1
|
Miyoshi SI, Kurata M, Hirose R, Yoshikawa M, Liang Y, Yamagishi Y, Mizuno T. Isolation of Vibrio cholerae and Vibrio vulnificus from Estuarine Waters, and Genotyping of V. vulnificus Isolates Using Loop-Mediated Isothermal Amplification. Microorganisms 2024; 12:877. [PMID: 38792707 PMCID: PMC11124270 DOI: 10.3390/microorganisms12050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Bacteria in the genus Vibrio are ubiquitous in estuarine and coastal waters. Some species (including Vibrio cholerae and Vibrio vulnificus) are known human pathogens causing ailments like cholera, diarrhea, or septicemia. Notably, V. vulnificus can also cause a severe systemic infection (known as vibriosis) in eels raised in aquaculture facilities. Water samples were periodically collected from the estuary of the Asahi River, located in the southern part of Okayama City, Japan. These samples were directly plated onto CHROMagar Vibrio plates, and colonies displaying turquoise-blue coloration were selected. Thereafter, polymerase chain reaction was used to identify V. cholerae and V. vulnificus. A total of 30 V. cholerae strains and 194 V. vulnificus strains were isolated during the warm season when the water temperature (WT) was higher than 20 °C. Concurrently, an increase in coliforms was observed during this period. Notably, V. vulnificus has two genotypes, designated as genotype 1 and genotype 2. Genotype 1 is pathogenic to humans, while genotype 2 is pathogenic to both humans and eels. The loop-mediated isothermal amplification method was developed to rapidly determine genotypes at a low cost. Of the 194 strains isolated, 80 (41.2%) were identified as genotype 1 strains. Among the 41 strains isolated when the WTs were higher than 28 °C, 25 strains (61.0%) belonged to genotype 1. In contrast, of the 32 strains isolated when the WTs were lower than 24 °C, 27 strains (84.4%) belonged to genotype 2. These results suggest that the distribution of the two genotypes was influenced by WT.
Collapse
Affiliation(s)
- Shin-ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama-City 700-8530, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
2
|
Hernández-Cabanyero C, Sanjuán E, Mercado L, Amaro C. Evidence that fish death after Vibrio vulnificus infection is due to an acute inflammatory response triggered by a toxin of the MARTX family. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109131. [PMID: 37832748 DOI: 10.1016/j.fsi.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
Vibrio vulnificus is an emerging zoonotic pathogen associated with fish farms that is capable of causing a hemorrhagic septicemia known as warm-water vibriosis. According to a recent transcriptomic and functional study, the death of fish due to vibriosis is more related to the inflammatory response of the host than to the tissue lesions caused by the pathogen. In this work, we hypothesize that the RtxA1 toxin (a V. vulnificus toxin of the MARTX (Multifunctional Autoprocessing Repeats in Toxin) family) is the key virulence factor that would directly or indirectly trigger this fatal inflammatory response. Our hypothesis was based on previous studies that showed that rtxA1-deficient mutants maintained their ability to colonize and invade, but were unable to kill fish. To demonstrate this hypothesis, we infected eels (model of fish vibriosis) by immersion with a mutant deficient in RtxA1 production and analyzed their transcriptome in blood, red blood cells and white blood cells during early vibriosis (0, 3 and 12 h post-infection). The transcriptomic results were compared with those obtained in the previous study in which eels were infected with the V. vulnificus parental strain, and were functionally validated. Overall, our results confirm that fish death after V. vulnificus infection is due to an acute, early and atypical inflammatory response triggered by RtxA1 in which red blood cells seem to play a central role. These results could be relevant to other vibriosis as the toxins of this family are widespread in the Vibrio genus.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Eva Sanjuán
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Luis Mercado
- Instituto de Biología. Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carmen Amaro
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain.
| |
Collapse
|
3
|
Roig Molina FJ, Amaro González C, Alcaine Otín A, Carro Fernández J. Vibrio vulnificus mutation rate: an in vitro approach. Front Microbiol 2023; 14:1223293. [PMID: 37621400 PMCID: PMC10445137 DOI: 10.3389/fmicb.2023.1223293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Vibrio vulnificus is a multi-host pathogenic species currently subdivided into five phylogenetic lineages (L) plus one pathovar with the ability to infect fish due to a transmissible virulence plasmid. This plasmid (or a fragment of it) has been transmitted between lineages within the species, contributing to the evolution of V. vulnificus. This study aimed to provide an experimental approximation to the V. vulnificus mutation rate by determining spontaneous mutation rates from bacterial cultures of representants of the different lineages by whole-genome sequencing. To this purpose, synonymous SNP differences, i.e., spontaneous mutation not subjected to the evolutive forces, between initial and final culture after serial growth were evaluated and used for mutation rate calculation.
Collapse
Affiliation(s)
- Francisco Jose Roig Molina
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Carmen Amaro González
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain
| | - Alejandro Alcaine Otín
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Jesús Carro Fernández
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| |
Collapse
|
4
|
Amaro C, Carmona-Salido H. Vibrio vulnificus, an Underestimated Zoonotic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:175-194. [PMID: 36792876 DOI: 10.1007/978-3-031-22997-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
V. vulnificus, continues being an underestimated yet lethal zoonotic pathogen. In this chapter, we provide a comprehensive review of numerous aspects of the biology, epidemiology, and virulence mechanisms of this poorly understood pathogen. We will emphasize the widespread role of horizontal gene transfer in V. vulnificus specifically virulence plasmids and draw parallels from aquaculture farms to human health. By placing current findings in the context of climate change, we will also contend that fish farms act as evolutionary drivers that accelerate species evolution and the emergence of new virulent groups. Overall, we suggest that on-farm control measures should be adopted both to protect animals from Vibriosis, and also as a public health measure to prevent the emergence of new zoonotic groups.
Collapse
Affiliation(s)
- Carmen Amaro
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain.
| | - Héctor Carmona-Salido
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Huynh-Phuoc V, Ly TQ, Purbiantoro W, Ngo HVT, Afonso F, Vu NU, Cheng TC. Bacillus safensis isolated from white-leg shrimp, Penaeus vannamei in Taiwan with antagonistic activity against common Vibrio pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Ji Q, Wang S, Ma J, Liu Q. A review: Progress in the development of fish Vibrio spp. vaccines. Immunol Lett 2020; 226:46-54. [DOI: 10.1016/j.imlet.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
7
|
Hernández-Cabanyero C, Amaro C. Phylogeny and life cycle of the zoonotic pathogen Vibrio vulnificus. Environ Microbiol 2020; 22:4133-4148. [PMID: 32567215 DOI: 10.1111/1462-2920.15137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Vibrio vulnificus is a zoonotic pathogen able to cause diseases in humans and fish that occasionally result in sepsis and death. Most reviews about this pathogen (including those related to its ecology) are clearly biased towards its role as a human pathogen, emphasizing its relationship with oysters as its main reservoir, the role of the known virulence factors as well as the clinic and the epidemiology of the human disease. This review tries to give to the reader a wider vision of the biology of this pathogen covering aspects related to its phylogeny and evolution and filling the gaps in our understanding of the general strategies that V. vulnificus uses to survive outside and inside its two main hosts, the human and the eel, and how its response to specific environmental parameters determines its survival, its death, or the triggering of an infectious process.
Collapse
Affiliation(s)
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, Valencia, 46100, Spain
| |
Collapse
|
8
|
Kannan P, Chen J, Su F, Guo Z, Huang Y. Faraday-Cage-Type Electrochemiluminescence Immunoassay: A Rise of Advanced Biosensing Strategy. Anal Chem 2019; 91:14792-14802. [PMID: 31692335 DOI: 10.1021/acs.analchem.9b04503] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemiluminescence immunoassays are usually carried out through "on-electrode" strategy, i.e., sandwich-type immunoassay format, the sensitivity of which is restricted by two key bottlenecks: (1) the number of signal labels is limited and (2) only a part of signal labels could participate in the electrode reaction. In this Perspective, we discuss the development of an "in-electrode" Faraday-cage-type concept-based immunocomplex immobilization strategy. The biggest difference from the traditional sandwich-type one is that the designed "in-electrode" Faraday-cage-type immunoassay uses a conductive two-dimensional (2-D) nanomaterial simultaneously coated with signal labels and a recognition component as the detection unit, which could directly overlap on the electrode surface. In such a case, electrons could flow freely from the electrode to the detection unit, the outer Helmholtz plane (OHP) of the electrode is extended, and thousands of signal labels coated on the 2-D nanomaterial are all electrochemically "effective." Thus, then, the above-mentioned bottlenecks obstructing the improvement of the sensitivity in sandwich-type immunoassay are eliminated, and as a result a much higher sensitivity of the Faraday-cage-type immunoassay can be obtained. And, the applications of the proposed versatile "in-electrode" Faraday-cage-type immunoassay have been explored in the detection of target polypeptide, protein, pathogen, and microRNA, with the detection sensitivity improved tens to hundreds of times. Finally, the outlook and challenges in the field are summarized. The rise of Faraday-cage-type electrochemiluminescence immunoassay (FCT-ECLIA)-based biosensing strategies opens new horizons for a wide range of early clinical identification and diagnostic applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , People's Republic of China
| | - Jing Chen
- Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS) , Ningbo 315201 , People's Republic of China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , People's Republic of China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
9
|
Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, Kasai H, Mino S, Sawabe T, Zamri-Saad M. Vibriosis in Fish: A Review on Disease Development and Prevention. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:3-22. [PMID: 30246889 DOI: 10.1002/aah.10045] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/16/2018] [Indexed: 05/19/2023]
Abstract
Current growth in aquaculture production is parallel with the increasing number of disease outbreaks, which negatively affect the production, profitability, and sustainability of the global aquaculture industry. Vibriosis is among the most common diseases leading to massive mortality of cultured shrimp, fish, and shellfish in Asia. High incidence of vibriosis can occur in hatchery and grow-out facilities, but juveniles are more susceptible to the disease. Various factors, particularly the source of fish, environmental factors (including water quality and farm management), and the virulence factors of Vibrio, influence the occurrence of the disease. Affected fish show weariness, with necrosis of skin and appendages, leading to body malformation, slow growth, internal organ liquefaction, blindness, muscle opacity, and mortality. A combination of control measures, particularly a disease-free source of fish, biosecurity of the farm, improved water quality, and other preventive measures (e.g., vaccination) might be able to control the infection. Although some control measures are expensive and less practical, vaccination is effective, relatively cheap, and easily implemented. In this review, the latest knowledge on the pathogenesis and control of vibriosis, including vaccination, is discussed.
Collapse
Affiliation(s)
- M Y Ina-Salwany
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nurhidayu Al-Saari
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- International Institute for Halal Research and Training, International Islamic University Malaysia, KICT Building, Level 3, 53100, Gombak, Selangor, Malaysia
| | - Aslah Mohamad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fathin-Amirah Mursidi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Aslizah Mohd-Aris
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, School of Biology, Universiti Teknologi MARA, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia
| | - M N A Amal
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hisae Kasai
- Laboratory of Fish Pathology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - M Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Roig FJ, González-Candelas F, Sanjuán E, Fouz B, Feil EJ, Llorens C, Baker-Austin C, Oliver JD, Danin-Poleg Y, Gibas CJ, Kashi Y, Gulig PA, Morrison SS, Amaro C. Phylogeny of Vibrio vulnificus from the Analysis of the Core-Genome: Implications for Intra-Species Taxonomy. Front Microbiol 2018; 8:2613. [PMID: 29358930 PMCID: PMC5765525 DOI: 10.3389/fmicb.2017.02613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus (Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources. We have identified five well-supported phylogenetic groups or lineages (L). L1 comprises a mixture of clinical and environmental Bt1 strains, most of them involved in human clinical cases related to raw seafood ingestion. L2 is formed by a mixture of Bt1 and Bt2 strains from various sources, including diseased fish, and is related to the aquaculture industry. L3 is also linked to the aquaculture industry and includes Bt3 strains exclusively, mostly related to wound infections or secondary septicemia after farmed-fish handling. Lastly, L4 and L5 include a few strains of Bt1 associated with specific geographical areas. The phylogenetic trees for ChrI and II are not congruent to one another, which suggests that inter- and/or intra-chromosomal rearrangements have been produced along Vv evolution. Further, the phylogenetic trees for each chromosome and the virulence plasmid were also not congruent, which also suggests that pVvbt2 has been acquired independently by different clones, probably in fish farms. From all these clones, the one with zoonotic capabilities (Bt2-Serovar E) has successfully spread worldwide. Based on these results, we propose a new updated classification of the species based on phylogenetic lineages rather than on Bts, as well as the inclusion of all Bt2 strains in a pathovar with the particular ability to cause fish vibriosis, for which we suggest the name "piscis."
Collapse
Affiliation(s)
- Francisco J Roig
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit on Infection and Public Health FISABIO-Salud Pública and Universitat de Valencia-I2SysBio, Valencia, Spain.,CIBEResp, National Network Center for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Valencia, Spain
| | - Eva Sanjuán
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Belén Fouz
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - James D Oliver
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States.,Duke University Marine Lab, Beaufort, NC, United States
| | - Yael Danin-Poleg
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cynthia J Gibas
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Shatavia S Morrison
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
11
|
Mahmoud MMA, El-Lamie MMM, Kilany OE, Dessouki AA. Spirulina (Arthrospira platensis) supplementation improves growth performance, feed utilization, immune response, and relieves oxidative stress in Nile tilapia (Oreochromis niloticus) challenged with Pseudomonas fluorescens. FISH & SHELLFISH IMMUNOLOGY 2018; 72:291-300. [PMID: 29117593 DOI: 10.1016/j.fsi.2017.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/29/2017] [Accepted: 11/03/2017] [Indexed: 05/02/2023]
Abstract
One hundred and eighty Nile tilapia fish were used in eighty-three-day growth trial. Fish were divided into three treatment groups. The first group T0 was given the basal diet without any supplementation and served as the control group. The second group T1 was given the basal diet supplemented by 1% Spirulina. The third group T2 was given the basal diet supplemented by 2% Spirulina. At the end of the growth performance trial, a challenge trial was conducted using virulent strain of Pseudomonas fluorescens. Clinical signs, mortalities, postmortem lesions and histopathological alterations were recorded. Hematological, biochemical, oxidative stress and immunological parameters were measured after challenge with Pseudomonas fluorescens. Growth performance was non significantly improved in tilapia fed the diet with 1% Spirulina supplementation (T1). There were neither signs nor mortalities among fishes belonging to 1% Spirulina challenged group. The results showed that Spirulina has a positive effect on hematological, biochemical parameters, MDA, SOD and CAT at T1 (1% spirulia) rather than T2 (2%spirulia). Moreover, the results indicate that Spirulina 1% enhanced bactericidal, phagocytic and lysozyme activities conferring protection against infection. Our results demonstrated a significant up-regulation of pro-inflammatory cytokine (IL-1β and TNF-α) and a down-regulation of anti-inflammatory cytokine (IL-10). We concluded that 1% Spirulina supplementation significantly improved immunity of Nile tilapia against Pseudomonas fluorescence than 2% Spirulina supplementation.
Collapse
Affiliation(s)
- Manal M A Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Maather M M El-Lamie
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Omnia E Kilany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Amina A Dessouki
- Pathology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
12
|
Matsuura Y, Takaoka N, Miyazawa R, Nakanishi T. A simple and non-invasive method for analyzing local immune responses in vivo using fish fin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:136-143. [PMID: 28434842 DOI: 10.1016/j.dci.2017.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Immunocompetence is an important parameter that reflects disease resistance in fish. Very few methods to examine immunocompetence in vivo have been developed, even for mammals. In the present study, we present a unique method for analyzing local immune responses using fish fin. We first demonstrated the migration of granulocytes to the site of zymosan injection in fin in a dose-dependent manner and that this could be easily observed macroscopically due to the fin membrane transparency. We also demonstrated phagocytic activity of accumulated leukocytes after zymosan administration and that almost all phagocytes were granulocytes. In addition, we succeeded to detect respiratory burst activity of granulocytes in vivo without any in vitro treatment of cells, indicating that our present method is suitable for the analysis of granulocyte phagocytic function in vivo. The method provides a unique tool applicable for fishes that possess transparent fins and may lead to better understanding of the mechanisms of local immune responses in fish.
Collapse
Affiliation(s)
- Yuta Matsuura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Naoki Takaoka
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Ryuichiro Miyazawa
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
13
|
Elgaml A, Miyoshi SI. Regulation systems of protease and hemolysin production inVibrio vulnificus. Microbiol Immunol 2017; 61:1-11. [DOI: 10.1111/1348-0421.12465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Abdelaziz Elgaml
- Microbiology and Immunology Department; Faculty of Pharmacy; Mansoura University; Elgomhouria Street Mansoura 35516 Egypt
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama University; 1-1-1 Tsushima-Naka Kita-Ku Okayama 700-8530 Japan
| |
Collapse
|
14
|
Guo Z, Sha Y, Hu Y, Yu Z, Tao Y, Wu Y, Zeng M, Wang S, Li X, Zhou J, Su X. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide. Anal Bioanal Chem 2016; 408:7203-11. [PMID: 27565793 DOI: 10.1007/s00216-016-9851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP.
Collapse
Affiliation(s)
- Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China.
| | - Yuhong Sha
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Zhongqing Yu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Yingying Tao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Yanjie Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Min Zeng
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Xing Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Jun Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Xiurong Su
- School of Marine Sciences, Ningbo University, Ningbo, Zhèjiāng, 315211, China.
| |
Collapse
|
15
|
Park JH, Jo Y, Jang SY, Kwon H, Irie Y, Parsek MR, Kim MH, Choi SH. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus. PLoS Pathog 2015; 11:e1005192. [PMID: 26406498 PMCID: PMC4584020 DOI: 10.1371/journal.ppat.1005192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/05/2015] [Indexed: 11/18/2022] Open
Abstract
A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3′,5′-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. Biofilms are specialized and highly differentiated three-dimensional communities of bacteria encased in an extracellular polymeric matrix (EPM), and the bacteria’s mechanisms to form biofilm are closely linked to their virulence. The EPM often consists of polysaccharides, proteins, nucleic acids, and lipids. Compared to extracellular polysaccharides, little is known about the protein components in the biofilm matrix of Vibrio vulnificus, a foodborne pathogen. In this study, we identified and characterized cabABC genes which were preferentially expressed in biofilms. CabA is a calcium-binding protein and is secreted through functional CabB and CabC. Our results indicated that CabA contributes to the development of biofilm and rugose colony morphology under elevated c-di-GMP conditions. CabA is an extracellular matrix protein crucial for the structural integrity of robust biofilm in flow cells and on oyster shells. Calcium binding induces conformational changes and multimerization of CabA that may render the protein functional to build a well-structured matrix. CabA can assemble a functional matrix extracellularly only when exopolysaccharides (EPS) coexist, indicating that both CabA and EPS are required for the scaffold of V. vulnificus biofilm matrix. This is the first report on a non-polysaccharide matrix component that is essential for the development of the V. vulnificus biofilm structure.
Collapse
Affiliation(s)
- Jin Hwan Park
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | - Youmi Jo
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | - Song Yee Jang
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Haenaem Kwon
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yasuhiko Irie
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Myung Hee Kim
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
16
|
Callol A, Reyes-López FE, Roig FJ, Goetz G, Goetz FW, Amaro C, MacKenzie SA. An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus. PLoS One 2015. [PMID: 26207370 PMCID: PMC4514713 DOI: 10.1371/journal.pone.0133328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2x106 reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue.
Collapse
Affiliation(s)
- Agnès Callol
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department de Biologia cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco J. Roig
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Giles Goetz
- Northwest Fisheries Science Center, Seattle, United States of America
| | | | - Carmen Amaro
- Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
| | - Simon A. MacKenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
The Fish Pathogen
Vibrio vulnificus
Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.ve-0005-2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Vibrio vulnificus
biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA1
3
, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of
rtxA1
3
are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood:
vep07
, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and
vep20
, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of
V. vulnificus
in nutrient-enriched aquatic environments, such as fish farms.
Collapse
|
18
|
Effects of elevated intracellular cyclic di-GMP levels on biofilm formation and transcription profiles of Vibrio vulnificus. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0100-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Elgendy M, Soliman W, Hassan H, Kenawy A, Liala A. Effect of Abrupt Environmental Deterioration on the Eruption of Vibriosis in Mari-Cultured Shrimp, Penaeus indicus, in Egypt. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jfas.2015.146.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Callol A, Pajuelo D, Ebbesson L, Teles M, MacKenzie S, Amaro C. Early steps in the European eel (Anguilla anguilla)-Vibrio vulnificus interaction in the gills: role of the RtxA13 toxin. FISH & SHELLFISH IMMUNOLOGY 2015; 43:502-509. [PMID: 25613341 DOI: 10.1016/j.fsi.2015.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Vibrio vulnificus is an aquatic gram-negative bacterium that causes a systemic disease in eels called warm-water vibriosis. Natural disease occurs via water born infection; bacteria attach to the gills (the main portal of entry) and spread to the internal organs through the bloodstream, provoking host death by haemorrhagic septicaemia. V. vulnificus produces a toxin called RtxA13 that hypothetically interferes with the eel immune system facilitating bacterial invasion and subsequent death by septic shock. The aim of this work was to study the early steps of warm-water vibriosis by analysing the expression of three marker mRNA transcripts related to pathogen recognition (tlr2 and tlr5) and inflammation (il-8) in the gills of eels infected by immersion with either the pathogen or a mutant deficient in rtxA13. Results indicate a differential response that is linked to the rtx toxin in the expression levels of the three measured mRNA transcripts. The results suggest that eels are able to distinguish innocuous from harmful microorganisms by the local action of their toxins rather than by surface antigens. Finally, the cells that express these transcripts in the gills are migratory cells primarily located in the second lamellae that re-locate during infection suggesting the activation of a specific immune response to pathogen invasion in the gill.
Collapse
Affiliation(s)
- Agnès Callol
- ERI BIOTEDCMED, Universitat de Valencia, Spain; Departament de Microbiologia i Ecologia, Universitat de Valencia, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - David Pajuelo
- ERI BIOTEDCMED, Universitat de Valencia, Spain; Departament de Microbiologia i Ecologia, Universitat de Valencia, Spain
| | | | - Mariana Teles
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Simon MacKenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain; Institute of Aquaculture, University of Stirling, UK
| | - Carmen Amaro
- ERI BIOTEDCMED, Universitat de Valencia, Spain; Departament de Microbiologia i Ecologia, Universitat de Valencia, Spain.
| |
Collapse
|
21
|
Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L. Microbial diversity and potential pathogens in ornamental fish aquarium water. PLoS One 2012; 7:e39971. [PMID: 22970112 PMCID: PMC3435374 DOI: 10.1371/journal.pone.0039971] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022] Open
Abstract
Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing >80% of all sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential risks to the pet industry, fishes in trade, humans and other species.
Collapse
Affiliation(s)
- Katherine F. Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Victor Schmidt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Gail E. Rosen
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Columbia University Center for Infection and Immunity, Mailman School of Public Health, New York, New York, United States of America
| | - Linda Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Geological Sciences, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lee CT, Pajuelo D, Llorens A, Chen YH, Leiro JM, Padrós F, Hor LI, Amaro C. MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor. Environ Microbiol 2012; 15:419-32. [PMID: 22943291 DOI: 10.1111/j.1462-2920.2012.02854.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
Abstract
Vibrio vulnificus biotype 2 is a polyphyletic group whose virulence for fish relies on a plasmid. This plasmid contains an rtxA gene duplicated in the small chromosome that encodes a MARTX (Multifunctional, Autoprocessing Repeats-in-Toxin) unique within the species in domain structure (MARTX type III). To discover the role of this toxin in the fitness of this biotype in the fish-farming environment, single- and double-knockout mutants were isolated from a zoonotic strain and analysed in a series of in vivo and in vitro experiments with eel, fish cell lines and amoebae isolated from gills. Mice, murine and human cell lines were also assayed for comparative purposes. The results suggest that MARTX type III is involved in the lysis of a wide range of eukaryotic cells, including the amoebae, erythrocytes, epithelial cells and phagocytes after bacterium-cell contact. In fish, MARTX type III may act as a toxin involved in the onset of septic shock, while in mice it may promote bacterial colonization by preventing phagocytosis of bacterial cells. Moreover, this toxin could protect bacteria from predation by amoebae, which would increase bacterial survival outside the host and would explain the fitness of this biotype in the fish-farming environment.
Collapse
Affiliation(s)
- Chung-Te Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Guo Y, Rowe-Magnus DA. Overlapping and unique contributions of two conserved polysaccharide loci in governing distinct survival phenotypes in Vibrio vulnificus. Environ Microbiol 2011; 13:2888-990. [PMID: 21895917 DOI: 10.1111/j.1462-2920.2011.02564.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As an aetiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionacea. Its continued environmental persistence and transmission are bolstered by its ability to colonize shellfish and form biofilms on various marine biotic surfaces. We previously identified a polysaccharide locus, brp, which contributes to the survival phenotypes of biofilm formation, rugose colony formation and stress resistance. Here, we describe a second polysaccharide locus, rbd (regulation of biofilm development), which also enhanced biofilm formation when expressed. Despite this functional overlap, the development of stress resistance and rugosity could be uniquely attributed to brp expression, whereas rbd expression augmented aggregate formation. Simultaneous expression of both loci led to the formation of a dramatic pellicle and maximum biofilm formation. Unlike the brp locus, transcription of the rbd locus was regulated not by c-di-GMP, but by a response regulator (RbdG) that was encoded within the locus. We propose that the ability to regulate the expression of polysaccharides with overlapping and unique characteristics in response to different environmental cues enables V. vulnificus to 'fine tune' its biofilm lifestyle to the prevailing environmental conditions and maximally benefit from the characteristics associated with each polysaccharide.
Collapse
Affiliation(s)
- Yunzhi Guo
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
24
|
Abstract
As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. The most intensely studied of its virulence factors is the capsular polysaccharide (CPS). Over 100 CPS types have been identified, yet little is known about the genetic mechanisms that drive such diversity. Chitin, the second-most-abundant polysaccharide in nature, is known to induce competence in Vibrio species. Here, we show that the frequency of chitin-induced transformation in V. vulnificus varies by strain and that (GlcNAc)(2) is the shortest chitin-derived polymer capable of inducing competence. Transformation frequencies (TFs) increased 8-fold when mixed-culture biofilms were exposed to a strain-specific lytic phage, suggesting that the lysis of dead cells during lytic infection increased the amount of extracellular DNA within the biofilm that was available for transfer. Furthermore, we show that V. vulnificus can undergo chitin-dependent carbotype conversion following the uptake and recombination of complete cps loci from exogenous genomic DNA (gDNA). The acquisition of a partial locus was also demonstrated when internal regions of homology between the endogenous and exogenous loci existed. This suggested that the same mechanism governing the transfer of complete cps loci also contributed to their evolution by generating novel combinations of CPS biosynthesis genes. Since no evidence that cps loci were preferentially acquired during natural transformation (random transposon-tagged DNA was readily taken up in chitin transformation assays) exists, the phenomenon of chitin-induced transformation likely plays an important but general role in the evolution of this genetically promiscuous genus.
Collapse
|
25
|
Polyphyletic origin of Vibrio vulnificus biotype 2 as revealed by sequence-based analysis. Appl Environ Microbiol 2010; 77:688-95. [PMID: 21097581 DOI: 10.1128/aem.01263-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A sequence-based analysis of seven housekeeping and virulence-related genes shows that the species Vibrio vulnificus is subdivided into three phylogenetic lineages that do not correspond with the biotypes and that biotype 2 is polyphyletic. These results support the reclassification of biotype 2 as a pathovar that would group the strains with pathogenic potential to develop vibriosis in fish.
Collapse
|
26
|
Fouz B, Llorens A, Valiente E, Amaro C. A comparative epizootiologic study of the two fish-pathogenic serovars of Vibrio vulnificus biotype 2. JOURNAL OF FISH DISEASES 2010; 33:383-390. [PMID: 20158583 DOI: 10.1111/j.1365-2761.2009.01130.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vibrio vulnificus biotype 2 is subdivided into two main serovars, serovar E, able to infect fish and humans, and serovar A, only virulent for fish. Serovar E emerged in 1976 as the causative agent of a haemorrhagic septicaemia (warm-water vibriosis) affecting eels cultured in brackish water. Serovar A emerged in 2000 in freshwater-cultured eels vaccinated against serovar E, causing warm-water vibriosis with fish showing a haemorrhagic intestine as the main differential sign. The aim of the present work was to compare the disease caused by both serovars in terms of transmission routes, portals of entry and host range. Results of bath, patch-contact and oral-anal challenges demonstrated that both serovars spread through water and infect healthy eels, serovar A entering mainly by the anus and serovar E by the gills. The course of the disease under laboratory conditions was similar for both serovars in terms of transmission and dependence of degree of virulence on water parameters (temperature and salinity). However, the decrease in degree of virulence in fresh water was significantly greater in serovar E than in serovar A. Finally, both serovars proved pathogenic for tilapia, sea bass and rainbow trout, but not for sea bream, with significant differences in degree of virulence only in rainbow trout. In conclusion, serovar A seems to represent a new antigenic form of V. vulnificus biotype 2 with an unusual portal of entry and is better adapted to fresh water than serovar E.
Collapse
Affiliation(s)
- B Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
27
|
Identification of a c-di-GMP-regulated polysaccharide locus governing stress resistance and biofilm and rugose colony formation in Vibrio vulnificus. Infect Immun 2010; 78:1390-402. [PMID: 20065022 DOI: 10.1128/iai.01188-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. Its continued environmental persistence and transmission are bolstered by its ability to colonize shellfish, form biofilms on various marine biotic surfaces, and generate a morphologically and physiologically distinct rugose (R) variant that yields profuse biofilms. Here, we identify a c-di-GMP-regulated locus (brp, for biofilm and rugose polysaccharide) and two transcription factors (BrpR and BrpT) that regulate these physiological responses. Disruption of glycosyltransferases within the locus or either regulator abated the inducing effect of c-di-GMP on biofilm formation, rugosity, and stress resistance. The same lesions, or depletion of intracellular c-di-GMP levels, abrogated these phenotypes in the R variant. The parental and brp mutant strains formed only scant monolayers on glass surfaces and oyster shells, and although the R variant formed expansive biofilms, these were of limited depth. Dramatic vertical expansion of the biofilm structure was observed in the parental strain and R variant, but not the brp mutants, when intracellular c-di-GMP levels were elevated. Hence, the brp-encoded polysaccharide is important for surface colonization and stress resistance in V. vulnificus, and its expression may control how the bacteria switch from a planktonic lifestyle to colonizing shellfish to invading human tissue.
Collapse
|
28
|
Knirel YA, Senchenkova SN, Shashkov AS, Esteve C, Alcaide E, Merino S, Tomás JM. Structure of a polysaccharide from the lipopolysaccharide of Vibrio vulnificus CECT4602 containing 2-acetamido-2,3,6-trideoxy-3-[(S)- and (R)-3-hydroxybutanoylamino]-l-mannose. Carbohydr Res 2009; 344:479-83. [DOI: 10.1016/j.carres.2008.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
|
29
|
Spontaneous quinolone resistance in the zoonotic serovar of Vibrio vulnificus. Appl Environ Microbiol 2009; 75:2577-80. [PMID: 19218407 DOI: 10.1128/aem.02921-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work demonstrates that Vibrio vulnificus biotype 2, serovar E, an eel pathogen able to infect humans, can become resistant to quinolone by specific mutations in gyrA (substitution of isoleucine for serine at position 83) and to some fluoroquinolones by additional mutations in parC (substitution of lysine for serine at position 85). Thus, to avoid the selection of resistant strains that are potentially pathogenic for humans, antibiotics other than quinolones must be used to treat vibriosis on farms.
Collapse
|
30
|
Vinogradov E, Wilde C, Anderson EM, Nakhamchik A, Lam JS, Rowe-Magnus DA. Structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562. Carbohydr Res 2008; 344:484-90. [PMID: 19185290 DOI: 10.1016/j.carres.2008.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/05/2008] [Accepted: 12/17/2008] [Indexed: 12/20/2022]
Abstract
The structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562 is presented. LPS hydrolysis gave two oligosaccharides, OS-1 and OS-2, as well as lipid A. NMR spectroscopic data corresponded to the presence of one Kdo residue, one beta-glucopyranose, three heptoses, one glyceric acid, one acetate, three PEtN, and one 5,7-diacylamido-3,5,7,9-tetradeoxynonulosonic acid residue (pseudaminic acid, Pse) in OS1. OS2 differed form OS 1 by the absence of glyceric acid, acetate, and Pse residues. Lipid A was analyzed for fatty acid composition and the following fatty acids were found: C14:0, C12:0-3OH, C16:0, C16:1, C14:0-3OH, C18:0, C18:1 in a ratio of 1:3:3:1:2.5:0.6:0.8.
Collapse
|
31
|
Valiente E, Padrós F, Lamas J, Llorens A, Amaro C. Microbial and histopathological study of the vibriosis caused by Vibrio vulnificus serovar E in eels: The metalloprotease Vvp is not an essential lesional factor. Microb Pathog 2008; 45:386-93. [DOI: 10.1016/j.micpath.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/12/2008] [Indexed: 01/22/2023]
|
32
|
Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. Appl Environ Microbiol 2008; 74:4199-209. [PMID: 18487410 DOI: 10.1128/aem.00176-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.
Collapse
|
33
|
Vibrio vulnificus biotype 2 serovar E gne but not galE is essential for lipopolysaccharide biosynthesis and virulence. Infect Immun 2008; 76:1628-38. [PMID: 18227162 DOI: 10.1128/iai.01393-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work aimed to establish the role of gne (encoding UDP-GalNAc 4-epimerase activity) and galE (encoding UDP-Gal-4-epimerase activity) in the biosynthesis of surface polysaccharides, as well as in the virulence for eels and humans of the zoonotic serovar of Vibrio vulnificus biotype 2, serovar E. DNA sequence data revealed that gne and galE are quite homologous within this species (> or =90% homology). Mutation in gne of strain CECT4999 increased the surface hydrophobicity, produced deep alterations in the outer membrane architecture, and resulted in noticeable increases in the sensitivity to microcidal peptides (MP), to eel and human sera, and to phagocytosis/opsonophagocytosis. Furthermore, significant attenuation of virulence for eels and mice was observed. By contrast, mutation in galE did not alter the cellular surface, did not increase the sensitivity to MP, serum, or phagocytosis, and did not affect the virulence for fish and mice. The change in the attenuated-virulence phenotype produced by a mutation in gne was correlated with the loss of the O-antigen lipopolysaccharide (LPS), while the capsule was maintained. Complementation of a gne-deficient mutant restored the LPS structure together with the whole virulence phenotype. In conclusion, gne, but not galE, is essential for LPS biosynthesis and virulence in the zoonotic serovar of V. vulnificus biotype 2.
Collapse
|
34
|
Valiente E, Lee CT, Lamas J, Hor L, Amaro C. Role of the virulence plasmid pR99 and the metalloprotease Vvp in resistance of Vibrio vulnificus serovar E to eel innate immunity. FISH & SHELLFISH IMMUNOLOGY 2008; 24:134-141. [PMID: 18053741 DOI: 10.1016/j.fsi.2007.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/05/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
Vibrio vulnificus biotype 2 serovar E (VSE) is a bacterial pathogen that produces a haemorrhagic septicaemia called vibriosis in eels. Its ability to grow in blood is conferred by a recently described virulence plasmid [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.]. In this study, we analyzed the role of this plasmid together with the role played by the metalloprotease (Vvp) in the interaction between bacteria and eel innate immunity. To this end, we compared and statistically analyzed the differences in resistance to serum and mucus factors (complement, selected antimicrobial peptides, transferrin and lysozyme) and also to phagocytosis/opsonophagocytosis between one VSE strain and its derivatives: a plasmid-cured strain and a vvp-deficient mutant. The wild-type and the metalloprotease-deficient strains were resistant to both the bactericidal action of fresh serum and the phagocytosis and opsonophagocytosis by eel phagocytes, confirming that Vvp is not involved in resistance to eel innate immunity. In contrast, the cured strain was sensitive to both the bactericidal action of eel serum activated by the alternative pathway and phagocytosis/opsonophagocytosis. Since no plasmid-encoded ORF, with homology to known genes, is related to the resistance to innate immunity [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.], this function could be codified by one or more new genes. Further studies are underway to characterize the plasmid-encoded system responsible for V. vulnificus resistance to the innate immune system of eels.
Collapse
Affiliation(s)
- E Valiente
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
35
|
Valiente E, Lee CT, Hor LI, Fouz B, Amaro C. Role of the metalloprotease Vvp and the virulence plasmid pR99 of Vibrio vulnificus serovar E in surface colonization and fish virulence. Environ Microbiol 2007; 10:328-38. [PMID: 18028416 DOI: 10.1111/j.1462-2920.2007.01454.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The virulence for eels of Vibrio vulnificus biotype 2 serovar E (VSE) is conferred by a plasmid that codifies ability to survive in eel serum and cause septicaemia. To find out whether the plasmid and the selected chromosomal gene vvp plays a role in the initial steps of infection, the VSE strain CECT4999, the cured strain CT218 and the Vvp-deficient mutant CT201 (obtained in this work by allelic exchange) were used in colonization and virulence experiments. The eel avirulent biotype 1 (BT1) strain YJ016, whose genome has been sequenced, was used for comparative purposes. The global results demonstrate that the plasmid does not play a significant role in surface colonization because (i) CECT4999 and CT218 were equally chemoattracted towards and adherent to eel mucus and gills, and (ii) CT218 persisted in gills from bath-infected eels 2 weeks post infection. In contrast, mutation in vvp gene reduced significantly chemoattraction and attachment to eel mucus and gills, as well as virulence degree by immersion challenge. Co-infection experiments by bath with CECT4999 and CT201 confirmed that Vvp was involved in eel colonization and persistence in gills, because CECT4999 was recovered at higher numbers compared with CT201 from both internal organs of moribund fish (ratio 4:1) and gills from survivors (ratio 50:1). Interestingly, YJ016 also showed chemoattraction and attachment to mucus, and complementation of CT201 with BT1-vvp gene restored both activities together with virulence degree by immersion challenge. Additional experiments with algae mucus and purified mucin gave similar results. In conclusion, the protease Vvp of V. vulnificus seems to play an essential role in colonization of mucosal surfaces present in aquatic environments. Among the V. vulnificus strains colonizing fish mucus, only those harbouring the plasmid could survive in blood and cause septicaemia.
Collapse
Affiliation(s)
- Esmeralda Valiente
- Department of Microbiology and Ecology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
36
|
Fouz B, Roig FJ, Amaro C. Phenotypic and genotypic characterization of a new fish-virulent Vibrio vulnificus serovar that lacks potential to infect humans. Microbiology (Reading) 2007; 153:1926-1934. [PMID: 17526849 DOI: 10.1099/mic.0.2006/005405-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio vulnificus is a bacterial species that is virulent for humans and fish. Human isolates are classified into biotypes 1 and 3 (BT1 and BT3) and fish isolates into biotype 2 (BT2). However, a few human infections caused by BT2 isolates have been reported worldwide (zoonosis). These BT2 human isolates belong to serovar E (SerE), which is also present in diseased fish. The aim of the present work was to characterize a new BT2 serovar [serovar A (SerA)], which emerged in the European fish-farming industry in 2000, by means of phenotypic, serological and genetic [plasmid profiling, ribotyping and random amplified polymorphic DNA (RAPD)] methodologies. The results confirmed that SerA constitutes a homogeneous O-serogroup within the species that shares plasmidic information with SerE. Like SerE, this new serogroup was resistant to fresh fish serum, as well as being highly virulent for fish. In contrast, it was sensitive to human serum and avirulent for mice, even after pretreatment with iron. The two serovars presented different biochemical profiles as well as specific patterns by ribotyping and RAPD analysis. In conclusion, SerA seems to constitute a different clonal group that has recently emerged within the species V. vulnificus, with pathogenic potential for fish but not for humans.
Collapse
Affiliation(s)
- Belén Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Francisco J Roig
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Carmen Amaro
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
37
|
Fouz B, Larsen JL, Amaro C. Vibrio vulnificus serovar A: an emerging pathogen in European anguilliculture. JOURNAL OF FISH DISEASES 2006; 29:285-91. [PMID: 16677318 DOI: 10.1111/j.1365-2761.2006.00719.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The spread of the emerging pathogen Vibrio vulnificus biotype 2 serovar A in Danish anguilliculture is reported. Serovar A was originally isolated in a Spanish eel farm in 2000 and occurred in Denmark in the summer of 2004, affecting eels of 5-10 g body weight cultured in fresh water. The Danish eels showed clinical signs different from those reported for Spanish eels, such as severe haemorrhages in the head and gill region with necrosis of the soft tissues. Danish isolates were biochemically and serologically identical to Spanish serovar A strains and also highly virulent for eels by both intraperitoneal injection and immersion challenges. Vaccination with Vulnivaccine, a vaccine against V. vulnificus serovar E, cross-protected eels against serovar A. The LD(50) for experimentally infected vaccinated animals was significantly higher than for non-vaccinated animals.
Collapse
Affiliation(s)
- B Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, Spain.
| | | | | |
Collapse
|
38
|
Grau BL, Henk MC, Pettis GS. High-frequency phase variation of Vibrio vulnificus 1003: isolation and characterization of a rugose phenotypic variant. J Bacteriol 2005; 187:2519-25. [PMID: 15774896 PMCID: PMC1065241 DOI: 10.1128/jb.187.7.2519-2525.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium Vibrio vulnificus is a human pathogen that can spontaneously switch between virulent opaque and avirulent translucent phenotypes. Here, we document an additional form, the rugose variant, which produces copious biofilms and which may contribute both to pathogenicity of V. vulnificus and to its survival under adverse environmental conditions.
Collapse
Affiliation(s)
- Brenda L Grau
- Department of Biological Sciences, 107 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
39
|
Marco-Noales E, Biosca EG, Rojo C, Amaro C. Influence of aquatic microbiota on the survival in water of the human and eel pathogen Vibrio vulnificus serovar E. Environ Microbiol 2004; 6:364-76. [PMID: 15008814 DOI: 10.1111/j.1462-2920.2004.00562.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eel and human pathogen Vibrio vulnificus serovar E (biotype 2) is seldom isolated from natural waters, although it can survive in sterilized artificial seawater microcosms for years. The main objective of the present study was to investigate whether aquatic microbiota can limit its survival and recovery from water samples. A set of preliminary experiments of survival in microcosms containing natural seawater and water from eel farms showed that the persistence of this pathogen was mainly controlled by grazing, and secondarily by bacterial competition. The bacterial competition was further analysed in artificial seawater microcosms co-inoculated with selected virulent serovar E (VSE) strains and potential competitors. Competitors included V. vulnificus biotype 1 isolates and strains of selected species that can grow on the selective media designed for V. vulnificus isolation from water samples. Evidences of bacterial competition that was detrimental for VSE recovery were recorded. Thus, some species produced a deleterious effect on VSE strains under starvation, and others were able to use the resources more efficiently under nutrient input. These results suggest that an overgrowth of more efficient competitor bacteria in conventional media used for isolation of V. vulnificus could mask the recovery of VSE strains and explain the scarcity of reports on the isolation of this human and eel pathogen from natural waters.
Collapse
Affiliation(s)
- Ester Marco-Noales
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia 46100, Spain. Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia 46071, Spain
| | | | | | | |
Collapse
|
40
|
Joseph LA, Wright AC. Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 2004; 186:889-93. [PMID: 14729720 PMCID: PMC321485 DOI: 10.1128/jb.186.3.889-893.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a human pathogen that produces lethal septicemia in susceptible persons, and the primary virulence factor for this organism is capsular polysaccharide (CPS). The role of the capsule in V. vulnificus biofilms was examined under a variety of conditions, by using either defined CPS mutants or spontaneous CPS expression phase variants derived from multiple strains. CPS expression was shown to inhibit attachment and biofilm formation, which contrasted with other studies describing polysaccharides as integral to biofilms in related species.
Collapse
Affiliation(s)
- Lavin A Joseph
- Aquatic Food Products Laboratory, Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
41
|
Esteve-Gassent MD, Fouz B, Amaro C. Efficacy of a bivalent vaccine against eel diseases caused by Vibrio vulnificus after its administration by four different routes. FISH & SHELLFISH IMMUNOLOGY 2004; 16:93-105. [PMID: 15123314 DOI: 10.1016/s1050-4648(03)00036-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 03/31/2003] [Indexed: 05/24/2023]
Abstract
Vulnivaccine, a vaccine against vibriosis caused by Vibrio vulnificus serovar E (formerly biotype 2), confers acceptable levels of protection to eels after its administration by prolonged immersion in three doses. Recently, a new pathogenic serovar, named serovar A, has been isolated from vaccinated eels in a Spanish freshwater eel farm. The main objective of this work was to design a bivalent vaccine, and to study its effectiveness against the two pathogenic serovars. With this aim, eels weighing around 20 g were immunised with the bivalent vaccine by oral and anal intubation, intraperitoneal injection (i.p.) and prolonged immersion. The overall results indicated that: (i) the new vaccine delivered by oral and anal intubation induced protection levels higher than 80%, to that achieved after i.p. vaccination; (ii) oral and anal vaccination induced a significant systemic and mucosal immune response; (iii) the protection after vaccination by whichever routes was related to antibody titres in plasma; (iv) mucosal and systemic compartments showed different kinetics of antibody production; (v) evidence for passive transfer of antibodies from plasma to gut mucus were found after i.p. and anal vaccination, and finally, (vi) vaccination did not enhance the production of lysozyme, in plasma or mucus. In conclusion, this new vaccine is effective in protecting eels against vibriosis caused by the two eel-pathogenic serovars of V. vulnificus, the oral delivery system is a promising way which may be used in intensive culture facilities during the whole growth period of eels.
Collapse
Affiliation(s)
- M D Esteve-Gassent
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
42
|
|
43
|
Esteve-Gassent MD, Nielsen ME, Amaro C. The kinetics of antibody production in mucus and serum of European eel (Anguilla anguilla L.) after vaccination against Vibrio vulnificus: development of a new method for antibody quantification in skin mucus. FISH & SHELLFISH IMMUNOLOGY 2003; 15:51-61. [PMID: 12787687 DOI: 10.1016/s1050-4648(02)00138-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vibrio vulnificus serovar E, a bacterial pathogen for eels cultured in intensive systems, is transmitted through water and enters into new hosts mainly via gills. The main objective of this work was to study the kinetics of antibody production to V. vulnificus in serum and mucus and their relationship with protection after vaccination. To quantify local mucus antibodies, a new "in situ" dot blot immunoassay using image analysis has been developed. This assay was applied to measure antibody production in the skin zone next to the gills. We found that (i) the immune response in mucus was faster (peak at days 3-4) and shorter in duration (titres significantly elevated up to day 5 and 11 for skin zone next to the gills and for general cutaneous mucus, respectively) than in serum (peak at day 7; titres significantly elevated for more than 25 days); (ii) the exposure of vaccinated eels with basal levels of local antibodies to sub-lethal dose of the pathogen stimulated a more lasting secreted antibody production (for more than 14 days); (iii) protection and antibody levels in serum were clearly correlated, and (iv) immunised eels with basal levels of serum antibodies and maximal levels of local antibodies were partially protected.
Collapse
|