1
|
Zhou J, Huang M. Navigating the landscape of enzyme design: from molecular simulations to machine learning. Chem Soc Rev 2024; 53:8202-8239. [PMID: 38990263 DOI: 10.1039/d4cs00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.
Collapse
Affiliation(s)
- Jiahui Zhou
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
2
|
Tong L, Li Y, Lou X, Wang B, Jin C, Fang W. Powerful cell wall biomass degradation enzymatic system from saprotrophic Aspergillus fumigatus. Cell Surf 2024; 11:100126. [PMID: 38827922 PMCID: PMC11143905 DOI: 10.1016/j.tcsw.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Cell wall biomass, Earth's most abundant natural resource, holds significant potential for sustainable biofuel production. Composed of cellulose, hemicellulose, lignin, pectin, and other polymers, the plant cell wall provides essential structural support to diverse organisms in nature. In contrast, non-plant species like insects, crustaceans, and fungi rely on chitin as their primary structural polysaccharide. The saprophytic fungus Aspergillus fumigatus has been widely recognized for its adaptability to various environmental conditions. It achieves this by secreting different cell wall biomass degradation enzymes to obtain essential nutrients. This review compiles a comprehensive collection of cell wall degradation enzymes derived from A. fumigatus, including cellulases, hemicellulases, various chitin degradation enzymes, and other polymer degradation enzymes. Notably, these enzymes exhibit biochemical characteristics such as temperature tolerance or acid adaptability, indicating their potential applications across a spectrum of industries.
Collapse
Affiliation(s)
- Lige Tong
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yunaying Li
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Baoding, Hebei, China
| | - Xinke Lou
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Baoding, Hebei, China
| | - Bin Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Cheng Jin
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
3
|
Characterisation of a soil MINPP phytase with remarkable long-term stability and activity from Acinetobacter sp. PLoS One 2022; 17:e0272015. [DOI: 10.1371/journal.pone.0272015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic analysis, homology modelling and biochemical methods have been employed to characterize a phytase from a Gram-negative soil bacterium. Acinetobacter sp. AC1-2 phytase belongs to clade 2 of the histidine (acid) phytases, to the Multiple Inositol Polyphosphate Phosphatase (MINPP) subclass. The enzyme was extraordinarily stable in solution both at room temperature and 4°C, retaining near 100% activity over 755 days. It showed a broad pH activity profile from 2–8.5 with maxima at 3, 4.5–5 and 6. The enzyme showed Michaelis-Menten kinetics and substrate inhibition (Vmax, Km, and Ki, 228 U/mg, 0.65 mM and 2.23 mM, respectively). Homology modelling using the crystal structure of a homologous MINPP from a human gut commensal bacterium indicated the presence of a potentially stabilising polypeptide loop (a U-loop) straddling the active site. By employ of the enantiospecificity of Arabidopsis inositol tris/tetrakisphosphate kinase 1 for inositol pentakisphosphates, we show AC1-2 MINPP to possess D6-phytase activity, which allowed modelling of active site specificity pockets for InsP6 substrate. While phytase gene transcription was unaltered in rich media, it was repressed in minimal media with phytic acid and orthophosphate as phosphate sources. The results of this study reveal AC1-2 MINPP to possess desirable attributes relevant to biotechnological use.
Collapse
|
4
|
Herrmann KR, Hofmann I, Jungherz D, Wittwer M, Infanzón B, Hamer SN, Davari MD, Ruff AJ, Schwaneberg U. Generation of phytase chimeras with low sequence identities and improved thermal stability. J Biotechnol 2021; 339:14-21. [PMID: 34271055 DOI: 10.1016/j.jbiotec.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022]
Abstract
Being able to recombine more than two genes with four or more crossover points in a sequence independent manner is still a challenge in protein engineering and limits our capabilities in tailoring enzymes for industrial applications. By computational analysis employing multiple sequence alignments and homology modeling, five fragments of six phytase genes (sequence identities 31-64 %) were identified and efficiently recombined through phosphorothioate-based cloning using the PTRec method. By combinatorial recombination, functional phytase chimeras containing fragments of up to four phytases were obtained. Two variants (PTRec 74 and PTRec 77) with up to 32 % improved residual activity (90 °C, 60 min) and retained specific activities of > 1100 U/mg were identified. Both variants are composed of fragments from the phytases of Citrobacter braakii, Hafnia alvei and Yersinia mollaretii. They exhibit sequence identities of ≤ 80 % to their parental enzymes, highlighting the great potential of DNA recombination strategies to generate new enzymes with low sequences identities that offer opportunities for property right claims.
Collapse
Affiliation(s)
- Kevin R Herrmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Isabell Hofmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Dennis Jungherz
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Malte Wittwer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belén Infanzón
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Stefanie Nicole Hamer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany; DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056, Aachen, Germany.
| |
Collapse
|
5
|
Kithama M, Hassan YI, Guo K, Kiarie E, Diarra MS. The Enzymatic Digestion of Pomaces From Some Fruits for Value-Added Feed Applications in Animal Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.611259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With the noticed steady increase of global demand for animal proteins coupled with the current farming practices falling short in fulfilling the requested quantities, more attention is being paid for means and methods intended to maximize every available agricultural-resource in a highly sustainable fashion to address the above growing gap between production and consumers' demand. Within this regard, considerable efforts are being invested either in identifying new animal feed ingredients or maximizing the utilization of already established ones. The public preference and awareness of the importance of using waste products generated by fruit-dependent industries (juice, jams, spirits, etc.) has improved substantially in recent years where a genuine interest of using the above waste(s) in meaningful applications is solidifying and optimization-efforts are being pursued diligently. While many of the earlier reported usages of fruit pomaces as feedstuffs suggested the possibility of using minimally processed raw materials alone, the availability of exogenous digestive and bio-conversion enzymes is promising to take such applications to new un-matched levels. This review will discuss some efforts and practices using exogenous enzymes to enhance fruit pomaces quality as feed components as well as their nutrients' accessibility for poultry and swine production purposes. The review will also highlight efforts deployed to adopt numerous naturally derived and environmentally friendly catalytic agents for sustainable future feed applications and animal farming-practices.
Collapse
|
6
|
Navone L, Vogl T, Luangthongkam P, Blinco JA, Luna-Flores CH, Chen X, von Hellens J, Mahler S, Speight R. Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:80. [PMID: 33789740 PMCID: PMC8010977 DOI: 10.1186/s13068-021-01936-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/20/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Phytases are widely used commercially as dietary supplements for swine and poultry to increase the digestibility of phytic acid. Enzyme development has focused on increasing thermostability to withstand the high temperatures during industrial steam pelleting. Increasing thermostability often reduces activity at gut temperatures and there remains a demand for improved phyases for a growing market. RESULTS In this work, we present a thermostable variant of the E. coli AppA phytase, ApV1, that contains an extra non-consecutive disulfide bond. Detailed biochemical characterisation of ApV1 showed similar activity to the wild type, with no statistical differences in kcat and KM for phytic acid or in the pH and temperature activity optima. Yet, it retained approximately 50% activity after incubations for 20 min at 65, 75 and 85 °C compared to almost full inactivation of the wild-type enzyme. Production of ApV1 in Pichia pastoris (Komagataella phaffi) was much lower than the wild-type enzyme due to the presence of the extra non-consecutive disulfide bond. Production bottlenecks were explored using bidirectional promoters for co-expression of folding chaperones. Co-expression of protein disulfide bond isomerase (Pdi) increased production of ApV1 by ~ 12-fold compared to expression without this folding catalyst and restored yields to similar levels seen with the wild-type enzyme. CONCLUSIONS Overall, the results show that protein engineering for enhanced enzymatic properties like thermostability may result in folding complexity and decreased production in microbial systems. Hence parallel development of improved production strains is imperative to achieve the desirable levels of recombinant protein for industrial processes.
Collapse
Affiliation(s)
- Laura Navone
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Jo-Anne Blinco
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Carlos H Luna-Flores
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
- Bioproton Pty Ltd, Brisbane, QLD, Australia
| | | | | | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Speight
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Lee† GH, Jang† WJ, Kim S, Kim Y, Kong IS. Effect of Polar Amino Acid Residue Substitution by Site-Directed Mutagenesis in the N-terminal Domain of Pseudomonas sp. Phytase on Enzyme Activity. J Microbiol Biotechnol 2020; 30:2003-3020. [PMID: 32325546 PMCID: PMC9728340 DOI: 10.4014/jmb.2003.03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
Abstract
The N-terminal domain of the Pseudomonas sp. FB15 phytase increases low-temperature activity and catalytic efficiency. In this study, the 3D structure of the N-terminal domain was predicted and substitutions for the amino acid residues of the region assumed to be the active site were made. The activity of mutants, in which alanine (A) was substituted for the original residue, was investigated at various temperatures and pH values. Significant differences in enzymatic activity were observed only in mutant E263A, suggesting that the amino acid residue at position 263 of the N-terminal domain is important in enzyme activity.
Collapse
Affiliation(s)
- Ga Hye Lee†
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won Je Jang†
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Soyeong Kim
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yoonha Kim
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - In-Soo Kong
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea,Corresponding author Phone: +82-51-629-5865 Fax: +82-81-629-5863 E-mail:
| |
Collapse
|
8
|
Directed evolution of a 6-phosphogluconate dehydrogenase for operating an enzymatic fuel cell at lowered anodic pHs. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Colpa DI, Lončar N, Schmidt M, Fraaije MW. Creating Oxidase-Peroxidase Fusion Enzymes as a Toolbox for Cascade Reactions. Chembiochem 2017; 18:2226-2230. [PMID: 28885767 PMCID: PMC5708271 DOI: 10.1002/cbic.201700478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/31/2022]
Abstract
A set of bifunctional oxidase-peroxidases has been prepared by fusing four distinct oxidases to a peroxidase. Although such fusion enzymes have not been observed in nature, they could be expressed and purified in good yields. Characterization revealed that the artificial enzymes retained the capability to bind the two required cofactors and were catalytically active as oxidase and peroxidase. Peroxidase fusions of alditol oxidase and chitooligosaccharide oxidase could be used for the selective detection of xylitol and cellobiose with a detection limit in the low-micromolar range. The peroxidase fusions of eugenol oxidase and 5-hydroxymethylfurfural oxidase could be used for dioxygen-driven, one-pot, two-step cascade reactions to convert vanillyl alcohol into divanillin and eugenol into lignin oligomers. The designed oxidase-peroxidase fusions represent attractive biocatalysts that allow efficient biocatalytic cascade oxidations that only require molecular oxygen as an oxidant.
Collapse
Affiliation(s)
- Dana I. Colpa
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Nikola Lončar
- Groningen Enzyme and Cofactor Collection (GECCO)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Mareike Schmidt
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
10
|
Zhang F, Huang N, Zhou L, Cui W, Liu Z, Zhu L, Liu Y, Zhou Z. Modulating the pH Activity Profiles of Phenylalanine Ammonia Lyase from Anabaena variabilis by Modification of Center-Near Surface Residues. Appl Biochem Biotechnol 2017; 183:699-711. [DOI: 10.1007/s12010-017-2458-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
|
11
|
Molecular advancements in the development of thermostable phytases. Appl Microbiol Biotechnol 2017; 101:2677-2689. [PMID: 28233043 DOI: 10.1007/s00253-017-8195-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Since the discovery of phytic acid in 1903 and phytase in 1907, extensive research has been carried out in the field of phytases, the phytic acid degradatory enzymes. Apart from forming backbone enzyme in the multimillion dollar-based feed industry, phytases extend a multifaceted role in animal nutrition, industries, human physiology, and agriculture. The utilization of phytases in industries is not effectively achieved most often due to the loss of its activity at high temperatures. The growing demand of thermostable phytases with high residual activity could be addressed by the combinatorial use of efficient phytase sources, protein engineering techniques, heterologous expression hosts, or thermoprotective coatings. The progress in phytase research can contribute to its economized production with a simultaneous reduction of various environmental problems such as eutrophication, greenhouse gas emission, and global warming. In the current review, we address the recent advances in the field of various natural as well as recombinant thermotolerant phytases, their significance, and the factors contributing to their thermotolerance.
Collapse
|
12
|
Song Q, Wang Y, Yin C, Zhang XH. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T). Enzyme Microb Technol 2016; 90:83-92. [PMID: 27241296 DOI: 10.1016/j.enzmictec.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry.
Collapse
Affiliation(s)
- Qinghao Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Chong Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
13
|
Tian YS, Xu J, Zhao W, Xing XJ, Fu XY, Peng RH, Yao QH. Identification of a phosphinothricin-resistant mutant of rice glutamine synthetase using DNA shuffling. Sci Rep 2015; 5:15495. [PMID: 26492850 PMCID: PMC4616025 DOI: 10.1038/srep15495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
Abstract
To date, only bar/pat gene derived from Streptomyces has been used to generate the commercial PPT-resistant crops currently available in the market. The limited source of bar/pat gene is probably what has caused the decrease in PPT-tolerance, which has become the main concern of those involved in field management programs. Although glutamine synthetase (GS) is the target enzyme of PPT, little study has been reported about engineering PPT-resistant plants with GS gene. Then, the plant-optimized GS gene from Oryza sativa (OsGS1S) was chemically synthesized in the present study by PTDS to identify a GS gene for developing PPT-tolerant plants. However, OsGS1S cannot be directly used for developing PPT-tolerant plants because of its poor PPT-resistance. Thus, we performed DNA shuffling on OsGS1S, and one highly PPT-resistant mutant with mutations in four amino acids (A63E, V193A, T293A and R295K) was isolated after three rounds of DNA shuffling and screening. Among the four amino acids substitutions, only R295K was identified as essential in altering PPT resistance. The R295K mutation has also never been previously reported as an important residue for PPT resistance. Furthermore, the mutant gene has been transformed into Saccharomyces cerevisiae and Arabidopsis to confirm its potential in developing PPT-resistant crops.
Collapse
Affiliation(s)
- Yong-Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Ruifeng Agricultural Science and Technology Co., Ltd, Shanghai, 201106, China
- College of horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wei Zhao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Xiao-Juan Xing
- College of horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| |
Collapse
|
14
|
Ushasree MV, Vidya J, Pandey A. Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121. Appl Biochem Biotechnol 2015; 175:3084-92. [PMID: 25595493 DOI: 10.1007/s12010-015-1485-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/05/2015] [Indexed: 11/29/2022]
Abstract
Microbial phytase, a widely used animal feed enzyme, needs to be active and stable in the acidic milieu for better performance in the monogastric gut. Aspergillus niger phytases exhibit an activity dip in the pH range from 3.0 to 3.5. Replacement of amino acids, which changed the pKa of catalytic residues H82 and D362, resulted in alteration of the pH profile of a thermostable phytase from A. niger NII 08121. Substitution P212H in the protein loop at 14 Å distance to the active site amended the pH optimum from 2.5 to pH 3.2 nevertheless with a decrease in thermostability than the wild enzyme. This study described the utility of amino acid replacements based on pKa shifts of catalytic acid/base to modulate the pH profile of phytases.
Collapse
Affiliation(s)
- Mrudula Vasudevan Ushasree
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India,
| | | | | |
Collapse
|
15
|
Wang X, Yao M, Yang B, Fu Y, Hu F, Liang A. Enzymology and thermal stability of phytase appA mutants. RSC Adv 2015. [DOI: 10.1039/c5ra02199e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(A) The comparison of different melting temperature (Tm) of appA ( ), appAM8 ( ) and appAM10 ( ). TheTmvalues were 60 °C for appA, 64.1 °C for appAM8, and 67.5 °C for appAM10. (B) Titration curves of the addition TNS to appAM10 (a) and appA (b).
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| | - Mingze Yao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| | - Binsheng Yang
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| | - Fengyun Hu
- Department of Neurology
- Shanxi Provincial People's Hospital
- Taiyuan 030012
- China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
16
|
Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types. Appl Environ Microbiol 2014; 81:1559-72. [PMID: 25527541 DOI: 10.1128/aem.03314-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Cori ester α-d-glucose 1-phosphate (αGlc 1-P) is a high-energy intermediate of cellular carbohydrate metabolism. Its glycosidic phosphomonoester moiety primes αGlc 1-P for flexible exploitation in glucosyl and phosphoryl transfer reactions. Two structurally and mechanistically distinct sugar-phosphate phosphatases from Escherichia coli were characterized in this study for utilization of αGlc 1-P as a phosphoryl donor substrate. The agp gene encodes a periplasmic αGlc 1-P phosphatase (Agp) belonging to the histidine acid phosphatase family. Had13 is from the haloacid dehydrogenase-like phosphatase family. Cytoplasmic expression of Agp (in E. coli Origami B) gave a functional enzyme preparation (kcat for phosphoryl transfer from αGlc 1-P to water, 40 s(-1)) that was shown by mass spectrometry to exhibit no free cysteines and the native intramolecular disulfide bond between Cys(189) and Cys(195). Enzymatic phosphoryl transfer from αGlc 1-P to water in H2 (18)O solvent proceeded with complete (18)O label incorporation into the phosphate released, consistent with catalytic reaction through O-1-P, but not C-1-O, bond cleavage. Hydrolase activity of both enzymes was not restricted to a glycosidic phosphomonoester substrate, and d-glucose 6-phosphate was converted with a kcat similar to that of αGlc 1-P. By examining phosphoryl transfer from αGlc 1-P to an acceptor substrate other than water (d-fructose or d-glucose), we discovered that Agp exhibited pronounced synthetic activity, unlike Had13, which utilized αGlc 1-P mainly for phosphoryl transfer to water. By applying d-fructose in 10-fold molar excess over αGlc 1-P (20 mM), enzymatic conversion furnished d-fructose 1-phosphate as the main product in a 55% overall yield. Agp is a promising biocatalyst for use in transphosphorylation from αGlc 1-P.
Collapse
|
17
|
Li C, Lin Y, Huang Y, Liu X, Liang S. Citrobacter amalonaticus phytase on the cell surface of Pichia pastoris exhibits high pH stability as a promising potential feed supplement. PLoS One 2014; 9:e114728. [PMID: 25490768 PMCID: PMC4260871 DOI: 10.1371/journal.pone.0114728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
Abstract
Phytase expressed and anchored on the cell surface of Pichia pastoris avoids the expensive and time-consuming steps of protein purification and separation. Furthermore, yeast cells with anchored phytase can be used as a whole-cell biocatalyst. In this study, the phytase gene of Citrobacter amalonaticus was fused with the Pichia pastoris glycosylphosphatidylinositol (GPI)-anchored glycoprotein homologue GCW61. Phytase exposed on the cell surface exhibits a high activity of 6413.5 U/g, with an optimal temperature of 60°C. In contrast to secreted phytase, which has an optimal pH of 5.0, phytase presented on the cell surface is characterized by an optimal pH of 3.0. Moreover, our data demonstrate that phytase anchored on the cell surface exhibits higher pH stability than its secreted counterpart. Interestingly, our in vitro digestion experiments demonstrate that phytase attached to the cell surface is a more efficient enzyme than secreted phytase.
Collapse
Affiliation(s)
- Cheng Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yuanyuan Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiaoxiao Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Zhu L, Zhou L, Cui W, Liu Z, Zhou Z. Mechanism-based site-directed mutagenesis to shift the optimum pH of the phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1. ACTA ACUST UNITED AC 2014. [PMID: 28626644 PMCID: PMC5466100 DOI: 10.1016/j.btre.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans-cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of RgPAL is 9 and the RgPAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant RgPAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant RgPAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7-9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel-Crafts-type mechanism of RgPAL, the improvement of the RgPAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The RgPAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the eeD value of d-phenylalanine using RgPAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of RgPAL.
Collapse
Affiliation(s)
- Longbao Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol 2014; 98:8937-45. [DOI: 10.1007/s00253-014-5790-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
20
|
Diem MD, Hyun L, Yi F, Hippensteel R, Kuhar E, Lowenstein C, Swift EJ, O'Neil KT, Jacobs SA. Selection of high-affinity Centyrin FN3 domains from a simple library diversified at a combination of strand and loop positions. Protein Eng Des Sel 2014; 27:419-29. [PMID: 24786107 DOI: 10.1093/protein/gzu016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative scaffold molecules represent a class of proteins important to the study of protein design and mechanisms of protein-protein interactions, as well as for the development of therapeutic proteins. Here, we describe the generation of a library built upon the framework of a consensus FN3 domain sequence resulting in binding proteins we call Centyrins. This new library employs diversified positions within the C-strand, CD-loop, F-strand and FG-loop of the FN3 domain. CIS display was used to select high-affinity Centyrin variants against three targets; c-MET, murine IL-17A and rat TNFα and scanning mutagenesis studies were used to define the positions of the library most important for target binding. Contributions from both the strand and loop positions were noted, although the pattern was different for each molecule. In addition, an affinity maturation scheme is described that resulted in a significant improvement in the affinity of one selected Centyrin variant. Together, this work provides important data contributing to our understanding of potential FN3 binding interfaces and a new tool for generating high-affinity scaffold molecules.
Collapse
Affiliation(s)
- Michael D Diem
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Linus Hyun
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Fang Yi
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Randi Hippensteel
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Elise Kuhar
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Cassandra Lowenstein
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Edward J Swift
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Karyn T O'Neil
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| | - Steven A Jacobs
- Janssen Research & Development, L.L.C., 1400 McKean Road, PO Box 776, Spring House, PA 19477, USA
| |
Collapse
|
21
|
The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Appl Microbiol Biotechnol 2013; 98:5937-47. [DOI: 10.1007/s00253-013-5421-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/29/2013] [Accepted: 11/16/2013] [Indexed: 10/25/2022]
|
22
|
Tian YS, Xu J, Peng RH, Xiong AS, Xu H, Zhao W, Fu XY, Han HJ, Yao QH. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:829-38. [PMID: 23759057 DOI: 10.1111/pbi.12074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 05/09/2023]
Abstract
A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.) was identified after five rounds of DNA shuffling and screening. Among the eight amino acid substitutions on this mutant, only two residue changes (T101A and A187T) were identified by site-directed mutagenesis as essential and additive in altering glyphosate resistance, which was further confirmed by kinetic analyses. The single-site A187T mutation has also never been previously reported as an important residue for glyphosate resistance. Furthermore, transgenic rice was used to confirm the potential of MdEPSPS mutant in developing glyphosate-resistant crops.
Collapse
Affiliation(s)
- Yong-Sheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Qiu S, Lai L. Tailoring the pH dependence of human non-pancreatic secretory phospholipase A2 by engineering surface charges. Appl Biochem Biotechnol 2013; 171:1454-64. [PMID: 23955349 DOI: 10.1007/s12010-013-0437-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/06/2013] [Indexed: 01/31/2023]
Abstract
Human non-pancreatic secretory phospholipase A2 (hnpsPLA2) catalyzes the sn-2 acyl hydrolysis of phospholipids. It was reported that hnpsPLA2 is involved in various diseases like inflammation, cancer, and so on. This enzyme also exhibits anti-bacterial and anti-virus activities. It is active over a broad pH range, with higher activity at alkaline conditions. In order to make it suitable as a potential bactericide, high activity at neutral pH is preferable. We have tried to tailor the pH dependence of hnpsPLA2 activity by replacing its surface charged residues. Three surface charge replacements, Arg42Glu, Arg100Glu, and Glu89Lys, showed increased activities at neutral pH, which are 2.3, 2.8, and 2.3 times that of the wild-type enzyme at pH 7. Both the positive-to-negative and negative-to-positive mutations lowered the optimum enzymatic reaction pH of hnpsPLA2, indicating that the enzyme pH profile depends on a delicate balance of charged residues. The activity changes are in good agreement with the recently proposed calcium-coordinated catalytic triad mechanism. This study also provides a general means of enhancing hnpsPLA2 activity at low pH.
Collapse
Affiliation(s)
- Shunchen Qiu
- BNLMS, State Key Laboratory of Structural Chemistry for Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | |
Collapse
|
24
|
Site-Directed Mutagenesis Improves the Thermostability and Catalytic Efficiency of Aspergillus niger N25 Phytase Mutated by I44E and T252R. Appl Biochem Biotechnol 2013; 171:900-15. [DOI: 10.1007/s12010-013-0380-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
25
|
Abstract
Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting animal agriculture, human health, and societal sustainability.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | | | | | | | - Michael J. Azain
- Department of Animal Science, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
26
|
Talbert JN, Hotchkiss JH. Chemical modification of lactase for immobilization on carboxylic acid-functionalized microspheres. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.740020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Homologous Alkalophilic and Acidophilic L-Arabinose isomerases reveal region-specific contributions to the pH dependence of activity and stability. Appl Environ Microbiol 2012; 78:8813-6. [PMID: 23001647 DOI: 10.1128/aem.02114-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the pH dependence of l-arabinose isomerase (AI) activity and stability, we compared homologous AIs with their chimeras. This study demonstrated that an ionizable amino acid near the catalytic site determines the optimal pH (pH(opt)) for activity, whereas the N-terminal surface R residues play an important role in determining the pH(opt) for stability.
Collapse
|
28
|
Talbert JN, Goddard JM. Enzymes on material surfaces. Colloids Surf B Biointerfaces 2012; 93:8-19. [DOI: 10.1016/j.colsurfb.2012.01.003] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/23/2011] [Accepted: 01/03/2012] [Indexed: 12/11/2022]
|
29
|
Ohdan K, Kuriki T. Strategic Approach in the Practical Use of Industrial Carbohydrate Active Enzymes. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2011_021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
30
|
Tian YS, Xu J, Xiong AS, Zhao W, Fu XY, Peng RH, Yao QH. Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase. Appl Environ Microbiol 2011; 77:8409-14. [PMID: 21948846 PMCID: PMC3233053 DOI: 10.1128/aem.05271-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022] Open
Abstract
A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.
Collapse
Affiliation(s)
| | | | - Ai-Sheng Xiong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Xiao-Yan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| | - Quan-Hong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Improving Phytase Enzyme Activity in a Recombinant phyA Mutant Phytase from Aspergillus niger N25 by Error-Prone PCR. Appl Biochem Biotechnol 2011; 166:549-62. [DOI: 10.1007/s12010-011-9447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/26/2011] [Indexed: 01/17/2023]
|
32
|
Woyengo TA, Nyachoti CM. Review: Supplementation of phytase and carbohydrases to diets for poultry. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas10081] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Woyengo, T. A. and Nyachoti, C. M. 2011. Review: Supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci. 91: 177–192. Feedstuffs of plant origin contain anti-nutritional factors such as phytic acid (PA) and non-starch polysaccharides (NSP), which limit nutrient utilization in poultry. Phytic acid contains phosphorus, which is poorly digested by poultry, and has the capacity to bind to and reduce the utilisation of other nutrients, whereas NSP are indigestible and have the capacity to reduce nutrient utilisation by encapsulation. Supplemental phytase and NSP-degrading enzymes (carbohydrases) can, respectively, hydrolyze PA and NSP, alleviating the negative effects of these anti-nutritional factors. In feedstuffs of plant origin, PA is located within the cells, whereas NSP are located in cell walls, and hence it has been hypothesized that phytase and carbohydrases can act synergistically in improving nutrient utilization because the carbohydrases can hydrolyze the NSP in cell walls to increase the accessibility of phytase to PA. However, the response to supplementation of a combination of these enzymes is variable and dependent on several factors, including the type of carbohydrase supplement used, dietary NSP composition, calcium and non-phytate phosphorus contents, and endogenous phytase activity. These factors are discussed, and areas that need further research for optimising the use of a combination of phytase and carbohydrases in poultry diets are suggested.
Collapse
Affiliation(s)
- T. A. Woyengo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - C. M. Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
33
|
Zhang R, Yang P, Huang H, Yuan T, Shi P, Meng K, Yao B. Molecular and biochemical characterization of a new alkaline β-propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115. Appl Microbiol Biotechnol 2011; 92:317-25. [DOI: 10.1007/s00253-011-3309-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 11/29/2022]
|
34
|
Fu D, Li Z, Huang H, Yuan T, Shi P, Luo H, Meng K, Yang P, Yao B. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Appl Microbiol Biotechnol 2011; 90:1295-302. [PMID: 21380516 DOI: 10.1007/s00253-011-3171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 01/31/2011] [Accepted: 02/09/2011] [Indexed: 11/24/2022]
Abstract
The maximum activity of Yersinia enterocolitica phytase (YeAPPA) occurs at pH 5.0 and 45 °C, and notably, its specific activity (3.28 ± 0.24 U mg(-1)) is 800-fold less than that of its Yersinia kristeensenii homolog (YkAPPA; 88% amino acid sequence identity). Sequence alignment and molecular modeling show that the arginine at position 79 (Arg79) in YeAPPA corresponding to Gly in YkAPPA as well as other histidine acid phosphatase (HAP) phytases is the only non-conserved residue near the catalytic site. To characterize the effects of the corresponding residue on the specific activities of HAP phytases, Escherichia coli EcAPPA, a well-characterized phytase with a known crystal structure, was selected for mutagenesis-its Gly73 was replaced with Arg, Asp, Glu, Ser, Thr, Leu, or Tyr. The results show that the specific activities of all of the corresponding EcAPPA mutants (17-2,400 U mg(-1)) were less than that of the wild-type phytase (3,524 U mg(-1)), and the activity levels were approximately proportional to the molecular volumes of the substituted residues' side chains. Site-directed replacement of Arg79 in YeAPPA (corresponding to Gly73 of EcAPPA) with Ser, Leu, and Gly largely increased the specific activity, which further verified the key role of the residue at position 79 for determining phytase activity. Thus, a new determinant that influences the catalytic efficiency of HAP phytases has been identified.
Collapse
Affiliation(s)
- Dawei Fu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fernandes P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res 2010; 2010:862537. [PMID: 21048872 PMCID: PMC2963163 DOI: 10.4061/2010/862537] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/01/2010] [Indexed: 11/20/2022] Open
Abstract
Food and feed is possibly the area where processing anchored in biological agents has the deepest roots. Despite this, process improvement or design and implementation of novel approaches has been consistently performed, and more so in recent years, where significant advances in enzyme engineering and biocatalyst design have fastened the pace of such developments. This paper aims to provide an updated and succinct overview on the applications of enzymes in the food sector, and of progresses made, namely, within the scope of tapping for more efficient biocatalysts, through screening, structural modification, and immobilization of enzymes. Targeted improvements aim at enzymes with enhanced thermal and operational stability, improved specific activity, modification of pH-activity profiles, and increased product specificity, among others. This has been mostly achieved through protein engineering and enzyme immobilization, along with improvements in screening. The latter has been considerably improved due to the implementation of high-throughput techniques, and due to developments in protein expression and microbial cell culture. Expanding screening to relatively unexplored environments (marine, temperature extreme environments) has also contributed to the identification and development of more efficient biocatalysts. Technological aspects are considered, but economic aspects are also briefly addressed.
Collapse
Affiliation(s)
- Pedro Fernandes
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Avenue Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
36
|
Spier MR, Fendrich RC, Almeida PC, Noseda M, Greiner R, Konietzny U, Woiciechowski AL, Soccol VT, Soccol CR. Phytase produced on citric byproducts: purification and characterization. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0455-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Schmidt M, Böttcher D, Bornscheuer UT. Directed Evolution of Industrial Biocatalysts. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Appl Microbiol Biotechnol 2010; 87:1367-72. [PMID: 20376636 DOI: 10.1007/s00253-010-2542-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/24/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Earlier studies have established the importance of five disulfide bridges (DBs) in Aspergillus niger phytase. In this study, the relative importance of each of the individual disulfide bridge is determined by its removal by site-directed mutagenesis of specific cysteines in the cloned A. niger phyA gene. Individually, these mutant phytases were expressed in a Pichia expression system and their product purified and characterized. The removal of disulfide bridge 2 yielded a mutant phytase with a complete loss of catalytic activity. The other disulfide mutants displayed a broad array of altered catalytic properties including a lower optimum temperature from 58 degrees C to 53 degrees C for bridge number 1, 37 degrees C for bridge number 3 and 4, and 42 degrees C for bridge number 5. The pH versus activity profile was also modified in the DB mutants. The pH profile of the wild-type phytase was modified by the DB mutations. In bridge number 1, 3, and 4, the second peak at pH 2.5 was abolished, and in bridge number 5, the peak at pH 5.0 was abolished completely leaving only the pH 2.5. While the K (m) was not affected drastically, the turnover number was lowered significantly in bridge number 3, 4, and 5.
Collapse
|
39
|
Determining the safety of enzymes used in animal feed. Regul Toxicol Pharmacol 2010; 56:332-42. [DOI: 10.1016/j.yrtph.2009.10.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
|
40
|
Zhu L, Tee KL, Roccatano D, Sonmez B, Ni Y, Sun ZH, Schwaneberg U. Directed Evolution of an Antitumor Drug (Arginine Deiminase PpADI) for Increased Activity at Physiological pH. Chembiochem 2010; 11:691-7. [DOI: 10.1002/cbic.200900717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Performance and Nutrient Utilization Responses in Broilers Fed Phytase Supplemented Mash or Pelleted Corn-Soybean Meal-Based Diets. J Poult Sci 2010. [DOI: 10.2141/jpsa.009124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Fu D, Huang H, Meng K, Wang Y, Luo H, Yang P, Yuan T, Yao B. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol Bioeng 2009; 103:857-64. [PMID: 19378262 DOI: 10.1002/bit.22315] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new phytase (APPA) with optimum pH 2.5--substantially lower than that of most of microbial phytases (pH 4.5-6.0)--was cloned from Yersinia frederiksenii and heterologously expressed in Escherichia coli. Containing the highly conserved motifs typical of histidine acid phosphatases, APPA has the highest identity (84%) to the Yersinia intermedia phytase (optimal pH 4.5), a member of histidine acid phosphatase family. Based on sequence alignment and molecular modeling of APPA and related phytases, APPA has only one divergent residue, Ser51, in close proximity to the catalytic site. To understand the acidic adaptation of APPA, five mutants (S51A, S51T, S51D, S51K, and S51I) were constructed by site-directed mutagenesis, expressed in E. coli, purified, and characterized. Mutants S51T and S51I exhibited a shift in the optimal pH from 2.5 to 4.5 and 5.0, respectively, confirming the role of Ser51 in defining the optimal pH. Thus, a previously unrecognized factor other than electrostatics--presumably the side-chain structure near the active site--contributes to the optimal pH for APPA activity. Compared with wild-type APPA, mutant S51T showed higher specific activity, greater activity over pH 2.0-5.5, and increased thermal and acid stability. These properties make S51T a better candidate than the wild-type APPA for use in animal feed.
Collapse
Affiliation(s)
- Dawei Fu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
In MJ, Seo SW, Kim DC, Oh NS. Purification and biochemical properties of an extracellular acid phytase produced by the Saccharomyces cerevisiae CY strain. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Bei J, Chen Z, Fu J, Jiang Z, Wang J, Wang X. Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. J Biotechnol 2009; 139:186-93. [DOI: 10.1016/j.jbiotec.2008.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
|
46
|
Huang H, Luo H, Wang Y, Fu D, Shao N, Wang G, Yang P, Yao B. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appl Microbiol Biotechnol 2008; 80:417-26. [PMID: 18548246 DOI: 10.1007/s00253-008-1556-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 11/26/2022]
Abstract
Two novel phytase genes belonging to the histidine acid phosphatase family were cloned from Yersinia rohdei and Y. pestis and expressed in Pichia pastoris. Both the recombinant phytases had high activity at pH 1.5-6.0 (optimum pH 4.5) with an optimum temperature of 55 degrees C. Compared with the major commercial phytases from Aspergillus niger, Escherichia coli, and a potential commercial phytase from Y. intermedia, the Y. rohdei phytase was more resistant to pepsin, retained more activity under gastric conditions, and released more inorganic phosphorus (two to ten times) from soybean meal under simulated gastric conditions. These superior properties suggest that the Y. rohdei phytase is an attractive additive to animal feed. Our study indicated that, in order to better hydrolyze the phytate and release more inorganic phosphorus in the gastric passage, phytase should have high activity and stability, simultaneously, at low pH and high protease concentration.
Collapse
Affiliation(s)
- Huoqing Huang
- Department of Microbial Engineering, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Production of feed enzymes (phytase and plant cell wall hydrolyzing enzymes) byMucor indicus MTCC 6333: Purification and characterization of phytase. Folia Microbiol (Praha) 2007; 52:491-7. [DOI: 10.1007/bf02932109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Martin JA, Murphy RA, Power RFG. Purification and physico-chemical characterisation of genetically modified phytases expressed in Aspergillus awamori. BIORESOURCE TECHNOLOGY 2006; 97:1703-8. [PMID: 16243522 DOI: 10.1016/j.biortech.2005.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 04/15/2004] [Accepted: 07/28/2005] [Indexed: 05/05/2023]
Abstract
Two heterologous phytases from Aspergillus awamori and Aspergillus fumigatus obtained from submerged cultures of genetically modified fungal strains in addition to two commercially available phytase preparations (Allzyme and Natuphos phytases) were purified to homogeneity using a combination of ultrafiltration, gel filtration and ion exchange. The purified preparations were used in subsequent characterisation studies, in which Western Immunoblot analysis, pH and temperature optima, thermal stability and substrate specificity were assessed. A. fumigatus phyA phytase expressed in A. awamori exhibited activity over a broad pH range together with an increased temperature optimum, and slightly enhanced thermal stability compared to the other phytases tested, and is thus a promising candidate for animal feed applications. This particular phytase retains activity over a wide range of pH values characteristic of the digestive tract and could conceivably be more suited to the increasingly higher feed processing temperatures being utilised today, than the corresponding phytases from Aspergillus niger.
Collapse
Affiliation(s)
- Judith A Martin
- Alltech Ireland, Sarney, Summerhill Road, Dunboyne, Co. Meath, Ireland
| | | | | |
Collapse
|
49
|
Kim T, Mullaney EJ, Porres JM, Roneker KR, Crowe S, Rice S, Ko T, Ullah AHJ, Daly CB, Welch R, Lei XG. Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Appl Environ Microbiol 2006; 72:4397-403. [PMID: 16751556 PMCID: PMC1489644 DOI: 10.1128/aem.02612-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental pollution by phosphorus from animal waste is a major problem in agriculture because simple-stomached animals, such as swine, poultry, and fish, cannot digest phosphorus (as phytate) present in plant feeds. To alleviate this problem, a phytase from Aspergillus niger PhyA is widely used as a feed additive to hydrolyze phytate-phosphorus. However, it has the lowest relative activity at the pH of the stomach (3.5), where the hydrolysis occurs. Our objective was to shift the pH optima of PhyA to match the stomach condition by substituting amino acids in the substrate-binding site with different charges and polarities. Based on the crystal structure of PhyA, we prepared 21 single or multiple mutants at Q50, K91, K94, E228, D262, K300, and K301 and expressed them in Pichia pastoris yeast. The wild-type (WT) PhyA showed the unique bihump, two-pH-optima profile, whereas 17 mutants lost one pH optimum or shifted the pH optimum from pH 5.5 to the more acidic side. The mutant E228K exhibited the best overall changes, with a shift of pH optimum to 3.8 and 266% greater (P < 0.05) hydrolysis of soy phytate at pH 3.5 than the WT enzyme. The improved efficacy of the enzyme was confirmed in an animal feed trial and was characterized by biochemical analysis of the purified mutant enzymes. In conclusion, it is feasible to improve the function of PhyA phytase under stomach pH conditions by rational protein engineering.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pereira JL, Franco OL, Noronha EF. Production and Biochemical Characterization of Insecticidal Enzymes from Aspergillus fumigatus Toward Callosobruchus maculatus. Curr Microbiol 2006; 52:430-4. [PMID: 16732450 DOI: 10.1007/s00284-005-0192-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 02/07/2006] [Indexed: 11/30/2022]
Abstract
In the present work, Aspergillus fumigatus is described as a higher producer of hydrolytic enzymes secreted in response to the presence of the Callosobruchus maculatus bruchid pest. This fungus was able to grow over cowpea weevil shells as a unique carbon source, secreting alkaline proteolytic and chitinolytic enzymes. Enzyme secretion in A. fumigatus was induced by both C. maculatus exoskeleton as well as commercial chitin, and alkaline proteolytic and chitinolytic activities were detected after 48 hours of growth. Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed the production of specific proteins. Among them, two extracellular alkaline proteinases from culture enriched with C. maculatus exoskeleton were purified after chromatographic procedures using ion exchange and affinity columns. These proteins, named AP15 and AP30, had apparent molecular masses of 15,500 and 30,000 Da, respectively, as estimated by SDS-PAGE electrophoresis and mass spectrometry. AP30 was classified as a serine proteinase because it was inhibited by 5 mM: phenylmethylsulfonyl fluoride (100%) and 50 microM leupeptin (67.94%).
Collapse
Affiliation(s)
- Jackeline L Pereira
- Centro de Análises Proteômicas e Bioquímicas. Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Campus II, 70790-160, Distrito Federal, Brazil
| | | | | |
Collapse
|