1
|
Obuch-Woszczatyńska O, Bylińska K, Krzyżowska M, Korzekwa K, Bąska P. Parasites in Sewage: Legal Requirements and Diagnostic Tools. Pathogens 2025; 14:86. [PMID: 39861047 PMCID: PMC11768300 DOI: 10.3390/pathogens14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Despite the vast amount of water on Earth, only a small percent is suitable for consumption, and these resources are diminishing. Moreover, water resources are unevenly distributed, leading to significant disparities in access to drinking water between countries and populations. Increasing consumption and the expanding human population necessitate the development of novel wastewater treatment technologies and the use of water treatment byproducts in other areas, such as fertilisers. However, water treatment sludge often cannot be used to enhance crop production due to the presence of parasite eggs, particularly from roundworms (Ascaridae family), which are resistant to environmental factors and can pose a threat for several years. Legislation prohibits the use of sludge containing parasite eggs as fertiliser. In some cases, water may not contain parasite eggs but larvae, which require different detection methods. Additionally, the presence of eggs does not necessarily indicate danger since they may lose infectivity due to prolonged storage or exposure to chemical compounds in the sewage. This paper reviews European Union regulations on wastewater treatment, the selected parasitic diseases related to the presence of parasites in wastewater, the spectrum of detection methods, and highlights differences in viability and invasiveness, which is intended to draw attention to the need to determine both biological properties of parasites.
Collapse
Affiliation(s)
- Oliwia Obuch-Woszczatyńska
- Laboratory of Parasitology, Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland; (O.O.-W.); (K.B.)
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Klaudia Bylińska
- Laboratory of Parasitology, Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland; (O.O.-W.); (K.B.)
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Małgorzata Krzyżowska
- Department of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland; (M.K.); (K.K.)
| | - Karol Korzekwa
- Department of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland; (M.K.); (K.K.)
| | - Piotr Bąska
- Laboratory of Parasitology, Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland; (O.O.-W.); (K.B.)
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Contreras-Soto MB, Castro-Del Campo N, Chaidez C, Velázquez-García FE, González-Gómez JP, Martínez-Rodríguez CI, Gaxiola-Montoya J, Castro-Del Campo N. Ozone disinfection of treated wastewater for inactivation of Cryptosporidium parvum for agricultural irrigation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70002. [PMID: 39868813 DOI: 10.1002/wer.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 12/14/2024] [Indexed: 01/28/2025]
Abstract
The reliance on agriculture in many nations has increased the use of treated wastewater for irrigation. However, reclaimed water still poses health risks from resistant pathogens like Cryptosporidium spp. Ozone, a strong disinfectant, has been used in water treatment. This study assessed the microbiological quality of treated wastewater for irrigation and evaluated ozone effectiveness in inactivating C. parvum oocysts. All samples contained Cryptosporidium spp., with 163 to 850 oocysts 100 L-1, and 50% contained viable oocysts. When C. parvum was exposed to different ozone residual concentrations (0.1, 0.8, and 1.3 mg L-1), oocyst viability reduction of 73%, 85%, and 99% and infectivity of 0.8, 1.36, and 2 Log10 was achieved. The predicted values for infectious oocysts were 4.19, 3.64, and 3.27, representing absolute counts of infective oocysts after ozone treatment. These findings demonstrate ozone's effectiveness in inactivating C. parvum in treated wastewater, supporting its potential for safe water reuse. PRACTITIONER POINTS: All wastewater samples contained Cryptosporidium spp., with 163 to 850 oocysts per 100 L. Wastewater had 50% contained viable oocysts. Ozone concentrations (0.1, 0.8, 1.3 mg/l) achieved oocyst viability of 73.33%, 85.0%, and 99.4%, respectively. The predicted values for infectious oocysts were 4.19, 3.64, and 3.27, respectively for each ozone concentration.
Collapse
Affiliation(s)
- María B Contreras-Soto
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Nohemí Castro-Del Campo
- Laboratorio de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa, Mexico
| | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Flavio E Velázquez-García
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Jean P González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Célida I Martínez-Rodríguez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Joel Gaxiola-Montoya
- Laboratorio de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa, Mexico
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| |
Collapse
|
3
|
Matsubayashi M, Haraguchi A, Morisaki M, Ikadai H, Teramoto I, Kido Y, Kaneko A. Cryptosporidium parvum inactivation from short durations of treatment with ozonated water produced by an electrolytic generation system. Parasitol Res 2024; 123:371. [PMID: 39503909 DOI: 10.1007/s00436-024-08390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024]
Abstract
Cryptosporidium is a waterborne pathogen that causes diarrhea in vertebrates and humans (mainly C. hominis and C. parvum). Ozone (O3) is a powerful disinfectant due to its high oxidative characteristics, and it is used to inactivate microorganisms in drinking water. As an alternative to the gas dissolution system for producing ozone from oxygen, a simpler electrolytic ozone generation system has recently been developed. In the present study, the efficacy of the ozonated water produced by this system in inactivating Cryptosporidium parasites (C. parvum) was evaluated at different current intensities (which change the ozone concentrations) and short exposure times (15-60 s). Oocyst viability and integrity was assessed using vital dye staining, excystation assays, and scanning electron microscopy (SEM). SEM data revealed that oocyst walls were damaged by exposure to ozone molecules even at low concentrations (< 0.01 mg/l for 1 min) (current intensity 0.2 A), but that the excystation assay could not differentiate between deformed oocysts (dead) and partially excysted oocysts (alive). Exposure to ozonated water produced with a low current intensity (0.3 A) for 15 and 120 s resulted in the inactivation of 96.2% (CT value < 0.003) and 99.4% (CT value < 0.020) of the oocysts, respectively. Thus, it was estimated that a CT value more than 0.020 was required to inactivate > 99% of the C. parvum oocysts. These results suggested that the electrolytic ozone generation system may be more effective than gas dissolution ozone generation; however, further studies using additional approaches are needed to obtain clearer evidence.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan.
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia.
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, 545-8585, Japan.
| | - Asako Haraguchi
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Manami Morisaki
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Isao Teramoto
- Graduate School of Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, 598-8531, Japan
| | - Yasutoshi Kido
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, 545-8585, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Akira Kaneko
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, 545-8585, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| |
Collapse
|
4
|
Wang D, Jiang P, Yang X, Zhang J, Chen T, Hu M, Cacciò SM, Yin J, Zhu G. Novel strategy to quantify the viability of oocysts of Cryptosporidium parvum and C. hominis, a risk factor of the waterborne protozoan pathogens of public health concern. WATER RESEARCH 2024; 258:121788. [PMID: 38810599 DOI: 10.1016/j.watres.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
While waters might be contaminated by oocysts from >40 Cryptosporidium species, only viable oocysts of C. parvum and C. hominis truly pose the main health risk to the immunocompetent population. Oocyst viability is also an important but often neglected risk factor in monitoring waterborne parasites. However, commonly used methods in water monitoring and surveys cannot distinguish species (microscopic observation) or oocyst viability (PCR), as dead oocysts in water could retain gross structure and DNA content for weeks to months. Here, we report new TaqMan qRT-PCR/qPCR assays for quantitative detection of viable C. parvum and C. hominis oocysts. By targeting a hypothetical protein-encoding gene cgd6_3920 that is highly expressed in oocysts and variable between species, the qRT-PCR/qPCR assays achieve excellent analytical specificity and sensitivity (limit of quantification [LOQ] = 0.25 and 1.0 oocyst/reaction). Using calibration curves, the number and ratio of viable oocysts in specimens could be calculated. Additionally, we also establish a TaqMan-18S qPCR for cost-effective screening of pan-Cryptosporidium-positive specimens (LOQ = 0.1 oocyst/reaction). The assay feasibility is validated using field water (N = 43) and soil (79) specimens from 17 locations in Changchun, China, which detects four Cryptosporidium species from seven locations, including three gp60-subtypes (i.e., IIdA19G1, IIdA17G1 and IIdA24G2) of C. parvum oocysts showing varied viability ratios. These new TaqMan q(RT)-PCR assays supplement current methods in the survey of waters and other samples (e.g., surfaces, foods and beverages), and are applicable to assessing the efficiency of oocyst deactivation protocols.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxuan Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jifei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Jenkins MC, O'Brien CN, Parker C, Tucker M, Khan A. Relationship between Eimeria oocyst infectivity for chickens and in vitro excystation of E. acervulina, E. maxima, and E. tenella oocyst during long-term storage. Poult Sci 2023; 102:103133. [PMID: 37856905 PMCID: PMC10590741 DOI: 10.1016/j.psj.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/21/2023] Open
Abstract
Vaccination of chickens against avian coccidiosis in chickens often involves storing Eimeria oocysts for months after oocyst propagation and sporulation. The purpose of this study was to determine how long E. acervulina, E. maxima, and E. tenella oocysts remained viable when stored at refrigeration (4°C) or egg room (20°C) temperatures. Separate tubes containing E. acervulina, E. maxima, or E. tenella oocysts were stored at these temperatures and a sample removed every 3 mo for inoculating chickens for evidence of a patent infection. Also, an aliquot of each Eimeria species at each time-temperature combination was subjected to in vitro excystation to quantify the relative number of released sporozoites to intact (nonexcysted) sporocysts. Eimeria tenella appeared to be most susceptible to storage in that no oocyst production was observed at 9 mo at either temperature. Although E. maxima oocysts were viable at 9 mo, no oocyst production was observed at 12 mo storage at these 2 temperatures. Quite unexpected was that E. acervulina was much more stable than E. tenella and E. maxima remaining viable up to and including 27 mo at 4°C and up to and including 12 mo at 20°C. No consistent correlation was observed between in vivo oocyst production and in vitro excystation arising from these 2 respective temperatures (E. acervulina r = 0.58, r = 0.54; E. maxima r = 0.90, r = 0.54; E. tenella r = 0.38, r = 0.90). These data indicate that attention must be paid to time and temperature of Eimeria oocyst storage, and that sporozoite excystation may not be a good indicator of oocyst viability, particularly at later timepoints in incubation.
Collapse
Affiliation(s)
- Mark C Jenkins
- Animal Parasitic Diseases Laboratory, NEA, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | - Celia N O'Brien
- Animal Parasitic Diseases Laboratory, NEA, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Carolyn Parker
- Animal Parasitic Diseases Laboratory, NEA, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Matthew Tucker
- Animal Parasitic Diseases Laboratory, NEA, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Asis Khan
- Animal Parasitic Diseases Laboratory, NEA, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
6
|
Comparative Effect of Allicin and Alcoholic Garlic Extract on the Morphology and Infectivity of Eimeria tenella Oocysts in Chickens. Animals (Basel) 2022; 12:ani12223185. [PMID: 36428412 PMCID: PMC9686627 DOI: 10.3390/ani12223185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Avian coccidiosis remains one of the major parasitic diseases that threaten the global poultry industry. Since prevention is superior to treatment, this study focuses on eliminating the infection outside the host. To determine their effect on the viability of Eimeria tenella oocysts in vitro, allicin and alcoholic garlic extract, which are natural, less toxic, and inexpensive products, were compared to KOH 5% (chemical disinfectant) using an in vitro culture system. Three concentrations of allicin (45, 90, and 180 mg/mL) and alcoholic garlic extract (90, 180, and 360 mg/mL, were used. Subsequently, destructive and sporulation-inhibiting effects on Eimeria oocysts were detected using light and electron microscopy. Young chickens were infected with treated sporulated oocysts to determine their effect on infectivity. After 7 days pi, the percentage of excreted oocysts (oocyst shedding) was determined, and the chickens were slaughtered for histopathological examination of the cecal tissues. Under an electron microscope, allicin at a concentration of 180 mg/mL and alcoholic garlic extract at a concentration of 360 mg/mL demonstrate a high oocysticidal activity with severe destruction of the oocyst wall and the appearance of pores. In addition, both concentrations directly affected the infectivity of sporulated oocysts by reducing the shedding of oocysts and the pathological lesions of infected young chickens. We concluded that the ability of Allicin and alcoholic garlic extract to eliminate Eimeria oocysts makes them superior to chemical disinfectants as a disinfectant.
Collapse
|
7
|
Tucker MS, Khan A, Jenkins MC, Dubey JP, Rosenthal BM. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022; 10:1977. [PMID: 36296256 PMCID: PMC9608778 DOI: 10.3390/microorganisms10101977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclospora cayetanensis is an enigmatic human parasite that sickens thousands of people worldwide. The scarcity of research material and lack of any animal model or cell culture system slows research, denying the produce industry, epidemiologists, and regulatory agencies of tools that might aid diagnosis, risk assessment, and risk abatement. Fortunately, related species offer a strong foundation when used as surrogates to study parasites of this type. Species of Eimeria lend themselves especially well as surrogates for C. cayetanensis. Those Eimeria that infect poultry can be produced in abundance, share many biological features with Cyclospora, pose no risk to the health of researchers, and can be studied in their natural hosts. Here, we overview the actual and potential uses of such surrogates to advance understanding of C. cayetanensis biology, diagnostics, control, and genomics, focusing on opportunities to improve prevention, surveillance, risk assessment, and risk reduction. Studying Eimeria surrogates accelerates progress, closing important research gaps and refining promising tools for producers and food safety regulators to monitor and ameliorate the food safety risks imposed by this emerging, enigmatic parasite.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
8
|
Morrison CM, Hogard S, Pearce R, Gerrity D, von Gunten U, Wert EC. Ozone disinfection of waterborne pathogens and their surrogates: A critical review. WATER RESEARCH 2022; 214:118206. [PMID: 35276607 DOI: 10.1016/j.watres.2022.118206] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 05/21/2023]
Abstract
Viruses, Giardia cysts, and Cryptosporidium parvum oocysts are all major causes of waterborne diseases that can be uniquely challenging in terms of inactivation/removal during water and wastewater treatment and water reuse. Ozone is a strong disinfectant that has been both studied and utilized in water treatment for more than a century. Despite the wealth of data examining ozone disinfection, direct comparison of results from different studies is challenging due to the complexity of aqueous ozone chemistry and the variety of the applied approaches. In this systematic review, an analysis of the available ozone disinfection data for viruses, Giardia cysts, and C. parvum oocysts, along with their corresponding surrogates, was performed. It was based on studies implementing procedures which produce reliable and comparable datasets. Datasets were compiled and compared with the current USEPA Ct models for ozone. Additionally, the use of non-pathogenic surrogate organisms for prediction of pathogen inactivation during ozone disinfection was evaluated. Based on second-order inactivation rate constants, it was determined that the inactivation efficiency of ozone decreases in the following order: Viruses >> Giardia cysts > C. parvum oocysts. The USEPA Ct models were found to be accurate to conservative in predicting inactivation of C. parvum oocysts and viruses, respectively, however they overestimate inactivation of Giardia cysts at ozone Ct values greater than ∼1 mg min L-1. Common surrogates of these pathogens, such as MS2 bacteriophage and Bacillus subtilis spores, were found to exhibit different inactivation kinetics to mammalian viruses and C. parvum oocysts, respectively. The compilation of data highlights the need for further studies on disinfection kinetics and inactivation mechanisms by ozone to better fit inactivation models as well as for proper selection of surrogate organisms.
Collapse
Affiliation(s)
- Christina M Morrison
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA.
| | - Samantha Hogard
- Civil and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Hampton Roads Sanitation District, P.O. Box 5911, Virginia Beach, VA 23471-0911
| | - Robert Pearce
- Civil and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Hampton Roads Sanitation District, P.O. Box 5911, Virginia Beach, VA 23471-0911
| | - Daniel Gerrity
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dubendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Eric C Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA
| |
Collapse
|
9
|
Sammarro Silva KJ, Sabogal-Paz LP. Analytical challenges and perspectives of assessing viability of Giardia muris cysts and Cryptosporidium parvum oocysts by live/dead simultaneous staining. ENVIRONMENTAL TECHNOLOGY 2022; 43:60-69. [PMID: 32463712 DOI: 10.1080/09593330.2020.1775712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Giardia and Cryptosporidium are pathogenic protozoa often present in the environment in their infective form(cysts and oocysts). These parasites are very resistant to disinfection, which makes them important target organisms in environmental quality monitoring and sanitation. Viability assessment provides an interpretation of cell inactivation, and it can be evaluated by membrane integrity as well as enzyme activity, using different staining methods. These are straightforward and adequate to laboratories that lack infrastructure for molecular-based technologies or animal infectivity tests. This study investigated simultaneous staining by a commercial live/dead kit, in order to assess viability of Cryptosporidium parvum oocysts and Giardia muris cysts, comparing it to propidium iodide (PI) incorporation, a common stain applied in viability estimation. Results suggested that, although the central hypothesis of one-panel visualization (α = 0.05) was met, simultaneous staining impaired (oo)cyst detection by immunofluorescence assay (IFA), which was found to be essential to enumeration, as the live/dead test led to poor (oo)cyst labelling or a 10-fold lower recovery when carried out concomitantly to IFA. As for the viability assessment itself, although red dye uptake occurred as expected by dead or weakened organisms, neither live G. muris cysts or C. parvum oocysts present any green fluorescence by esterase metabolism. This may have been caused by low enzyme activity in the infective form and/or wall thickness of these parasites. The results do not exclude the possibility of simultaneous fluorescence staining for protozoa, but it is a starting point for a broader analysis, that may consider, for instance, different incubation conditions.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
10
|
Tucker MS, O’Brien CN, Jenkins MC, Rosenthal BM. Dynamically expressed genes provide candidate viability biomarkers in a model coccidian. PLoS One 2021; 16:e0258157. [PMID: 34597342 PMCID: PMC8486141 DOI: 10.1371/journal.pone.0258157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria parasites cause enteric disease in livestock and the closely related Cyclosporacayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.
Collapse
Affiliation(s)
- Matthew S. Tucker
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Celia N. O’Brien
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Mark C. Jenkins
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Benjamin M. Rosenthal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
11
|
Craighead S, Huang R, Chen H, Kniel KE. The use of pulsed light to inactivate Cryptosporidium parvum oocysts on high-risk commodities (Cilantro, mesclun lettuce, spinach, and tomatoes). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Sammarro Silva KJ, Sabogal-Paz LP. Cryptosporidium spp. and Giardia spp. (oo)cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays. WATER RESEARCH 2021; 189:116590. [PMID: 33166919 DOI: 10.1016/j.watres.2020.116590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Cysts and (oo)cysts are the infective forms of parasitic protozoa, as Giardia and Cryptosporidium, which are widespread and associated to worldwide waterborne diseases outbreaks. These microorganisms pose a challenge to public health, as they are resistant to conventional disinfection methods, which make them important parameters when evaluating inactivation efficiency. However, when (oo)cysts are targets, it is challenging to infer inactivation efficacy, as it may require infectivity tests that are not often an option for laboratory routine analysis. In this scene, (oo)cyst viability based on induced excystation, membrane integrity and enzyme activity evaluated by dye inclusion and/or exclusion, as well as fluorescence reduction consist on microscopy-based techniques that may be options to estimate inactivation in the environmental context. This scoping review presents applications, advantages and limitations of these methodologies for viability assessment, in order to shed light on the (oo)cyst viability topic and provide insight strategies for choosing protocols in the environmental and sanitation field, in laboratory applications and novel research.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
13
|
Liu L, Wang Y, Craik S, James W, Shu Z, Narain R, Liu Y. Removal of Cryptosporidium surrogates in drinking water direct filtration. Colloids Surf B Biointerfaces 2019; 181:499-505. [PMID: 31177076 DOI: 10.1016/j.colsurfb.2019.05.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/12/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
Pilot-scale direct filtration challenge experiments were conducted to determine the impact of chemical pretreatment and filter design on the removal of Cryptosporidium surrogates dosed into the filter influent water at low temperatures (Average 0.5 °C). Copolymers-modified microspheres were identified as representative Cryptosporidium oocysts surrogates based on our previous findings and were used to evaluate the oocysts filtration removal at this pilot-scale study. The operational parameters examined included coagulant type (aluminum sulfate (alum) versus polyaluminium chloride (PACl)), filter aid polymer type (polyamine Magnafloc® LT-7981 versus poly(Dimethyl Diallyl Ammonium Chloride) (polyDADMAC) Magnafloc® LT-7995) and dose (0.5 versus 2.0 mg/L), and filter configuration (regular versus deep bed filters). The study found that higher Cryptosporidium surrogate removal was associated with higher polymer dose (2 mg/L) of polyDADMAC polymer and the deep bed filter configuration. The difference in surrogate removal between PACl and alum was no significant at cold temperature conditions tested. The deep bed filters were associated with higher surrogate removal, while exhibiting lower rates of flow reduction and longer filter run time. This work emphasizes the importance of optimizing chemical pretreatment and filter configuration for removing surrogates of Cryptosporidium oocysts in cold-water conditions in granular media water filtration processes. This pilot-scale study also demonstrated the exceed 2.5-log removal of Cryptosporidium surrogates (required from Guideline for Canadian Drinking Water Quality) can be achieved in the direct filtration during Edmonton cold-water condition when the pretreatment processes are optimized using 0.454 mg/L of alum as Al with addition of 0.5 mg/L poly DADMAC.
Collapse
Affiliation(s)
- Lu Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Yinan Wang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Stephen Craik
- EPCOR Water Services Inc., Edmonton, AB, Canada, T6M 0J2
| | - Wendell James
- EPCOR Water Services Inc., Edmonton, AB, Canada, T6M 0J2
| | - Zengquan Shu
- EPCOR Water Services Inc., Edmonton, AB, Canada, T6M 0J2
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3.
| |
Collapse
|
14
|
Calcium-Mediated Biophysical Binding of Cryptosporidium parvum Oocysts to Surfaces Is Sensitive to Oocyst Age. Appl Environ Microbiol 2019; 85:AEM.00816-19. [PMID: 31253676 DOI: 10.1128/aem.00816-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptosporidium parvum causes potentially life-threatening gastrointestinal disease in humans and may not be effectively removed from drinking water via conventional methods. Prior research has shown that environmental biofilms immobilize oocysts from the water column, but the biophysical mechanisms driving this attraction are still under investigation. This study investigates the affinity of C. parvum oocysts to silanized surfaces. Surfaces were prepared with hydroxyl, amine, and carboxyl moieties. Binding forces between the oocysts and these engineered substrates were analyzed, with and without divalent ions, using atomic force microscopy. Binding forces were measured over several weeks to investigate the influence of age on adhesion. C. parvum oocysts bind most strongly to carboxylic acid functional groups, with rupture forces greater than that required to break noncovalent molecular bonds, regardless of oocyst age. This adhesion is shown to be due to divalent cation bridging mechanisms. In addition, the binding strength increases over a 5-week period as the oocysts age, followed by a decrease in the binding strength, which may be related to structural or biochemical changes in the outer wall-bound glycosylated proteins. This study sheds new light on the biochemical parameters that influence C. parvum oocyst binding to surfaces. Increased understanding of how age and water chemistry influence the binding strength of oocysts may inform future developments in environmental detection and drinking water treatment, such as with the development of oocyst-specific sensors that allow for more frequent tracking of oocysts in the environment.IMPORTANCE The mechanisms by which pathogens bind to surfaces are of interest to a wide variety of scientific communities, as these mechanisms drive infectivity, fate, and transport of the pathogenic organisms. This study begins to reveal the mechanism of direct binding of Cryptosporidium parvum to surfaces containing both carboxylic acid and amine moieties, in an attempt to understand how much of the binding ability is due to long-range electrostatic forces versus other mechanisms (specific or nonspecific) of bonding. In addition to improving the scientific understanding of fate and transport of oocysts, an expanded understanding of the binding mechanisms may aid in the development of new tools and sensors designed to detect and track oocysts in waterways. Furthermore, the methods used to examine binding in this study could be translated to other waterborne pathogens of interest.
Collapse
|
15
|
Adeyemo FE, Singh G, Reddy P, Bux F, Stenström TA. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One 2019; 14:e0216040. [PMID: 31083664 PMCID: PMC6513095 DOI: 10.1371/journal.pone.0216040] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/13/2019] [Indexed: 01/05/2023] Open
Abstract
Wastewater from different sources is contaminated by protozoan parasites including Cryptosporidium and Giardia. Many protozoan parasites are becoming resistant to chemical treatment. The challenge of finding alternatives is presented to researchers by exploring other methods of eliminating protozoan parasites from wastewater. The aim of this study was to assess the speciation and the viability of Cryptosporidium and Giardia in environmental samples with the specific objective of evaluating if effluent chlorination and UV affect the viability. Different doses of chlorine with different exposure times were experimented with both distilled water and waste water spiked with (oo)cysts derived from environmental samples. UV irradiation at different doses was also experimented using the same spiked samples. Two methods of quantification and detection, namely, microscopy and flow cytometry, were used in the experiment. Two vital dyes, Syto-9+PI and DAPI+PI, were the used for staining the collected wastewater samples. It was found that the (oo)cysts responded to chlorination and UV treatments with Giardia responding better than Cryptosporidium. Giardia responded very well to UV irradiations with almost 0 percent remaining viable after a low dose of UV. Cryptosporidium was found to be resistant to chlorination even at high doses but responded well to high UV doses. DAPI+PI dye gave a lower mean percentage viability values than Syto-9+PI. Flow cytometry gave higher mean percentage than microscopy from the results. It is concluded that UV is a promising alternative to Chlorine in removing Cryptosporidium and Giardia from waste water. Appropriate treatment method for wastewater is necessary to minimize water resources pollution when wastewater is released into water systems.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
- * E-mail: ,
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, Durban, South Africa
| |
Collapse
|
16
|
Blatchley Iii ER, Cullen JJ, Petri B, Bircher K, Welschmeyer N. The Biological Basis for Ballast Water Performance Standards: "Viable/Non-Viable" or "Live/Dead"? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8075-8086. [PMID: 29927584 DOI: 10.1021/acs.est.8b00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The shipping industry is critical to international commerce; however, contemporary shipping practices involve uptake and discharge of ballast water, which introduces the potential for transfer of nonindigenous, invasive species among geographically distinct habitats. To counteract this hazard, regulations for ballast water management have been implemented by the International Maritime Organization (IMO) and by regulatory agencies such as the United States Coast Guard (USCG). IMO and USCG discharge standards are numerically identical, but involve different definitions of treatment end points, which are based on fundamentally different biological assays for quantification of ballast water treatment effectiveness. Available assays for quantification of the responses of organisms in the 10-50 μm size range include vital stains based on fluorescein diacetate (FDA), sometimes used in combination with 5-chloromethylfluorescein diacetate (CMFDA), observations of motility, and the most probable number dilution culture method (MPN). The mechanisms and implications of these assays are discussed relative to the Type Approval process, which quantitatively evaluates compliance with ballast water discharge standards (BWDSs) under controlled shipboard and land-based tests. For antimicrobial processes that accomplish treatment by preventing subsequent replication of the target species, the FDA/CMFDA and MPN methods can yield dramatically different results. An important example of a treatment process that is affected by the choice of assay is ultraviolet (UV) irradiation. Results of laboratory and field experiments have demonstrated UV-based technologies to be effective for accomplishing the objectives of ballast water treatment (inactivation of cellular reproduction), when the MPN assay is used as the basis for evaluation. The FDA, CMFDA, motility, and MPN methods are subject to well recognized sources of error; however, the MPN method is based on a response that is consistent with the objectives of ballast water management as well as the mechanism of action of UV-based inactivation. Complementary assays are available for use in compliance testing; however, the development of relevant indicative tests remains as a research priority. Historical lessons learned from applications of vital stains (and other indirect methods) for quantification of microbial responses to UV irradiation in other settings also support the use of assays that provide a direct measure of growth and reproduction, such as MPN. Collectively, these observations point to the use of MPN assays as the standard for type testing, especially when UV-based treatment is employed.
Collapse
Affiliation(s)
- Ernest R Blatchley Iii
- Lyles School of Civil Engineering and Division of Environmental & Ecological Engineering , Purdue University , 550 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| | - John J Cullen
- Department of Oceanography , Dalhousie University , P.O. Box 15000, Halifax , Nova Scotia B3H 4R2 , Canada
| | - Brian Petri
- Trojan Technologies , 3020 Gore Road , London , Ontario N5 V 4T7 , Canada
| | - Keith Bircher
- Calgon Carbon Corporation , 3000 GSK Drive , Moon Township , Pennsylvania 15108 , United States
| | - Nicholas Welschmeyer
- Moss Landing Marine Laboratories , 8272 Moss Landing Rd. , Moss Landing California 95039 , United States
| |
Collapse
|
17
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
18
|
Kong FE, Deighton MA, Thurbon NA, Smith SR, Rouch DA. Cryptosporidium parvum decay during air drying and stockpiling of mesophilic anaerobically digested sewage sludge in a simulation experiment and oocyst counts in sludge collected from operational treatment lagoons in Victoria, Australia. JOURNAL OF WATER AND HEALTH 2018; 16:435-448. [PMID: 29952332 DOI: 10.2166/wh.2018.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The inactivation of Cryptosporidium species oocysts during sewage sludge treatment is important to protect human health when the residual biosolids are applied to agricultural land. Quantifying the decay of Cryptosporidium species during sludge treatment for microbiological assurance purposes is difficult if low numbers are present in wastewater. The rate of decay of Cryptosporidium parvum oocysts during solar/air drying treatment and in sludge stockpiles in temperate environment conditions was simulated in laboratory inoculation experiments using sludge sampled from a mesophilic anaerobic digester. Oocyst numbers were also determined in settled lagoon sludge samples collected from three operational rural wastewater treatment plants (WWTPs). C. parvum oocysts were enumerated by immunomagnetic separation followed by staining with vital dyes and examination by confocal laser scanning microscopy. An air-drying/storage period equivalent to 11 weeks was required for a 1 log10 reduction of viable oocysts inoculated into digested sludge. Oocyst viability in air-dried and stored digested sludge decreased with time, but was independent of sludge desiccation and dry solids (DS) content. No oocysts were detected in sludge samples collected from the anaerobic digester, and the average concentration of oocysts found in settled lagoon sludge from the rural WWTP was 4.6 × 102 oocysts/g DS.
Collapse
Affiliation(s)
- Frederic E Kong
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Margaret A Deighton
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Nerida A Thurbon
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Stephen R Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Duncan A Rouch
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| |
Collapse
|
19
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
20
|
Travaillé E, La Carbona S, Gargala G, Aubert D, Guyot K, Dumètre A, Villena I, Houssin M. Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Shatilovich A, Stoupin D, Rivkina E. Ciliates from ancient permafrost: Assessment of cold resistance of the resting cysts. Eur J Protistol 2015; 51:230-40. [DOI: 10.1016/j.ejop.2015.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/07/2015] [Accepted: 04/03/2015] [Indexed: 11/15/2022]
|
22
|
Santos SRD, Branco N, Franco RMB, Paterniani JES, Katsumata M, Barlow PW, de Mello Gallep C. Fluorescence decay of dyed protozoa: differences between stressed and non-stressed cysts. LUMINESCENCE 2015; 30:1139-47. [DOI: 10.1002/bio.2872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 01/05/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Samuel Ricardo dos Santos
- School of Technology; University of Campinas/Limeira; SP Brazil
- School of Agricultural Engineering; University of Campinas/Campinas; SP Brazil
| | - Nilson Branco
- Biology Institute; University of Campinas/Campinas; SP Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Dresely I, Daugschies A, Lendner M. Establishment of a germ carrier assay to assess disinfectant efficacy against oocysts of coccidian parasites. Parasitol Res 2014; 114:273-81. [PMID: 25339515 DOI: 10.1007/s00436-014-4189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022]
Abstract
Parasites are a common threat to human and animal health. One option to combat parasites that produce infective environmental stages is to inactivate them by chemical disinfection. Standardised laboratory assays that enable proper evaluation of products suspected to be efficient are highly desirable to allow prudent selection and use of such potentially hazardous agents. Here, we present a newly developed in vitro germ carrier assay to evaluate inactivation of oocysts of the model organism Cryptosporidium parvum by chemical disinfectants. Stainless steel discs were used as carrier to mimic surface contamination by C. parvum oocysts. The germ carriers were incubated with approved chemical disinfectant for the specified time (2 h) and rinsed thereafter to remove the disinfectant and recover the exposed oocysts. Recovered oocysts were transferred to HCT-8 monolayers, and 48 h later, genomic DNA was extracted and quantified by real-time PCR targeting the hsp70 gene to estimate parasite reproduction. A panel of commercially available and approved disinfectants were examined and data compared with those of suspension assays and historical data obtained from efficacy assays based on infection of chicken with oocysts of Eimeria tenella. Altogether, data achieved by these divergent assays allowed similar conclusions although the sensitivity of the in vitro assay was higher. Consequently, a threshold of 99.5% inactivation is proposed to evaluate disinfectants in vitro using C. parvum as model organism as compared to the E. tenella animal infection assay (95%).
Collapse
Affiliation(s)
- Ira Dresely
- Institute of Parasitology, An den Tierkliniken 35, 04103, Leipzig, Germany
| | | | | |
Collapse
|
24
|
Murphy JL, Haas CN, Arrowood MJ, Hlavsa MC, Beach MJ, Hill VR. Efficacy of chlorine dioxide tablets on inactivation of cryptosporidium oocysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5849-5856. [PMID: 24797292 DOI: 10.1021/es500644d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability of chlorine dioxide (ClO2) to achieve 2-log inactivation of Cryptosporidium in drinking water has been documented. No studies have specifically addressed the effects of ClO2 on C. parvum oocyst infectivity in chlorinated recreational water venues (e.g., pools). The aim of this research was to determine the efficacy of ClO2 as an alternative to existing hyperchlorination protocols that are used to achieve a 3-log inactivation of Cryptosporidium in such venues. To obtain a 3-log inactivation of C. parvum Iowa oocysts, contact times of 105 and 128 min for a solution containing 5 mg/L ClO2 with and without the addition of 2.6 mg/L free chlorine, respectively, were required. Contact times of 294 and 857 min for a solution containing 1.4 mg/L ClO2 with and without the addition of 3.6 mg/L free chlorine, respectively, were required. The hyperchlorination control (21 mg/L free chlorine only) required 455 min for a 3-log inactivation. Use of a solution containing 5 mg/L ClO2 and solutions containing 5 or 1.4 mg/L ClO2 with the addition of free chlorine appears to be a promising alternative to hyperchlorination for inactivating Cryptosporidium in chlorinated recreational water venues, but further studies are required to evaluate safety constraints on use.
Collapse
Affiliation(s)
- Jennifer L Murphy
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention , Atlanta, Georgia 30329, United States
| | | | | | | | | | | |
Collapse
|
25
|
Liang Z, Keeley A. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples. WATER RESEARCH 2012; 46:5941-5953. [PMID: 22980572 DOI: 10.1016/j.watres.2012.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/02/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
Purified oocysts of Cryptosporidium parvum were used to evaluate the applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-qPCR heat induced hsp70 mRNA in water samples spiked with oocysts. Changes in viability of flow cytometry sorted fresh and oocysts having undergone various aging periods (up to 48 months at 4 °C) were evaluated by Ct values obtained from the qPCR before and after disinfection scenarios involving ammonia or hydrogen peroxide. Both qPCR methods achieved stability in dose dependent responses by hydrogen peroxide treatment in distilled water that proved their suitability for the viability evaluations. Oocysts exposed to 3% hydrogen peroxide were inactivated at a rate of 0.26 h(-1) and 0.93 h(-1), as measured by the mRNA assay and the PMA-DNA assay, respectively. In contrast, the PMA-DNA assay was not as sensitive as the mRNA assay in detecting viability alterations followed by exposure to ammonia or after a long-term storage in 4 °C in distilled water since no dose response dependency was achieved. Surface water concentrates containing enhanced suspendable solids determined that changes in viability were frequently detected only by the mRNA method. Failure of, or inconsistency in the detection of oocysts viability with the PMA-DNA method, apparently resulted from solids that might have reduced light penetration through the samples, and thus inhibited the cross-linking step of PMA-DNA assay.
Collapse
Affiliation(s)
- Zhanbei Liang
- National Research Council, 919 Kerr Research Drive, Ada, OK 74820, USA
| | | |
Collapse
|
26
|
Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurries. Appl Environ Microbiol 2012; 78:5994-6000. [PMID: 22706058 DOI: 10.1128/aem.07829-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4',6'-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r = 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry.
Collapse
|
27
|
DUHAIN GLMC, MINNAAR A, BUYS EM. Effect of Chlorine, Blanching, Freezing, and Microwave Heating on Cryptosporidium parvum Viability Inoculated on Green Peppers. J Food Prot 2012; 75:936-41. [DOI: 10.4315/0362-028x.jfp-11-367] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.
Collapse
Affiliation(s)
- G. L. M. C. DUHAIN
- Department of Food Science, University of Pretoria, Pretoria, 0028, South Africa
| | - A. MINNAAR
- Department of Food Science, University of Pretoria, Pretoria, 0028, South Africa
| | - E. M. BUYS
- Department of Food Science, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
28
|
Comparison of molecular markers for determining the viability and infectivity of Cryptosporidium oocysts and validation of molecular methods against animal infectivity assay. Int J Infect Dis 2011; 15:e197-200. [DOI: 10.1016/j.ijid.2010.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 11/21/2022] Open
|
29
|
Naciri M, Mancassola R, Fort G, Danneels B, Verhaeghe J. Efficacy of amine-based disinfectant KENO™COX on the infectivity of Cryptosporidium parvum oocysts. Vet Parasitol 2011; 179:43-9. [PMID: 21354705 DOI: 10.1016/j.vetpar.2011.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/20/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
Cryptosporidium parvum is a zoonotic protozoan parasite that may cause severe neonatal diarrhoea or even mortality in newborn ruminants: its oocysts are extremely resistant to normal environmental conditions and to most common disinfectants. KENO™COX, a patent pending amine-based formula, was tested for its ability to inactivate C. parvum oocysts. The Daugschies assay (2002), a standardized assay for chemical disinfection initially described for Eimeria spp., was adapted for C. parvum oocysts. KENO™COX diluted in water at 2% and 3% concentration and incubated with oocyst suspensions for 2h, allowed a significant reduction in viability, lysing 89% and 91% of oocysts respectively. Infectivity of the remaining C. parvum oocysts was assessed by inoculation to C57 Bl/6 neonatal mice. Each mouse received 2.5 μl of a suspension initially containing 500,000 oocysts before contact with KENO™COX. Six days post inoculation, the intestinal parasite load was significantly reduced by 97.5% with KENO™COX 2% compared to that of the mice inoculated with untreated parasites. KENO™COX 3% completely eliminated infectivity of oocysts. The number of oocysts remaining infectious in the inoculum treated with KENO™COX 2% was calculated from an inoculated dose-response curve: it was estimated at about 48.6 oocysts among the 500,000 oocysts initially treated corresponding to 99.99% of inhibition. These results demonstrate the high efficacy of KENO™COX against C. parvum oocysts. Combined with an appropriate method of cleaning, the application of KENO™COX may be a useful tool to reduce cryptosporidial infectious load on farm level.
Collapse
Affiliation(s)
- M Naciri
- Institut National de la Recherche Agronomique, Animal Infectiology and Public Health, Site 213, Centre INRA de Tours, 37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
30
|
Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. Int J Hyg Environ Health 2010; 213:321-33. [DOI: 10.1016/j.ijheh.2010.06.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
31
|
Collinet-Adler S, Ward HD. Cryptosporidiosis: environmental, therapeutic, and preventive challenges. Eur J Clin Microbiol Infect Dis 2010; 29:927-35. [PMID: 20521158 PMCID: PMC4049176 DOI: 10.1007/s10096-010-0960-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Cryptosporidium spp. are responsible for endemic and epidemic disease worldwide. Clinical manifestations may include acute, persistent, or chronic diarrhea, biliary, and pulmonary disease. Disease severity ranges from asymptomatic or mild to severe, intractable diarrhea with wasting depending on immune status, nutrition, and age. Transmission is fecal-oral with both human and animal reservoirs. Disease is often self limited in healthy individuals, but therapy remains a challenge in the immune-compromised. Prevention currently depends on appropriate hygiene and proper water management and treatment.
Collapse
Affiliation(s)
- S Collinet-Adler
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
32
|
Brescia CC, Griffin SM, Ware MW, Varughese EA, Egorov AI, Villegas EN. Cryptosporidium propidium monoazide-PCR, a molecular biology-based technique for genotyping of viable Cryptosporidium oocysts. Appl Environ Microbiol 2009; 75:6856-63. [PMID: 19749067 PMCID: PMC2772443 DOI: 10.1128/aem.00540-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium is an important waterborne protozoan parasite that can cause severe diarrhea and death in the immunocompromised. The current methods used to monitor for Cryptosporidium oocysts in water are the microscopy-based USEPA methods 1622 and 1623. These methods assess total levels of oocysts in source waters, but do not determine oocyst viability or genotype. Recently, propidium monoazide (PMA) has been used in conjunction with molecular diagnostic tools to identify species and assess the viability of bacteria. The goal of this study was the development of a Cryptosporidium PMA-PCR (CryptoPMA-PCR) assay that includes PMA treatment prior to PCR analysis in order to prevent the amplification of DNA from dead oocysts. The results demonstrated that PMA penetrates only dead oocysts and blocks amplification of their DNA. The CryptoPMA-PCR assay can also specifically detect live oocysts within a mixed population of live and dead oocysts. More importantly, live oocysts, not dead oocysts, were detected in raw waste or surface water samples spiked with Cryptosporidium oocysts. This proof-of-concept study is the first to demonstrate the use of PMA for pre-PCR treatment of Cryptosporidium oocysts. The CryptoPMA-PCR assay is an attractive approach to specifically detect and genotype viable Cryptosporidium oocysts in the water, which is critical for human health risk assessment.
Collapse
Affiliation(s)
- Cristin C. Brescia
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Shannon M. Griffin
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Michael W. Ware
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Eunice A. Varughese
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Andrey I. Egorov
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| | - Eric N. Villegas
- National Exposure Research Laboratory, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
| |
Collapse
|
33
|
Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions. Vet Parasitol 2009; 167:43-9. [PMID: 19850414 DOI: 10.1016/j.vetpar.2009.09.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/14/2009] [Accepted: 09/23/2009] [Indexed: 11/21/2022]
Abstract
Oocysts of Cryptosporidium parvum are resistant to environmental conditions and many disinfectants. A combination of cell culture and quantitative real time PCR (cc-qPCR) is established for evaluation of anticoccidial disinfectants against C. parvum. C. parvum oocysts were treated with disinfectants, washed and oocysts were incubated with HCT-8 cell monolayers in the presence of excystation medium for 3h. Subsequently, unbound parasites were removed by washing with growing medium and the infected monolayers were further maintained in fresh growing medium for 48h. Genomic DNA was extracted from each sample and qPCR performed targeting a specific sequence of the 70kDa heat shock protein gene in order to quantify development. Treatment of oocysts with cresolic disinfectants demonstrated dose dependent reduction of viability of oocysts. More than 98% inactivations were recorded with at least 2% concentration of cresolic disinfectants after 2h of treatment. Bleach (sodium hypochlorite) at 6% solution induced 92.7% inactivation of C. parvum oocysts after 2h. Thermally treated oocysts (56 and 70 degrees C for 20min) demonstrated complete inactivation, whereas at 38 degrees C no inactivation was observed. Application of Neopredisan((R)) 135-1 and Aldecoc((R)) TGE (4% for 2h) as recommended according to the current guidelines stipulated by DVG (German Veterinary Society) consistently inactivated more than 99.5% of oocysts. The suggested cc-qPCR method appeared to be suited for standardized testing of inactivation measures, particularly for evaluation of chemical disinfectants and thus cc-qPCR is proposed as an alternative to the established chicken infectivity model for Eimeria tenella for testing anticoccidial disinfectants. A minimum inactivation of 99.5% in cc-qPCR model is claimed as a suitable threshold for certification of chemical products for disinfection of coccidia oocysts.
Collapse
|
34
|
Costán-Longares A, Montemayor M, Payán A, Méndez J, Jofre J, Mujeriego R, Lucena F. Microbial indicators and pathogens: removal, relationships and predictive capabilities in water reclamation facilities. WATER RESEARCH 2008; 42:4439-48. [PMID: 18762313 DOI: 10.1016/j.watres.2008.07.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/22/2008] [Accepted: 07/28/2008] [Indexed: 05/19/2023]
Abstract
Four water reclamation facilities in north-eastern Spain were monitored over 2 years to determine the occurrence and concentrations of a set of microbial indicators (total coliforms, Escherichia coli, enterococci, spores of sulphite reducing clostridia, somatic coliphages, F-specific RNA phages, phages infecting Bacteroides fragilis strain RYC2056 and phages infecting Bacteroides tethaiotaomicron strain GA-17), and two selected pathogens (cytopathogenic enteroviruses and viable Cryptosporidium oocysts). The indicator (survival) and index (presence) functions of the various indicators tested were evaluated through the wastewater treatments. The inactivation pattern of all groups of bacteriophages tested was closer to the inactivation of enteroviruses than to the inactivation of the conventional bacterial indicators tested. The inactivation of sulfite reducing clostridia spores and bacteriophages more closely approximates the reduction of viable Cryptosporidium than do the conventional bacterial indicators. We observed neither index functions nor a predictive relationship between any of microbial indicators and viable Cryptosporidium oocysts. In contrast, several regression models (r>0.6) and discriminant functions (67-88% well classified samples) based mostly on numbers of bacteriophages were able to predict both the presence and concentrations of enteroviruses. A combination of both bacterial and bacteriophage indicators seem to be the best choice for ensuring the microbial quality of reclaimed water.
Collapse
|
35
|
Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Appl Environ Microbiol 2008; 74:7101-7. [PMID: 18849452 DOI: 10.1128/aem.01442-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Pereira JT, Costa AO, de Oliveira Silva MB, Schuchard W, Osaki SC, de Castro EA, Paulino RC, Soccol VT. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil. Appl Biochem Biotechnol 2008; 151:464-73. [PMID: 18498060 DOI: 10.1007/s12010-008-8214-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
In the present work, assays were performed to compare the efficacy of hypochlorous acid, chlorine dioxide, and ozone in the inactivation of Cryptosporidium oocyst in public water supply from Brazilian South conditions. Experiments were carried out in samples containing 2 x 10(4) oocysts/ml of C. parvum purified from feces of experimentally contaminated calves. An in vitro excystation method was used to evaluate oocysts' viability and to determine the inactivation rates of hypochlorous acid at 2 ppm, chlorine dioxide at 1, 2, and 5 ppm, and ozone at the doses of 0.18, 0.24, 0.36, 0.48, and 1.44 mg/l. By using hypochlorous acid, the maximum inactivation rate obtained was 49.04% after 120 min. Chlorine dioxide at 5 ppm inactivated 90.56% of oocysts after 90 min of contact. Ozone was the most effective product, rendering an inactivation of 100% with the concentration of 24 mg/l. Resistance of Cryptosporidium to the usual disinfectants and the need for more effective water treatments to prevent waterborne diseases in Brazil are discussed in this manuscript.
Collapse
Affiliation(s)
- Juliana Tracz Pereira
- Departamento de Patologia Básica, Setor de Ciências Biológicas, Centro Politécnico, Jardim das Américas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Monitoring of waterborne pathogens in surface waters in amsterdam, the Netherlands, and the potential health risk associated with exposure to cryptosporidium and giardia in these waters. Appl Environ Microbiol 2008; 74:2069-78. [PMID: 18281429 DOI: 10.1128/aem.01609-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The water in the canals and some recreational lakes in Amsterdam is microbiologically contaminated through the discharge of raw sewage from houseboats, sewage effluent, and dog and bird feces. Exposure to these waters may have negative health effects. During two successive 1-year study periods, the water quality in two canals (2003 to 2004) and five recreational lakes (2004 to 2005) in Amsterdam was tested with regard to the presence of fecal indicators and waterborne pathogens. According to Bathing Water Directive 2006/7/EC, based on Escherichia coli and intestinal enterococcus counts, water quality in the canals was poor but was classified as excellent in the recreational lakes. Campylobacter, Salmonella, Cryptosporidium, and Giardia were detected in the canals, as was rotavirus, norovirus, and enterovirus RNA. Low numbers of Cryptosporidium oocysts and Giardia cysts were detected in the recreational lakes, despite compliance with European bathing water legislation. The estimated risk of infection with Cryptosporidium and Giardia per exposure event ranged from 0.0002 to 0.007% and 0.04 to 0.2%, respectively, for occupational divers professionally exposed to canal water. The estimated risk of infection at exposure to incidental peak concentrations of Cryptosporidium and Giardia may be up to 0.01% and 1%, respectively, for people who accidentally swallow larger volumes of the canal water than the divers. Low levels of viable waterborne pathogens, such as Cryptosporidium and Giardia, pose a possible health risk from occupational, accidental, and recreational exposure to surface waters in Amsterdam.
Collapse
|
38
|
Entrala E, Garin YJF, Meneceur P, Hayat M, Scherpereel G, Savin C, Féliers C, Derouin F. Pilot-scale evaluation of UV reactors' efficacy against in vitro infectivity of Cryptosporidium parvum oocysts. ACTA ACUST UNITED AC 2007; 51:555-61. [PMID: 17941833 DOI: 10.1111/j.1574-695x.2007.00335.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An experimental protocol was developed to assess the efficacy of two UV reactors (medium-pressure UVaster), and a low-pressure reactor) on the infectivity of Cryptosporidium parvum oocysts under conditions mimicking small- or medium-size water distribution units. The protocol included purification of large amounts of viable oocysts from experimentally infected calf feces, pilot spiking, sample concentration and purification after UV radiation, oocyst quantification and in vitro evaluation of oocyst infectivity on HCT-8 cells. Water samples were collected at intervals upstream and downstream from the UV reactor after spiking. Oocysts were concentrated by centrifugation, purified by immunomagnetic capture and quantified using laser-scanning cytometry. An enhanced in vitro infectivity test on HCT-8 cells was developed, where oocysts were pretreated in order to obtain maximized in vitro infectivity, and infectious foci were enumerated after immunofluorescence staining after 3 days of culture. This method was superior to viability measured by excystation for assessing oocyst infectivity. The infectivity rate of untreated oocysts ranged between 9% and 30% in replicate experiments. The method allowed us to determine inactivation rates >4.92 (log) with UVaster and >4.82 with the LP reactor after exposition of oocysts to an effective dose of 400 J m(-2) at flow rates of 15 and 42 m(3) h(-1), respectively.
Collapse
Affiliation(s)
- Emilio Entrala
- Centre for Environmental Analysis of Veolia Environment, Saint Maurice, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sunnotel O, Snelling WJ, McDonough N, Browne L, Moore JE, Dooley JSG, Lowery CJ. Effectiveness of standard UV depuration at inactivating Cryptosporidium parvum recovered from spiked Pacific oysters (Crassostrea gigas). Appl Environ Microbiol 2007; 73:5083-7. [PMID: 17574996 PMCID: PMC1950975 DOI: 10.1128/aem.00375-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When filter-feeding shellfish are consumed raw, because of their ability to concentrate and store waterborne pathogens, they are being increasingly associated with human gastroenteritis and have become recognized as important pathogen vectors. In the shellfish industry, UV depuration procedures are mandatory to reduce pathogen levels prior to human consumption. However, these guidelines are based around more susceptible fecal coliforms and Salmonella spp. and do not consider Cryptosporidium spp., which have significant resistance to environmental stresses. Thus, there is an urgent need to evaluate the efficiency of standard UV depuration against the survival of Cryptosporidium recovered from shellfish. Our study found that in industrial-scale shellfish depuration treatment tanks, standard UV treatment resulted in a 13-fold inactivation of recovered, viable C. parvum oocysts from spiked (1 x 10(6) oocysts liter (-1)) Pacific oysters. Depuration at half power also significantly reduced (P < 0.05; ninefold) the number of viable oocysts recovered from oysters. While UV treatment resulted in significant reductions of recovered viable oocysts, low numbers of viable oocysts were still recovered from oysters after depuration, making their consumption when raw a public health risk. Our study highlights the need for increased periodic monitoring programs for shellfish harvesting sites, improved depuration procedures, and revised microbial quality control parameters, including Cryptosporidium assessment, to minimize the risk of cryptosporidiosis.
Collapse
Affiliation(s)
- O Sunnotel
- Centre for Molecular Biosciences, School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland BT52 1SA
| | | | | | | | | | | | | |
Collapse
|
40
|
Bukhari Z, Holt DM, Ware MW, Schaefer FW. Blind trials evaluating in vitro infectivity ofCryptosporidiumoocysts using cell culture immunofluorescence. Can J Microbiol 2007; 53:656-63. [PMID: 17668024 DOI: 10.1139/w07-032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An optimized cell culture immunofluorescence (IFA) procedure, using the HCT-8 cell line, was evaluated in blind trials to determine the sensitivity and reproducibility of measuring the infectivity of flow-cytometry-prepared inocula of Cryptosporidium parvum oocysts. In separate trials, suspensions consisting of between 0% and 100% viable oocysts were prepared at the US Environmental Protection Agency, shipped to the American Water Laboratory, and analyzed blindly by cell culture IFA. Data indicated the control (100% live) oocyst suspensions yielded statistically similar results to cell culture dose–response curve data developed previously at the American Water Laboratory. For test samples containing oocyst suspensions of unknown infectivity, cell culture IFA analyses indicated a high degree of correlation (r2= 0.89; n = 26) with the values expected by the US Environmental Protection Agency. Cell culture infectivity correlates well with neonatal mouse infectivity assays, and these blind validation trials provide credibility for the cell culture IFA procedure as a cost-effective and expedient alternative to mouse infectivity assays for determining in vitro infectivity of C. parvum oocysts.
Collapse
Affiliation(s)
- Zia Bukhari
- American Water, 1025 Laurel Oak Road, Voorhees, NJ 08043, USA.
| | | | | | | |
Collapse
|
41
|
McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 2007; 101:453-63. [PMID: 16882154 DOI: 10.1111/j.1365-2672.2006.02935.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To determine whether batch solar disinfection (SODIS) can be used to inactivate oocysts of Cryptosporidium parvum and cysts of Giardia muris in experimentally contaminated water. METHODS AND RESULTS Suspensions of oocysts and cysts were exposed to simulated global solar irradiation of 830 W m(-2) for different exposure times at a constant temperature of 40 degrees C. Infectivity tests were carried out using CD-1 suckling mice in the Cryptosporidium experiments and newly weaned CD-1 mice in the Giardia experiments. Exposure times of > or =10 h (total optical dose c. 30 kJ) rendered C. parvum oocysts noninfective. Giardia muris cysts were rendered completely noninfective within 4 h (total optical dose >12 kJ). Scanning electron microscopy and viability (4',6-diamidino-2-phenylindole/propidium iodide fluorogenic dyes and excystation) studies on oocysts of C. parvum suggest that inactivation is caused by damage to the oocyst wall. CONCLUSIONS Results show that cysts of G. muris and oocysts of C. parvum are rendered completely noninfective after batch SODIS exposures of 4 and 10 h (respectively) and is also likely to be effective against waterborne cysts of Giardia lamblia. SIGNIFICANCE AND IMPACT OF THE STUDY These results demonstrate that SODIS is an appropriate household water treatment technology for use as an emergency intervention in aftermath of natural or man-made disasters against not only bacterial but also protozoan pathogens.
Collapse
Affiliation(s)
- K G McGuigan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Snelling WJ, Lin Q, Moore JE, Millar BC, Tosini F, Pozio E, Dooley JSG, Lowery CJ. Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteomics 2006; 6:346-55. [PMID: 17124246 DOI: 10.1074/mcp.m600372-mcp200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptosporidiosis, caused by coccidian parasites of the genus Cryptosporidium, is a major cause of human gastrointestinal infections and poses a significant health risk especially to immunocompromised patients. Despite intensive efforts for more than 20 years, there is currently no effective drug treatment against these protozoa. This study examined the zoonotic species Cryptosporidium parvum at two important stages of its life cycle: the non-excysted (transmissive) and excysted (infective) forms. To increase our understanding of the molecular basis of sporozoite excystation, LC-MS/MS coupling with a stable isotope N-terminal labeling strategy using iTRAQ reagents was used on soluble fractions of both non-excysted and excysted sporozoites, i.e. sporozoites both inside and outside oocysts were examined. Sporozoites are the infective stage that penetrates small intestinal enterocytes. Also to increase our knowledge of the C. parvum proteome, shotgun sequencing was performed on insoluble fractions from both non-excysted and excysted sporozoites. In total 303 C. parvum proteins were identified, 56 of which, hitherto described as being only hypothetical proteins, are expressed in both excysted and non-excysted sporozoites. Importantly we demonstrated that the expression of 26 proteins increases significantly during excystation. These excystation-induced proteins included ribosomal proteins, metabolic enzymes, and heat shock proteins. Interestingly three Apicomplexa-specific proteins and five Cryptosporidium-specific proteins augmented in excysted invasive sporozoites. These eight proteins represent promising targets for developing vaccines or chemotherapies that could block parasite entry into host cells.
Collapse
Affiliation(s)
- William J Snelling
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry BT52 1SA, Northern Ireland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
King BJ, Monis PT. Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 2006; 134:309-23. [PMID: 17096874 DOI: 10.1017/s0031182006001491] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/21/2006] [Accepted: 08/21/2006] [Indexed: 11/07/2022]
Abstract
Cryptosporidium are parasitic protozoans that cause gastrointestinal disease and represent a significant risk to public health. Cryptosporidium oocysts are prevalent in surface waters as a result of human, livestock and native animal faecal contamination. The resistance of oocysts to the concentrations of chlorine and monochloramine used to disinfect potable water increases the risk of waterborne transmission via drinking water. In addition to being resistant to commonly used disinfectants, it is thought that oocysts can persist in the environment and be readily mobilized by precipitation events. This paper will review the critical processes involved in the inactivation or removal of oocysts in the terrestrial and aquatic environments and consider how these processes will respond in the context of climate change.
Collapse
Affiliation(s)
- B J King
- The Co-operative Research Centre for Water Quality and Treatment, Australian Water Quality Centre, SA Water Corporation, Salisbury, South Australia 5108, Australia
| | | |
Collapse
|
44
|
Carey CM, Lee H, Trevors JT. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples. J Microbiol Methods 2006; 67:363-72. [PMID: 16730821 DOI: 10.1016/j.mimet.2006.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/31/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Microbial contamination of public water supplies is of significant concern, as numerous outbreaks, including Cryptosporidium, have been reported worldwide. Detection and enumeration of Cryptosporidium parvum oocysts in water supplies is important for the prevention of future cryptosporidiosis outbreaks. In addition to not identifying the oocyst species, the U.S. EPA Method 1622 does not provide information on oocyst viability or infectivity. As such, current detection strategies have been coupled with in vitro culture methods to assess oocyst infectivity. In this study, a most probable number (MPN) method was coupled with PCR (MPN-PCR) to quantify the number of infectious oocysts recovered from seeded raw water concentrates. The frequency of positive MPN-PCR results decreased as the oocyst numbers decreased. Similar results were observed when MPN was coupled to the foci detection method (MPN-FDM), which was done for comparison. For both methods, infectious oocysts were not detected below 10(3) seeded oocysts and the MPN-PCR and MPN-FDM estimates for each seed dose were generally within one-log unit of directly enumerated foci of infection. MPN-PCR estimates were 0.25, 0.54, 0 and 0.66 log(10) units higher than MPN-FDM estimates for the positive control, 10(5), 10(4) and 10(3) seed doses, respectively. The results show the MPN-PCR was the better method for the detection of infectious C. parvum oocysts in environmental water samples.
Collapse
Affiliation(s)
- Christine M Carey
- University of Guelph, Department of Environmental Biology, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
45
|
Cama VA, Arrowood MJ, Ortega YR, Xiao L. Molecular Characterization of the Cryptosporidium parvum IOWA Isolate Kept in Different Laboratories. J Eukaryot Microbiol 2006; 53 Suppl 1:S40-2. [PMID: 17169063 DOI: 10.1111/j.1550-7408.2006.00168.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Vitaliano A Cama
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | | | | | | |
Collapse
|
46
|
Erickson MC, Ortega YR. Inactivation of protozoan parasites in food, water, and environmental systems. J Food Prot 2006; 69:2786-808. [PMID: 17133829 DOI: 10.4315/0362-028x-69.11.2786] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protozoan parasites can survive under ambient and refrigerated storage conditions when associated with a range of substrates. Consequently, various treatments have been used to inactivate protozoan parasites (Giardia, Cryptosporidium, and Cyclospora) in food, water, and environmental systems. Physical treatments that affect survival or removal of protozoan parasites include freezing, heating, filtration, sedimentation, UV light, irradiation, high pressure, and ultrasound. Ozone is a more effective chemical disinfectant than chlorine or chlorine dioxide for inactivation of protozoan parasites in water systems. However, sequential inactivation treatments can optimize existing treatments through synergistic effects. Careful selection of methods to evaluate inactivation treatments is needed because many studies that have employed vital dye stains and in vitro excystation have produced underestimations of the effectiveness of these treatments.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA.
| | | |
Collapse
|
47
|
Sunnotel O, Lowery CJ, Moore JE, Dooley JSG, Xiao L, Millar BC, Rooney PJ, Snelling WJ. Cryptosporidium. Lett Appl Microbiol 2006; 43:7-16. [PMID: 16834714 DOI: 10.1111/j.1472-765x.2006.01936.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review discusses characteristics of the genus Cryptosporidium and addresses the pathogenesis, reservoirs, public health significance and current applications for the detection and typing of this important pathogen. By increasing knowledge in key areas of Cryptosporidium research such as aetiology, epidemiology, transmission and host interactions, the numbers of cases of human cryptosporidiosis should be reduced.
Collapse
Affiliation(s)
- O Sunnotel
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Coleraine, Co., Londonderry, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Castro-Hermida JA, Pors I, Méndez-Hermida F, Ares-Mazás E, Chartier C. Evaluation of two commercial disinfectants on the viability and infectivity of Cryptosporidium parvum oocysts. Vet J 2006; 171:340-5. [PMID: 16490718 DOI: 10.1016/j.tvjl.2004.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
Cryptosporidiosis is mainly a problem in neonatal ruminants. Not only do Cryptosporidium spp. spread ubiquitously in our environment, but the protozoa are highly resistant to harsh environmental conditions and disinfectants, and a control measure is urgently required. This study investigated the potential biocidal activity on Cryptosporidium parvum oocysts of two commercial disinfectants developed originally to be used in farms and food-processing industries. The products, containing formaldehyde and hydrogen peroxide respectively, both had some anticryptosporidial effects. The viability and infectivity of purified C. parvum oocysts exposed to both disinfectants at different concentrations and exposure times were evaluated by inclusion or exclusion of vital dye (propidium iodide), use of an excystation technique and infection of suckling mice. Viability assays showed a decrease in oocyst viability associated with an increase in exposure time for each of the concentrations used. The intensity of infection in neonatal mice was significantly lower (P<0.05) than in the control litters.
Collapse
Affiliation(s)
- J A Castro-Hermida
- AFSSA site de NIORT, Laboratoire d'Etudes et de Recherches Caprines, 60 rue de Pied de Fond, B.P. 3081-79012 Niort Cedex, France
| | | | | | | | | |
Collapse
|
49
|
Schets FM, Engels GB, During M, de Roda Husman AM. Detection of infectious Cryptosporidium oocysts by cell culture immunofluorescence assay: applicability to environmental samples. Appl Environ Microbiol 2005; 71:6793-8. [PMID: 16269711 PMCID: PMC1287702 DOI: 10.1128/aem.71.11.6793-6798.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 07/15/2005] [Indexed: 11/20/2022] Open
Abstract
In the past few years many waterborne outbreaks related to Cryptosporidium have been described. Current methods for detection of Cryptosporidium in water for the most part rely on viability assays which are not informative concerning the infectivity of oocysts. However, for estimation of the risk of infection with Cryptosporidium this information is required. For environmental samples the oocyst counts are often low, and the oocysts have been exposed to unfavorable conditions. Therefore, determination of the infectivity of environmental oocysts requires an assay with a high level of sensitivity. We evaluated the applicability of in vitro cell culture immunofluorescence assays with HCT-8 and Caco-2 cells for determination of oocyst infectivity in naturally contaminated water samples. Cell culture assays were compared with other viability and infectivity assays. Experiments with Cryptosporidium oocysts from different sources revealed that there was considerable variability in infectivity, which was illustrated by variable 50% infective doses, which ranged from 40 to 614 oocysts, and the results indicated that not only relatively large numbers of fresh oocysts but also aged oocysts produced infection in cell cultures. Fifteen Dutch surface water samples were tested, and the cell culture immunofluorescence assays were not capable of determining the infectivity for the low numbers of naturally occurring Cryptosporidium oocysts present in the samples. A comparison with other viability assays, such as the vital dye exclusion assay, demonstrated that surrogate methods overestimate the number of infectious oocysts and therefore the risk of infection with Cryptosporidium. For accurate risk assessment, further improvement of the method for detection of Cryptosporidium in water is needed.
Collapse
Affiliation(s)
- F M Schets
- National Institute for Public Health and the Environment, Microbiological Laboratory for Health Protection, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Young PL, Komisar SJ. Impacts of viability and purification on the specific gravity of Cryptosporidium oocysts. WATER RESEARCH 2005; 39:3349-59. [PMID: 16054671 DOI: 10.1016/j.watres.2005.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 05/03/2023]
Abstract
The specific gravity of unpurified and purified Cryptosporidium oocysts was measured using an isopycnic gradient centrifugation technique. Specific gravity varied depending on the viability of the oocysts, as defined by permeabilty to 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI), the presence or absence of internal structures, and whether or not oocysts were purified. The modal range of densities for a population of 1.4-week-old unpurified oocysts, was 1070-1073 kg/m3. This range was higher than that determined for 14-week-old purified oocysts, 1067-1070 kg/m3. Eleven- and 12-week-old unpurified populations exhibited a bimodal distribution of densities, with densities most frequently in the 1005-1041 and in the 1077-1108 kg/m3 range. In these populations, a high percentage of the oocysts having densities greater than 1077 kg/m3 were viable, while oocysts in the 1005-1024 kg/m3 range were predominately nonintact, and oocysts in the 1024-1041 kg/m3 range were intact, but permeable to DAPI and PI (nonviable). This work demonstrates the importance of controlling factors that may impact the viability of oocysts when conducting studies that examine the transport of these microorganisms in the environment and through water treatment processes.
Collapse
Affiliation(s)
- Pamela L Young
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | |
Collapse
|