1
|
Kim JA, Choi SS, Lim JK, Kim ES. Unlocking marine treasures: isolation and mining strategies of natural products from sponge-associated bacteria. Nat Prod Rep 2025. [PMID: 40277137 DOI: 10.1039/d5np00013k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Covering: 2019 to early 2025Marine sponges form unique ecosystems through symbiosis with diverse microbial communities, producing natural products including bioactive compounds. This review comprehensively addresses the key steps in the discovery of natural products from sponge-associated microorganisms, encompassing microbial isolation and cultivation, compound identification, and characterisation. Various cultivation methods, such as floating filter cultivation, microcapsule-based cultivation, and in situ systems, are examined to highlight their applications and strategies for overcoming limitations of conventional approaches. Additionally, the integration of genome-based methodologies and compound screening is explored to enhance the discovery of novel bioactive substances and establish a sustainable platform for natural product research. This review provides insights into the latest trends in sponge-associated microbial research and offers practical perspectives for expanding the utilization of marine biological resources.
Collapse
Affiliation(s)
- Jeong-A Kim
- Korea Institute of Ocean Science and Technology (KIOST), Jeju Bio Research Center, Jeju 63349, Republic of Korea.
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jae Kyu Lim
- Korea Institute of Ocean Science and Technology (KIOST), Jeju Bio Research Center, Jeju 63349, Republic of Korea.
- University of Science and Technology (UST), KIOST School, Daejeon 34113, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
2
|
Zhao L, Zhang S, Li J, Zhang C, Xiao R, Bai X, Xu H, Zhang F. Unveiling Diversity and Function: Venom-Associated Microbes in Two Spiders, Heteropoda venatoria and Chilobrachys guangxiensis. MICROBIAL ECOLOGY 2024; 87:156. [PMID: 39708146 DOI: 10.1007/s00248-024-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Spiders are natural predators of agricultural pests, primarily due to the potent venom in their venom glands. Spider venom is compositionally complex and holds research value. This study analyzes the diversity of symbiotic bacteria in spider venom glands and venom, as well as the biological activity of culturable symbiotic bacteria. Focusing on the venom glands and venom of Heteropoda venatoria and Chilobrachys guangxiensis, we identified a diverse array of microorganisms. High-throughput sequencing detected 2151 amplicon sequence variants (ASVs), spanning 31 phyla, 75 classes, and 617 genera. A total of 125 strains of cultivable bacteria were isolated. Using the Oxford cup method, crude extracts from 46 of these strains exhibited inhibitory effects against at least one indicator bacterium. MTT (Thiazolyl blue) assays revealed that the crude extracts from 43 strains had inhibitory effects on tumor cell line MGC-803 growth. Additionally, DAPI (4',6-diamidino-2'-phenylindole) staining and flow cytometry were employed to detect cell apoptosis. The anti-inflammatory activity of nine bacterial strains was assessed using a NO assay kit and enzyme-linked immunosorbent assay (ELISA). This study further investigated the biological activity of venom, exploring the relationship between the venom and the functional activity of venom-associated bacteria.
Collapse
Affiliation(s)
- Likun Zhao
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China
| | - Shanfeng Zhang
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
| | - Jingchen Li
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
| | - Chao Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Ruoyi Xiao
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Xinyuan Bai
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
| | - Hongkang Xu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Feng Zhang
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China.
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
3
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
4
|
Li J, Tian X, Hsiang T, Yang Y, Shi C, Wang H, Li W. Microbial Community Structure and Metabolic Function in the Venom Glands of the Predatory Stink Bug, Picromerus lewisi (Hemiptera: Pentatomidae). INSECTS 2024; 15:727. [PMID: 39336695 PMCID: PMC11432061 DOI: 10.3390/insects15090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
The predatory stink bug, Picromerus lewisi (Hemiptera: Pentatomidae), is an important and valuable natural enemy of insect pests in their ecosystems. While insects are known to harbor symbiotic microorganisms, and these microbial symbionts play a crucial role in various aspects of the host's biology, there is a paucity of knowledge regarding the microbiota present in the venom glands of P. lewisi. This study investigated the venom glands of adult bugs using both traditional in vitro isolation and cultural methods, as well as Illumina high-throughput sequencing technology. Additionally, the carbon metabolism of the venom gland's microorganisms was analyzed using Biolog ECO metabolic phenotyping technology. The results showed 10 different culturable bacteria where the dominant ones were Enterococcus spp. and Lactococcus lactis. With high-throughput sequencing, the main bacterial phyla in the microbial community of the venom glands of P. lewisi were Proteobacteria (78.1%) and Firmicutes (20.3%), with the dominant bacterial genera being Wolbachia, Enterococcus, Serratia, and Lactococcus. At the fungal community level, Ascomycota accounted for the largest proportion (64.1%), followed by Basidiomycota (27.6%), with Vishniacozyma, Cladosporium, Papiliotrema, Penicillium, Fusarium, and Aspergillus as the most highly represented fungal genera. The bacterial and fungal community structure of the venom glands of P. lewisi exhibited high species richness and diversity, along with a strong metabolism of 22 carbon sources. Functional prediction indicated that the primary dominant function of P. lewisi venom-gland bacteria was metabolism. The dominant eco-functional groups of the fungal community included undefined saprotroph, fungal parasite-undefined saprotroph, unassigned, endophyte-plant pathogen, plant pathogen-soil saprotroph-wood saprotroph, animal pathogen-endophyte-plant pathogen-wood saprotroph, plant pathogen, and animal pathogen-endophyte-epiphyte-plant pathogen-undefined saprotroph. These results provide a comprehensive characterization of the venom-gland microbiota of P. lewisi and demonstrate the stability (over one week) of the microbial community within the venom glands. This study represents the first report on the characterization of microbial composition from the venom glands of captive-reared P. lewisi individuals. The insights gained from this study are invaluable for future investigations into P. lewisi's development and the possible interactions between P. lewisi's microbiota and some Lepidopteran pests.
Collapse
Affiliation(s)
- Jinmeng Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xu Tian
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Yuting Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Caihua Shi
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
5
|
Uhl R, Bishop J, Jenkins H, Wood C, Adkins P, Azzopardi F, Marine Biological Association Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of the ruby bryozoan, Bugula neritina (Linnaeus, 1758). Wellcome Open Res 2024; 9:533. [PMID: 39415781 PMCID: PMC11480708 DOI: 10.12688/wellcomeopenres.23056.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
We present a genome assembly from a specimen of Bugula neritina (the ruby bryozoan; Bryozoa; Gymnolaemata; Cheilostomatida; Bugulidae). The genome sequence has total length of 216.00 megabases. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 15.25 kilobases in length. Gene annotation of this assembly on Ensembl identified 20,264 protein-coding genes.
Collapse
Affiliation(s)
- Rebekka Uhl
- The Marine Biological Association, Plymouth, England, UK
| | - John Bishop
- The Marine Biological Association, Plymouth, England, UK
| | - Helen Jenkins
- The Marine Biological Association, Plymouth, England, UK
| | - Christine Wood
- The Marine Biological Association, Plymouth, England, UK
| | - Patrick Adkins
- The Marine Biological Association, Plymouth, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Clark CM, Kwan JC. Creating and leveraging bespoke large-scale knowledge graphs for comparative genomics and multi-omics drug discovery with SocialGene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608329. [PMID: 39229008 PMCID: PMC11370487 DOI: 10.1101/2024.08.16.608329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The rapid expansion of multi-omics data has transformed biological research, offering unprecedented opportunities to explore complex genomic relationships across diverse organisms. However, the vast volume and heterogeneity of these datasets presents significant challenges for analyses. Here we introduce SocialGene, a comprehensive software suite designed to collect, analyze, and organize multi-omics data into structured knowledge graphs, with the ability to handle small projects to repository-scale analyses. Originally developed to enhance genome mining for natural product drug discovery, SocialGene has been effective across various applications, including functional genomics, evolutionary studies, and systems biology. SocialGene's concerted Python and Nextflow libraries streamline data ingestion, manipulation, aggregation, and analysis, culminating in a custom Neo4j database. The software not only facilitates the exploration of genomic synteny but also provides a foundational knowledge graph supporting the integration of additional diverse datasets and the development of advanced search engines and analyses. This manuscript introduces some of SocialGene's capabilities through brief case studies including targeted genome mining for drug discovery, accelerated searches for similar and distantly related biosynthetic gene clusters in biobank-available organisms, integration of chemical and analytical data, and more. SocialGene is free, open-source, MIT-licensed, designed for adaptability and extension, and available from github.com/socialgene.
Collapse
Affiliation(s)
- Chase M. Clark
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
7
|
Ugarelli K, Campbell JE, Rhoades OK, Munson CJ, Altieri AH, Douglass JG, Heck KL, Paul VJ, Barry SC, Christ L, Fourqurean JW, Frazer TK, Linhardt ST, Martin CW, McDonald AM, Main VA, Manuel SA, Marco-Méndez C, Reynolds LK, Rodriguez A, Rodriguez Bravo LM, Sawall Y, Smith K, Wied WL, Choi CJ, Stingl U. Microbiomes of Thalassia testudinum throughout the Atlantic Ocean, Caribbean Sea, and Gulf of Mexico are influenced by site and region while maintaining a core microbiome. Front Microbiol 2024; 15:1357797. [PMID: 38463486 PMCID: PMC10920284 DOI: 10.3389/fmicb.2024.1357797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.
Collapse
Affiliation(s)
- Kelly Ugarelli
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Justin E Campbell
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - O Kennedy Rhoades
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Calvin J Munson
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - James G Douglass
- The Water School, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Kenneth L Heck
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Savanna C Barry
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | | | - James W Fourqurean
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
| | - Thomas K Frazer
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States
| | - Samantha T Linhardt
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Charles W Martin
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | - Ashley M McDonald
- Smithsonian Marine Station, Fort Pierce, FL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Vivienne A Main
- Smithsonian Marine Station, Fort Pierce, FL, United States
- International Field Studies, Inc., Andros, Bahamas
| | - Sarah A Manuel
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - Candela Marco-Méndez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- Center for Advanced Studies of Blanes (Spanish National Research Council), Girona, Spain
| | - Laura K Reynolds
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL, United States
| | - Alex Rodriguez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | | | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Khalil Smith
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - William L Wied
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Chang Jae Choi
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Ulrich Stingl
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
8
|
Gallo A, Penna YM, Russo M, Rosapane M, Tosti E, Russo GL. An organic extract from ascidian Ciona robusta induces cytotoxic autophagy in human malignant cell lines. Front Chem 2024; 12:1322558. [PMID: 38389727 PMCID: PMC10881676 DOI: 10.3389/fchem.2024.1322558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
The last decades have seen an increase in the isolation and characterization of anticancer compounds derived from marine organisms, especially invertebrates, and their use in clinical trials. In this regard, ascidians, which are included in the subphylum Tunicata, represent successful examples with two drugs, Aplidine© and Yondelis© that reached the market as orphan drugs against several malignancies. Here, we report that an organic extract prepared from homogenized tissues of the Mediterranean ascidian Ciona robusta inhibited cell proliferation in HT-29, HepG2, and U2OS human cells with the former being the most sensitive to the extract (EC50 = 250 μg/mL). We demonstrated that the ascidian organic extract was not cytotoxic on HT-29 cells that were induced to differentiate with sodium butyrate, suggesting a preference for the mixture for the malignant phenotype. Finally, we report that cell death induced by the organic extract was mediated by the activation of a process of cytotoxic autophagy as a result of the increased expression of the LC3-II marker and number of autophagic vacuoles, which almost doubled in the treated HT-29 cells. In summary, although the detailed chemical composition of the Ciona robusta extract is still undetermined, our data suggest the presence of bioactive compounds possessing anticancer activity.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Marco Rosapane
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| |
Collapse
|
9
|
Segaran TC, Azra MN, Lananan F, Wang Y. Microbe, climate change and marine environment: Linking trends and research hotspots. MARINE ENVIRONMENTAL RESEARCH 2023:106015. [PMID: 37291004 DOI: 10.1016/j.marenvres.2023.106015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
Microbes, or microorganisms, have been the foundation of the biosphere for over 3 billion years and have played an essential role in shaping our planet. The available knowledge on the topic of microbes associated with climate change has the potential to reshape upcoming research trends globally. As climate change impacts the ocean or marine ecosystem, the responses of these "unseen life" will heavily influence the achievement of a sustainable evolutionary environment. The present study aims to identify microbial-related research under changing climate within the marine environment through the mapping of visualized graphs of the available literature. We used scientometric methods to retrieve documents from the Web of Science platform in the Core Collection (WOSCC) database, analyzing a total of 2767 documents based on scientometric indicators. Our findings show that this research area is growing exponentially, with the most influential keywords being "microbial diversity," "bacteria," and "ocean acidification," and the most cited being "microorganism" and "diversity." The identification of influential clusters in the field of marine science provides insight into the hot spots and frontiers of research in this area. Prominent clusters include "coral microbiome," "hypoxic zone," "novel Thermoplasmatota clade," "marine dinoflagellate bloom," and "human health." Analyzing emerging trends and transformative changes in this field can inform the creation of special issues or research topics in selected journals, thus increasing visibility and engagement among the scientific community.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Mohamad Nor Azra
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia; Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, West Nusa Tenggara, 83352, Indonesia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
10
|
Seasonal dynamics of a complex cheilostome bryozoan symbiosis: vertical transfer challenged. Sci Rep 2023; 13:375. [PMID: 36611035 PMCID: PMC9825505 DOI: 10.1038/s41598-022-26251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Symbiotic associations are dynamic systems influenced by both intrinsic and extrinsic factors. Here we describe for the first time the developmental and seasonal changes of the funicular bodies in the bryozoan Dendrobeania fruticosa, which are unique temporary organs of cheilostome bryozoans containing prokaryotic symbionts. Histological and ultrastructural studies showed that these organs undergo strong seasonal modification in the White Sea during the ice-free period. Initially (in June) they play a trophic function and support the development of a large population of bacteria. From June to September, both funicular bodies and bacteria show signs of degradation accompanied by development of presumed virus-like particles (VLPs); these self-organize to hollow spheres inside bacteria and are also detected outside of them. Although the destruction of bacteria coincides with the development of VLPs and spheres, the general picture differs considerably from the known instances of bacteriophagy in bryozoans. We broadly discuss potential routes of bacterial infection in Bryozoa and question the hypothesis of vertical transfer, which, although widely accepted in the literature, is contradicted by molecular, morphological and ecological evidence.
Collapse
|
11
|
Ueoka R, Sondermann P, Leopold-Messer S, Liu Y, Suo R, Bhushan A, Vadakumchery L, Greczmiel U, Yashiroda Y, Kimura H, Nishimura S, Hoshikawa Y, Yoshida M, Oxenius A, Matsunaga S, Williamson RT, Carreira EM, Piel J. Genome-based discovery and total synthesis of janustatins, potent cytotoxins from a plant-associated bacterium. Nat Chem 2022; 14:1193-1201. [PMID: 36064972 PMCID: PMC7613652 DOI: 10.1038/s41557-022-01020-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Host-associated bacteria are increasingly being recognized as underexplored sources of bioactive natural products with unprecedented chemical scaffolds. A recently identified example is the plant-root-associated marine bacterium Gynuella sunshinyii of the chemically underexplored order Oceanospirillales. Its genome contains at least 22 biosynthetic gene clusters, suggesting a rich and mostly uncharacterized specialized metabolism. Here, in silico chemical prediction of a non-canonical polyketide synthase cluster has led to the discovery of janustatins, structurally unprecedented polyketide alkaloids with potent cytotoxicity that are produced in minute quantities. A combination of MS and two-dimensional NMR experiments, density functional theory calculations of 13C chemical shifts and semiquantitative interpretation of transverse rotating-frame Overhauser effect spectroscopy data were conducted to determine the relative configuration, which enabled the total synthesis of both enantiomers and assignment of the absolute configuration. Janustatins feature a previously unknown pyridodihydropyranone heterocycle and an unusual biological activity consisting of delayed, synchronized cell death at subnanomolar concentrations.
Collapse
Affiliation(s)
- Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Philipp Sondermann
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Yizhou Liu
- NMR Structure Elucidation, Process & Analytical Chemistry, Merck & Co. Inc., Rahway, NJ, USA
- Analytical Research & Development, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Rei Suo
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Lida Vadakumchery
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Ute Greczmiel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Yoko Yashiroda
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiromi Kimura
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Shinichi Nishimura
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yojiro Hoshikawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Minoru Yoshida
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - R Thomas Williamson
- NMR Structure Elucidation, Process & Analytical Chemistry, Merck & Co. Inc., Rahway, NJ, USA
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| |
Collapse
|
12
|
Abdelrahman SM, Dosoky NS, Hanora AM, Lopanik NB. Metabolomic Profiling and Molecular Networking of Nudibranch-Associated Streptomyces sp. SCSIO 001680. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144542. [PMID: 35889415 PMCID: PMC9321954 DOI: 10.3390/molecules27144542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Antibiotic-resistant bacteria are the primary source of one of the growing public health problems that requires global attention, indicating an urgent need for new antibiotics. Marine ecosystems are characterized by high biodiversity and are considered one of the essential sources of bioactive chemical compounds. Bacterial associates of marine invertebrates are commonly a source of active medicinal and natural products and are important sources for drug discovery. Hence, marine invertebrate-associated microbiomes are a fruitful resource for excavating novel genes and bioactive compounds. In a previous study, we isolated Streptomyces sp. SCSIO 001680, coded as strain 63, from the Red Sea nudibranch Chromodoris quadricolor, which exhibited antimicrobial and antitumor activity. In addition, this isolate harbors several natural product biosynthetic gene clusters, suggesting it has the potential to produce bioactive natural products. The present study aimed to investigate the metabolic profile of the isolated Streptomyces sp. SCSIO 001680 (strain 63) and to predict their potential role in the host’s survival. The crude metabolic extracts of strain 63 cultivated in two different media were characterized by ultra-high-performance liquid chromatography and high-resolution mass spectrometry. The metabolomics approach provided us with characteristic chemical fingerprints of the cellular processes and the relative abundance of specific compounds. The Global Products Social Molecular Networking database was used to identify the metabolites. While 434 metabolites were detected in the extracts, only a few compounds were identified based on the standards and the public spectral libraries, including desferrioxamines, marineosin A, and bisucaberin, halichoblelide, alternarin A, pachastrelloside A, streptodepsipeptide P1 1B, didemnaketal F, and alexandrolide. This finding suggests that this strain harbors several novel compounds. In addition, the metabolism of the microbiome of marine invertebrates remains poorly represented. Thus, our data constitute a valuable complement to the study of metabolism in the host microbiome.
Collapse
Affiliation(s)
- Samar M. Abdelrahman
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez 43518, Egypt
- Correspondence: ; Tel.: +20-103-015-1594
| | | | - Amro M. Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- American Cancer Society, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
14
|
Abdelrahman SM, Patin NV, Hanora A, Aboseidah A, Desoky S, Desoky SG, Stewart FJ, Lopanik NB. The natural product biosynthetic potential of Red Sea nudibranch microbiomes. PeerJ 2021; 9:e10525. [PMID: 33604161 PMCID: PMC7868072 DOI: 10.7717/peerj.10525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Antibiotic resistance is a growing problem that can be ameliorated by the discovery of novel drug candidates. Bacterial associates are often the source of pharmaceutically active natural products isolated from marine invertebrates, and thus, important targets for drug discovery. While the microbiomes of many marine organisms have been extensively studied, microbial communities from chemically-rich nudibranchs, marine invertebrates that often possess chemical defences, are relatively unknown. Methods We applied both culture-dependent and independent approaches to better understand the biochemical potential of microbial communities associated with nudibranchs. Gram-positive microorganisms isolated from nudibranchs collected in the Red Sea were screened for antibacterial and antitumor activity. To assess their biochemical potential, the isolates were screened for the presence of natural product biosynthetic gene clusters, including polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, using PCR. The microbiomes of the nudibranchs were investigated by high-throughput sequencing of 16S rRNA amplicons. Results In screens against five model microorganisms, 51% of extracts displayed antimicrobial activity against more than one organism, and 19% exhibited antitumor activity against Ehrlich’s ascites carcinoma. Sixty-four percent of isolates contained PKS and NRPS genes, suggesting their genomes contain gene clusters for natural product biosynthesis. Thirty-five percent were positive for more than one class of biosynthetic gene. These strains were identified as belonging to the Firmicutes and Actinobacteria phyla via 16S rRNA gene sequencing. In addition, 16S rRNA community amplicon sequencing revealed all bacterial isolates were present in the uncultured host-associated microbiome, although they were a very small percentage of the total community. Taken together, these results indicate that bacteria associated with marine nudibranchs are potentially a rich source of bioactive compounds and natural product biosynthetic genes.
Collapse
Affiliation(s)
- Samar M Abdelrahman
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Faculty of Science, Suez University, Suez, Egypt
| | - Nastassia V Patin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Amro Hanora
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | | | | | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Nicole B Lopanik
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Barreca M, Spanò V, Montalbano A, Cueto M, Díaz Marrero AR, Deniz I, Erdoğan A, Lukić Bilela L, Moulin C, Taffin-de-Givenchy E, Spriano F, Perale G, Mehiri M, Rotter A, P. Thomas O, Barraja P, Gaudêncio SP, Bertoni F. Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes. Mar Drugs 2020; 18:md18120619. [PMID: 33291602 PMCID: PMC7761941 DOI: 10.3390/md18120619] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, 38206 Tenerife, Spain;
| | - Ana R. Díaz Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), La Laguna, 38200 Tenerife, Spain;
| | - Irem Deniz
- Department of Bioengineering, Faculty of Engineering, Manisa Celal Bayar University, 45119 Manisa, Turkey;
| | - Ayşegül Erdoğan
- Research Center for Testing and Analysis (EGE MATAL), Ege University Application, 35100 İzmir, Turkey;
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Corentin Moulin
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Elisabeth Taffin-de-Givenchy
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Filippo Spriano
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Mohamed Mehiri
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Olivier P. Thomas
- Marine Biodiscovery Laboratory, School of Chemistry and Ryan Institute, National University of Ireland, Galway (NUI Galway), H91TK33 Galway, Ireland;
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Susana P. Gaudêncio
- UCIBIO—Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, Faculty of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- Correspondence: (S.P.G.); (F.B.); Tel.: +351-21-2948300 (S.P.G.); +41-91-8200367 (F.B.)
| | - Francesco Bertoni
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
- Correspondence: (S.P.G.); (F.B.); Tel.: +351-21-2948300 (S.P.G.); +41-91-8200367 (F.B.)
| |
Collapse
|
16
|
Wender PA, Sloane JL, Luu-Nguyen QH, Ogawa Y, Shimizu AJ, Ryckbosch SM, Tyler JH, Hardman C. Function-Oriented Synthesis: Design, Synthesis, and Evaluation of Highly Simplified Bryostatin Analogues. J Org Chem 2020; 85:15116-15128. [PMID: 33200928 DOI: 10.1021/acs.joc.0c01988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a function-oriented synthesis strategy, we designed, synthesized, and evaluated the simplest bryostatin 1 analogues reported to date, in which bryostatin's A- and B-rings are replaced by a glutarate linker. These analogues, one without and one with a C26-methyl group, exhibit remarkably different protein kinase C (PKC) isoform affinities. The former exhibited bryostatin-like binding to several PKC isoforms with Ki's < 5 nM, while the latter exhibited PKC affinities that were up to ∼180-fold less potent. The analogue with bryostatin-like PKC affinities also exhibited bryostatin-like PKC translocation kinetics in vitro, indicating rapid cell permeation and engagement of its PKC target. This study exemplifies the power of function-oriented synthesis in reducing structural complexity by activity-informed design, thus enhancing synthetic accessibility, while still maintaining function (biological activity), collectively providing new leads for addressing the growing list of therapeutic indications exhibited by PKC modulators.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Jack L Sloane
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Quang H Luu-Nguyen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yasuyuki Ogawa
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Akira J Shimizu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven M Ryckbosch
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jefferson H Tyler
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Clayton Hardman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Abstract
Since bacterial resistance to antibiotics is developing worldwide, new antibiotics are needed. Most antibiotics discovered so far have been found in soil-dwelling bacteria, so we instead targeted marine environments as a novel source of bioactive potential. We used amplicon sequencing of bioactive gene clusters in the microbiome of coastal seawater and sandy sediments and found the bioactive potential to be comparable to, but distinct from, the bioactive potential of selected soil microbiomes. Moreover, most of this potential is not captured by culturing. Comparing the biosynthetic potential to the corresponding microbiome composition suggested that minor constituents of the microbiome likely hold a disproportionally large fraction of the biosynthesis potential. Novel natural products have traditionally been sourced from culturable soil microorganisms, whereas marine sources have been less explored. The purpose of this study was to profile the microbial biosynthetic potential in coastal surface seawater and sandy sediment samples and to evaluate the feasibility of capturing this potential using traditional culturing methods. Amplicon sequencing of conserved ketosynthase (KS) and adenylation (AD) domains within polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes showed that seawater and, in particular, sandy sediment had a high biosynthetic potential with 6,065 and 11,072 KS operational biosynthetic units (OBUs) and 3,292 and 5,691 AD OBUs, respectively, compared to that of four soil samples collected by Charlop-Powers et al. (Z. Charlop-Powers, C. C. Pregitzer, C. Lemetre, M. A. Ternei, et al., Proc Natl Acad Sci U S A 113:14811–14816, 2016, https://doi.org/10.1073/pnas.1615581113) with 7,067 KS and 1,629 AD OBUs. All three niches harbored unique OBUs (P = 0.001 for KS and P = 0.002 for AD by permutational multivariate analysis of variance [PERMANOVA]). The total colonial growth captured 1.9% of KS and 13.6% of AD OBUs from seawater and 2.2% KS and 12.5% AD OBUs from sediment. In a subset of bioactive isolates, only four KS OBUs and one AD OBU were recovered from whole-genome sequencing (WGS) of seven seawater-derived strains and one AD OBU from a sediment-derived strain, adding up to 0.028% of the original OBU diversity. Using a pairwise regression model of classified amplicon sequence variants (ASVs) to the species level, and OBUs, we suggest a method to estimate possible links between taxonomy and biosynthetic potential, which indicated that low abundance organisms may hold a disproportional share of the biosynthetic potential. Thus, marine microorganisms are a rich source of novel bioactive potential, which is difficult to access with traditional culturing methods. IMPORTANCE Since bacterial resistance to antibiotics is developing worldwide, new antibiotics are needed. Most antibiotics discovered so far have been found in soil-dwelling bacteria, so we instead targeted marine environments as a novel source of bioactive potential. We used amplicon sequencing of bioactive gene clusters in the microbiome of coastal seawater and sandy sediments and found the bioactive potential to be comparable to, but distinct from, the bioactive potential of selected soil microbiomes. Moreover, most of this potential is not captured by culturing. Comparing the biosynthetic potential to the corresponding microbiome composition suggested that minor constituents of the microbiome likely hold a disproportionally large fraction of the biosynthesis potential.
Collapse
|
18
|
Ma LF, Chen MJ, Liang DE, Shi LM, Ying YM, Shan WG, Li GQ, Zhan ZJ. Streptomyces albogriseolus SY67903 Produces Eunicellin Diterpenoids Structurally Similar to Terpenes of the Gorgonian Muricella sibogae, the Bacterial Source. JOURNAL OF NATURAL PRODUCTS 2020; 83:1641-1645. [PMID: 32367724 DOI: 10.1021/acs.jnatprod.0c00147] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microeunicellols A (1) and B (2), two undescribed eunicellin diterpenoids, were isolated from the culture of a bacterial symbiont, Streptomyces albogriseolus SY67903. Their structures, including absolute configurations revealed by spectroscopic data and single-crystal X-ray diffraction analysis, are closely related with the diterpenoids from its host, a South China Sea gorgonian, Muricella sibogae. This is the first report of eunicellin diterpenoids, commonly coral-derived, from a bacterial symbiont of coral. The chemical metabolic relationship between the bacterium and its host is discussed. Biological evaluation revealed that compound 1 possessed cytotoxicities against several human cancer cell lines.
Collapse
Affiliation(s)
- Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Zhejiang Xinguang Pharmaceutical Limited Liability Company, Shaoxing 312400, People's Republic of China
| | - Meng-Jia Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dong-E Liang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Lin-Mei Shi
- Lishui Technology College, Lishui 323000, People's Republic of China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wei-Guang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
19
|
Ciavatta ML, Lefranc F, Vieira LM, Kiss R, Carbone M, van Otterlo WAL, Lopanik NB, Waeschenbach A. The Phylum Bryozoa: From Biology to Biomedical Potential. Mar Drugs 2020; 18:E200. [PMID: 32283669 PMCID: PMC7230173 DOI: 10.3390/md18040200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Less than one percent of marine natural products characterized since 1963 have been obtained from the phylum Bryozoa which, therefore, still represents a huge reservoir for the discovery of bioactive metabolites with its ~6000 described species. The current review is designed to highlight how bryozoans use sophisticated chemical defenses against their numerous predators and competitors, and which can be harbored for medicinal uses. This review collates all currently available chemoecological data about bryozoans and lists potential applications/benefits for human health. The core of the current review relates to the potential of bryozoan metabolites in human diseases with particular attention to viral, brain, and parasitic diseases. It additionally weighs the pros and cons of total syntheses of some bryozoan metabolites versus the synthesis of non-natural analogues, and explores the hopes put into the development of biotechnological approaches to provide sustainable amounts of bryozoan metabolites without harming the natural environment.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Leandro M. Vieira
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil;
| | - Robert Kiss
- Retired – formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS), 1000 Brussels, Belgium;
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | |
Collapse
|
20
|
Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb Biotechnol 2019; 12:828-844. [PMID: 30834674 PMCID: PMC6680616 DOI: 10.1111/1751-7915.13398] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
For over seven decades, bacteria served as a valuable source of bioactive natural products some of which were eventually developed into drugs to treat infections, cancer and immune system-related diseases. Traditionally, novel compounds produced by bacteria were discovered via conventional bioprospecting based on isolation of potential producers and screening their extracts in a variety of bioassays. Over time, most of the natural products identifiable by this approach were discovered, and the pipeline for new drugs based on bacterially produced metabolites started to run dry. This mini-review highlights recent developments in bacterial bioprospecting for novel compounds that are based on several out-of-the-box approaches, including the following: (i) targeting bacterial species previously unknown to produce any bioactive natural products, (ii) exploring non-traditional environmental niches and methods for isolation of bacteria and (iii) various types of 'genome mining' aimed at unravelling genetic potential of bacteria to produce secondary metabolites. All these approaches have already yielded a number of novel bioactive compounds and, if used wisely, will soon revitalize drug discovery pipeline based on bacterial natural products.
Collapse
Affiliation(s)
- Olga N. Sekurova
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Olha Schneider
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Sergey B. Zotchev
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| |
Collapse
|
21
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
22
|
Buijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, Zhang SD. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep 2019; 36:1333-1350. [DOI: 10.1039/c9np00020h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent advances in molecular tools and strategies for studies and use of natural products from marine Proteobacteria.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Dario Vazquez-Albacete
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| |
Collapse
|
23
|
|
24
|
Li H, Mishra M, Ding S, Miyamoto MM. Diversity and Dynamics of "Candidatus Endobugula" and Other Symbiotic Bacteria in Chinese Populations of the Bryozoan, Bugula neritina. MICROBIAL ECOLOGY 2019; 77:243-256. [PMID: 30141128 DOI: 10.1007/s00248-018-1233-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Bugula neritina is a common invasive cosmopolitan bryozoan that harbors (like many sessile marine invertebrates) a symbiotic bacterial (SB) community. Among the SB of B. neritina, "Candidatus Endobugula sertula" continues to receive the greatest attention, because it is the source of bryostatins. The bryostatins are potent bioactive polyketides, which have been investigated for their therapeutic potential to treat various cancers, Alzheimer's disease, and AIDS. In this study, we compare the metagenomics sequences for the 16S ribosomal RNA gene of the SB communities from different geographic and life cycle samples of Chinese B. neritina. Using a variety of approaches for estimating alpha/beta diversity and taxonomic abundance, we find that the SB communities vary geographically with invertebrate and fish mariculture and with latitude and environmental temperature. During the B. neritina life cycle, we find that the diversity and taxonomic abundances of the SB communities change with the onset of host metamorphosis, filter feeding, colony formation, reproduction, and increased bryostatin production. "Ca. Endobugula sertula" is confirmed as the symbiont of the Chinese "Ca. Endobugula"/B. neritina symbiosis. Our study extends our knowledge about B. neritina symbiosis from the New to the Old World and offers new insights into the environmental and life cycle factors that can influence its SB communities, "Ca. Endobugula," and bryostatins more globally.
Collapse
Affiliation(s)
- Hai Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Mrinal Mishra
- Department of Biology, University of Florida, Box 118525, Gainesville, FL, 32611-8525, USA
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| | - Michael M Miyamoto
- Department of Biology, University of Florida, Box 118525, Gainesville, FL, 32611-8525, USA
| |
Collapse
|
25
|
Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive Secondary Metabolites from Octocoral-Associated Microbes-New Chances for Blue Growth. Mar Drugs 2018; 16:E485. [PMID: 30518125 PMCID: PMC6316421 DOI: 10.3390/md16120485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Octocorals (Cnidaria, Anthozoa Octocorallia) are magnificent repositories of natural products with fascinating and unusual chemical structures and bioactivities of interest to medicine and biotechnology. However, mechanistic understanding of the contribution of microbial symbionts to the chemical diversity of octocorals is yet to be achieved. This review inventories the natural products so-far described for octocoral-derived bacteria and fungi, uncovering a true chemical arsenal of terpenes, steroids, alkaloids, and polyketides with antibacterial, antifungal, antiviral, antifouling, anticancer, anti-inflammatory, and antimalarial activities of enormous potential for blue growth. Genome mining of 15 bacterial associates (spanning 12 genera) cultivated from Eunicella spp. resulted in the identification of 440 putative and classifiable secondary metabolite biosynthetic gene clusters (BGCs), encompassing varied terpene-, polyketide-, bacteriocin-, and nonribosomal peptide-synthase BGCs. This points towards a widespread yet uncharted capacity of octocoral-associated bacteria to synthetize a broad range of natural products. However, to extend our knowledge and foster the near-future laboratory production of bioactive compounds from (cultivatable and currently uncultivatable) octocoral symbionts, optimal blending between targeted metagenomics, DNA recombinant technologies, improved symbiont cultivation, functional genomics, and analytical chemistry are required. Such a multidisciplinary undertaking is key to achieving a sustainable response to the urgent industrial demand for novel drugs and enzyme varieties.
Collapse
Affiliation(s)
- Inês Raimundo
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Sandra G Silva
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| |
Collapse
|
26
|
Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. Unexpected Bacterial Origin of the Antibiotic Icosalide: Two-Tailed Depsipeptide Assembly in Multifarious Burkholderia Symbionts. ACS Chem Biol 2018; 13:2414-2420. [PMID: 30160099 DOI: 10.1021/acschembio.8b00600] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Icosalide is an unusual two-tailed lipocyclopeptide antibiotic that was originally isolated from a fungal culture. Yet, its biosynthesis and ecological function have remained enigmatic. By genome mining and metabolic profiling of a bacterial endosymbiont ( Burkholderia gladioli) of the pest beetle Lagria villosa, we unveiled a bacterial origin of icosalide. Functional analysis of the biosynthetic gene locus revealed an unprecedented nonribosomal peptide synthetase (NRPS) that incorporates two β-hydroxy acids by means of two starter condensation domains in different modules. This unusual assembly line, which may inspire new synthetic biology approaches, is widespread among many symbiotic Burkholderia species from diverse habitats. Biological assays showed that icosalide is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring. By creating a null mutant, we found that icosalide is a swarming inhibitor, which may play a role in symbiotic interactions and bears the potential for therapeutic applications.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
27
|
Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res 2018; 158:63-77. [PMID: 30063970 DOI: 10.1016/j.antiviral.2018.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) has successfully converted HIV to a chronic but manageable infection in many parts of the world, HIV continues to persist within latent cellular reservoirs, which can become reactivated at any time to produce infectious virus. New therapies are therefore needed not only for HIV suppression but also for containing or eliminating HIV reservoirs. Compounds derived from plant, marine, and other natural products have been found to combat HIV infection and/or target HIV reservoirs, and these discoveries have substantially guided current HIV therapy-based studies. Here we summarize the role of natural product-derived compounds in current HIV suppression, remission, and cure strategies.
Collapse
|
28
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
29
|
Slocum ST, Lowell AN, Tripathi A, Shende VV, Smith JL, Sherman DH. Chemoenzymatic Dissection of Polyketide β-Branching in the Bryostatin Pathway. Methods Enzymol 2018; 604:207-236. [PMID: 29779653 PMCID: PMC6327954 DOI: 10.1016/bs.mie.2018.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
β-Branching is an expansion upon canonical polyketide synthase extension that allows for the installation of diverse chemical moieties in several natural products. Several of these moieties are unique among natural products, including the two vinyl methylesters found in the core structure of bryostatins. This family of molecules is derived from an obligate bacterial symbiont of a sessile marine bryozoan, Bugula neritina. Within this family, bryostatin 1 has been investigated as an anticancer, neuroprotective, and immunomodulatory compound. We have turned to the biosynthetic gene cluster within the bacterial symbiont to investigate the biosynthesis of bryostatins. Recent sequencing efforts resulted in the annotation of two missing genes: bryT and bryU. Using novel chemoenzymatic techniques, we have validated these as the missing enoyl-CoA hydratase and donor acyl carrier protein, essential components of the β-branching cassette of the bryostatin pathway. Together, this cassette installs the vinyl methylester moieties essential to the activity of bryostatins.
Collapse
Affiliation(s)
- Samuel T Slocum
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Andrew N Lowell
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Vikram V Shende
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Life Sciences Institute, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
30
|
Salim EI, Harras SF, Abdalla AG, Mona MH. Syphacia muris infection in rats attenuates colorectal carcinogenesis through oxidative stress and gene expression alterations. Implications for modulatory effects by Bryostatin-1. Acta Parasitol 2018; 63:198-209. [PMID: 29351079 DOI: 10.1515/ap-2018-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggest that some infectious agents may interfere in the natural progression of neoplasia. This study examined the association between chronic infection with adult Syphacia muris parasites and 1,2-dimethylhydrazine (DMH)-induced colorectal carcinogenesis in rats. In addition, the conceivable therapeutic effect of Bryostatin-1, a potent extract of the marine Bryozoan, Bugulane ritina, was investigated against this combined effect.DMH administration has induced aberrant crypt foci (ACF), surrogate biomarkers for colorectal carcinogenesis, while the S. muris infection combined with DMH has significantly increased the total numbers of ACF. Nonetheless, treatment with Bryostatin-1 after infection has significantly reduced the ACF numbers particularly larger ones. This inhibition was concomitant with significant inhibition in the immunohistochemical levels of the ki67, Caspase-3 and IgM levels in colorectal epithelium, as well as serum levels of IgM and IgG. Additionally, treatment with Bryostatin-1 after S. muris + DMH has modulated enzymatic antioxidative markers levels of superoxide dismutase and catalase as well as the non-enzymatic antioxidant markers levels of reduced glutathione, lipid peroxidation, nitric oxide and total antioxidant capacity. Further, treatment with Bryostatin-1 has down-regulated the mRNA expression levels of COX-2 and APC genes in colorectal mucosa. In conclusion, infection with S. muris during colorectal carcinogenesis has significantly modulated the oxidative stress markers in the colorectum, while treatment with Bryostatin-1 has exerted significant curative potential. A mechanism could be explained that Bryostatin-1 treatment has reduced oxidative stress markers activities along with affecting host to parasite immunity possibly leading to changes in the COX-2 and APC expression, retarding cellular proliferation and subsequently reducing the colorectal carcinogenesis events.
Collapse
Affiliation(s)
- Elsayed I Salim
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samar F Harras
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aisha G Abdalla
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohmmed H Mona
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
31
|
|
32
|
Torres JP, Tianero MD, Robes JMD, Kwan JC, Biggs JS, Concepcion GP, Olivera BM, Haygood MG, Schmidt EW. Stenotrophomonas-Like Bacteria Are Widespread Symbionts in Cone Snail Venom Ducts. Appl Environ Microbiol 2017; 83:e01418-17. [PMID: 28986377 PMCID: PMC5691409 DOI: 10.1128/aem.01418-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Cone snails are biomedically important sources of peptide drugs, but it is not known whether snail-associated bacteria affect venom chemistry. To begin to answer this question, we performed 16S rRNA gene amplicon sequencing of eight cone snail species, comparing their microbiomes with each other and with those from a variety of other marine invertebrates. We show that the cone snail microbiome is distinct from those in other marine invertebrates and conserved in specimens from around the world, including the Philippines, Guam, California, and Florida. We found that all venom ducts examined contain diverse 16S rRNA gene sequences bearing closest similarity to Stenotrophomonas bacteria. These sequences represent specific symbionts that live in the lumen of the venom duct, where bioactive venom peptides are synthesized.IMPORTANCE In animals, symbiotic bacteria contribute critically to metabolism. Cone snails are renowned for the production of venoms that are used as medicines and as probes for biological study. In principle, symbiotic bacterial metabolism could either degrade or synthesize active venom components, and previous publications show that bacteria do indeed contribute small molecules to some venoms. Therefore, understanding symbiosis in cone snails will contribute to further drug discovery efforts. Here, we describe an unexpected, specific symbiosis between bacteria and cone snails from around the world.
Collapse
Affiliation(s)
- Joshua P Torres
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, Utah, USA
| | - Maria Diarey Tianero
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, Utah, USA
| | - Jose Miguel D Robes
- Marine Science Institute, University of the Philippines-Diliman, Diliman, Quezon City, Philippines
| | - Jason C Kwan
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, Utah, USA
| | - Jason S Biggs
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam, USA
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Diliman, Quezon City, Philippines
| | | | - Margo G Haygood
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, Utah, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
33
|
Ultrastructural evidence for nutritional relationships between a marine colonial invertebrate (Bryozoa) and its bacterial symbionts. Symbiosis 2017; 75:155-164. [PMID: 29720781 PMCID: PMC5918527 DOI: 10.1007/s13199-017-0516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
Abstract
Autozooids of the cheilostome bryozoan Aquiloniella scabra contain rod-like bacteria in the funicular bodies – the complex swellings of the funicular strands. Each funicular body contains symbionts in the central cavity surrounded by a large, synthetically active internal “sheath-cell” (bacteriocyte) and a group of the flat external cells. The tightly interdigitating lobes of these cells form a capsule well-isolated from the body cavity. Slit-like spaces between bacteria are filled with electron-dense matrix and cytoplasmic processes of various sizes and shapes (often branching) produced by the “sheath-cell”. The cell ultrastructure and complex construction of the funicular bodies as well as multiplication of the bacteria in them suggest metabolic exchange between host and symbiont, involving the nourishment of bacteria. We suggest that the bacteria, in turn, influence the bryozoan mesothelial tissue to form the funicular bodies as capsules for bacterial incubation. We present ultrastructural data, discuss possible variants in the development of the funicular bodies in Bryozoa, and propose the possible role of bacteria in the life of their bryozoan host.
Collapse
|
34
|
An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040040] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.
Collapse
|
35
|
Lee Y, Phat C, Hong SC. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017; 95:94-105. [PMID: 28610952 DOI: 10.1016/j.peptides.2017.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/28/2023]
Abstract
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides.
Collapse
Affiliation(s)
- Yeji Lee
- College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chanvorleak Phat
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Soon-Cheol Hong
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Parrish SM, Yoshida W, Yang B, Williams PG. Ulapualides C-E Isolated from a Hawaiian Hexabranchus sanguineus Egg Mass. JOURNAL OF NATURAL PRODUCTS 2017; 80:726-730. [PMID: 28098996 PMCID: PMC5365346 DOI: 10.1021/acs.jnatprod.6b00896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three new ulapualides (3-5) were isolated from egg masses of the nudibranch Hexabranchus sanguineus. The structures of 3-5 were deduced by analyses of physical and spectroscopic data in comparisons with ulapualides A (1) and B (2). Ulapualide C demonstrated submicromolar cytotoxicity against select NCI cell lines (768-0, DU-145, MDA-MB-231, and A549) with the most potent activity against MDA-MB-231 cells (IC50 0.58 μM). Ulapualides A (1) and B (2) were 2- to 4-fold more potent than 3.
Collapse
Affiliation(s)
- Stephen M. Parrish
- Department of Chemistry, University of Hawaii at Manoa, Honolulu Hawaii, 96822
| | - Wesley Yoshida
- Department of Chemistry, University of Hawaii at Manoa, Honolulu Hawaii, 96822
| | - Baojun Yang
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii, 96813
| | - Philip G. Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu Hawaii, 96822
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii, 96813
| |
Collapse
|
37
|
Maltseva AL, Kotenko ON, Kutyumov VA, Matvienko DA, Shavarda AL, Winson MK, Ostrovsky AN. Novel brominated metabolites from Bryozoa: a functional analysis. Nat Prod Res 2016; 31:1840-1848. [DOI: 10.1080/14786419.2016.1261344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arina L. Maltseva
- Faculty of Biology, Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga N. Kotenko
- Faculty of Biology, Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir A. Kutyumov
- Faculty of Biology, Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Darya A. Matvienko
- Faculty of Biology, Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexey L. Shavarda
- Analytical Phytochemistry Laboratory, Komarov Botanical Institute, Saint Petersburg, Russia
| | | | - Andrew N. Ostrovsky
- Faculty of Biology, Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
- Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, Geozentrum, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Newman DJ. Predominately Uncultured Microbes as Sources of Bioactive Agents. Front Microbiol 2016; 7:1832. [PMID: 27917159 PMCID: PMC5114300 DOI: 10.3389/fmicb.2016.01832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
In this short review, I am discussing the relatively recent awareness of the role of symbionts in plant, marine-invertebrates and fungal areas. It is now quite obvious that in marine-invertebrates, a majority of compounds found are from either as yet unculturable or poorly culturable microbes, and techniques involving “state of the art” genomic analyses and subsequent computerized analyses are required to investigate these interactions. In the plant kingdom evidence is amassing that endophytes (mainly fungal in nature) are heavily involved in secondary metabolite production and that mimicking the microbial interactions of fermentable microbes leads to involvement of previously unrecognized gene clusters (cryptic clusters is one name used), that when activated, produce previously unknown bioactive molecules.
Collapse
|
39
|
Temate-Tiagueu Y, Seesi SA, Mathew M, Mandric I, Rodriguez A, Bean K, Cheng Q, Glebova O, Măndoiu I, Lopanik NB, Zelikovsky A. Inferring metabolic pathway activity levels from RNA-Seq data. BMC Genomics 2016; 17 Suppl 5:542. [PMID: 27585456 PMCID: PMC5009525 DOI: 10.1186/s12864-016-2823-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs. Results XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium “Candidatus Endobugula sertula”. We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR). Conclusions Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2823-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvette Temate-Tiagueu
- Department of Computer Science, Georgia State University, 34 Peachtree St., Atlanta, 30303, GA, USA.
| | - Sahar Al Seesi
- Computer Science & Engineering Department, University of Connecticut, Storrs, 06269, CT, USA
| | - Meril Mathew
- Department of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, 30303, GA, USA
| | - Igor Mandric
- Department of Computer Science, Georgia State University, 34 Peachtree St., Atlanta, 30303, GA, USA
| | - Alex Rodriguez
- Department of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, 30303, GA, USA
| | - Kayla Bean
- Department of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, 30303, GA, USA
| | - Qiong Cheng
- Department of Pharmacology, University of Miami, Miami, FL, USA
| | - Olga Glebova
- Department of Computer Science, Georgia State University, 34 Peachtree St., Atlanta, 30303, GA, USA
| | - Ion Măndoiu
- Computer Science & Engineering Department, University of Connecticut, Storrs, 06269, CT, USA.
| | - Nicole B Lopanik
- Department of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, 30303, GA, USA. .,Current address: School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, 30332, GA, USA.
| | - Alexander Zelikovsky
- Department of Computer Science, Georgia State University, 34 Peachtree St., Atlanta, 30303, GA, USA.
| |
Collapse
|
40
|
McCauley EP, Haltli B, Correa H, Kerr RG. Spatial and temporal investigation of the microbiome of the Caribbean octocoral Erythropodium caribaeorum. FEMS Microbiol Ecol 2016; 92:fiw147. [PMID: 27381833 DOI: 10.1093/femsec/fiw147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 11/13/2022] Open
Abstract
The octocoral Erythropodium caribaeorum is an important species in the Caribbean coral reef community and a source of the cytotoxic natural product desmethyleleutherobin. We utilized 16S small subunit rRNA gene amplicon pyrosequencing to characterize the microbiome of E. caribaeorum collected from Florida, USA and San Salvador, The Bahamas at multiple time points. This coral was found to have a very high microbial richness with an average Chao1 estimated richness of 1464 ± 707 operational taxonomic units and average Shannon diversity index of 4.26 ± 1.65. The taxonomic class Gammaproteobacteria was a dominant member in all samples and the genus Endozoicomonas accounted for an average of 37.7% ± 30.0% of the total sequence reads. One Endozoicomonas sp. was found to be a stable member of all E. caribaeorum sequence libraries regardless of location or time of collection and accounted for 30.1% of all sequence reads. This is the first report characterizing the microbiome associated with the encrusting octocoral E. caribaeorum.
Collapse
Affiliation(s)
- Erin P McCauley
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Brad Haltli
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Hebelin Correa
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Russell G Kerr
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
41
|
Hillman K, Goodrich-Blair H. Are you my symbiont? Microbial polymorphic toxins and antimicrobial compounds as honest signals of beneficial symbiotic defensive traits. Curr Opin Microbiol 2016; 31:184-190. [DOI: 10.1016/j.mib.2016.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
|
42
|
Gomes NGM, Dasari R, Chandra S, Kiss R, Kornienko A. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem". Mar Drugs 2016; 14:E98. [PMID: 27213412 PMCID: PMC4882572 DOI: 10.3390/md14050098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal.
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Sunena Chandra
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
43
|
Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes. Mar Drugs 2016; 14:md14040080. [PMID: 27092515 PMCID: PMC4849084 DOI: 10.3390/md14040080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 11/17/2022] Open
Abstract
Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.
Collapse
|
44
|
Plummer S, Manning T, Baker T, McGreggor T, Patel M, Wylie G, Phillips D. Isolation, analytical measurements, and cell line studies of the iron-bryostatin-1 complex. Bioorg Med Chem Lett 2016; 26:2489-2497. [PMID: 27068183 DOI: 10.1016/j.bmcl.2016.03.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Bryostatin-1 is a marine natural product that has demonstrated medicinal activity in pre-clinical and clinical trials for the treatment of cancer, Alzheimer's disease, effects of stroke, and HIV. In this study, iron-bryostatin-1 was obtained using a pharmaceutical aquaculture technique developed by our lab that cultivates marine bacteria for marine natural product extraction. Analytical measurements (1)H and (13)C NMR, mass spectrometry, and flame atomic absorption were utilized to confirm the presence of an iron-bryostatin-1 complex. The iron-bryostatin-1 complex produced was then tested against the National Cancer Institute's 60 cell line panel. Adding iron to bryostatin-1 lowered the anti-cancer efficacy of the compound.
Collapse
Affiliation(s)
- Sydney Plummer
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Thomas Manning
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States.
| | - Tess Baker
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Tysheon McGreggor
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Mehulkumar Patel
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Greg Wylie
- NMR Facility, Department of Chemistry, Texas A&M, College Station, TX 77843, United States
| | - Dennis Phillips
- PAMS Facility, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
45
|
Braquart-Varnier C, Altinli M, Pigeault R, Chevalier FD, Grève P, Bouchon D, Sicard M. The Mutualistic Side of Wolbachia-Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria. Front Microbiol 2015; 6:1388. [PMID: 26733946 PMCID: PMC4679875 DOI: 10.3389/fmicb.2015.01388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.
Collapse
Affiliation(s)
- Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mine Altinli
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| | - Romain Pigeault
- IRD 224-Université de Montpellier, Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle, Équipe Interaction Parasitaires et Adaptation Montpellier, France
| | | | - Pierre Grève
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Didier Bouchon
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mathieu Sicard
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| |
Collapse
|
46
|
Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 2015; 43:129-41. [PMID: 26586404 DOI: 10.1007/s10295-015-1706-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022]
Abstract
Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.
Collapse
|
47
|
Koyama S, Nishi S, Tokuda M, Uemura M, Ishikawa Y, Seya T, Chow S, Ise Y, Hatada Y, Fujiwara Y, Tsubouchi T. Electrical Retrieval of Living Microorganisms from Cryopreserved Marine Sponges Using a Potential-Controlled Electrode. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:678-92. [PMID: 26242755 PMCID: PMC4540769 DOI: 10.1007/s10126-015-9651-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/06/2015] [Indexed: 05/19/2023]
Abstract
The purpose of this study was to develop a novel electrical retrieval method (ER method) for living sponge-associated microorganisms from marine sponges frozen at -80 °C. A -0.3-V vs. Ag/AgCl constant potential applied for 2 h at 9 °C induced the attachment of the sponge-associated microorganisms to an indium tin oxide/glass (ITO) or a gallium-doped zinc oxide/glass (GZO) working electrode. The electrically attached microorganisms from homogenized Spirastrella insignis tissues had intact cell membranes and showed intracellular dehydrogenase activity. Dead microorganisms were not attracted to the electrode when the homogenized tissues were autoclaved for 15 min at 121 °C before use. The electrically attached microorganisms included cultivable microorganisms retrieved after detachment from the electrode by application of a 9-MHz sine-wave potential. Using the ER method, we obtained 32 phyla and 72 classes of bacteria and 3 archaea of Crenarchaeota thermoprotei, Marine Group I, and Thaumarchaeota incertae sedis from marine sponges S. insignis and Callyspongia confoederata. Employment of the ER method for extraction and purification of the living microorganisms holds potential of single-cell cultivation for genome, transcriptome, proteome, and metabolome analyses of bioactive compounds producing sponge-associated microorganisms.
Collapse
Affiliation(s)
- Sumihiro Koyama
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 2015; 6:890. [PMID: 26379658 PMCID: PMC4552006 DOI: 10.3389/fmicb.2015.00890] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products exhibit immense structural diversity and complexity and have captured the attention of researchers for several decades. They have been explored for a wide spectrum of applications, most noteworthy being their prominent role in medicine, and their versatility expands to application as drugs for many diseases. Accessing unexplored environments harboring unique microorganisms is expected to yield novel bioactive metabolites with distinguishing functionalities, which can be supplied to the starved pharmaceutical market. For this purpose the oceans have turned out to be an attractive and productive field. Owing to the enormous biodiversity of marine microorganisms, as well as the growing evidence that many metabolites previously isolated from marine invertebrates and algae are actually produced by their associated bacteria, the interest in marine microorganisms has intensified. Since the majority of the microorganisms are uncultured, metagenomic tools are required to exploit the untapped biochemistry. However, after years of employing metagenomics for marine drug discovery, new drugs are vastly under-represented. While a plethora of natural product biosynthetic genes and clusters are reported, only a minor number of potential therapeutic compounds have resulted through functional metagenomic screening. This review explores specific obstacles that have led to the low success rate. In addition to the typical problems encountered with traditional functional metagenomic-based screens for novel biocatalysts, there are enormous limitations which are particular to drug-like metabolites. We also present how targeted and function-guided strategies, employing modern, and multi-disciplinary approaches have yielded some of the most exciting discoveries attributed to uncultured marine bacteria. These discoveries set the stage for progressing the production of drug candidates from uncultured bacteria for pre-clinical and clinical development.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - José Navarro-Fernández
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Universidad de Murcia, IMIB-Arrixaca, MurciaSpain
| | - Ahmed Abd Elrazak
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Botany Department, Faculty of Science, Mansoura University, MansouraEgypt
| |
Collapse
|
49
|
Choi H, Oh DC. Considerations of the chemical biology of microbial natural products provide an effective drug discovery strategy. Arch Pharm Res 2015; 38:1591-605. [PMID: 26231248 DOI: 10.1007/s12272-015-0639-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/17/2015] [Indexed: 11/24/2022]
Abstract
Conventional approaches to natural product drug discovery rely mainly on random searches for bioactive compounds using bioassays. These traditional approaches do not incorporate a chemical biology perspective. Searching for bioactive molecules using a chemical and biological rationale constitutes a powerful search paradigm. Here, the authors review recent examples of the discovery of bioactive natural products based on chemical and biological interactions between hosts and symbionts, and propose this method provides a more effective means of exploring natural chemical diversity and eventually of discovering new drugs.
Collapse
Affiliation(s)
- Hyukjae Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, 712-749, Republic of Korea.
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
50
|
Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism. Sci Rep 2015. [PMID: 26199173 PMCID: PMC4510492 DOI: 10.1038/srep12442] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple studies have shown that HIV-1 patients may develop virus reservoirs that impede eradication; these reservoirs include the central nervous system (CNS). Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. To broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as a latent HIV-1 activator. We used primary astrocytes, NHA cells, and astrocytoma cells U-87. Infected cells with HIV-1NL4.3 were treated with bryostatin alone or in combination with different inhibitors. HIV-1 production was quantified by using ELISA. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of the LTR promoter with the active NF-κB member p65/relA. To confirm the NF-κB role, Western blot and confocal microscopy were performed. Bryostatin reactivates latent viral infection in the NHA and U87 cells via activation of protein kinase C (PKC)-alpha and -delta, because the PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. No alteration in cell proliferation was found. Moreover, bryostatin strongly stimulated LTR transcription by activating the transcription factor NF-κB. Bryostatin could be a beneficial adjunct to the treatment of HIV-1 brain infection.
Collapse
|