1
|
Silva-Andrade C, Martin AJ, Garrido D. Comparative Genomics of Clostridium baratii Reveals Strain-Level Diversity in Toxin Abundance. Microorganisms 2022; 10:microorganisms10020213. [PMID: 35208668 PMCID: PMC8879937 DOI: 10.3390/microorganisms10020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Clostridium baratii strains are rare opportunistic pathogens associated with botulism intoxication. They have been isolated from foods, soil and be carried asymptomatically or cause botulism outbreaks. Is not taxonomically related to Clostridium botulinum, but some strains are equipped with BoNT/F7 cluster. Despite their relationship with diseases, our knowledge regarding the genomic features and phylogenetic characteristics is limited. We analyzed the pangenome of C. baratii to understand the diversity and genomic features of this species. We compared existing genomes in public databases, metagenomes, and one newly sequenced strain isolated from an asymptomatic subject. The pangenome was open, indicating it comprises genetically diverse organisms. The core genome contained 28.49% of the total genes of the pangenome. Profiling virulence factors confirmed the presence of phospholipase C in some strains, a toxin capable of disrupting eukaryotic cell membranes. Furthermore, the genomic analysis indicated significant horizontal gene transfer (HGT) events as defined by the presence of prophage genomes. Seven strains were equipped with BoNT/F7 cluster. The active site was conserved in all strains, identifying a missing 7-aa region upstream of the active site in C. baratii genomes. This analysis could be important to advance our knowledge regarding opportunistic clostridia and better understand their contribution to disease.
Collapse
Affiliation(s)
- Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alberto J. Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Correspondence: (A.J.M.); (D.G.)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (A.J.M.); (D.G.)
| |
Collapse
|
2
|
Li T, Ning N, Iacobino A, Zhang L, Wang H, Franciosa G. Novel Putative Transposable Element Associated with the Subtype E5 Botulinum Toxin Gene Cluster of Neurotoxigenic Clostridium butyricum Type E Strains from China. Int J Mol Sci 2022; 23:906. [PMID: 35055088 PMCID: PMC8776182 DOI: 10.3390/ijms23020906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Previously, a whole-genome comparison of three Clostridium butyricum type E strains from Italy and the United States with different C. botulinum type E strains indicated that the bont/e gene might be transferred between the two clostridia species through transposition. However, transposable elements (TEs) have never been identified close to the bont/e gene. Herein, we report the whole genome sequences for four neurotoxigenic C. butyricum type E strains that originated in China. An analysis of the obtained genome sequences revealed the presence of a novel putative TE upstream of the bont/e gene in the genome of all four strains. Two strains of environmental origin possessed an additional copy of the putative TE in their megaplasmid. Similar putative TEs were found in the megaplasmids and, less frequently, in the chromosomes of several C. butyricum strains, of which two were neurotoxigenic C. butyricum type E strains, and in the chromosome of a single C. botulinum type E strain. We speculate that the putative TE might potentially transpose the bont/e gene at the intracellular and inter-cellular levels. However, the occasional TE occurrence in the clostridia genomes might reflect rare transposition events.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Liangyan Zhang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Giovanna Franciosa
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
3
|
Zou W, Ye G, Zhang K, Yang H, Yang J. Analysis of the core genome and pangenome of Clostridium butyricum. Genome 2020; 64:51-61. [PMID: 33105087 DOI: 10.1139/gen-2020-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clostridium butyricum is an anaerobic bacterium that inhabits broad niches. Clostridium butyricum is known for its production of butyrate, 1,3-propanediol, and hydrogen. This study aimed to present a comparative pangenome analysis of 24 strains isolated from different niches. We sequenced and annotated the genome of C. butyricum 3-3 isolated from the Chinese baijiu ecosystem. The pangenome of C. butyricum was open. The core genome, accessory genome, and strain-specific genes comprised 1011, 4543, and 1473 genes, respectively. In the core genome, Carbohydrate metabolism was the largest category, and genes in the biosynthetic pathway of butyrate and glycerol metabolism were conserved (in the core or soft-core genome). Furthermore, the 1,3-propanediol operon existed in 20 strains. In the accessory genome, numerous mobile genetic elements belonging to the Replication, recombination, and repair (L) category were identified. In addition, genome islands were identified in all 24 strains, ranging from 2 (strain KNU-L09) to 53 (strain SU1), and phage sequences were found in 17 of the 24 strains. This study provides an important genomic framework that could pave the way for the exploration of C. butyricum and future studies on the genetic diversification of C. butyricum.
Collapse
Affiliation(s)
- Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, 188, University town, Lingang District, Yibin, Sichuan 644005, China.,Research Laboratory of Baijiu Resource Microorganisms and Big data, Sichuan University of Science & Engineering, 188 University town, Lingang District, Yibin, Sichuan 644005, China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science & Engineering, 188, University town, Lingang District, Yibin, Sichuan 644005, China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, 188, University town, Lingang District, Yibin, Sichuan 644005, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jiangang Yang
- College of Bioengineering, Sichuan University of Science & Engineering, 188, University town, Lingang District, Yibin, Sichuan 644005, China
| |
Collapse
|
4
|
Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0034-2018. [PMID: 31111816 PMCID: PMC11257192 DOI: 10.1128/microbiolspec.gpp3-0034-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas D Watts
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
6
|
A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. Toxins (Basel) 2018; 10:toxins10030105. [PMID: 29494481 PMCID: PMC5869393 DOI: 10.3390/toxins10030105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 11/26/2022] Open
Abstract
Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (KD). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had KD values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018.
Collapse
|
7
|
Nawrocki EM, Bradshaw M, Johnson EA. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci Rep 2018; 8:3100. [PMID: 29449580 PMCID: PMC5814558 DOI: 10.1038/s41598-018-21342-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Most Group I Clostridium botulinum strains harbor botulinum neurotoxin (bont) genes on their chromosome, while some carry these genes (including bont/a, bont/b, and bont/f) on large plasmids. Prior work in our laboratory demonstrated that Group I BoNT plasmids were mobilized to C. botulinum recipient strains containing the Tn916 transposon. Here, we show that Tn916 is nonessential for plasmid transfer. Relying on an auxotrophic donor phenotype and a plasmid-borne selectable marker, we observed the transfer of pCLJ, a 270 kb plasmid harboring two bont genes, from its host strain to various clostridia. Transfer frequency was greatest to other Group I C. botulinum strains, but the plasmid was also transferred into traditionally nontoxigenic species, namely C. sporogenes and C. butyricum. Expression and toxicity of BoNT/A4 was confirmed in transconjugants by immunoblot and mouse bioassay. These data indicate that conjugation within the genus Clostridium can occur across physiological Groups of C. botulinum, supporting horizontal gene transfer via bont-bearing plasmids. The transfer of plasmids possessing bont genes to resistant Clostridium spp. such as C. sporogenes could impact biological safety for animals and humans. These plasmids may play an environmental role in initiating death in vertebrates, leading to decomposition and nutrient recycling of animal biomass.
Collapse
Affiliation(s)
- Erin M Nawrocki
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
8
|
Isa K, Oka K, Beauchamp N, Sato M, Wada K, Ohtani K, Nakanishi S, McCartney E, Tanaka M, Shimizu T, Kamiya S, Kruger C, Takahashi M. Safety assessment of the Clostridium butyricum MIYAIRI 588® probiotic strain including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo. Hum Exp Toxicol 2016; 35:818-32. [DOI: 10.1177/0960327115607372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Probiotics are live microorganisms ingested for the purpose of conferring a health benefit on the host. Development of new probiotics includes the need for safety evaluations that should consider factors such as pathogenicity, infectivity, virulence factors, toxicity, and metabolic activity. Clostridium butyricum MIYAIRI 588® (CBM 588®), an anaerobic spore-forming bacterium, has been developed as a probiotic for use by humans and food animals. Safety studies of this probiotic strain have been conducted and include assessment of antimicrobial sensitivity, documentation of the lack of Clostridium toxin genes, and evaluation of CBM 588® on reproductive and developmental toxicity in a rodent model. With the exception of aminoglycosides, to which anaerobes are intrinsically resistant, CBM 588® showed sensitivity to all antibiotic classes important in human and animal therapeutics. In addition, analysis of the CBM 588® genome established the absence of genes for encoding for α, β, or ε toxins and botulin neurotoxins types A, B, E, or F. There were no deleterious reproductive and developmental effects observed in mice associated with the administration of CBM 588®. These data provide further support for the safety of CBM 588® for use as a probiotic in animals and humans.
Collapse
Affiliation(s)
- K Isa
- Miyarisan Pharmaceutical Co., Ltd, Tokyo, Japan
| | - K Oka
- Miyarisan Pharmaceutical Co., Ltd, Tokyo, Japan
| | | | - M Sato
- Miyarisan Pharmaceutical Co., Ltd, Tokyo, Japan
| | - K Wada
- Miyarisan Pharmaceutical Co., Ltd, Tokyo, Japan
| | - K Ohtani
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - S Nakanishi
- Miyarisan Pharmaceutical Co., Ltd, Tokyo, Japan
- Deceased
| | | | - M Tanaka
- Miyarisan Pharmaceutical Co., Ltd, Tokyo, Japan
| | - T Shimizu
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
- Deceased
| | - S Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - C Kruger
- Spherix Consulting, Rockville, MD, USA
| | - M Takahashi
- Miyarisan Pharmaceutical Co., Ltd, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Dykes JK, Lúquez C, Raphael BH, McCroskey L, Maslanka SE. Laboratory Investigation of the First Case of Botulism Caused by Clostridium butyricum Type E Toxin in the United States. J Clin Microbiol 2015; 53:3363-5. [PMID: 26246485 PMCID: PMC4572528 DOI: 10.1128/jcm.01351-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 11/20/2022] Open
Abstract
We report here the laboratory investigation of the first known case of botulism in the United States caused by Clostridium butyricum type E. This investigation demonstrates the importance of extensive microbiological examination of specimens, which resulted in the isolation of this organism.
Collapse
Affiliation(s)
- Janet K Dykes
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carolina Lúquez
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brian H Raphael
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Loretta McCroskey
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan E Maslanka
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
11
|
Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol 2015; 166:290-302. [PMID: 25312020 PMCID: PMC11302483 DOI: 10.1016/j.resmic.2014.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022]
Abstract
For nearly one hundred years, researchers have attempted to categorize botulinum neurotoxin-producing clostridia and the toxins that they produce according to biochemical characterizations, serological comparisons, and genetic analyses. Throughout this period the bacteria and their toxins have defied such attempts at categorization. Below is a description of both historic and current Clostridium botulinum strain and neurotoxin information that illustrates how each new finding has significantly added to the knowledge of the botulinum neurotoxin-containing clostridia and their diversity.
Collapse
Affiliation(s)
- Theresa J Smith
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Brian H Raphael
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
12
|
Abstract
Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.
Collapse
|
13
|
16S rRNA gene sequencing, multilocus sequence analysis, and mass spectrometry identification of the proposed new species "Clostridium neonatale". J Clin Microbiol 2014; 52:4129-36. [PMID: 25232167 DOI: 10.1128/jcm.00477-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In 2002, an outbreak of necrotizing enterocolitis in a Canadian neonatal intensive care unit was associated with a proposed novel species of Clostridium, "Clostridium neonatale." To date, there are no data about the isolation, identification, or clinical significance of this species. Additionally, C. neonatale has not been formally classified as a new species, rendering its identification challenging. Indeed, the C. neonatale 16S rRNA gene sequence shows high similarity to another Clostridium species involved in neonatal necrotizing enterocolitis, Clostridium butyricum. By performing a polyphasic study combining phylogenetic analysis (16S rRNA gene sequencing and multilocus sequence analysis) and phenotypic characterization with mass spectrometry, we demonstrated that C. neonatale is a new species within the Clostridium genus sensu stricto, for which we propose the name Clostridium neonatale sp. nov. Now that the status of C. neonatale has been clarified, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can be used for better differential identification of C. neonatale and C. butyricum clinical isolates. This is necessary to precisely define the role and clinical significance of C. neonatale, a species that may have been misidentified and underrepresented during previous neonatal necrotizing enterocolitis studies.
Collapse
|
14
|
Popoff MR, Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 2013; 75:63-89. [DOI: 10.1016/j.toxicon.2013.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
|
15
|
Nakanishi S, Kuwahara T, Nakayama H, Tanaka M, Ohnishi Y. Rapid Species Identification and Partial Strain Differentiation ofClostridium butyricumby PCR Using 16S-23S rDNA Intergenic Spacer Regions. Microbiol Immunol 2013; 49:613-21. [PMID: 16034204 DOI: 10.1111/j.1348-0421.2005.tb03653.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some Clostridium butyricum strains have been used as probiotics for both humans and animals. Strain-specific identification is necessary for the manufacturing process of probiotics. The aim of this study was to determine whether there are sufficient genetic variations in 16S-23S intergenic spacer regions (ISRs) to discriminate C. butyricum at the biovar level. We amplified ISRs from five reference strains, a probiotic strain (MIYAIRI 588) and 22 isolates, and we classified them into four groups on the basis of amplification patterns (type A through D). However, amplification of ISRs is not sufficient for discriminating strains. Moreover, we compared genetic structures of these ISRs. Sequence analysis revealed that the size variations of ISRs were generated by the insertion of tRNA genes and unique sequences into the internal portion, while the external portions were highly conserved. On the basis of the highly conserved nucleotide sequences within the ISRs, we developed a PCR primer set specific to C. butyricum. In addition, the PCR primer designed from the unique inserted sequence in type B strain was useful to differentiate probiotic strains at the biovar level.
Collapse
MESH Headings
- Bacterial Typing Techniques/methods
- Base Sequence
- Clostridium butyricum/classification
- Clostridium butyricum/genetics
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Ribosomal Spacer/analysis
- DNA, Ribosomal Spacer/genetics
- Electrophoresis, Agar Gel
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Shusuke Nakanishi
- Department of Molecular Bacteriology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan.
| | | | | | | | | |
Collapse
|
16
|
Yoon SY, Chung GT, Kang DH, Ryu C, Yoo CK, Seong WK. Application of Real-Time PCR for Quantitative Detection ofClostridium botulinumType A Toxin Gene in Food. Microbiol Immunol 2013; 49:505-11. [PMID: 15965297 DOI: 10.1111/j.1348-0421.2005.tb03755.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The TaqMan real-time PCR method for the quantitative detection of C. botulinum type A was developed based on sequence-specific hybridization probes. The validity of this assay was verified by using 10 genera of 20 strains, including reference strains of C. botulinum types A, B, C, D, E and F. The detection limit of this assay was evaluated on C. botulinum type A, using a 10-fold dilution series of DNA and spores . The DNA and spores were detected up to level of 0.1 ng/ml and 10(2)spores/ml, respectively. Spore spiked food sample preparation prior to the real-time PCR was performed by two methods, heat treatment and GuSCN. The detection limits after heat treatment showed 10(2) spores/ml for spiked sausage slurry, and 10(3) spores/ml for spiked canned corn slurry, while detection limits after GuSCN precipitation showed 10(2) spores/ml in both sausage and canned corn. Therefore the real-time PCR assay after GuSCN precipitation is useful for the quantification of C. botulinum type A because it showed identical CT values in both pure spore solutions and food slurries. We suggest that quantitative analysis of C. botulinum type A by TaqMan real-time PCR can be a rapid and accurate assessment method for botulinal risk in food samples.
Collapse
Affiliation(s)
- So-Yeon Yoon
- Research Center for Pathogen Control, Department of Bacteriology, National Institute of Health, 5-Nokbun-dong, Eunpyung-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Growth Limiting pH, Water Activity, and Temperature for Neurotoxigenic Strains of Clostridium butyricum. ISRN MICROBIOLOGY 2013; 2013:731430. [PMID: 24195005 PMCID: PMC3806125 DOI: 10.1155/2013/731430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/25/2013] [Indexed: 11/17/2022]
Abstract
Some rare strains of Clostridium butyricum carry the gene encoding the botulinal type E neurotoxin and must be considered as possible hazards in certain types of food. The limiting growth conditions for C. butyricum were determined in peptone yeast glucose starch (PYGS) broth incubated anaerobically at 30°C for up to 42 days. The minimum pH values permitting growth depended on the acidulant and strain. Organic acids were more effective at inhibiting growth than HCl as expected. The lowest pH values at which growth of toxigenic and nontoxigenic strains of C. butyricum was observed in broth acidified with HCl were 4.1 and 4.2, respectively. In organic acids, however, the minimum pH varied between 4.4 and 5.1 depending on acid type and concentration. The minimum water activity for growth of toxigenic strains of C. butyricum was 0.96. The minimum growth temperatures of the toxigenic strains of C. butyricum (ca 10-11°C) were somewhat higher than for non-toxigenic ones (8°C). It was concluded that control of toxigenic C. butyricum in the food industry needs to allow for the greater pH tolerance of this species compared with proteolytic C. botulinum.
Collapse
|
18
|
Plasmid-borne type E neurotoxin gene clusters in Clostridium botulinum strains. Appl Environ Microbiol 2013; 79:3856-9. [PMID: 23563942 DOI: 10.1128/aem.00080-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of 36 Clostridium botulinum type E strains was examined by pulsed-field gel electrophoresis (PFGE) and Southern hybridization with probes targeted to botE and orfX1 in the neurotoxin gene cluster. Three strains were found to contain neurotoxin subtype E1 gene clusters in large plasmids of about 146 kb in size.
Collapse
|
19
|
Garde S, Gaya P, Arias R, Nuñez M. Enhanced PFGE protocol to study the genomic diversity of Clostridium spp. isolated from Manchego cheeses with late blowing defect. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Analysis of Clostridium botulinum serotype E strains by using multilocus sequence typing, amplified fragment length polymorphism, variable-number tandem-repeat analysis, and botulinum neurotoxin gene sequencing. Appl Environ Microbiol 2011; 77:8625-34. [PMID: 22003031 DOI: 10.1128/aem.05155-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains.
Collapse
|
21
|
Franciosa G, Scalfaro C, Di Bonito P, Vitale M, Aureli P. Identification of novel linear megaplasmids carrying a ß-lactamase gene in neurotoxigenic Clostridium butyricum type E strains. PLoS One 2011; 6:e21706. [PMID: 21738770 PMCID: PMC3125338 DOI: 10.1371/journal.pone.0021706] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022] Open
Abstract
Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P) and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human pathogen.
Collapse
Affiliation(s)
- Giovanna Franciosa
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | |
Collapse
|
22
|
Detection, Differentiation and Subtyping of Botulinum Neurotoxins in Clinical Samples with Mass Spectrometry. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1065.ch006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Feng G, Churey JJ, Worobo RW. Thermoaciduric Clostridium pasteurianum spoilage of shelf-stable apple juice. J Food Prot 2010; 73:1886-90. [PMID: 21067677 DOI: 10.4315/0362-028x-73.10.1886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clostridium pasteurianum BB, a saccharolytic and spore-forming obligate anaerobe, was isolated and identified from shelf-stable apple juice that was responsible for multiple large spoilage outbreaks. The growth and sporulation conditions of C. pasteurianum were atypical compared with those previously published. C. pasteurianum spores were heat resistant in apple juice at pH 3.80, with D-values at 80, 85, and 90°C being 34.4, 15.9, and 4.4 min, respectively, and a z-value of 11°C. The survival curves for thermal inactivation obeyed linear first-order kinetics. Apple juice with varying pH values was used to determine the effect of pH on germination capability of C. pasteurianum spores. The spores were found to be able to germinate at pH as low as 4.3 in pH-adjusted apple juice at low contamination levels. It was confirmed by PCR that C. pasteurianum isolated from spoiled apple juice did not contain the genes for botulinum toxins B and E, which were more commonly found in neurotoxigenic butyric clostridia. Control of finished-juice pH to below 4.0 in combination with mild heating was proposed to prevent potential spoilage of shelf-stable apple juice made with spore-contaminated apple juice concentrate.
Collapse
Affiliation(s)
- Guoping Feng
- Department of Food Science, Cornell University, Geneva, New York 14456, USA
| | | | | |
Collapse
|
24
|
Kalb SR, Garcia-Rodriguez C, Lou J, Baudys J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR. Extraction of BoNT/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-MS. PLoS One 2010; 5:e12237. [PMID: 20808925 PMCID: PMC2923190 DOI: 10.1371/journal.pone.0012237] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/24/2010] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies.
Collapse
Affiliation(s)
- Suzanne R. Kalb
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Consuelo Garcia-Rodriguez
- Department of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Jianlong Lou
- Department of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Jakub Baudys
- Battelle Memorial Institute at the Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Theresa J. Smith
- Integrated Toxicology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - James D. Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Leonard A. Smith
- Integrated Toxicology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - James L. Pirkle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Marshall KM, Bradshaw M, Johnson EA. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum. PLoS One 2010; 5:e11087. [PMID: 20552020 PMCID: PMC2884020 DOI: 10.1371/journal.pone.0011087] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clostridium botulinum produces seven distinct serotypes of botulinum neurotoxins (BoNTs). The genes encoding different subtype neurotoxins of serotypes A, B, F and several dual neurotoxin-producing strains have been shown to reside on plasmids, suggesting that intra- and interspecies transfer of BoNT-encoding plasmids may occur. The objective of the present study was to determine whether these C. botulinum BoNT-encoding plasmids are conjugative. METHODOLOGY/PRINCIPAL FINDINGS C. botulinum BoNT-encoding plasmids pBotCDC-A3 (strain CDC-A3), pCLJ (strain 657Ba) and pCLL (strain Eklund 17B) were tagged with the erythromycin resistance marker (Erm) using the ClosTron mutagenesis system by inserting a group II intron into the neurotoxin genes carried on these plasmids. Transfer of the tagged plasmids from the donor strains CDC-A3, 657Ba and Eklund 17B to tetracycline-resistant recipient C. botulinum strains was evaluated in mating experiments. Erythromycin and tetracycline resistant transconjugants were isolated from donor:recipient mating pairs tested. Transfer of the plasmids to the transconjugants was confirmed by pulsed-field gel electrophoresis (PFGE) and Southern hybridizations. Transfer required cell-to-cell contact and was DNase resistant. This indicates that transfer of these plasmids occurs via a conjugation mechanism. CONCLUSIONS/SIGNIFICANCE This is the first evidence supporting conjugal transfer of native botulinum neurotoxin-encoding plasmids in C. botulinum, and provides a probable mechanism for the lateral distribution of BoNT-encoding plasmids to other C. botulinum strains. The potential transfer of C. botulinum BoNT-encoding plasmids to other bacterial hosts in the environment or within the human intestine is of great concern for human pathogenicity and necessitates further characterization of these plasmids.
Collapse
Affiliation(s)
| | | | - Eric A. Johnson
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
26
|
Franciosa G, Maugliani A, Scalfaro C, Aureli P. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS One 2009; 4:e4829. [PMID: 19287483 PMCID: PMC2653641 DOI: 10.1371/journal.pone.0004829] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/18/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plasmids that encode certain subtypes of the botulinum neurotoxin type B have recently been detected in some Clostridium botulinum strains. The objective of the present study was to investigate the frequency with which plasmid carriage of the botulinum neurotoxin type B gene (bont/B) occurs in strains of C. botulinum type B, Ab, and A(B), and whether plasmid carriage is bont/B subtype-related. METHODOLOGY/PRINCIPAL FINDINGS PCR-Restriction fragment length polymorphism was employed to identify subtypes of the bont/B gene. Pulsed-field gel electrophoresis and Southern blot hybridization with specific probes were performed to analyze the genomic location of the bont/B subtype genes. All five known bont/B subtype genes were detected among the strains; the most frequently detected subtype genes were bont/B1 and /B2. Surprisingly, the bont/B subtype gene was shown to be plasmid-borne in >50% of the total strains. The same bont/B subtype gene was associated with the chromosome in some strains, whereas it was associated with a plasmid in others. All five known bont/B subtype genes were in some cases found to reside on plasmids, though with varying frequency (e.g., most of the bont/B1 subtype genes were located on plasmids, whereas all but one of the bont/B2 subtypes were chromosomally-located). Three bivalent isolates carried both bont/A and /B genes on the same plasmid. The plasmids carrying the bont gene were five different sizes, ranging from approximately 55 kb to approximately 245 kb. CONCLUSIONS/SIGNIFICANCE The unexpected finding of the widespread distribution of plasmids harboring the bont/B gene among C. botulinum serotype B strains provides a chance to examine their contribution to the dissemination of the bont genes among heterogeneous clostridia, with potential implications on issues related to pathogenesis and food safety.
Collapse
Affiliation(s)
- Giovanna Franciosa
- Department of Food Safety and Veterinary Public Health, Unit of Microorganisms and Food Technologies, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
| |
Collapse
|
28
|
|
29
|
Chen Y, Korkeala H, Aarnikunnas J, Lindström M. Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J Bacteriol 2007; 189:8643-50. [PMID: 17905976 PMCID: PMC2168929 DOI: 10.1128/jb.00784-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Three Clostridium botulinum type E strains were sequenced for the botulinum neurotoxin (BoNT) gene cluster, and 11 type E strains, representing a wide biodiversity, were sequenced for the bont/E gene. The total length of the BoNT/E gene cluster was 12,908 bp, and a novel gene (partial) designated orfx3, together with the complete orfx2 gene, was identified in the three type E strains for the first time. Apart from orfx3, the structure and organization of the neurotoxin gene cluster of the three strains were identical to those of previously published ones. Only minor differences (</=3%) in the nucleotide sequences of the gene cluster components were observed among the three strains and the published BoNT/E-producing clostridia. The orfx3, orfx2, orfx1, and p47 gene sequences of the three type E strains shared homologies of 81%, 67 to 76%, 78 to 79%, and 79 to 85%, respectively, with published sequences for type A1 and A2 C. botulinum. Analysis of bont/E from the 14 type E strains and 19 previously published BoNT/E-producing clostridia revealed six neurotoxin subtypes, with a new distinct subtype consisting of three Finnish isolates alone. The amino acid sequence of the subtype E6 neurotoxin differed 3 to 6% from the other subtypes, suggesting that these subtype E6 neurotoxins may possess specific antigenic or functional properties.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food and Environmental Hygiene, P.O. Box 66, FIN-00014, University of Helsinki, Finland
| | | | | | | |
Collapse
|
30
|
Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD. Genetic diversity among Botulinum Neurotoxin-producing clostridial strains. J Bacteriol 2006; 189:818-32. [PMID: 17114256 PMCID: PMC1797315 DOI: 10.1128/jb.01180-06] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore-forming rod-shaped bacteria that have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and death in humans and other animal species. A collection of 174 C. botulinum strains was examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine the genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT/A to BoNT/G). Analysis of the16S rRNA gene sequences confirmed previous identifications of at least four distinct genomic backgrounds (groups I to IV), each of which has independently acquired one or more BoNT genes through horizontal gene transfer. AFLP analysis provided higher resolution and could be used to further subdivide the four groups into subgroups. Sequencing of the BoNT genes from multiple strains of serotypes A, B, and E confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven toxin genes of the serotypes were compared and showed various degrees of interrelatedness and recombination, as was previously noted for the nontoxic nonhemagglutinin gene, which is linked to the BoNT gene. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for the treatment of botulism.
Collapse
Affiliation(s)
- K K Hill
- Bioscience, Theoretical Divisions, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Plourde-Owobi L, Seguin D, Baudin MA, Moste C, Rokbi B. Molecular characterization of Clostridium tetani strains by pulsed-field gel electrophoresis and colony PCR. Appl Environ Microbiol 2005; 71:5604-6. [PMID: 16151158 PMCID: PMC1214643 DOI: 10.1128/aem.71.9.5604-5606.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulsed-field gel electrophoresis and PCR were applied for the first time to the molecular characterization of Clostridium tetani. Among five strains tested, one (CN1339) turned out to contain a mixture of two genetically different clones and two (D11 and G761) to contain bacteria differing by the presence or absence of the 74-kb plasmid harboring the tetX gene.
Collapse
Affiliation(s)
- Lucile Plourde-Owobi
- Research Department, Aventis Pasteur SA, av. Marcel Mérieux, Marcy L'Etoile 69280, France
| | | | | | | | | |
Collapse
|
32
|
Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, Laporte SL, Tepp WH, Bradshaw M, Johnson EA, Smith LA, Marks JD. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 2005; 73:5450-7. [PMID: 16113261 PMCID: PMC1231122 DOI: 10.1128/iai.73.9.5450-5457.2005] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The botulinum neurotoxins (BoNTs) are category A biothreat agents which have been the focus of intensive efforts to develop vaccines and antibody-based prophylaxis and treatment. Such approaches must take into account the extensive BoNT sequence variability; the seven BoNT serotypes differ by up to 70% at the amino acid level. Here, we have analyzed 49 complete published sequences of BoNTs and show that all toxins also exhibit variability within serotypes ranging between 2.6 and 31.6%. To determine the impact of such sequence differences on immune recognition, we studied the binding and neutralization capacity of six BoNT serotype A (BoNT/A) monoclonal antibodies (MAbs) to BoNT/A1 and BoNT/A2, which differ by 10% at the amino acid level. While all six MAbs bound BoNT/A1 with high affinity, three of the six MAbs showed a marked reduction in binding affinity of 500- to more than 1,000-fold to BoNT/A2 toxin. Binding results predicted in vivo toxin neutralization; MAbs or MAb combinations that potently neutralized A1 toxin but did not bind A2 toxin had minimal neutralizing capacity for A2 toxin. This was most striking for a combination of three binding domain MAbs which together neutralized >40,000 mouse 50% lethal doses (LD(50)s) of A1 toxin but less than 500 LD(50)s of A2 toxin. Combining three MAbs which bound both A1 and A2 toxins potently neutralized both toxins. We conclude that sequence variability exists within all toxin serotypes, and this impacts monoclonal antibody binding and neutralization. Such subtype sequence variability must be accounted for when generating and evaluating diagnostic and therapeutic antibodies.
Collapse
Affiliation(s)
- T J Smith
- Toxinology Division, USAMRIID, Frederick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang X, Maegawa T, Karasawa T, Ozaki E, Nakamura S. Clostridium sardiniense Prévot 1938 and Clostridium absonum Nakamura et al. 1973 are heterotypic synonyms: evidence from phylogenetic analyses of phospholipase C and 16S rRNA sequences, and DNA relatedness. Int J Syst Evol Microbiol 2005; 55:1193-1197. [PMID: 15879254 DOI: 10.1099/ijs.0.63271-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium sardiniense Prévot 1938 and Clostridium absonum Nakamura et al. 1973 have long been considered similar in terms of their biological and biochemical properties, but their taxonomic positions have not been clarified by DNA-DNA hybridization studies or rigorous analysis of 16S rRNA genes. In the present study, DNA-DNA hybridization analysis revealed that C. absonum strains DSM 599(T), DSM 600 and KZ 1544 shared 83.0-86.3 % DNA relatedness with C. sardiniense DSM 2632(T). 16S rRNA gene sequence analysis showed that the C. absonum strains also shared high identity with C. sardiniense DSM 2632(T) (99.7, 99.3 and 99.8 % for DSM 599(T), DSM 600 and KZ 1544, respectively), implying that C. absonum and C. sardiniense are synonyms. In addition, alignment of the inferred amino acid sequences for phospholipase C (PLC) indicated 96.5 % identity between PLCs from C. sardiniense and C. absonum, but relatively low identity with other clostridial species. These results strongly suggest that the species C. sardiniense and C. absonum should be united, with the name C. sardiniense having priority.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Clostridium/classification
- Clostridium/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Genes, Bacterial
- Genes, rRNA
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Terminology as Topic
- Type C Phospholipases/genetics
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Tsuneo Maegawa
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Tadahiro Karasawa
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Eijiro Ozaki
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Shinichi Nakamura
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| |
Collapse
|
34
|
van Baar BLM, Hulst AG, de Jong AL, Wils ERJ. Characterisation of botulinum toxins type C, D, E, and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J Chromatogr A 2004; 1035:97-114. [PMID: 15117079 DOI: 10.1016/j.chroma.2004.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In a follow-up of the earlier characterisation of botulinum toxins type A and B (BTxA and BTxB) by mass spectrometry (MS), types C, D, E, and F (BTxC, BTxD, BTxE, BTxF) were now investigated. Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxC, BTxD, BTxE, and BTxF are comprised of a protein complex of the respective neurotoxins with non-toxic non-haemagglutinin (NTNH) and, sometimes, specific haemagglutinins (HA). These protein complexes were observed in mass spectrometric identification. The BTxC complex, from Clostridium botulinum strain 003-9, consisted of a 'type C1 and D mosaic' toxin similar to that of type C strain 6813, a non-toxic non-hemagglutinating and a 33 kDa hemagglutinating (HA-33) component similar to those of strain C-Stockholm, and an exoenzyme C3 of which the sequence was in full agreement with the known genetic sequence of strain 003-9. The BTxD complex, from C. botulinum strain CB-16, consisted of a neurotoxin with the observed sequence identical with that of type D strain BVD/-3 and of an NTNH with the observed sequence identical with that of type C strain C-Yoichi. Remarkably, the observed protein sequence of CB-16 NTNH differed by one amino acid from the known gene sequence: L859 instead of F859. The BTxE complex, from a C. botulinum isolated from herring sprats, consisted of the neurotoxin with an observed sequence identical with that from strain NCTC 11219 and an NTNH similar to that from type E strain Mashike (1 amino acid difference with observed sequence). BTxF, from C. botulinum strain Langeland (NCTC 10281), consisted of the neurotoxin and an NTNH; observed sequences from both proteins were in agreement with the gene sequence known from strain Langeland. As with BTxA and BTxB, matrix-assisted laser desorption/ionisation (MALDI) MS provided provisional identification from trypsin digest peptide maps and liquid chromatography-electrospray (tandem) mass spectrometry (LC-ES MS) afforded unequivocal identification from amino acid sequence information of digest peptides obtained in trypsin digestion.
Collapse
Affiliation(s)
- Ben L M van Baar
- TNO Prins Maurits Laboratory, Division Chemical and Biological Protection, PO Box 45, 2280 AA, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Clark GC, Briggs DC, Karasawa T, Wang X, Cole AR, Maegawa T, Jayasekera PN, Naylor CE, Miller J, Moss DS, Nakamura S, Basak AK, Titball RW. Clostridium absonum alpha-toxin: new insights into clostridial phospholipase C substrate binding and specificity. J Mol Biol 2003; 333:759-69. [PMID: 14568535 DOI: 10.1016/j.jmb.2003.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clostridium absonum phospholipase C (Caa) is a 42.7 kDa protein, which shows 60% amino acid sequence identity with the Clostridium perfringens phospholipase C, or alpha-toxin (Cpa), and has been isolated from patients suffering from gas gangrene. We report the cloning and sequencing, purification, characterisation and crystal structure of the Caa enzyme. Caa had twice the phospholipid-hydrolysing (lecithinase) activity, 1.5 times the haemolytic activity and over seven times the activity towards phosphatidylcholine-based liposomes when compared with Cpa. However, the Caa enzyme had a lower activity than Cpa to the free (i.e. not in lipid bilayer) substrate para-nitrophenylphosphorylcholine, towards sphingomyelin-based liposomes and showed half the cytotoxicity. The lethal dose (LD(50)) of Caa in mice was approximately twice that of Cpa. The crystal structure of Caa shows that the 72-93 residue loop is in a conformation different from those of previously determined open-form alpha-toxin structures. This conformational change suggests a role for W84 in membrane binding and a possible route of entry into the active site along a hydrophobic channel created by the re-arrangement of this loop. Overall, the properties of Caa are compatible with a role as a virulence-determinant in gas gangrene caused by C.absonum.
Collapse
Affiliation(s)
- Graeme C Clark
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Karasawa T, Wang X, Maegawa T, Michiwa Y, Kita H, Miwa K, Nakamura S. Clostridium sordellii phospholipase C: gene cloning and comparison of enzymatic and biological activities with those of Clostridium perfringens and Clostridium bifermentans phospholipase C. Infect Immun 2003; 71:641-6. [PMID: 12540540 PMCID: PMC145374 DOI: 10.1128/iai.71.2.641-646.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding Clostridium sordellii phospholipase C (Csp) was cloned and expressed as a histidine-tagged (His-tag) protein, and the protein was purified to compare its enzymatic and biological activities with those of Clostridium perfringens phospholipase C (Cpa) and Clostridium bifermentans phospholipase C (Cbp). Csp was found to consist of 371 amino acid residues in the mature form and to be more homologous to Cbp than to Cpa. The egg yolk phospholipid hydrolysis activity of the His-tag Csp was about one-third of that of His-tag Cpa, but the hemolytic activity was less than 1% of that of His-tag Cpa. His-tag Csp was nontoxic to mice. Immunization of mice with His-tag Cbp or His-tag Csp did not provide effective protection against the lethal activity of His-tag Cpa. These results indicate that Csp possesses similar molecular properties to Cbp and suggest that comparative analysis of toxic and nontoxic clostridial phospholipases is helpful for characterization of the toxic properties of clostridial phospholipases.
Collapse
Affiliation(s)
- Tadahiro Karasawa
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Verastegui C, Lalli G, Bohnert S, Meunier FA, Schiavo G. CLOSTRIDIAL NEUROTOXINS. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Characterization of Clostridium butyricum neurotoxin associated with food-borne botulism. Microb Pathog 2002. [DOI: 10.1006/mpat.2002.0525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Pourshaban M, Franciosa G, Fenicia L, Aureli P. Taxonomic identity of type E botulinum toxin-producing Clostridium butyricum strains by sequencing of a short 16S rDNA region. FEMS Microbiol Lett 2002; 214:119-25. [PMID: 12204382 DOI: 10.1111/j.1574-6968.2002.tb11334.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several micro-organisms capable of producing botulinum neurotoxin type E, though phenotypically similar to Clostridium butyricum (a normally non-neurotoxigenic organism), have recently been isolated in Italy and China. Some of these micro-organisms had been implicated in food-borne botulism, a serious neuroparalytic disease. The taxonomic identity of the type E botulinum toxin-producing strains is confirmed here, through sequencing of a genus- and species-specific segment of the 16S rRNA gene. Confirmation leads to the conclusion that neurotoxigenic C. butyricum must be regarded as an emergent food-borne pathogen.
Collapse
Affiliation(s)
- Manoocheher Pourshaban
- National Reference Centre of Botulism, Food Laboratory, Istituto Superiore della Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
40
|
Doyle ME, Pariza MW. Foodborne microbial pathogens and the food research institute. ADVANCES IN APPLIED MICROBIOLOGY 2002; 49:143-61. [PMID: 11757349 DOI: 10.1016/s0065-2164(01)49012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M E Doyle
- Food Research Institute, University of Wisconsin, 1925 Willow Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
41
|
Mannu L, Paba A. Genetic diversity of lactococci and enterococci isolated from home-made Pecorino Sardo ewes' milk cheese. J Appl Microbiol 2002; 92:55-62. [PMID: 11849328 DOI: 10.1046/j.1365-2672.2002.01489.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To assess the intraspecific genetic diversity of lactococci and enterococci isolated from 24-h, 1- and 2-month-old home-made Pecorino Sardo ewes' milk cheese. METHODS AND RESULTS Two molecular techniques, plasmid profiling and pulsed-field gel electrophoresis, were used in order to type the isolates at strain level. The present study revealed that the lactococcal and enterococcal microbial populations of home-made Pecorino Sardo cheese were complex, not only 24 h after manufacture, but also after 1 and 2 months of ripening. The genetic diversity at subspecies level ranged from 58 to 80% during the three periods examined. The study also showed that the strains that dominated in the first stage of ripening were not necessarily predominant in the later periods. A high number of strains isolated at 24 h were still present in the mature cheese, but many of the genotypes were only found in the cheese after 1 or 2 months. CONCLUSIONS The results showed a high intraspecific genetic diversity in the natural microbial population colonizing home-made Pecorino Sardo cheese. Two molecular techniques are necessary for a thorough and precise typing at strain level in order to better distinguish between closely related isolates and between isolates that probably belong to the same clonal lineage. SIGNIFICANCE AND IMPACT OF THE STUDY The genetic complexity observed in the present study is of particular relevance in the preservation of the natural microflora of traditional Protected Designation of Origin raw milk cheeses, as well as in the selection of new starter strains for the dairy industry.
Collapse
Affiliation(s)
- L Mannu
- Istituto Zootecnico e Caseario per la Sardegna, Località Bonassai, Olmedo, Italy.
| | | |
Collapse
|
42
|
Abstract
Clostridium botulinum comprises a diverse assemblage of clostridia that have the common property of producing a distinctive protein neurotoxin (BoNT) of similar pharmacological activity and extraordinary potency. BoNTs are produced in culture as molecular complexes consisting of BoNT, hemagglutinin (HA) and associated subcomponent proteins, nontoxic nonhemagglutinin (NTNH), and RNA. The genes encoding the protein components reside as a cluster on the chromosome, on bacteriophages, or on plasmids depending on the C. botulinum serotype. A gene BotR coding for a regulatory protein has been detected in toxin gene clusters from certain strains, as well as ORFs coding for uncharacterized components. The gene encoding TeNT is located on a large plasmid, and expression of the structural gene is controlled by the regulatory gene, TetR, located immediately upstream of the TeNT structural gene. TeNT is not known to be assembled into a protein/nucleic acid complex in culture. Cellular synthesis of BoNT and TeNT have been demonstrated to be positively regulated by the homologous proteins, BotR/A and TetR. Evidence suggests that negative regulatory factors and general control cascades such as those involved in nitrogen regulation and carbon catabolite repression also regulate synthesis of BoNTs. Neurotoxigenic clostridia have attracted considerable attention from scientists and clinicians during the past decade, and many excellent reviews are available on various aspects of these organisms and their neurotoxins. However, certain areas have not been well-studied, including metabolic regulation of toxin formation and genetic tools to study neurotoxigenic clostridia. These topics are the focus of this review.
Collapse
Affiliation(s)
- E A Johnson
- Department of Food Microbiology and Toxicology, and Bacteriology, Food Research Institute, University of Wisconsin, Madison, 53706, USA.
| | | |
Collapse
|
43
|
Alsallami AA, Kotłowski R. Selection of primers for specific detection of Clostridium botulinum types B and E neurotoxin genes using PCR method. Int J Food Microbiol 2001; 69:247-53. [PMID: 11603862 DOI: 10.1016/s0168-1605(01)00499-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Improved oligonucleotide primers were designed to flank 370- and 307-bp fragments of the bont genes encoding botulinum neurotoxins types B and E, respectively. Primer specificity was confirmed for reference strains of Clostridium botulinum types B and E for strains representing bacterial species common in food, and for the DNA mixtures of C. botulinum types B and E in the presence of background DNA isolated from cold smoked salmon and ham. The detection limit of template DNAs of C. botulinum types B and E from the DNA mixtures increased from 1 to 0.1 ng by raising annealing temperature from 50 degrees C to 62 degrees C.
Collapse
Affiliation(s)
- A A Alsallami
- Department of Food Chemistry and Technology, Chemical Faculty, Technical University of Gdańsk, Poland
| | | |
Collapse
|