and (iii) a toluene inducible dioxygenase (TID). Pulsed field gel analysis revealed that the I24 strain harbors two megaplasmids of approximately 340 and approximately 50 kb. Rhodococcus sp. KY1, a derivative of the I24 strain, lacks the approximately 340 kb element as well as the TID activity. Southern blotting and sequence analysis of an indigogenic, I24-derived cosmid suggested that an operon encoding a TID resides on the approximately 340 kb element. Expression of the tid operon was induced by toluene but not by naphthalene. In contrast, naphthalene did induce expression of the nid operon, encoding the naphthalene dioxygenase in I24. Cell free protein extracts of Escherichia coli cells expressing tidABCD were used in HPLC-based enzyme assays to characterize the indene bioconversion of TID in vitro. In addition to 1-indenol, indene was transformed to cis-indandiol with an enantiomeric excess of 45.2% of cis-(1S,2R)-indandiol over cis-(1R,2S)-indandiol, as revealed by chiral HPLC analysis. The Km of TID for indene was 380 microM. The enzyme also dioxygenated naphthalene to cis-dihydronaphthalenediol with an activity of 78% compared to the formation of cis-indandiol from indene. The Km of TID for naphthalene was 28 microM. TID converted only trace amounts of toluene to 1,2-dihydro-3-methylcatechol after prolonged incubation time. The results indicate the role of the tid operon in the bioconversion of indene to 1-indenol and cis-(1S,2R)-indandiol by Rhodococcus sp. I24.
Collapse
Affiliation(s)
- Horst Priefert
- Department of Biology, 68-370, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ. Rhizoremediation: a beneficial plant-microbe interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:6-15. [PMID: 14714863 DOI: 10.1094/mpmi.2004.17.1.6] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Worldwide, contamination of soil and ground water is a severe problem. The negative effects of pollutants on the environment and on human health are diverse and depend on the nature of the pollution. The search for alternative methods for excavation and incineration to clean polluted sites resulted in the application of bioremediation techniques. In this review, we describe some generally accepted bioremediation tools and subsequently focus on the combination of two approaches, phytoremediation and bioaugmentation, resulting in rhizoremediation. During rhizoremediation, exudates derived from the plant can help to stimulate the survival and action of bacteria, which subsequently results in a more efficient degradation of pollutants. The root system of plants can help to spread bacteria through soil and help to penetrate otherwise impermeable soil layers. The inoculation of pollutant-degrading bacteria on plant seed can be an important additive to improve the efficiency of phytoremediation or bioaugmentation.
Collapse
Affiliation(s)
- Irene Kuiper
- Leiden University, Institute of Biology Leiden, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
46
|
Jeon CO, Park W, Ghiorse WC, Madsen EL. Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 2004; 54:93-97. [PMID: 14742464 DOI: 10.1099/ijs.0.02636-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain CJ2T, capable of growth on naphthalene as a sole carbon and energy source, was isolated from coal-tar-contaminated freshwater sediment. The Gram reaction of strain CJ2Twas negative. The cells were non-spore-forming, non-motile cocci (without flagella). The isolate was found to be an aerobic heterotroph capable of utilizing glucose and other simple sugars. Growth was observed between 4 and 25 °C (optimum, 20 °C) and between pH 6·0 and 9·0 (optimum, pH 7·0–7·5). The G+C content of the genomic DNA was 61·5 mol% and the major quinone was ubiquinone-8. The peptidoglycan of strain CJ2Twas determined as belonging to type A1-γ,meso-diaminopimelic acid. The major fatty acids of strain CJ2Twere 16 : 1ω7c(67·0 %), 16 : 0 (19·6 %), 18 : 1ω7c(∼7·9 %) and 10 : 0 3-OH (∼2·5 %). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Mycolic acid and glycolipids could not be detected. Comparative 16S rDNA analysis indicated that strain CJ2Tis related to the familyComamonadaceaeand that the nearest phylogenetic relative wasPolaromonas vacuolata34-PT(97·1 % similarity). On the basis of the physiological and molecular properties, the naphthalene-degrading isolate was designatedPolaromonas naphthalenivoranssp. nov. The type strain is CJ2T(=ATCC BAA-779T=DSM 15660T).
Collapse
Affiliation(s)
- Che Ok Jeon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Woojun Park
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - William C Ghiorse
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
47
|
Park W, Jeon CO, Hohnstock-Ashe AM, Winans SC, Zylstra GJ, Madsen EL. Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1. Appl Environ Microbiol 2003; 69:3263-71. [PMID: 12788725 PMCID: PMC161498 DOI: 10.1128/aem.69.6.3263-3271.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hybridization and restriction fragment length polymorphism data (K. G. Stuart-Keil, A. M. Hohnstock, K. P. Drees, J. B. Herrick, and E. L. Madsen, Appl. Environ. Microbiol. 64:3633-3640, 1998) have shown that pCg1, a naphthalene catabolic plasmid carried by Pseudomonas putida Cg1, is homologous to the archetypal naphthalene catabolic plasmid, pDTG1, in P. putida NCIB 9816-4. Sequencing of the latter plasmid allowed PCR primers to be designed for amplifying and sequencing the conjugal transfer region in pCg1. The mating pair formation (mpf) gene, mpfA encoding the putative precursor of the conjugative pilin subunit from pCg1, was identified along with other trb-like mpf genes. Sequence comparison revealed that the 10 mpf genes in pCg1 and pDTG1 are closely related (61 to 84% identity) in sequence and operon structure to the putative mpf genes of catabolic plasmid pWW0 (TOL plasmid of P. putida) and pM3 (antibiotic resistance plasmid of Pseudomonas. spp). A polar mutation caused by insertional inactivation in mpfA of pCg1 and reverse transcriptase PCR analysis of mRNA showed that this mpf region was involved in conjugation and was transcribed from a promoter located upstream of an open reading frame adjacent to mpfA. lacZ transcriptional fusions revealed that mpf genes of pCg1 were expressed constitutively both in liquid and on solid media. This expression did not respond to host exposure to naphthalene. Conjugation frequency on semisolid media was consistently 10- to 100-fold higher than that in liquid media. Thus, conjugation of pCg1 in P. putida Cg1 was enhanced by expression of genes in the mpf region and by surfaces where conditions fostering stable, high-density cell-to-cell contact are manifest.
Collapse
Affiliation(s)
- Woojun Park
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | | | | | |
Collapse
|
48
|
Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 2003; 14:262-9. [PMID: 12849778 DOI: 10.1016/s0958-1669(03)00066-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retrospective studies clearly indicate that mobile genetic elements (MGEs) play a major role in the in situ spread and even de novo construction of catabolic pathways in bacteria, allowing bacterial communities to rapidly adapt to new xenobiotics. The construction of novel pathways seems to occur by an assembly process that involves horizontal gene transfer: different appropriate genes or gene modules that encode different parts of the novel pathway are recruited from phylogenetically related or distant hosts into one single host. Direct evidence for the importance of catabolic MGEs in bacterial adaptation to xenobiotics stems from observed correlations between catabolic gene transfer and accelerated biodegradation in several habitats and from studies that monitor catabolic MGEs in polluted sites.
Collapse
Affiliation(s)
- Eva M Top
- Department of Biological Sciences, 347 Life Sciences Building South, University of Idaho, Moscow, ID 83844-3051, USA.
| | | |
Collapse
|
49
|
Wilson MS, Herrick JB, Jeon CO, Hinman DE, Madsen EL. Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 2003; 69:2172-81. [PMID: 12676698 PMCID: PMC154808 DOI: 10.1128/aem.69.4.2172-2181.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 01/09/2003] [Indexed: 11/20/2022] Open
Abstract
Several distinct naphthalene dioxygenases have been characterized to date, which provides the opportunity to investigate the ecological significance, relative distribution, and transmission modes of the different analogs. In this study, we showed that a group of naphthalene-degrading isolates from a polycyclic aromatic hydrocarbon (PAH)-contaminated hillside soil were phenotypically and genotypically distinct from naphthalene-degrading organisms isolated from adjacent, more highly contaminated seep sediments. Mineralization of (14)C-labeled naphthalene by soil slurries suggested that the in situ seep community was more acclimated to PAHs than was the in situ hillside community. phnAc-like genes were present in diverse naphthalene-degrading isolates cultured from the hillside soil, while nahAc-like genes were found only among isolates cultured from the seep sediments. The presence of a highly conserved nahAc allele among gram-negative isolates from the coal tar-contaminated seep area provided evidence for in situ horizontal gene transfer and was reported previously (J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, Appl. Environ. Microbiol. 63:2330-2337, 1997). Natural horizontal transfer of the phnAc sequence was also suggested by a comparison of the phnAc and 16S ribosomal DNA sequences of the hillside isolates. Analysis of metabolites produced by cell suspensions and patterns of amplicons produced by PCR analysis suggested both genetic and metabolic diversity among the naphthalene-degrading isolates of the contaminated hillside. These results provide new insights into the distribution, diversity, and transfer of phnAc alleles and increase our understanding of the acclimation of microbial communities to pollutants.
Collapse
Affiliation(s)
- Mark S Wilson
- Department of Biology, Humboldt State University, Arcata, California 95521, USA
| | | | | | | | | |
Collapse
|
50
|
Shaw LJ, Burns RG. Biodegradation of Organic Pollutants in the Rhizosphere. ADVANCES IN APPLIED MICROBIOLOGY 2003; 53:1-60. [PMID: 14696315 DOI: 10.1016/s0065-2164(03)53001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Liz J Shaw
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | |
Collapse
|