1
|
Zhao Z, Liu Y, Liu C, Xu Q, Song M, Yan H. Whole-genome analysis of Comamonas sp. USTBZA1 for biodegrading diethyl phthalate. 3 Biotech 2023; 13:329. [PMID: 37670801 PMCID: PMC10475450 DOI: 10.1007/s13205-023-03736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/15/2023] [Indexed: 09/07/2023] Open
Abstract
Extensive use of phthalic acid esters (PAEs) as plasticizer causes diffusion into the environment, which posed a great threat to mankind. It was reported that Comamonas sp. was a potentially robust aromatic biodegrader. Although the biodegradation of several PAEs by Comamonas sp. was studies, the comprehensive genomic analysis of Comamonas sp. was few reported. In the present study, one promising bacterial strain for biodegrading diethyl phthalate (DEP) was successfully isolated from activated sludge and characterized as Comamonas sp. USTBZA1 based on the 16S rRNA sequence analysis. The results showed that pH 7.5, 30 °C and inoculum volume ratio of 6% were optimal for biodegradation. Initial DEP of 50 mg/L could be completely biodegrade by strain USTBZA1 within 24 h which conformed to the Gompertz model. Based on the Q-TOF LC/MS analysis, monoethyl phthalate (MEP) and phthalic acid (PA) were identified as the metabolic products of DEP biodegradation by USTBZA1. Furthermore, the whole genome of Comamonas sp. USTBZA1 was analyzed to clarify the molecular mechanism for PAEs biodegradation by USTBZA1. There were 3 and 41 genes encoding esterase/arylesterase and hydrolase, respectively, and two genes regions (pht34512 and pht4253) were responsible for the conversion of PA to protocatechuate (PCA), and two genes regions (ligCBAIKJ) were involved in PCA metabolism in USTBZA1. These results substantiated that Comamonas sp. USTBZA1 has potential application in the DEP bioremediation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03736-3.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, 261061 China
| | - Yanfeng Liu
- Weifang Ecological Environment Monitoring Center of Shandong Province, Weifang, 261011 China
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083 China
| |
Collapse
|
2
|
Menezes O, Owens C, Rios-Valenciana EE, Sierra-Alvarez R, Field JA, Spain JC. Designing bacterial consortia for the complete biodegradation of insensitive munitions compounds in waste streams. Biotechnol Bioeng 2022; 119:2437-2446. [PMID: 35706349 DOI: 10.1002/bit.28160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Insensitive munitions compounds (IMCs), such as 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), are replacing conventional explosives in munitions formulations. Manufacture and use of IMCs generate waste streams in manufacturing plants and load/assemble/pack facilities. There is a lack of practical experience in executing biodegradation strategies to treat IMCs waste streams. This study establishes a proof-of-concept that bacterial consortia can be designed to mineralize IMCs and co-occurring nitroaromatics in waste streams. First, DNAN, 4-nitroanisole (4-NA), and 4-chloronitrobenzene (4-CNB) in a synthetic DNAN-manufacturing waste stream were biodegraded using an aerobic fluidized-bed reactor (FBR) inoculated with Nocardioides sp. JS 1661 (DNAN degrader), Rhodococcus sp. JS 3073 (4-NA degrader), and Comamonadaceae sp. LW1 (4-CNB degrader). No biodegradation was detected when the FBR was operated under anoxic conditions. Second, DNAN and NTO were biodegraded in a synthetic load/assemble/pack waste stream during a sequential treatment comprising: (i) aerobic DNAN biodegradation in the FBR; (ii) anaerobic NTO biotransformation to 3-amino-1,2,4-triazol-5-one (ATO) by an NTO-respiring enrichment; and (iii) aerobic ATO mineralization by an ATO-oxidizing enrichment. Complete biodegradation relied on switching redox conditions. The results provide the basis for designing consortia to treat mixtures of IMCs and related waste products by incorporating microbes with the required catabolic capabilities.
Collapse
Affiliation(s)
- Osmar Menezes
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Cameron Owens
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida, USA
| | - Erika E Rios-Valenciana
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Cheng M, Qian Y, Xing Z, Zylstra GJ, Huang X. The low-nanomolar 4-nitrobenzoate-responsive repressor PnbX negatively regulates the actinomycete-derived 4-nitrobenzoate-degrading pnb locus. Environ Microbiol 2021; 23:7028-7041. [PMID: 34554625 DOI: 10.1111/1462-2920.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Nitroaromatic compounds pose severe threats to public health and environmental safety. Nitro group removal via ammonia release is an important strategy for bacterial detoxification of nitroaromatic compounds, such as the conversion of 4-nitrobenzoate (4-NBA) to protocatechuate by the bacterial pnb operon. In contrast to the LysR-family transcriptional regulator PnbR in proteobacteria, the actinomycete-derived pnb locus (4-NBA degradation structural genes) formed an operon with the TetR-family transcriptional regulator gene pnbX, implying that it has a distinct regulatory mechanism. Here, pnbBA from the actinomycete Nocardioides sp. strain LMS-CY was biochemically confirmed to express 4-NBA degradation enzymes, and pnbX was essential for inducible degradation of 4-NBA. Purified PnbX-6His could bind the promoter probe of the pnb locus in vitro, and 4-NBA prevented this binding. 4-NBA could bind PnbX at a 1:1 molar ratio with KD = 26.7 ± 4.2 nM. Low-nanomolar levels of 4-NBA induced the transcription of the pnb operon in strain LMS-CY. PnbX bound a palindromic sequence motif (5'-TTACGTTACA-N8 -TGTAACGTAA-3') that encompasses the pnb promoter. This study identified a TetR-family repressor for the actinomycete-derived pnb operon that recognizes 10-8 M 4-NBA as its ligand, implying that nitro group removal of nitroaromatic compounds may be especially important for actinomycetes.
Collapse
Affiliation(s)
- Minggen Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingying Qian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ziyu Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Li T, Gao YZ, Xu J, Zhang ST, Guo Y, Spain JC, Zhou NY. A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in Diaphorobacter sp. Strain JS3051. mBio 2021; 12:e0223121. [PMID: 34425699 PMCID: PMC8406286 DOI: 10.1128/mbio.02231-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Diaphorobacter sp. strain JS3051 utilizes 2,3-dichloronitrobenzene (23DCNB), a toxic anthropogenic compound, as the sole carbon, nitrogen, and energy source for growth, but the metabolic pathway and its origins are unknown. Here, we establish that a gene cluster (dcb), encoding a Nag-like dioxygenase, is responsible for the initial oxidation of the 23DCNB molecule. The 2,3-dichloronitrobenzene dioxygenase system (DcbAaAbAcAd) catalyzes conversion of 23DCNB to 3,4-dichlorocatechol (34DCC). Site-directed mutagenesis studies indicated that residue 204 of DcbAc is crucial for the substrate specificity of 23DCNB dioxygenase. The presence of glutamic acid at position 204 of 23DCNB dioxygenase is unique among Nag-like dioxygenases. Genetic, biochemical, and structural evidence indicate that the 23DCNB dioxygenase is more closely related to 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42 than to the 34DCNB dioxygenase from Diaphorobacter sp. strain JS3050, which was isolated from the same site as strain JS3051. A gene cluster (dcc) encoding the enzymes for 34DCC catabolism, homologous to a clc operon in Pseudomonas knackmussii strain B13, is also on the chromosome at a distance of 2.5 Mb from the dcb genes. Heterologously expressed DccA catalyzed ring cleavage of 34DCC with high affinity and catalytic efficiency. This work not only establishes the molecular mechanism for 23DCNB mineralization, but also enhances the understanding of the recent evolution of the catabolic pathways for nitroarenes. IMPORTANCE Because anthropogenic nitroaromatic compounds have entered the biosphere relatively recently, exploration of the recently evolved catabolic pathways can provide clues for adaptive evolutionary mechanisms in bacteria. The concept that nitroarene dioxygenases shared a common ancestor with naphthalene dioxygenase is well established. But their phylogeny and how they evolved in response to novel nitroaromatic compounds are largely unknown. Elucidation of the molecular basis for 23DCNB degradation revealed that the catabolic pathways of two DCNB isomers in different isolates from the same site were derived from different recent origins. Integrating structural models of catalytic subunits and enzymatic activities data provided new insight about how recently modified enzymes were selected depending on the structure of new substrates. This study enhances understanding and prediction of adaptive evolution of catabolic pathways in bacteria in response to new chemicals.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Zhou Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Ting Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jim C. Spain
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, Pensacola, Florida, USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Gao YZ, Palatucci ML, Waidner LA, Li T, Guo Y, Spain JC, Zhou NY. A Nag-like dioxygenase initiates 3,4-dichloronitrobenzene degradation via 4,5-dichlorocatechol in Diaphorobacter sp. strain JS3050. Environ Microbiol 2021; 23:1053-1065. [PMID: 33103811 DOI: 10.1111/1462-2920.15295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
The chemical synthesis intermediate 3,4-dichloronitrobenzene (3,4-DCNB) is an environmental pollutant. Diaphorobacter sp. strain JS3050 utilizes 3,4-DCNB as a sole source of carbon, nitrogen and energy. However, the molecular determinants of its catabolism are poorly understood. Here, the complete genome of strain JS3050 was sequenced and key genes were expressed heterologously to establish the details of its degradation pathway. A chromosome-encoded three-component nitroarene dioxygenase (DcnAaAbAcAd) converted 3,4-DCNB stoichiometrically to 4,5-dichlorocatechol, which was transformed to 3,4-dichloromuconate by a plasmid-borne ring-cleavage chlorocatechol 1,2-dioxygenase (DcnC). On the chromosome, there are also genes encoding enzymes (DcnDEF) responsible for the subsequent transformation of 3,4-dichloromuconate to β-ketoadipic acid. The fact that the genes responsible for the catabolic pathway are separately located on plasmid and chromosome indicates that recent assembly and ongoing evolution of the genes encoding the pathway is likely. The regiospecificity of 4,5-dichlorocatechol formation from 3,4-DCNB by DcnAaAbAcAd represents a sophisticated evolution of the nitroarene dioxygenase that avoids misrouting of toxic intermediates. The findings enhance the understanding of microbial catabolic diversity during adaptive evolution in response to xenobiotics released into the environment.
Collapse
Affiliation(s)
- Yi-Zhou Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mallory L Palatucci
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Lisa A Waidner
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Tang Q, Lu T, Liu SJ. Engineering the bacterium Comamonas testosteroni CNB-1: Plasmid curing and genetic manipulation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Dong W, Liu K, Liu J, Shi Z, Xin F, Zhang W, Ma J, Wu H, Wang F, Jiang M. Expression and characterization of the key enzymes involved in 2-benzoxazolinone degradation by Pigmentiphaga sp. DL-8. BIORESOURCE TECHNOLOGY 2018; 248:153-159. [PMID: 28684178 DOI: 10.1016/j.biortech.2017.06.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the key enzymes involved in 2-benzoxazolinone (BOA) degradation by Pigmentiphaga sp. DL-8 were further verified and characterized in Escherichia coli. By codon optimization and co-expression of molecular chaperones in a combined strategy, recombinant BOA amidohydrolase (rCbaA) and 2-aminophenol (2-AP) 1,2-dioxygenase (rCnbCαCβ) were expressed and purified with the highest activity of 1934.6U·mgprotein-1 and 32.80U·mgprotein-1, respectively. BOA could be hydrolyzed to 2AP by rCbaA, which was further transformed to picolinic acid by rCnbCαCβ based on identified catalytic product. The optimal pH and temperature for rCbaA are 9.0 and 55°C with excellent stability for catalytic environments, and the residual activity was >50% after incubation at temperatures <45°C or at pH between 6.0 and 10.0 for 24h. On the contrary, rCnbCαCβ composed of α-subunit (33kDa) and β-subunit (38kDa) showed poor stability against environmental factors, including temperature, pH, metal ions and chemicals.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
8
|
Li T, Zhang TC, He L. A Novel Method for Enhancing Strains' Biodegradation of 4-Chloronitrobenzene. J Biotechnol 2017; 264:8-16. [PMID: 29050880 DOI: 10.1016/j.jbiotec.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
This paper introduces a novel approach to enhance the strains' biodegradation of 4-chloronitrobenzene by utilizing the synergistic effect of the organic reductant mannitol and the substrate beef extraction. Our results demonstrate that 4-chloronitrobenzene could not be an available nitrogen source to support target strains' growth, which induced the limited 4-chloronitrobenzene biodegradation. In addition, the organic reducing agent and substrate had a better synergistic effect than inorganic reducing agent and substrate to enhance the strains' 4-chloronitrobenzene cometabolic biodegradation. Employing the synergistic effect of the optimal mixture (mannitol and beef extraction), the biodegradation rates of 50mgL-1 4-chloronitrobenzene by seven of the ten target strains were enhanced up to 100% from previous removals of no more than 19.1% after 7days. Three of the strains could even completely degrade 100mgL-1 4-chloronitrobenzene while five strains degraded over 91.4%. The method has good potential to enhance bioremediation of various 4-Chloronitrobenzene-contaminated environments as mannitol and beef extraction are non-toxic to the environment.
Collapse
Affiliation(s)
- Tian Li
- Southwest University, Chongqing 400715, PR China.
| | - Tian C Zhang
- Civil Engineering Department, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Lin He
- Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|
10
|
Lin C, McCarty RM, Liu H. Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chia‐I. Lin
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Reid M. McCarty
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Hung‐wen Liu
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| |
Collapse
|
11
|
Metabolic Pathway Involved in 6-Chloro-2-Benzoxazolinone Degradation by Pigmentiphaga sp. Strain DL-8 and Identification of the Novel Metal-Dependent Hydrolase CbaA. Appl Environ Microbiol 2016; 82:4169-4179. [PMID: 27208123 DOI: 10.1128/aem.00532-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED 6-Chloro-2-benzoxazolinone (CDHB) is a precursor of herbicide, insecticide, and fungicide synthesis and has a broad spectrum of biological activity. Pigmentiphaga sp. strain DL-8 can transform CDHB into 2-amino-5-chlorophenol (2A5CP), which it then utilizes as a carbon source for growth. The CDHB hydrolase (CbaA) was purified from strain DL-8, which can also hydrolyze 2-benzoxazolinone (BOA), 5-chloro-2-BOA, and benzamide. The specific activity of purified CbaA was 5,900 U · mg protein(-1) for CDHB, with Km and kcat values of 0.29 mM and 8,500 s(-1), respectively. The optimal pH for purified CbaA was 9.0, the highest activity was observed at 55°C, and the inactive metal-free enzyme could be reactivated by Mg(2+), Ni(2+), Ca(2+), or Zn(2+) Based on the results obtained for the CbaA peptide mass fingerprinting and draft genome sequence of strain DL-8, cbaA (encoding 339 amino acids) was cloned and expressed in Escherichia coli BL21(DE3). CbaA shared 18 to 21% identity with some metal-dependent hydrolases of the PF01499 family and contained the signature metal-binding motif Q127XXXQ131XD133XXXH137 The conserved amino acid residues His288 and Glu301 served as the proton donor and acceptor. E. coli BL21(DE3-pET-cbaA) resting cells could transform 0.2 mM CDHB into 2A5CP. The mutant strain DL-8ΔcbaA lost the ability to degrade CDHB but retained the ability to degrade 2A5CP, consistent with strain DL-8. These results indicated that cbaA was the key gene responsible for CDHB degradation by strain DL-8. IMPORTANCE 2-Benzoxazolinone (BOA) derivatives are widely used as synthetic intermediates and are also an important group of allelochemicals acting in response to tissue damage or pathogen attack in gramineous plants. However, the degradation mechanism of BOA derivatives by microorganisms is not clear. In the present study, we reported the identification of CbaA and metabolic pathway responsible for the degradation of CDHB in Pigmentiphaga sp. DL-8. This will provide microorganism and gene resources for the bioremediation of the environmental pollution caused by BOA derivatives.
Collapse
|
12
|
Reduction of 4-chloronitrobenzene in a bioelectrochemical reactor with biocathode at ambient temperature for a long-term operation. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Sattayasamitsathit S, Kaufmann K, Galarnyk M, Vazquez-Duhalt R, Wang J. Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Adv 2014. [DOI: 10.1039/c4ra04341c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Self-propelled dual-enzyme natural motors display attractive decontamination and propulsion capabilities. The movement of the biocatalytic tissue motors through the contaminated sample leads to a greatly improved remediation efficiency.
Collapse
Affiliation(s)
| | - Kevin Kaufmann
- Department of Nanoengineering
- University of California San Diego
- La Jolla, USA
| | - Michael Galarnyk
- Department of Nanoengineering
- University of California San Diego
- La Jolla, USA
| | | | - Joseph Wang
- Department of Nanoengineering
- University of California San Diego
- La Jolla, USA
| |
Collapse
|
14
|
Toxicity and Microbial Degradation of Nitrobenzene, Monochloronitrobenzenes, Polynitrobenzenes, and Pentachloronitrobenzene. J CHEM-NY 2014. [DOI: 10.1155/2014/265140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nitrobenzene and its derivatives (NBDs) are highly toxic compounds that have been released into the environment by anthropogenic activities. Many bacteria and fungi have been well-characterized for their ability to degrade NBDs. The biochemical and molecular characterization of the microbial degradation of NBDs has also been studied. In this review, we have summarized the toxicity and degradation profiles of nitrobenzene, monochloronitrobenzenes, polynitrobenzenes, and pentachloronitrobenzene. This review will increase our current understanding of toxicity and microbial degradation of NBDs.
Collapse
|
15
|
Khan F, Vyas B, Pal D, Cameotra SS. Aerobic degradation of N-methyl-4-nitroaniline (MNA) by Pseudomonas sp. strain FK357 isolated from soil. PLoS One 2013; 8:e75046. [PMID: 24116023 PMCID: PMC3792944 DOI: 10.1371/journal.pone.0075046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | | | | | | |
Collapse
|
16
|
Altarawneh I, Altarawneh M, Rawadieh S. Theoretical study on thermochemical parameters and IR spectra of chlorinated isomers of nitrobenzene. CAN J CHEM 2013. [DOI: 10.1139/cjc-2013-0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermochemical and geometrical parameters and internal rotation barriers of all chlorinated nitrobenzene isomers were calculated with the G3MP2B3 composite method. Standard entropies, standard Gibbs free energies of formation, standard enthalpies of formation, and heat capacities were calculated and compared with their corresponding available experimental data. Our calculated enthalpy values agree well with the corresponding experimental data. The temperature dependence of entropy and heat capacity has been analysed. All isomers with ortho-chlorine substituents were found to be less stable than other corresponding isomers. Rotational barriers and distortions of the benzene rings were incorporated in the calculations of values for entropy and heat capacity. The IR spectra were calculated and found to be in reasonable agreement with the experimental spectra.
Collapse
Affiliation(s)
- Ibrahem Altarawneh
- Department of Chemical Engineering, Al-Hussein Bin Talal University, Ma’an-Jordan
| | - Mohammednoor Altarawneh
- Department of Chemical Engineering, Al-Hussein Bin Talal University, Ma’an-Jordan
- Priority Research Centre for Energy, Faculty of Engineering & Built Environment, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Saleh Rawadieh
- Department of Chemical Engineering, Al-Hussein Bin Talal University, Ma’an-Jordan
| |
Collapse
|
17
|
Li H, Zhang Z, Xu X, Liang J, Xia S. Bioreduction of para-chloronitrobenzene in a hydrogen-based hollow-fiber membrane biofilm reactor: effects of nitrate and sulfate. Biodegradation 2013; 25:205-15. [DOI: 10.1007/s10532-013-9652-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/13/2013] [Indexed: 11/24/2022]
|
18
|
Zhang L, Wang X, Jiao Y, Chen X, Zhou L, Guo K, Ge F, Wu J. Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge. CHEMOSPHERE 2013; 91:1243-1249. [PMID: 23473429 DOI: 10.1016/j.chemosphere.2013.01.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
Two bacterial strains were isolated from activated sludge by using 4-chloronitrobenzene (4-CB) as the sole source of carbon for enrichment. One of the isolates was identified as Sphingomonas sp. strain CNB3 and the other as Burkholderia sp. strain CAN6, mainly through morphological and physiological characteristics and 16S rRNA gene sequence analysis. Sphingomonas sp. strain CNB3 could transform 4-CB to 4-chloroaniline, which accumulated in the medium. Burkholderia sp. strain CAN6 could transform 4-chloroaniline but not 4-CB. The co-culture of Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 could degrade 4-CB completely by the biochemical cooperation of two strains to overcome the degradative limitations of each species alone. In addition, the biochemical pathway of 4-chloroaniline transformation by Burkholderia sp. strain CAN6 was proposed based on the determined related enzyme activities. The results suggested that 4-chloroaniline was completely transformed via the ortho-cleavage and modified ortho-cleavage pathways.
Collapse
Affiliation(s)
- Longjiang Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Khan F, Pal D, Vikram S, Cameotra SS. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1. PLoS One 2013; 8:e62178. [PMID: 23614030 PMCID: PMC3629101 DOI: 10.1371/journal.pone.0062178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/18/2013] [Indexed: 11/21/2022] Open
Abstract
2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Deepika Pal
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Surendra Vikram
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Swaranjit Singh Cameotra
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
- * E-mail:
| |
Collapse
|
20
|
Xia S, Liang J, Xu X, Shen S. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor. J Environ Sci (China) 2013; 25:96-104. [PMID: 23586304 DOI: 10.1016/s1001-0742(12)60013-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.
Collapse
Affiliation(s)
- Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | | | |
Collapse
|
21
|
Ni B, Zhang Y, Chen DW, Wang BJ, Liu SJ. Assimilation of aromatic compounds by Comamonas testosteroni: characterization and spreadability of protocatechuate 4,5-cleavage pathway in bacteria. Appl Microbiol Biotechnol 2012; 97:6031-41. [DOI: 10.1007/s00253-012-4402-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/25/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
22
|
Arora PK, Jain RK. Metabolism of 2-chloro-4-nitrophenol in a gram negative bacterium, Burkholderia sp. RKJ 800. PLoS One 2012; 7:e38676. [PMID: 22701692 PMCID: PMC3368897 DOI: 10.1371/journal.pone.0038676] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
A 2-Chloro-4-nitrophenol (2C4NP) degrading bacterial strain designated as RKJ 800 was isolated from a pesticide contaminated site of India by enrichment method and utilized 2C4NP as sole source of carbon and energy. The stoichiometric amounts of nitrite and chloride ions were detected during the degradation of 2C4NP. On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP. Manganese dependent HQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain RKJ 800 that suggested the cleavage of the HQ to γ-hydroxymuconic semialdehyde. On the basis of the 16S rRNA gene sequencing, strain RKJ 800 was identified as a member of genus Burkholderia. Our studies clearly showed that Burkholderia sp. RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway. The pathway identified in a gram negative bacterium, Burkholderia sp. strain RKJ 800 was differed from previously reported 2C4NP degradation pathway in another gram-negative Burkholderia sp. SJ98. This is the first report of the formation of CHQ and HQ in the degradation of 2C4NP by any gram-negative bacteria. Laboratory-scale soil microcosm studies showed that strain RKJ 800 is a suitable candidate for bioremediation of 2C4NP contaminated sites.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Environmental Biotechnology, Institute of Microbial Technology (CSIR), Chandigarh, India.
| | | |
Collapse
|
23
|
Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 2012; 93:2265-77. [PMID: 22331236 DOI: 10.1007/s00253-012-3927-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/24/2012] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
Abstract
Chlorinated nitroaromatic compounds (CNAs) are persistent environmental pollutants that have been introduced into the environment due to the anthropogenic activities. Bacteria that utilize CNAs as the sole sources of carbon and energy have been isolated from different contaminated and non-contaminated sites. Microbial metabolism of CNAs has been studied, and several metabolic pathways for degradation of CNAs have been proposed. Detoxification and biotransformation of CNAs have also been studied in various fungi, actinomycetes and bacteria. Several physicochemical methods have been used for treatment of wastewater containing CNAs; however, these methods are not suitable for in situ bioremediation. This review describes the current scenario of the degradation of CNAs.
Collapse
|
24
|
Pathway for degradation of 2-chloro-4-nitrophenol in Arthrobacter sp. SJCon. Curr Microbiol 2011; 63:568-73. [PMID: 21960016 DOI: 10.1007/s00284-011-0022-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Degradation of 2-Chloro-4-nitrophenol (2C4NP) was studied by Arthrobacter sp. SJCon, isolated from the soil of a pesticide contaminated site. This strain utilized 2C4NP as sole source of carbon and energy and degraded 2C4NP with stoichiometric release of nitrite and chloride ions. A metabolite was detected during the study of 2C4NP degradation and identified as chlorohydroquinone (CHQ) by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS). Inhibition study using 2,2'-dipyridyl showed that CHQ is a terminal aromatic compound in degradation pathway of 2C4NP. CHQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain SJCon that suggested the cleavage of the CHQ to maleylacetate (MA). Our study clearly showed that Arthrobacter sp. SJCon degraded 2C4NP via formation of CHQ that further cleaved to MA by CHQ dioxygenase. This mechanism of degradation of 2C4NP differs from previously reported degradation pathways of 2C4NP.
Collapse
|
25
|
Prakash D, Kumar R, Jain RK, Tiwary BN. Novel pathway for the degradation of 2-chloro-4-nitrobenzoic acid by Acinetobacter sp. strain RKJ12. Appl Environ Microbiol 2011; 77:6606-13. [PMID: 21803909 PMCID: PMC3187165 DOI: 10.1128/aem.00685-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
Abstract
The organism Acinetobacter sp. RKJ12 is capable of utilizing 2-chloro-4-nitrobenzoic acid (2C4NBA) as a sole source of carbon, nitrogen, and energy. In the degradation of 2C4NBA by strain RKJ12, various metabolites were isolated and identified by a combination of chromatographic, spectroscopic, and enzymatic activities, revealing a novel assimilation pathway involving both oxidative and reductive catabolic mechanisms. The metabolism of 2C4NBA was initiated by oxidative ortho dehalogenation, leading to the formation of 2-hydroxy-4-nitrobenzoic acid (2H4NBA), which subsequently was metabolized into 2,4-dihydroxybenzoic acid (2,4-DHBA) by a mono-oxygenase with the concomitant release of chloride and nitrite ions. Stoichiometric analysis indicated the consumption of 1 mol O(2) per conversion of 2C4NBA to 2,4-DHBA, ruling out the possibility of two oxidative reactions. Experiments with labeled H(2)(18)O and (18)O(2) indicated the involvement of mono-oxygenase-catalyzed initial hydrolytic dechlorination and oxidative denitration mechanisms. The further degradation of 2,4-DHBA then proceeds via reductive dehydroxylation involving the formation of salicylic acid. In the lower pathway, the organism transformed salicylic acid into catechol, which was mineralized by the ortho ring cleavage catechol-1,2-dioxygenase to cis, cis-muconic acid, ultimately forming tricarboxylic acid cycle intermediates. Furthermore, the studies carried out on a 2C4NBA(-) derivative and a 2C4NBA(+) transconjugant demonstrated that the catabolic genes for the 2C4NBA degradation pathway possibly reside on the ∼55-kb transmissible plasmid present in RKJ12.
Collapse
Affiliation(s)
- Dhan Prakash
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Ravi Kumar
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160036, India
| | - R. K. Jain
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160036, India
| | - B. N. Tiwary
- Department of Biotechnology, Guru Ghasidas University, Bilaspur (CG) 495009, India
| |
Collapse
|
26
|
Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Appl Microbiol Biotechnol 2011; 92:597-607. [PMID: 21626025 DOI: 10.1007/s00253-011-3254-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
Burkholderia sp. strain SJ98 (DSM 23195) was previously isolated and characterized for degradation and co-metabolic transformation of a number nitroaromatic compounds. In the present study, we evaluated its metabolic activity on chlorinated nitroaromatic compounds (CNACs). Results obtained during this study revealed that strain SJ98 can degrade 2-chloro-4-nitrophenol (2C4NP) and utilize it as sole source of carbon, nitrogen, and energy under aerobic conditions. The cells of strain SJ98 removed 2C4NP from the growth medium with sequential release of nearly stoichiometric amounts of chloride and nitrite in culture supernatant. Under aerobic degradation conditions, 2C4NP was transformed into the first intermediate that was identified as p-nitrophenol by high-performance liquid chromatography, LCMS-TOF, and GC-MS analyses. This transformation clearly establishes that the degradation of 2C4NP by strain SJ98 is initiated by "reductive dehalogenation"; an initiation mechanism that has not been previously reported for microbial degradation of CNAC under aerobic conditions.
Collapse
|
27
|
Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. Appl Environ Microbiol 2011; 77:4547-52. [PMID: 21602392 DOI: 10.1128/aem.02543-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas stutzeri ZWLR2-1 utilizes 2-chloronitrobenzene (2CNB) as a sole source of carbon, nitrogen, and energy. To identify genes involved in this pathway, a 16.2-kb DNA fragment containing putative 2CNB dioxygenase genes was cloned and sequenced. Of the products from the 19 open reading frames that resulted from this fragment, CnbAc and CnbAd exhibited striking identities to the respective α and β subunits of the Nag-like ring-hydroxylating dioxygenases involved in the metabolism of nitrotoluene, nitrobenzene, and naphthalene. The encoding genes were also flanked by two copies of insertion sequence IS6100. CnbAa and CnbAb are similar to the ferredoxin reductase and ferredoxin for anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. Escherichia coli cells expressing cnbAaAbAcAd converted 2CNB to 3-chlorocatechol with concomitant nitrite release. Cell extracts of E. coli/pCNBC exhibited chlorocatechol 1,2-dioxygenase activity. The cnbCDEF gene cluster, homologous to a 3-chlorocatechol degradation cluster in Sphingomonas sp. strain TFD44, probably contains all of the genes necessary for the conversion of 3-chlorocatechol to 3-oxoadipate. The patchwork-like structure of this catabolic cluster suggests that the cnb cluster for 2CNB degradation evolved by recruiting two catabolic clusters encoding a nitroarene dioxygenase and a chlorocatechol degradation pathway. This provides another example to help elucidate the bacterial evolution of catabolic pathways in response to xenobiotic chemicals.
Collapse
|
28
|
Ju KS, Parales RE. Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes. Microb Biotechnol 2011; 2:241-52. [PMID: 21261918 PMCID: PMC3815844 DOI: 10.1111/j.1751-7915.2008.00083.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Widespread application of chloronitrobenzenes as feedstocks for the production of industrial chemicals and pharmaceuticals has resulted in extensive environmental contamination with these toxic compounds, where they pose significant risks to the health of humans and wildlife. While biotreatment in general is an attractive solution for remediation, its effectiveness is limited with chloronitrobenzenes due to the small number of strains that can effectively mineralize these compounds and their ability to degrade only select isomers. To address this need, we created engineered strains with a novel degradation pathway that reduces the total number of steps required to convert chloronitrobenzenes into compounds of central metabolism. We examined the ability of 2‐nitrotoluene 2,3‐dioxygenase from Acidovorax sp. strain JS42, nitrobenzene 1,2‐dioxygenase (NBDO) from Comamonas sp. strain JS765, as well as active‐site mutants of NBDO to generate chlorocatechols from chloronitrobenzenes, and identified the most efficient enzymes. Introduction of the wild‐type NBDO and the F293Q variant into Ralstonia sp. strain JS705, a strain carrying the modified ortho pathway for chlorocatechol metabolism, resulted in bacterial strains that were able to sustainably grow on all three chloronitrobenzene isomers without addition of co‐substrates or co‐inducers. These first‐generation engineered strains demonstrate the utility of nitroarene dioxygenases in expanding the metabolic capabilities of bacteria and provide new options for improved biotreatment of chloronitrobenzene‐contaminated sites.
Collapse
Affiliation(s)
- Kou-San Ju
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
29
|
Gaber AEAM, Muathen HA, Taib LA. Thermal fragmentation and rearrangement of some N-phenylbenzamide oxime dervatives II. Synthesis of benzimidazoles. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 2011; 91:119-124. [DOI: 10.1016/j.jaap.2011.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Abstract
Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed.
Collapse
Affiliation(s)
- Kou-San Ju
- Department of Microbiology, University of California, Davis, California 95616
| | - Rebecca E. Parales
- Department of Microbiology, University of California, Davis, California 95616
| |
Collapse
|
31
|
A study of biodegradation/γ-irradiation on the degradation of p-chloronitrobenzene. Radiat Phys Chem Oxf Engl 1993 2009. [DOI: 10.1016/j.radphyschem.2009.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Takenaka S, Sato T, Koshiya J, Murakami S, Aoki K. Gene cloning and characterization of a deaminase from the 4-amino-3-hydroxybenzoate-assimilating Bordetella sp. strain 10d. FEMS Microbiol Lett 2009; 298:93-8. [PMID: 19594622 DOI: 10.1111/j.1574-6968.2009.01699.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The 4-amino-3-hydroxybenzoate-assimilating Bordetella sp. strain 10d produces a deaminase that catalyzes the deamination of 2-amino-5-carboxymuconic 6-semialdehyde. A gene encoding the deaminase, ahdB, was cloned and expressed in Escherichia coli; ahdB is located downstream from the previously reported genes encoding 4-amino-3-hydroxybenzoate 2,3-dioxygenase (ahdA) and a LysR-type regulator. The deduced amino acid sequence of ahdB shows 30-33% identity to those of previously reported 2-aminomuconate deaminases. We identified a region (RAGDFLXVSG) conserved in AhdB and three other deaminases. The recombinant enzyme AhdB was purified to homogeneity. After a coupled enzyme assay with purified AhdA, AhdB, and the substrate 4-amino-3-hydroxybenzoate, the final product, formed by the action of AhdA, AhdB, and by nonenzymatic decarboxylation, was identified by HPLC, MS, and (1)H-nuclear magnetic resonance analyses as 2-hydroxymuconic 6-semialdehyde.
Collapse
Affiliation(s)
- Shinji Takenaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | | | | | | | |
Collapse
|
33
|
Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:763-771. [PMID: 19108939 DOI: 10.1016/j.envpol.2008.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 05/27/2023]
Abstract
The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation.
Collapse
Affiliation(s)
- Gui-Lan Niu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
34
|
Wu H, Wei C, Wang Y, He Q, Liang S. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1. J Environ Sci (China) 2009; 21:89-95. [PMID: 19402405 DOI: 10.1016/s1001-0742(09)60016-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A bacterial strain that utilized o-chloronitrobenzene (o-CNB) as the sole carbon, nitrogen and energy sources was isolated from an activated sludge collected from an industrial waste treatment plant. It was identified as Pseudomonas putida based on its morphology, physiological, and biochemical characteristics with an automatic biometrical system and the 16S rRNA sequence analysis. Microcosm study showed that the biodegradation of o-CNB was optimized at culture medium pH 8.0 and 32 degrees C. At these conditions, the strain degraded 85% of o-CNB at a starting concentration of 1.1 mmol/L in 42 h. o-Chloroaniline was identified as the major metabolite with high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The study showed that o-CNB degradation by Pseudomonas putida OCNB-1 was initiated by aniline dioxyenase, nitrobenzene reductase and catechol-1,2-dioxygenase.
Collapse
Affiliation(s)
- Haizhen Wu
- College of Bioscience and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
35
|
Zhang Y, Wu JF, Zeyer J, Meng B, Liu L, Jiang CY, Liu SQ, Liu SJ. Proteomic and molecular investigation on the physiological adaptation of Comamonas sp. strain CNB-1 growing on 4-chloronitrobenzene. Biodegradation 2008; 20:55-66. [PMID: 18509595 DOI: 10.1007/s10532-008-9199-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/07/2008] [Indexed: 11/25/2022]
Abstract
Comamonas sp. strain CNB-1 can utilize 4-chloronitrobenzene (4CNB) as sole carbon and nitrogen source for growth. Previous studies were focused on 4CNB degradative pathway and have showed that CNB-1 contained a plasmid pCNB1 harboring the genes (cnbABCaCbDEFGH, cnbZ) for the enzymes involving in 4CNB degradation, but only three gene products (CnbCa, CnbCb, and CnbZ) were identified in CNB-1 cells. Comamonas strain CNB-2 that lost pCNB1 was not able to grow on 4CNB. In this study, physiological adaptation to 4CNB by CNB-1 was investigated with proteomic and molecular tools. Comparative proteomes of strains CNB-1 and CNB-2 grown on 4CNB and/or succinate revealed that adaptation to 4CNB by CNB-1 included specific degradative pathway and general physiological responses: (1) Seven gene products (CnbA, CnbCa, CnbCb, CnbD, CnbE, CnbF, and CnbZ) for 4CNB degradation were identified in 4CNB-grown cells, and they were constitutively synthesized in CNB-1. Two genes cnbE and cnbF were cloned and simultaneously expressed in E. coli. The CnbE and CnbF together catalyzed the conversion of 2-oxohex-4-ene-5-chloro-1,6-dioate into 2-oxo-4-hydroxy-5-chloro-valeric acid; (2) Enzymes involving in glycolysis, tricarboxylic acid cycle, and synthesis of glutamate increased their abundances in 4CNB-grown cells.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Microbial Resource, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW, Liu L, Zhao GP, Liu SJ. Nucleotide sequence of plasmid pCNB1 from comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 2007; 73:4477-83. [PMID: 17526790 PMCID: PMC1932830 DOI: 10.1128/aem.00616-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of a new plasmid pCNB1 from Comamonas sp. strain CNB-1 that degrades 4-chloronitrobenzene (4CNB) was determined. pCNB1 belongs to the IncP-1beta group and is 91,181 bp in length. A total of 95 open reading frames appear to be involved in (i) the replication, maintenance, and transfer of pCNB1; (ii) resistance to arsenate and chromate; and (iii) the degradation of 4CNB. The 4CNB degradative genes and arsenate resistance genes were located on an extraordinarily large transposon (44.5 kb), proposed as TnCNB1. TnCNB1 was flanked by two IS1071 elements and represents a new member of the composite I transposon family. The 4CNB degradative genes within TnCNB1 were separated by various truncated genes and genetic homologs from other DNA molecules. Genes for chromate resistance were located on another transposon that was similar to the Tn21 transposon of the class II replicative family that is frequently responsible for the mobilization of mercury resistance genes. Resistance to arsenate and chromate were experimentally confirmed, and transcriptions of arsenate and chromate resistance genes were demonstrated by reverse transcription-PCR. These results described a new member of the IncP-1beta plasmid family, and the findings suggest that gene deletion and acquisition as well as genetic rearrangement of DNA molecules happened during the evolution of the 4CNB degradation pathway on pCNB1.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Arsenates/pharmacology
- Base Sequence
- Biodegradation, Environmental
- Chromates/pharmacology
- Comamonas/genetics
- Comamonas/metabolism
- DNA Replication/genetics
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial/genetics
- Evolution, Molecular
- Gene Expression
- Gene Order
- Metabolic Networks and Pathways/genetics
- Molecular Sequence Data
- Nitrobenzenes/metabolism
- Open Reading Frames
- Plasmids/genetics
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Sequence Alignment
- Transcription, Genetic
Collapse
Affiliation(s)
- Ying-Fei Ma
- State Key Laboratory of Microbial Resource at Institute of Microbiology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu L, Wu JF, Ma YF, Wang SY, Zhao GP, Liu SJ. A novel deaminase involved in chloronitrobenzene and nitrobenzene degradation with Comamonas sp. strain CNB-1. J Bacteriol 2007; 189:2677-82. [PMID: 17259310 PMCID: PMC1855817 DOI: 10.1128/jb.01762-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas sp. strain CNB-1 degrades nitrobenzene and chloronitrobenzene via the intermediates 2-aminomuconate and 2-amino-5-chloromuconate, respectively. Deamination of these two compounds results in the release of ammonia, which is used as a source of nitrogen for bacterial growth. In this study, a novel deaminase was purified from Comamonas strain CNB-1, and the gene (cnbZ) encoding this enzyme was cloned. The N-terminal sequence and peptide fingerprints of this deaminase were determined, and BLAST searches revealed no match with significant similarity to any functionally characterized proteins. The purified deaminase is a monomer (30 kDa), and its V(max) values for 2-aminomuconate and 2-amino-5-chloromuconate were 147 micromol x min(-1) x mg(-1) and 196 micromol x min(-1) x mg(-1), respectively. Its catalytic products from 2-aminomuconate and 2-amino-5-chloromuconate were 2-hydroxymuconate and 2-hydroxy-5-chloromuconate, respectively, which are different from those previously reported for the deaminases of Pseudomonas species. In the catalytic mechanism proposed, the alpha-carbon and nitrogen atoms (of both 2-aminomuconate and 2-amino-5-chloromuconate) were simultaneously attacked by a hydroxyl group and a proton, respectively. Homologs of cnbZ were identified in the genomes of Bradyrhizobium japonicum, Rhodopseudomonas palustris, and Roseiflexus sp. strain RS-1; these genes were previously annotated as encoding hypothetical proteins of unknown function. It is concluded that CnbZ represents a novel enzyme that deaminates xenobiotic compounds and/or alpha-amino acids.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Microbiology, Chinese Academy of Sciences, ZhongGuanCun, Haidian, Beijing 100080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Orii C, Takenaka S, Murakami S, Aoki K. Metabolism of 4-amino-3-hydroxybenzoic acid by Bordetella sp. strain 10d: A different modified meta-cleavage pathway for 2-aminophenols. Biosci Biotechnol Biochem 2006; 70:2653-61. [PMID: 17090920 DOI: 10.1271/bbb.60264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bordetella sp. strain 10d metabolizes 4-amino-3-hydroxybenzoic acid via 2-hydroxymuconic 6-semialdehyde. Cell extracts from 4-amino-3-hydroxybenzoate-grown cells showed high NAD(+)-dependent 2-hydroxymuconic 6-semialdehyde dehydrogenase, 4-oxalocrotonate tautomerase, 4-oxalocrotonate decarboxylase, and 2-oxopent-4-enoate hydratase activities, but no 2-hydroxymuconic 6-semialdehyde hydrolase activity. These enzymes involved in 4-amino-3-hydroxybenzoate metabolism were purified and characterized. When 2-hydroxymuconic 6-semialdehyde was used as substrate in a reaction mixture containing NAD(+) and cell extracts from 4-amino-3-hydroxybenzoate-grown cells, 4-oxalocrotonic acid, 2-oxopent-4-enoic acid, and 4-hydroxy-2-oxovaleric acid were identified as intermediates, and pyruvic acid was identified as the final product. A complete pathway for the metabolism of 4-amino-3-hydroxybenzoic acid in strain 10d is proposed. Strain 10d metabolized 2-hydroxymuconic 6-semialdehyde derived from 4-amino-3-hydroxybenzoic acid via a dehydrogenative route, not via a hydrolytic route. This proposed metabolic pathway differs considerably from the modified meta-cleavage pathway of 2-aminophenol and those previously reported for methyl- and chloro-derivatives.
Collapse
Affiliation(s)
- Chika Orii
- Division of Science of Biological Resources, Graduate School of Science and Technology, Kobe University, Rokko, Nada-ku, Kobe, Japan
| | | | | | | |
Collapse
|
39
|
Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ. Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 2006; 72:1759-65. [PMID: 16517619 PMCID: PMC1393224 DOI: 10.1128/aem.72.3.1759-1765.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas sp. strain CNB-1 grows on 4-chloronitrobenzene (4-CNB) and nitrobenzene as sole carbon and nitrogen sources. In this study, two genetic segments, cnbB-orf2-cnbA and cnbR-orf1-cnbCaCbDEFGHI, located on a newly isolated plasmid, pCNB1 (ca. 89 kb), and involved in 4-CNB/nitrobenzene degradation, were characterized. Seven genes (cnbA, cnbB, cnbCa, cnbCb, cnbD, cnbG, and cnbH) were cloned and functionally expressed in recombinant Escherichia coli, and they were identified as encoding 4-CNB nitroreductase (CnbA), 1-hydroxylaminobenzene mutase (CnbB), 2-aminophenol 1,6-dioxygenase (CnbCab), 2-amino-5-chloromuconic semialdehyde dehydrogenase (CnbD), 2-hydroxy-5-chloromuconic acid (2H5CM) tautomerase, and 2-amino-5-chloromuconic acid (2A5CM) deaminase (CnbH). In particular, the 2A5CM deaminase showed significant identities (31 to 38%) to subunit A of Asp-tRNAAsn/Glu-tRNAGln amidotransferase and not to the previously identified deaminases for nitroaromatic compound degradation. Genetic cloning and expression of cnbH in Escherichia coli revealed that CnbH catalyzed the conversion of 2A5CM into 2H5CM and ammonium. Four other genes (cnbR, cnbE, cnbF, and cnbI) were tentatively identified according to their high sequence identities to other functionally identified genes. It was proposed that CnbH might represent a novel type of deaminase and be involved in a novel partial reductive pathway for chloronitrobenzene or nitrobenzene degradation.
Collapse
Affiliation(s)
- Jian-feng Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonasputida ZWL73. Appl Microbiol Biotechnol 2006; 73:166-71. [PMID: 16642329 DOI: 10.1007/s00253-006-0441-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/21/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
The genes encoding enzymes involved in the initial reactions during degradation of 4-chloronitrobenzene (4CNB) were characterized from the 4CNB utilizer Pseudomonas putida ZWL73, in which a partial reductive pathway was adopted. A DNA fragment containing genes coding for chloronitrobenzene nitroreductase (CnbA) and hydroxylaminobenzene mutase (CnbB) were PCR-amplified and subsequently sequenced. These two genes were actively expressed in Escherichia coli, and recombinant E. coli cells catalyzed the conversion of 4CNB to 2-amino-5-chlorophenol, which is the ring-cleavage substrate in the degradation of 4CNB. Phylogenetic analyses on sequences of chloronitrobenzene nitroreductase and hydroxylaminobenzene mutase revealed that these two enzymes are closely related to the functionally identified nitrobenzene nitroreductase and hydroxylaminobenzene mutase from Pseudomonas strains JS45 and HS12. The nitroreductase from strain ZWL73 showed a higher specific activity toward 4CNB than nitrobenzene (approximately at a ratio of 1.6:1 for the recombinant or 2:1 for the wild type), which is in contrast to the case where the nitroreductase from nitrobenzene utilizers Pseudomonas pseudoalcaligenes JS45 with an apparently lower specific activity against 4CNB than nitrobenzene (0.16:1) [Kadiyala et al. Appl Environ Microbiol 69:6520-6526, 2003]. This suggests that the nitroreductase from 4-chloronitrobenzene utilizer P. putida ZWL73 may have evolved to prefer chloronitrobenzene to nitrobenzene as its substrate.
Collapse
Affiliation(s)
- Yi Xiao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
41
|
Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY. Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 2006; 72:797-803. [PMID: 16583229 DOI: 10.1007/s00253-006-0345-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 11/30/2022]
Abstract
A strain of Pseudomonas putida ZWL73 was isolated from soil contaminated with chloronitrobenzenes and identified by 16S rDNA sequencing. This bacterium released chloride and ammonia into the medium when grown on 4-chloronitrobenzene (4CNB) as the sole source of carbon, nitrogen and energy. A plasmid designated pZWL73 of approximately 100 kb in this strain was found to be responsible for 4CNB degradation. This was based on the fact that the plasmid-cured strains showed 4CNB- phenotype and the 4CNB+ phenotype could be conjugally transferred. The cell-free extracts of strain ZWL73 exhibited chloronitrobenzene nitroreductase and 2-amino-5-chlorophenol 1, 6-dioxygenase (2A5CPDO) activities, but neither activity was found from that of the plasmid-cured strain. We have also cloned a 4.9-kb EcoRI fragment exhibiting 2A5CPDO activity. Sequencing results revealed beta-subunit (cnbCa) and alpha subunit (cnbCb) of a meta-cleavage dioxygenase, which were subsequently expressed in E. coli with 2A5CPDO activity. The phylogenetic analysis suggested that 2A5CPDO may form a new subgroup in class III meta-cleavage dioxygenase with its close homologs.
Collapse
Affiliation(s)
- Da Zhen
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Liu H, Wang SJ, Zhou NY. A new isolate of Pseudomonas stutzerithat degrades 2-chloronitrobenzene. Biotechnol Lett 2005; 27:275-8. [PMID: 15742150 DOI: 10.1007/s10529-004-8293-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
A strain of Pseudomonas stutzeri ZWLR2-1 was isolated from soil contaminated with chloronitrobenzenes and identified by 16S rDNA sequencing. This bacterium released chloride and nitrite into the medium when grown on 0.5 mM 2-chloronitrobenzene. PCR amplification and DNA sequencing revealed a DNA fragment encoding a polypeptide homologous to the alpha-subunit of ring-hydroxylating dioxygenases.
Collapse
Affiliation(s)
- Hong Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, PR China
| | | | | |
Collapse
|
43
|
Wu JF, Sun CW, Jiang CY, Liu ZP, Liu SJ. A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli. Arch Microbiol 2004; 183:1-8. [PMID: 15580337 DOI: 10.1007/s00203-004-0738-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 08/24/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Comamonas strain CNB-1 was isolated from a biological reactor treating wastewater from a p-chloronitrobenzene production factory. Strain CNB-1 used p-chloronitrobenzene as sole source of carbon, nitrogen, and energy. A 2-aminophenol 1,6-dioxygenase was purified from cells of strain CNB-1. The purified 2-aminophenol 1,6-dioxygenase had a native molecular mass of 130 kDa and was composed of alpha- and beta-subunits of 33 and 38 kDa, respectively. This enzyme is different from currently known 2-aminophenol 1,6-dioxygenases in that it: (a) has a higher affinity for 2-amino-5-chlorophenol (K(m)=0.77 microM) than for 2-aminophenol (K(m)=0.89 microM) and (b) utilized protocatechuate as a substrate. These results suggested that 2-amino-5-chlorophenol, an intermediate during p-chloronitrobenzene degradation, is the natural substrate for this enzyme. N-terminal amino acids of the alpha- and beta-subunits were determined to be T-V-V-S-A-F-L-V and M-Q-G-E-I-I-A-E, respectively. A cosmid library was constructed from the total DNA of strain CNB-1 and three clones (BG-1, BG-2, and CG-13) with 2-aminophenol 1,6-dioxygenase activities were obtained. DNA sequencing of clone BG-2 revealed a 15-kb fragment that contained two ORFs, ORF9 and ORF10, with N-terminal amino acid sequences identical to those of the beta- and alpha-subunits, respectively, from the purified 2-aminophenol 1,6-dioxygenase. The enzyme was actively synthesized when the genes coding for the ORF9 and ORF10 were cloned into Escherichia coli.
Collapse
Affiliation(s)
- Jian-Feng Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
44
|
Orii C, Takenaka S, Murakami S, Aoki K. A novel coupled enzyme assay reveals an enzyme responsible for the deamination of a chemically unstable intermediate in the metabolic pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. ACTA ACUST UNITED AC 2004; 271:3248-54. [PMID: 15265044 DOI: 10.1111/j.1432-1033.2004.04258.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
2-amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta-cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (epsilonmax = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives.
Collapse
Affiliation(s)
- Chika Orii
- Division of Science of Biological Resources, Graduate School of Science and Technology, Kobe University, Rokko, Kobe, Japan
| | | | | | | |
Collapse
|
45
|
Pandey G, Paul D, Jain RK. Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates. FEMS Microbiol Lett 2004; 229:231-6. [PMID: 14680704 DOI: 10.1016/s0378-1097(03)00844-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have earlier reported a novel reductive pathway for o-nitrobenzoate (ONB) degradation (at 0.5 mM) in Arthrobacter protophormiae RKJ100, which proceeds via the formation of o-hydroxylaminobenzoate (HABA) and anthranilate (AA). During growth of this organism at 40 times higher concentration (20 mM) of ONB, 3-hydroxyanthranilate (HAA) was identified as an intermediate by thin layer chromatography, gas chromatography and high performance liquid chromatography studies. Crude cell extracts of ONB-grown cells showed HAA 3,4-dioxygenase activity suggesting HAA as a terminal aromatic intermediate of the catabolic energy-yielding pathway as shown before in Pseudomonas fluorescens strain KU-7. HAA is further cleaved to 2-amino-3-carboxymuconic-6-semialdehyde by the action of HAA 3,4-dioxygenase. In this report we propose that ONB degradation occurs via the formation of HABA and the pathway branches at this point to form the two different aromatic intermediates AA and HAA by the action of a reductase and a mutase, respectively.
Collapse
Affiliation(s)
- Gunjan Pandey
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | |
Collapse
|
46
|
Kadiyala V, Nadeau LJ, Spain JC. Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols. Appl Environ Microbiol 2004; 69:6520-6. [PMID: 14602609 PMCID: PMC262294 DOI: 10.1128/aem.69.11.6520-6526.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The predominant bacterial pathway for nitrobenzene (NB) degradation uses an NB nitroreductase and hydroxylaminobenzene (HAB) mutase to form the ring-fission substrate ortho-aminophenol. We tested the hypothesis that constructed strains might accumulate the aminophenols from nitroacetophenones and other nitroaromatic compounds. We constructed a recombinant plasmid carrying NB nitroreductase (nbzA) and HAB mutase A (habA) genes, both from Pseudomonas pseudoalcaligenes JS45, and expressed the enzymes in Escherichia coli JS995. IPTG (isopropyl-beta-D-thiogalactopyranoside)-induced cells of strain JS995 rapidly and stoichiometrically converted NB to 2-aminophenol, 2-nitroacetophenone (2NAP) to 2-amino-3-hydroxyacetophenone (2AHAP), and 3-nitroacetophenone (3NAP) to 3-amino-2-hydroxyacetophenone (3AHAP). We constructed another recombinant plasmid containing the nitroreductase gene (nfs1) from Enterobacter cloacae and habA from strain JS45 and expressed the enzymes in E. coli JS996. Strain JS996 converted NB to 2-aminophenol, 2-nitrotoluene to 2-amino-3-methylphenol, 3-nitrotoluene to 2-amino-4-methylphenol, 4-nitrobiphenyl ether to 4-amino-5-phenoxyphenol, and 1-nitronaphthalene to 2-amino-1-naphthol. In larger-scale biotransformations catalyzed by strain JS995, 75% of the 2NAP transformed was converted to 2AHAP, whereas 3AHAP was produced stoichiometrically from 3NAP. The final yields of the aminophenols after extraction and recovery were >64%. The biocatalytic synthesis of ortho-aminophenols from nitroacetophenones suggests that strain JS995 may be useful in the biocatalytic production of a variety of substituted ortho-aminophenols from the corresponding nitroaromatic compounds.
Collapse
|
47
|
Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson R. Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 2003; 5:1168-91. [PMID: 14641596 DOI: 10.1046/j.1462-2920.2003.00512.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rock, air and service water samples were collected for microbial analyses from 3.2 kilometres depth in a working Au mine in the Witwatersrand basin, South Africa. The approximately metre-wide mined zone was comprised of a carbonaceous, quartz, sulphide, uraninite and Au bearing layer, called the Carbon Leader, sandwiched by quartzite and conglomerate. The microbial community in the service water was dominated by mesophilic aerobic and anaerobic, alpha-, beta- and gamma-Proteobacteria with a total biomass concentration approximately 10(4) cells ml(-1), whereas, that of the mine air was dominated by members of the Chlorobi and Bacteroidetes groups and a fungal component. The microorganisms in the Carbon Leader were predominantly mesophilic, aerobic heterotrophic, nitrate reducing and methylotrophic, beta- and gamma-Proteobacteria that were more closely related to service water microorganisms than to air microbes. Rhodamine WT dye and fluorescent microspheres employed as contaminant tracers, however, indicated that service water contamination of most of the rock samples was < 0.01% during acquisition. The microbial contaminants most likely originated from the service water, infiltrated the low permeability rock through and accumulated within mining-induced fractures where they survived for several days before being mined. Combined PLFA and terminal restriction fragment length profile (T-RFLP) analyses suggest that the maximum concentration of indigenous microorganisms in the Carbon Leader was < 10(2) cells g(-1). PLFA, 35S autoradiography and enrichments suggest that the adjacent quartzite was less contaminated and contained approximately 10(3) cells gram(-1) of thermophilic, sulphate reducing bacteria, SRB, some of which are delta-Proteobacteria. Pore water and rock geochemical analyses suggest that these SRB's may have been sustained by sulphate diffusing from the adjacent U-rich, Carbon Leader where it was formed by radiolysis of sulphide.
Collapse
Affiliation(s)
- T C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nadeau LJ, He Z, Spain JC. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups. Appl Environ Microbiol 2003; 69:2786-93. [PMID: 12732549 PMCID: PMC154516 DOI: 10.1128/aem.69.5.2786-2793.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.
Collapse
Affiliation(s)
- Lloyd J Nadeau
- Air Force Research Laboratory, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, FL 32403, USA
| | | | | |
Collapse
|
49
|
Khan ST, Hiraishi A. Diaphorobacter nitroreducens gen nov, sp nov, a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J GEN APPL MICROBIOL 2002; 48:299-308. [PMID: 12682868 DOI: 10.2323/jgam.48.299] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Three denitrifying strains of bacteria capable of degrading poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were isolated from activated sludge and characterized. All of the isolates had almost identical phenotypic characteristics. They were motile gram-negative rods with single polar flagella and grew well with simple organic compounds, as well as with PHB and PHBV, as carbon and energy sources under both aerobic and anaerobic denitrifying conditions. However, none of the sugars tested supported their growth. The cellular fatty acid profiles showed the presence of C16:1omega7cis and C16:0 as the major components and of 3-OH-C10:0 as the sole component of hydroxy fatty acids. Ubiquinone-8 was detected as the major respiratory quinone. A 16S rDNA sequence-based phylogenetic analysis showed that all the isolates belonged to the family Comamonadaceae, a major group of beta-Proteobacteria, but formed no monophyletic cluster with any previously known species of this family. The closest relative to our strains was an unidentified bacterium strain LW1 (=DSM 13225) (99.9% similarity), reported previously as a 1-chloro-4-nitrobenzene degrading bacterium. DNA-DNA hybridization levels among the new isolates were more than 60%, whereas those between our isolates and strain DSM 13225 were less than 50%. The G+C content of genomic DNA of the new strains was 64 to 65 mol%. Based on these results, we concluded that the PHBV-degrading denitrifying isolates should be classified as a new genus and a new species, for which we propose the name Diaphorobacter nitroreducens. The type strain is strain NA10B (=JCM 11421=CIP 107294). We also propose to classify strain DSM 13225 as a genospecies of Diaphorobacter.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | | |
Collapse
|
50
|
Khan ST, Horiba Y, Yamamoto M, Hiraishi A. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 2002; 68:3206-14. [PMID: 12088996 PMCID: PMC126756 DOI: 10.1128/aem.68.7.3206-3214.2002] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution and phylogenetic affiliations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-degrading denitrifying bacteria in activated sludge were studied by a polyphasic approach including culture-independent biomarker and molecular analyses as well as cultivation methods. A total of 23 strains of PHBV-degrading denitrifiers were isolated from activated sludges from different sewage treatment plants. 16S ribosomal DNA (rDNA) sequence comparisons showed that 20 of the isolates were identified as members of the family Comamonadaceae, a major group of beta-Proteobacteria. When the sludges from different plants were acclimated with PHBV under denitrifying conditions in laboratory scale reactors, the nitrate removal rate increased linearly during the first 4 weeks and reached 20 mg NO(3)(-)-N h(-1) g of dry sludge(-1) at the steady state. The bacterial-community change in the laboratory scale sludges during the acclimation was monitored by rRNA-targeted fluorescence in situ hybridization and quinone profiling. Both approaches showed that the population of beta-Proteobacteria in the laboratory sludges increased sharply during acclimation regardless of their origins. 16S rDNA clone libraries were constructed from two different acclimated sludges, and a total of 37 clones from the libraries were phylogenetically analyzed. Most of the 16S rDNA clones were grouped with members of the family Comamonadaceae. The results of our polyphasic approach indicate that beta-Proteobacteria, especially members of the family Comamonadaceae, are primary PHBV-degrading denitrifiers in activated sludge. Our data provide useful information for the development of a new nitrogen removal system with solid biopolymer as an electron donor.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Ecological Engineering, Toyohashi University of Technology, Tenpaku-cho, Toyohashi 441-8580, Japan
| | | | | | | |
Collapse
|