1
|
Jdeed G, Kravchuk B, Tikunova NV. Factors Affecting Phage-Bacteria Coevolution Dynamics. Viruses 2025; 17:235. [PMID: 40006990 PMCID: PMC11860743 DOI: 10.3390/v17020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Bacteriophages (phages) have coevolved with their bacterial hosts for billions of years. With the rise of antibiotic resistance, the significance of using phages in therapy is increasing. Investigating the dynamics of phage evolution can provide valuable insights for pre-adapting phages to more challenging clones of their hosts that may arise during treatment. Two primary models describe interactions in phage-bacteria systems: arms race dynamics and fluctuating selection dynamics. Numerous factors influence which dynamics dominate the interactions between a phage and its host. These dynamics, in turn, affect the coexistence of phages and bacteria, ultimately determining which organism will adapt more effectively to the other, and whether a stable state will be reached. In this review, we summarize key findings from research on phage-bacteria coevolution, focusing on the different concepts that can describe these interactions, the factors that may contribute to the prevalence of one model over others, and the effects of various dynamics on both phages and bacteria.
Collapse
Affiliation(s)
- Ghadeer Jdeed
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia;
| | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia;
| |
Collapse
|
2
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
3
|
Islam MS, Fan J, Suzauddula M, Nime I, Pan F. Isolation and Characterization of Novel Escherichia coli O157:H7 Phage SPEC13 as a Therapeutic Agent for E. coli Infections In Vitro and In Vivo. Biomedicines 2024; 12:2036. [PMID: 39335549 PMCID: PMC11428821 DOI: 10.3390/biomedicines12092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
Escherichia coli O157:H7 is a recognized food-borne pathogen causing severe food poisoning at low doses. Bacteriophages (phages) are FDA-approved for use in food and are suggested as natural preservatives against specific pathogens. A novel phage must be identified and studied to develop a new natural preservative or antimicrobial agent against E. coli O157:H7. The phage SPEC13 displayed broad host range and was classified within the Ackermannviridae family based on its observed characteristics by a TEM and genome analysis. In 10 min, this phage achieves a remarkable 93% adsorption rate with the host. Its latency period then lasts about 20 min, after which it bursts, releasing an average of 139 ± 3 PFU/cell. It exhibited robustness within a pH range of 4 to 12, indicating resilience under diverse environmental circumstances. Furthermore, SPEC13 demonstrated stability at an ambient temperature up to 60 °C. A whole genome and phylogenetics analysis revealed that SPEC13 is a novel identified phage, lacking a lysogenic life cycle, antibiotic resistance genes, or genes associated with virulence, thereby presenting a promising biological agent for therapeutic application. Animal studies showed that SPEC13 effectively controlled the growth of harmful bacteria, resulting in a significant improvement in colon health, marked by reduced swelling (edema) and tissue damage (mucosal injury). The introduction of SPEC13 resulted in a substantial decrease in quantities of E. coli O157:H7, reducing the bacterial load to approximately 5 log CFU/g of feces. In conclusion, SPEC13 emerges as a promising inclusion in the array of phage therapy, offering a targeted and efficient approach for addressing bacterial infections.
Collapse
Affiliation(s)
- Md Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Fan
- Department of Pathology, School of Basic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang 471023, China
| | - Md Suzauddula
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Bonachela JA. Viral plasticity facilitates host diversity in challenging environments. Nat Commun 2024; 15:7473. [PMID: 39209841 PMCID: PMC11362530 DOI: 10.1038/s41467-024-51344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The antagonistic coevolution of microbes and viruses influences fundamentally the diversity of microbial communities. Information on how environmental variables interact with emergent defense-counterdefense strategies and community composition is, however, still scarce. Following biological intuition, diversity should increase with improved growth conditions, which offset evolutionary costs; however, laboratory and regional data suggest that microbial diversity decreases in nutrient-rich conditions. Moreover, global oceanic data show that microbial and viral diversity decline for high latitudes, although the underlying mechanisms are unknown. This article addresses these gaps by introducing an eco-evolutionary model for bacteria-virus antagonistic coevolution. The theory presented here harmonizes the observations above and identifies negative density dependence and viral plasticity (dependence of virus performance on host physiological state) as key drivers: environmental conditions selecting for slow host growth also limit viral performance, facilitating the survival of a diverse host community; host diversity, in turn, enables viral portfolio effects and bet-hedging strategies that sustain viral diversity. From marine microbes to phage therapy against antibiotic-resistant bacteria or cancer cells, the ubiquity of antagonistic coevolution highlights the need to consider eco-evolutionary interactions across a gradient of growth conditions.
Collapse
Affiliation(s)
- Juan A Bonachela
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
5
|
Lievens EJP, Kühn S, Horas EL, Le Pennec G, Peter S, Petrosky AD, Künzel S, Feulner PGD, Becks L. High parasite diversity maintained after an alga-virus coevolutionary arms race. J Evol Biol 2024; 37:795-806. [PMID: 38699979 DOI: 10.1093/jeb/voae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Arms race dynamics are a common outcome of host-parasite coevolution. While they can theoretically be maintained indefinitely, realistic arms races are expected to be finite. Once an arms race has ended, for example due to the evolution of a generalist-resistant host, the system may transition into coevolutionary dynamics that favour long-term diversity. In microbial experiments, host-parasite arms races often transition into a stable coexistence of generalist-resistant hosts, (semi-)susceptible hosts, and parasites. While long-term host diversity is implicit in these cases, parasite diversity is usually overlooked. In this study, we examined parasite diversity after the end of an experimental arms race between a unicellular alga (Chlorella variabilis) and its lytic virus (PBCV-1). First, we isolated virus genotypes from multiple time points from two replicate microcosms. A time-shift experiment confirmed that the virus isolates had escalating host ranges, i.e., that arms races had occurred. We then examined the phenotypic and genetic diversity of virus isolates from the post-arms race phase. Post-arms race virus isolates had diverse host ranges, survival probabilities, and growth rates; they also clustered into distinct genetic groups. Importantly, host range diversity was maintained throughout the post-arms race phase, and the frequency of host range phenotypes fluctuated over time. We hypothesize that this dynamic polymorphism was maintained by a combination of fluctuating selection and demographic stochasticity. Together with previous work in prokaryotic systems, our results link experimental observations of arms races to natural observations of long-term host and parasite diversity.
Collapse
Affiliation(s)
- Eva J P Lievens
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Samuel Kühn
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Elena L Horas
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Guénolé Le Pennec
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Sarah Peter
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Azade D Petrosky
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Department of Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lutz Becks
- Aquatic Ecology and Evolution Group, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Azam AH, Sato K, Miyanaga K, Nakamura T, Ojima S, Kondo K, Tamura A, Yamashita W, Tanji Y, Kiga K. Selective bacteriophages reduce the emergence of resistant bacteria in bacteriophage-antibiotic combination therapy. Microbiol Spectr 2024; 12:e0042723. [PMID: 38695573 PMCID: PMC11237537 DOI: 10.1128/spectrum.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2024] [Indexed: 06/06/2024] Open
Abstract
Escherichia coli O157:H7 is a globally important foodborne pathogen with implications for food safety. Antibiotic treatment for O157 may potentially contribute to the exacerbation of hemolytic uremic syndrome, and the increasing prevalence of antibiotic-resistant strains necessitates the development of new treatment strategies. In this study, the bactericidal effects and resistance development of antibiotic and bacteriophage monotherapy were compared with those of combination therapy against O157. Experiments involving continuous exposure of O157 to phages and antibiotics, along with genetic deletion studies, revealed that the deletion of glpT and uhpT significantly increased resistance to fosfomycin. Furthermore, we found that OmpC functions as a receptor for the PP01 phage, which infects O157, and FhuA functions as a receptor for the newly isolated SP15 phage, targeting O157. In the glpT and uhpT deletion mutants, additional deletion in ompC, the receptor for the PP01 phage, increased resistance to fosfomycin. These findings suggest that specific phages may contribute to antibiotic resistance by selecting the emergence of gene mutations responsible for both phage and antibiotic resistance. While combination therapy with phages and antibiotics holds promise for the treatment of bacterial infections, careful consideration of phage selection is necessary.IMPORTANCEThe combination treatment of fosfomycin and bacteriophages against Escherichia coli O157 demonstrated superior bactericidal efficacy compared to monotherapy, effectively suppressing the emergence of resistance. However, mutations selected by phage PP01 led to enhanced resistance not only to the phage but also to fosfomycin. These findings underscore the importance of exercising caution in selecting phages for combination therapy, as resistance selected by specific phages may increase the risk of developing antibiotic resistance.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Koji Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Tomohiro Nakamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Shinjiro Ojima
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Kohei Kondo
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Azumi Tamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Wakana Yamashita
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kotaro Kiga
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| |
Collapse
|
7
|
Nagy K, Valappil SK, Phan TV, Li S, Dér L, Morris R, Bos J, Winslow S, Galajda P, Ràkhely G, Austin RH. Microfluidic Ecology Unravels the Genetic and Ecological Drivers of T4r Bacteriophage Resistance in E. coli: Insights into Biofilm-Mediated Evolution. RESEARCH SQUARE 2024:rs.3.rs-4356333. [PMID: 38826273 PMCID: PMC11142369 DOI: 10.21203/rs.3.rs-4356333/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We use a microfluidic ecology which generates non-uniform phage concentration gradients and micro-ecological niches to reveal the importance of time, spatial population structure and collective population dynamics in the de novo evolution of T4r bacteriophage resistant motile E. coli. An insensitive bacterial population against T4r phage occurs within 20 hours in small interconnected population niches created by a gradient of phage virions, driven by evolution in transient biofilm patches. Sequencing of the resistant bacteria reveals mutations at the receptor site of bacteriophage T4r as expected but also in genes associated with biofilm formation and surface adhesion, supporting the hypothesis that evolution within transient biofilms drives de novo phage resistance.
Collapse
Affiliation(s)
- Krisztina Nagy
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - Trung V Phan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shengkai Li
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - László Dér
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ryan Morris
- School of Physics & Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - Julia Bos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
| | | | - Peter Galajda
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Ràkhely
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Robert H Austin
- Department of Physics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
8
|
Álvarez-Espejo DM, Rivera D, Moreno-Switt AI. Bacteriophage-Host Interactions and Coevolution. Methods Mol Biol 2024; 2738:231-243. [PMID: 37966603 DOI: 10.1007/978-1-0716-3549-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are the most abundant entity on the planet and play very relevant roles in the diversity and abundance of their bacterial hosts. These interactions are subject to several factors, such as the first encounter of the phage with its host bacterium, in which molecular interactions are fundamental. Along with this, these interactions depend on the environment and other communities present. This chapter focuses on these phage-bacteria interactions, reviewing the knowledge of the early stage (receptor-binding proteins), host responses (resistance and counter-resistance), and ecological and evolutionary models described to date. In general, knowledge has focused on a few phage-bacteria models and has been deepened by sequencing and metagenomics. The study of phage-bacteria interactions is an essential step for the development of therapies and other applications of phages in the clinical and productive environment.
Collapse
Affiliation(s)
- Diana M Álvarez-Espejo
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Spus M, Wardhana YR, Wolkers-Rooijackers JC, Abee T, Smid EJ. Lytic bacteriophages affect the population dynamics of multi-strain microbial communities. MICROBIOME RESEARCH REPORTS 2023; 2:33. [PMID: 38045922 PMCID: PMC10688827 DOI: 10.20517/mrr.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 08/25/2023] [Indexed: 12/05/2023]
Abstract
Background: Lytic bacteriophages infect and lyse bacteria and, as a by-product, may affect diversity in microbial communities through selective predation on abundant bacterial strains. We used a complex dairy starter named Ur to investigate population dynamics of Lactococcus lactis, Lactococcus cremoris and Leuconostoc mesenteroides strains in terms of constant-diversity and periodic selection models. Methods: To mimic the starter Ur, we designed blends of 24 strains representing all eight previously identified genetic lineages in the starter culture. The blends were propagated by daily transfers in milk for over 500 generations in the presence or absence of a cocktail of lytic bacteriophages. The relative abundance of genetic lineages of L. lactis, L. cremoris and Lc. mesenteroides strains present in the complex blend, as well as phage presence, were monitored. Results: Control blends without phage predation showed decreased strain diversity, leading to a stable state due to the domination of the fittest strain(s) of a particular lineage according to periodic selection dynamics. However, in phage-challenged blends, predation caused a large shift in the microbial composition by killing the fittest and sensitive strains. Conclusion: It was demonstrated that phage-challenged blends maintained their diversity at the level of genetic lineages, thus providing experimental support for the constant-diversity dynamics model in a complex microbial community.
Collapse
Affiliation(s)
- Maciej Spus
- TI Food and Nutrition, Wageningen 6700 AA, the Netherlands
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | | | - Judith C.M. Wolkers-Rooijackers
- TI Food and Nutrition, Wageningen 6700 AA, the Netherlands
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Eddy J. Smid
- TI Food and Nutrition, Wageningen 6700 AA, the Netherlands
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
10
|
Venkataram S, Kryazhimskiy S. Evolutionary repeatability of emergent properties of ecological communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220047. [PMID: 37004728 PMCID: PMC10067272 DOI: 10.1098/rstb.2022.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 04/04/2023] Open
Abstract
Most species belong to ecological communities where their interactions give rise to emergent community-level properties, such as diversity and productivity. Understanding and predicting how these properties change over time has been a major goal in ecology, with important practical implications for sustainability and human health. Less attention has been paid to the fact that community-level properties can also change because member species evolve. Yet, our ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-level properties change as a result of species evolution. Here, we review studies of evolution of both natural and experimental communities and make the case that community-level properties at least sometimes evolve repeatably. We discuss challenges faced in investigations of evolutionary repeatability. In particular, only a handful of studies enable us to quantify repeatability. We argue that quantifying repeatability at the community level is critical for approaching what we see as three major open questions in the field: (i) Is the observed degree of repeatability surprising? (ii) How is evolutionary repeatability at the community level related to repeatability at the level of traits of member species? (iii) What factors affect repeatability? We outline some theoretical and empirical approaches to addressing these questions. Advances in these directions will not only enrich our basic understanding of evolution and ecology but will also help us predict eco-evolutionary dynamics. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Hasan M, Dawan J, Ahn J. Assessment of the potential of phage-antibiotic synergy to induce collateral sensitivity in Salmonella Typhimurium. Microb Pathog 2023; 180:106134. [PMID: 37150310 DOI: 10.1016/j.micpath.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
This study was designed to evaluate the synergistic effect of phage and antibiotic on the induction of collateral sensitivity in Salmonella Typhimurium. The synergistic effects of Salmonella phage PBST32 combined with ciprofloxacin (CIP) against S. Typhimurium KCCM 40253 (STKCCM) were evaluated using a fractional inhibitory concentration (FIC) assay. The CIP susceptibility of STKCCM was increased when combined with PBST32, showing 16-fold decrease at 7 log PFU/mL. The combination of 1/2 × MIC of CIP and PBST32 (CIP[1/2]+PBST32) effectively inhibited the growth of STKCCM up to below the detection limit (1.3 log CFU/mL) after 12 h of incubation at 37 °C. The significant reduction in bacterial swimming motility was observed for PBST32 and CIP[1/4]+PBST32. The CIP[1/4]+PBST32 increased the fitness cost (relative fitness = 0.57) and decreased the cross-resistance to different classes of antibiotics. STKCCM treated with PBST32 alone treatment exhibited the highest coefficient of variation (90%), followed by CIP[1/4]+PBST32 (75%). These results suggest that the combination of PBST32 and CIP can be used to control bacterial pathogens.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
12
|
Granato ET, Smith WPJ, Foster KR. Collective protection against the type VI secretion system in bacteria. THE ISME JOURNAL 2023:10.1038/s41396-023-01401-4. [PMID: 37095301 DOI: 10.1038/s41396-023-01401-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Bacteria commonly face attacks from other strains using the type VI secretion system (T6SS), which acts like a molecular speargun to stab and intoxicate competitors. Here we show how bacteria can work together to collectively defend themselves against these attacks. This project began with an outreach activity: while developing an online computer game of bacterial warfare, we noticed that one strategist ("Slimy") that made extracellular polymeric substances (EPS) was able to resist attacks from another strategist that employed the T6SS ("Stabby"). This observation motivated us to model this scenario more formally, using dedicated agent-based simulations. The model predicts that EPS production can serve as a collective defence mechanism, which protects both producing cells and neighbouring cells that do not make EPS. We then tested our model with a synthetic community that contains a T6SS-wielding attacker (Acinetobacter baylyi), and two T6SS-sensitive target strains (Escherichia coli) that either secrete EPS, or not. As predicted by our modelling, we find that the production of EPS leads to collective protection against T6SS attacks, where EPS producers protect each other and nearby non-producers. We identify two processes that explain this protection: EPS sharing between cells and a second general mechanism whereby groups of resistant cells shield susceptible cells, which we call "flank protection". Our work shows how EPS-producing bacteria can work together to defend themselves from the type VI secretion system.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - William P J Smith
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Oyejobi GK, Zhang X, Xiong D, Ogolla F, Xue H, Wei H. Phage-bacterial evolutionary interactions: experimental models and complications. Crit Rev Microbiol 2023; 49:283-296. [PMID: 35358006 DOI: 10.1080/1040841x.2022.2052793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phage treatment of bacterial infections has offered some hope even as the crisis of antimicrobial resistance continues to be on the rise. However, bacterial resistance to phage is another looming challenge capable of undermining the effectiveness of phage therapy. Moreover, the consideration of including phage therapy in modern medicine calls for more careful research around every aspect of phage study. In an attempt to adequately prepare for the events of phage resistance, many studies have attempted to experimentally evolve phage resistance in different bacterial strains, as well as train phages to evolve counter-infectivity of resistant bacterial mutants, in view of answering such questions as coevolutionary dynamics between phage and bacteria, mechanisms of phage resistance, fitness costs of phage resistance on bacteria, etc. In this review, we summarised many such studies and by careful examination, highlighted critical issues to the outcome of phage therapy. We also discuss the insufficiency of many of these in vitro studies to represent actual disease conditions during phage application, alongside other complications that exist in phage-bacterial evolutionary interactions. Conclusively, we present the exploitation of phage-bacterial interactions for successful infection managements, as well as some future perspectives to direct phage research.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,Organization of African Academic Doctors, Nairobi, Kenya
| | - Xiaoxu Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyan Xiong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Faith Ogolla
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Organization of African Academic Doctors, Nairobi, Kenya.,Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Heng Xue
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Nairobi, Kenya
| |
Collapse
|
14
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Sci Rep 2022; 12:10725. [PMID: 35750797 PMCID: PMC9232599 DOI: 10.1038/s41598-022-14956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.
Collapse
|
16
|
Hunter M, Fusco D. Superinfection exclusion: A viral strategy with short-term benefits and long-term drawbacks. PLoS Comput Biol 2022; 18:e1010125. [PMID: 35536864 PMCID: PMC9122224 DOI: 10.1371/journal.pcbi.1010125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/20/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Viral superinfection occurs when multiple viral particles subsequently infect the same host. In nature, several viral species are found to have evolved diverse mechanisms to prevent superinfection (superinfection exclusion) but how this strategic choice impacts the fate of mutations in the viral population remains unclear. Using stochastic simulations, we find that genetic drift is suppressed when superinfection occurs, thus facilitating the fixation of beneficial mutations and the removal of deleterious ones. Interestingly, we also find that the competitive (dis)advantage associated with variations in life history parameters is not necessarily captured by the viral growth rate for either infection strategy. Putting these together, we then show that a mutant with superinfection exclusion will easily overtake a superinfecting population even if the latter has a much higher growth rate. Our findings suggest that while superinfection exclusion can negatively impact the long-term adaptation of a viral population, in the short-term it is ultimately a winning strategy.
Collapse
Affiliation(s)
- Michael Hunter
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Diana Fusco
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Shiue SJ, Syu FS, Lin HY. Two types of bacteriophage-modified alginate hydrogels as antibacterial coatings for implants. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Johnson CN, Palacios Araya D, Schink V, Islam M, Mangalea MR, Decurtis EK, Ngo TC, Palmer KL, Duerkop BA. Genetically distant bacteriophages select for unique genomic changes in Enterococcus faecalis. Microbiologyopen 2022; 11:e1273. [PMID: 35478284 PMCID: PMC8924694 DOI: 10.1002/mbo3.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
The human microbiota harbors diverse bacterial and bacteriophage (phage) communities. Bacteria evolve to overcome phage infection, thereby driving phage evolution to counter bacterial resistance. Understanding how phages select for genetic alterations in medically relevant bacteria is important as phages become established biologics for the treatment of multidrug-resistant (MDR) bacterial infections. Before phages can be widely used as standalone or combination antibacterial therapies, we must obtain a deep understanding of the molecular mechanisms of phage infection and how host bacteria alter their genomes to become resistant. We performed coevolution experiments using a single Enterococcus faecalis strain and two distantly related phages to determine how phage pressure impacts the evolution of the E. faecalis genome. Whole-genome sequencing of E. faecalis following continuous exposure to these two phages revealed mutations previously demonstrated to be essential for phage infection. We also identified mutations in genes previously unreported to be associated with phage infection in E. faecalis. Intriguingly, there was only one shared mutation in the E. faecalis genome that was selected by both phages tested, demonstrating that infection by two genetically distinct phages selects for diverse variants. This knowledge serves as the basis for the continued study of E. faecalis genome evolution during phage infection and can be used to inform the design of future therapeutics, such as phage cocktails, intended to target MDR E. faecalis.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | - Viviane Schink
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Moutusee Islam
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Mihnea R. Mangalea
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Emily K. Decurtis
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Tuong‐Vi C. Ngo
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Kelli L. Palmer
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Breck A. Duerkop
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
19
|
Genetic Signatures from Adaptation of Bacteria to Lytic Phage Identify Potential Agents to Aid Phage-Killing of Multidrug-Resistant Acinetobacter baumannii. J Bacteriol 2022; 204:e0059321. [PMID: 35156836 DOI: 10.1128/jb.00593-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the increasing morbidity and mortality rates associated with multidrug-resistant bacteria, interest in bacteriophage therapy has been revived. However, bacterial resistance to phage infection threatens the usefulness of phage therapy, especially its inclusion in modern medicine. Multidrug-resistant Acinetobacter baumannii is a top priority pathogen requiring urgent intervention and new therapeutic approaches, such as phage therapy. Here, we experimentally adapted A. baumannii WHG40004 to its lytic phage P21, and thereafter isolated a phage-resistant bacterial mutant, named Ev5-WHG. We then aimed to identify potential agents to aid phage-killing of Ev5-WHG by analyzing its genome and that of the wildtype strain. The enriched Gene Ontology (GO) analysis based on genetic alterations in minor alleles and mutations showed that pathways such as zinc ion transport and cell membrane synthesis could play certain roles in phage resistance. Remarkably, the combination of zinc acetate and P21 showed increased bactericidal effect on Ev5-WHG. Significantly also, we showed that P21 completely prevented the growth of wildtype WHG40004 in the presence of antibiotics (meropenem and imipenem). The results from this study indicate that the analysis of phage resistance signatures during adaptation of bacteria to a lytic phage can inform choice of agents to work cooperatively with phage to limit and/or reverse resistance. This approach could be important for guiding future successful phage therapy. Importance Bacteriophages have proven very useful as alternative therapeutic agents in combating multidrug-resistant bacterial infections, however, bacterial resistance to phages threatens their use. In this study, we showed a new strategy of leveraging on genetic signatures that accompany phage resistance in bacteria to predict agents that can be used with lytic phages to combat multidrug-resistant Acinetobacter baumannii. Significantly, this approach was helpful in suggesting the use of zinc acetate to reduce resistance in phage-resistant bacteria, as well as the use of phage with antibiotics meropenem and imipenem to prevent resistance in wildtype strain of MDR A. baumannii. The approach of this study will be helpful for improving the outcome of phage therapy and in overcoming antimicrobial resistance.
Collapse
|
20
|
Bono LM, Mao S, Done RE, Okamoto KW, Chan BK, Turner PE. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv Virus Res 2021; 111:63-110. [PMID: 34663499 DOI: 10.1016/bs.aivir.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phages are viruses that specifically infect bacteria, and their biodiversity contributes to historical and current development of phage therapy to treat myriad bacterial infections. Phage therapy holds promise as an alternative to failing chemical antibiotics, but there are benefits and costs of this technology. Here, we review the rich history of phage therapy, highlighting reasons (often political) why it was widely rejected by Western medicine until recently. One longstanding idea involves mixing different phages together in cocktails, to increase the probability of killing target pathogenic bacteria without pre-screening for phage susceptibility. By challenging 30 lytic phages to infect 14 strains of the bacteria Pseudomonas aeruginosa, we showed that some phages were "generalists" with broad host-ranges, emphasizing that extreme host-specificity of phages was not necessarily a liability. Using a "greedy algorithm" analysis, we identified the best cocktail mixture of phages to achieve broad bacteria killing. Additionally, we review how virus host-range can evolve and connect lessons learned from virus emergence-including contributions of elevated virus mutation rates in promoting emergence and virus evolutionary transitions from specialized to generalized host-use-as cautionary tales for avoiding risk of "off-target" phage emergence on commensal bacteria in microbiomes. Throughout, we highlight how fundamental understanding of virus ecology and evolution is vital for developing phage therapy; heeding these principles should help in designing therapeutic strategies that do not recapitulate consequences of virus selection to emerge on novel hosts.
Collapse
Affiliation(s)
- Lisa M Bono
- Department of Biology, Emory University, Atlanta, GA, United States.
| | - Stephanie Mao
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel E Done
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Kenichi W Okamoto
- Department of Biology, University of St. Thomas, St. Paul, MN, United States
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States; Microbiology Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Pinto G, Minnich SA, Hovde CJ, Oliveira H, Smidt H, Almeida C, Azeredo J. The interactions of bacteriophage Ace and Shiga toxin-producing Escherichia coli during biocontrol. FEMS Microbiol Ecol 2021; 97:fiab105. [PMID: 34329454 PMCID: PMC8492476 DOI: 10.1093/femsec/fiab105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Strictly lytic phages are considered powerful tools for biocontrol of foodborne pathogens. Safety issues needed to be addressed for the biocontrol of Shiga toxin-producing Escherichia coli (STEC) include: lysogenic conversion, Shiga toxin production through phage induction, and emergence/proliferation of bacteriophage insensitive mutants (BIMs). To address these issues, two new lytic phages, vB_EcoS_Ace (Ace) and vB_EcoM_Shy (Shy), were isolated and characterized for life cycle, genome sequence and annotation, pH stability and efficacy at controlling STEC growth. Ace was efficient in controlling host planktonic cells and did not stimulate the production of the Stx prophage or Shiga toxin. A single dose of phage did not lead to the selection of BIMs. However, when reintroduced, BIMs were detected after 24 h of incubation. The gain of resistance was associated with lower virulence, as a subset of BIMs failed to agglutinate with O157-specific antibody and were more sensitive to human serum complement. BIM's biofilm formation capacity and susceptibility to disinfectants was equal to that of the wild-type strain. Overall, this work demonstrated that phage Ace is a safe biocontrol agent against STEC contamination and that the burden of BIM emergence did not represent a greater risk in environmental persistence and human pathogenicity.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação
em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar,
4710-057, Braga, Portugal
- Laboratory of Microbiology, Wageningen University &
Research, Stippeneng 4, 6708 WE, Wageningen, The
Netherlands
- INIAV, IP-National Institute for Agrarian and Veterinary
Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde,
Portugal
| | - Scott A Minnich
- Animal Veterinary and Food Science, University of Idaho,
Moscow, Idaho, 83844-3025 USA
| | - Carolyn J Hovde
- Animal Veterinary and Food Science, University of Idaho,
Moscow, Idaho, 83844-3025 USA
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação
em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar,
4710-057, Braga, Portugal
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University &
Research, Stippeneng 4, 6708 WE, Wageningen, The
Netherlands
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary
Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde,
Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação
em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar,
4710-057, Braga, Portugal
| |
Collapse
|
22
|
Abstract
Rising antimicrobial resistance severely limits efforts to treat infections and is a cause for critical concern. Renewed interest in bacteriophage therapy has advanced understanding of the breadth of species capable of targeting bacterial antimicrobial resistance mechanisms, but many questions concerning ideal application remain unanswered. The following minireview examines bacterial resistance mechanisms, the current state of bacteriophage therapy, and how bacteriophage therapy can augment strategies to combat resistance with a focus on the clinically relevant bacterium Pseudomonas aeruginosa, as well as the role of efflux pumps in antimicrobial resistance. Methods to prevent antimicrobial efflux using efflux pump inhibitors and phage steering, a type of bacteriophage therapy, are also covered. The evolutionary context underlying antimicrobial resistance and the need to include theory in the ongoing development of bacteriophage therapy are also discussed.
Collapse
|
23
|
Whittard E, Redfern J, Xia G, Millard A, Ragupathy R, Malic S, Enright MC. Phenotypic and Genotypic Characterization of Novel Polyvalent Bacteriophages With Potent In Vitro Activity Against an International Collection of Genetically Diverse Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:698909. [PMID: 34295840 PMCID: PMC8290860 DOI: 10.3389/fcimb.2021.698909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phage therapy recently passed a key milestone with success of the first regulated clinical trial using systemic administration. In this single-arm non-comparative safety study, phages were administered intravenously to patients with invasive Staphylococcus aureus infections with no adverse reactions reported. Here, we examined features of 78 lytic S. aureus phages, most of which were propagated using a S. carnosus host modified to be broadly susceptible to staphylococcal phage infection. Use of this host eliminates the threat of contamination with staphylococcal prophage - the main vector of S. aureus horizontal gene transfer. We determined the host range of these phages against an international collection of 185 S. aureus isolates with 56 different multilocus sequence types that included multiple representatives of all epidemic MRSA and MSSA clonal complexes. Forty of our 78 phages were able to infect > 90% of study isolates, 15 were able to infect > 95%, and two could infect all 184 clinical isolates, but not a phage-resistant mutant generated in a previous study. We selected the 10 phages with the widest host range for in vitro characterization by planktonic culture time-kill analysis against four isolates:- modified S. carnosus strain TM300H, methicillin-sensitive isolates D329 and 15981, and MRSA isolate 252. Six of these 10 phages were able to rapidly kill, reducing cell numbers of at least three isolates. The four best-performing phages, in this assay, were further shown to be highly effective in reducing 48 h biofilms on polystyrene formed by eight ST22 and eight ST36 MRSA isolates. Genomes of 22 of the widest host-range phages showed they belonged to the Twortvirinae subfamily of the order Caudovirales in three main groups corresponding to Silviavirus, and two distinct groups of Kayvirus. These genomes assembled as single-linear dsDNAs with an average length of 140 kb and a GC content of c. 30%. Phages that could infect > 96% of S. aureus isolates were found in all three groups, and these have great potential as therapeutic candidates if, in future studies, they can be formulated to maximize their efficacy and eliminate emergence of phage resistance by using appropriate combinations.
Collapse
Affiliation(s)
- Elliot Whittard
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Redfern
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Guoqing Xia
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roobinidevi Ragupathy
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Sladjana Malic
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
24
|
Abstract
Control of pathogenic bacteria by deliberate application of predatory phages has potential as a powerful therapy against antibiotic-resistant bacteria. The key advantages of phage biocontrol over antibacterial chemotherapy are: (1) an ability to self-propagate inside host bacteria, (2) targeted predation of specific species or strains of bacteria, (3) adaptive molecular machinery to overcome resistance in target bacteria. However, realizing the potential of phage biocontrol is dependent on harnessing or adapting these responses, as many phage species switch between lytic infection cycles (resulting in lysis) and lysogenic infection cycles (resulting in genomic integration) that increase the likelihood of survival of the phage in response to external stress or host depletion. Similarly, host range will need to be optimized to make phage therapy medically viable whilst avoiding the potential for deleteriously disturbing the commensal microbiota. Phage training is a new approach to produce efficient phages by capitalizing on the evolved response of wild-type phages to bacterial resistance. Here we will review recent studies reporting successful trials of training different strains of phages to switch into lytic replication mode, overcome bacterial resistance, and increase their host range. This review will also highlight the current knowledge of phage training and future implications in phage applications and phage therapy and summarize the recent pipeline of the magistral preparation to produce a customized phage for clinical trials and medical applications.
Collapse
|
25
|
Chaudhry W, Lee E, Worthy A, Weiss Z, Grabowicz M, Vega N, Levin B. Mucoidy, a general mechanism for maintaining lytic phage in populations of bacteria. FEMS Microbiol Ecol 2021; 96:5897354. [PMID: 32845324 PMCID: PMC7532286 DOI: 10.1093/femsec/fiaa162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
We present evidence that phage resistance resulting from overproduction of exopolysaccharides, mucoidy, provides a general answer to the longstanding question of how lytic viruses are maintained in populations dominated by bacteria upon which they cannot replicate. In serial transfer culture, populations of mucoid Escherichia coli MG1655 that are resistant to lytic phages with different receptors, and thereby requiring independent mutations for surface resistance, are capable of maintaining these phages with little effect on their total density. Based on the results of our analysis of a mathematical model, we postulate that the maintenance of phage in populations dominated by mucoid cells can be attributed primarily to high rates of transition from the resistant mucoid states to susceptible non-mucoid states. Our tests with both population dynamic and single cell experiments as well as genomic analysis are consistent with this hypothesis. We discuss reasons for the generalized resistance of these mucoid E. coli, and the genetic and molecular mechanisms responsible for the high rate of transition from mucoid to sensitive states responsible for the maintenance of lytic phage in mucoid populations of E. coli.
Collapse
Affiliation(s)
- Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Esther Lee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrew Worthy
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Zoe Weiss
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Marcin Grabowicz
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Vega
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Bruce Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Fazzino L, Anisman J, Chacón JM, Harcombe WR. Phage cocktail strategies for the suppression of a pathogen in a cross-feeding coculture. Microb Biotechnol 2020; 13:1997-2007. [PMID: 32814365 PMCID: PMC7533344 DOI: 10.1111/1751-7915.13650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cocktail combinations of bacteria-infecting viruses (bacteriophages) can suppress pathogenic bacterial growth. However, predicting how phage cocktails influence microbial communities with complex ecological interactions, specifically cross-feeding interactions in which bacteria exchange nutrients, remains challenging. Here, we used experiments and mathematical simulations to determine how to best suppress a model pathogen, E. coli, when obligately cross-feeding with S. enterica. We tested whether the duration of pathogen suppression caused by a two-lytic phage cocktail was maximized when both phages targeted E. coli, or when one phage targeted E. coli and the other its cross-feeding partner, S. enterica. Experimentally, we observed that cocktails targeting both cross-feeders suppressed E. coli growth longer than cocktails targeting only E. coli. Two non-mutually exclusive mechanisms could explain these results: (i) we found that treatment with two E. coli phage led to the evolution of a mucoid phenotype that provided cross-resistance against both phages, and (ii) S. enterica set the growth rate of the coculture, and therefore, targeting S. enterica had a stronger effect on pathogen suppression. Simulations suggested that cross-resistance and the relative growth rates of cross-feeders modulated the duration of E. coli suppression. More broadly, we describe a novel bacteriophage cocktail strategy for pathogens that cross-feed.
Collapse
Affiliation(s)
- Lisa Fazzino
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
| | - Jeremy Anisman
- College of Continuing and Professional StudiesUniversity of MinnesotaMinneapolisMNUSA
- Department of Diagnostic and Biological SciencesSchool of DentistryUniversity of MinnesotaMinneapolisMNUSA
| | - Jeremy M. Chacón
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
- Department of Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| | - William R. Harcombe
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
- Department of Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
27
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
28
|
Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends Ecol Evol 2020; 35:539-550. [DOI: 10.1016/j.tree.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
|
29
|
Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME JOURNAL 2020; 14:2007-2018. [PMID: 32358533 DOI: 10.1038/s41396-020-0664-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 01/17/2023]
Abstract
Natural bacterial populations are subjected to constant predation pressure by bacteriophages. Bacteria use a variety of molecular mechanisms to defend themselves from phage predation. However, since phages are nonmotile, perhaps the simplest defense against phage is for bacteria to move faster than phages. In particular, chemotaxis, the active migration of bacteria up attractant gradients, may help the bacteria escape slowly diffusing phages. Here we study phage infection dynamics in migrating bacterial populations driven by chemotaxis through low viscosity agar plates. We find that expanding phage-bacteria populations supports two moving fronts, an outermost bacterial front driven by nutrient uptake and chemotaxis and an inner phage front at which the bacterial population collapses due to phage predation. We show that with increasing adsorption rate and initial phage population, the speed of the moving phage front increases, eventually overtaking the bacterial front and driving the system across a transition from a regime where bacterial front speed exceeds that of the phage front to one where bacteria must evolve phage resistance to survive. Our data support the claim that this process requires phage to hitchhike with moving bacteria. A deterministic model recapitulates the transition under the assumption that phage virulence declines with host growth rate which we confirm experimentally. Finally, near the transition between regimes we observe macroscopic fluctuations in bacterial densities at the phage front. Our work opens a new, spatio-temporal, line of investigation into the eco-evolutionary struggle between bacteria and phage.
Collapse
|
30
|
Uddin MJ, Ahn J. Associations between antibiotic resistance and bacteriophage resistance phenotypes in laboratory and clinical strains of Salmonella enterica subsp. enterica serovar Typhimurium. Microb Pathog 2020; 143:104159. [PMID: 32198093 DOI: 10.1016/j.micpath.2020.104159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/21/2023]
Abstract
Bacteriophages have received great attention as an alternative over antibiotics due to the host specificity. Therefore, this study was designed to evaluate the associations between bacteriophage-insensitive (BI) and antibiotic-resistant mutants of Salmonella Typhimurium strains. Bacteriophage-sensitive (BS) Salmonella enterica serovar Typhimurium ATCC 19585 (BSSTWT), ciprofloxacin-induced S. Typhimurium ATCC 19585 (BSSTCIP), S. Typhimurium KCCM 40253 (BSSTLAB), and clinically isolated multidrug-resistant S. Typhimurium CCARM 8009 (BSSTMDR) were used to induce the bacteriophage-insensitive mutants (BISTWT, BISTCIP, BISTLAB, and BISTMDR), which were characterized by measuring mutant frequency lysogenic induction, phage adsorption, antibiotic susceptibility, and differential gene expression. The numbers of BSSTWT, BSSTCIP, and BSSTLAB were reduced by P22 (>3 log), while the least lytic activity was observed for BSSTMDR, suggesting alteration in bacteriophage-binding receptors on the surface of multidrug-resistant strain. BSSTWT treated with P22 showed the large variation in the cell state (CV>40%) and highest mutant frequency (62%), followed by 25% for BSSTCIP. The least similarities between BSSTWT and BISTWT were observed for P22 and PBST-13 (<12%). The relative expression levels of bacteriophage-binding receptor-related genes (btuB, fhuA, fliK, fljB, ompC, ompF, rfaL, and tolC) were decreased in BISTCIP and BISTMDR. These results indicate that the bacteriophage resistance is highly associated with the antibiotic resistance. The findings in this study could pave the way for the application of bacteriophages as an alternative to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
31
|
Promises and Pitfalls of In Vivo Evolution to Improve Phage Therapy. Viruses 2019; 11:v11121083. [PMID: 31766537 PMCID: PMC6950294 DOI: 10.3390/v11121083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
Phage therapy is the use of bacterial viruses (phages) to treat bacterial infections, a medical intervention long abandoned in the West but now experiencing a revival. Currently, therapeutic phages are often chosen based on limited criteria, sometimes merely an ability to plate on the pathogenic bacterium. Better treatment might result from an informed choice of phages. Here we consider whether phages used to treat the bacterial infection in a patient may specifically evolve to improve treatment on that patient or benefit subsequent patients. With mathematical and computational models, we explore in vivo evolution for four phage properties expected to influence therapeutic success: generalized phage growth, phage decay rate, excreted enzymes to degrade protective bacterial layers, and growth on resistant bacteria. Within-host phage evolution is strongly aligned with treatment success for phage decay rate but only partially aligned for phage growth rate and growth on resistant bacteria. Excreted enzymes are mostly not selected for treatment success. Even when evolution and treatment success are aligned, evolution may not be rapid enough to keep pace with bacterial evolution for maximum benefit. An informed use of phages is invariably superior to naive reliance on within-host evolution.
Collapse
|
32
|
Mutti M, Corsini L. Robust Approaches for the Production of Active Ingredient and Drug Product for Human Phage Therapy. Front Microbiol 2019; 10:2289. [PMID: 31649636 PMCID: PMC6791927 DOI: 10.3389/fmicb.2019.02289] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/19/2019] [Indexed: 01/17/2023] Open
Abstract
To be successful, academic and commercial efforts to reintroduce phage therapy must ensure that only safe and efficacious products are used to treat patients. This raises a number of manufacturing, formulation, and delivery challenges. Since phages are biologics, robust manufacturing processes will be crucial to avoid unwanted variability in each step of the process. The quality standards themselves need to be developed, as patients are currently being treated with phages produced under quality standards ranging from cGMP for clinical trials in EMA and FDA regulated environments to no standards at all in some last resort treatments. In this short review, we will systematically review the literature covering technical issues and approaches to increase robustness at every step of the production process: the identity of the phage and bacterial production strains, the fermentation process and purification, the formulation of the drug product, the quality controls and the documentation standards themselves. We conclude that it is possible to control cost at the same time, which is critical to re-introduce phage therapy to western medicine.
Collapse
|
33
|
Wroe JA, Johnson CT, García AJ. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A 2019; 108:39-49. [PMID: 31443115 DOI: 10.1002/jbm.a.36790] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Implanted orthopedic devices become infected more frequently than any other implanted surgical device. These infections can be extremely costly and result in significant patient morbidity. Current treatment options typically involve the long term, systemic administration of a combination of antibiotics, often followed by implant removal. Here we engineered an injectable hydrogel capable of encapsulating Pseudomonas aeruginosa bacteriophage and delivering active phage to the site of bone infections. Bacteriophage retain their bacteriolytic activity after encapsulation and release from the hydrogel, and their rate of release from the hydrogel can be controlled by gel formulation. Bacteriophage-encapsulating hydrogels effectively kill their host bacteria in both planktonic and biofilm phenotypes in vitro without influencing the metabolic activity of human mesenchymal stromal cells. Bacteriophage-encapsulating hydrogels were used to treat murine radial segmental defects infected with P. aeruginosa. The hydrogels achieved a 4.7-fold reduction in live P. aeruginosa counts at the infection site compared to bacteriophage-free hydrogels at 7 days postimplantation. These results support the development of bacteriophage-delivering hydrogels to treat local bone infections.
Collapse
Affiliation(s)
- James A Wroe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Christopher T Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
34
|
Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. INFECTION GENETICS AND EVOLUTION 2019; 73:425-432. [DOI: 10.1016/j.meegid.2019.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
35
|
Divya Ganeshan S, Hosseinidoust Z. Phage Therapy with a Focus on the Human Microbiota. Antibiotics (Basel) 2019; 8:E131. [PMID: 31461990 PMCID: PMC6783874 DOI: 10.3390/antibiotics8030131] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria. After their discovery in the early 1900s, bacteriophages were a primary cure against infectious disease for almost 25 years, before being completely overshadowed by antibiotics. With the rise of antibiotic resistance, bacteriophages are being explored again for their antibacterial activity. One of the critical apprehensions regarding bacteriophage therapy, however, is the possibility of genome evolution, development of phage resistance, and subsequent perturbations to our microbiota. Through this review, we set out to explore the principles supporting the use of bacteriophages as a therapeutic agent, discuss the human gut microbiome in relation to the utilization of phage therapy, and the co-evolutionary arms race between host bacteria and phage in the context of the human microbiota.
Collapse
Affiliation(s)
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
36
|
Ooi ML, Drilling AJ, Morales S, Fong S, Moraitis S, Macias-Valle L, Vreugde S, Psaltis AJ, Wormald PJ. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg 2019; 145:723-729. [PMID: 31219531 DOI: 10.1001/jamaoto.2019.1191] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Importance Staphylococcus aureus infections are associated with recalcitrant chronic rhinosinusitis (CRS). The emerging threat of multidrug-resistant S aureus infections has revived interest in bacteriophage (phage) therapy. Objective To investigate the safety, tolerability, and preliminary efficacy of ascending multiple intranasal doses of investigational phage cocktail AB-SA01 in patients with recalcitrant CRS due to S aureus. Design, Setting, and Participants This phase 1, first-in-humans, open-label clinical trial of multiple ascending doses was conducted at a single tertiary referral center from December 1, 2015, through September 30, 2016, with follow-up completed on December 31, 2016. Patients with recalcitrant CRS (aged 18-70 years) in whom surgical and medical treatment had failed and who had positive S aureus cultures sensitive to AB-SA01 were recruited. Findings were analyzed from February 2 through August 31, 2017. Interventions Three patient cohorts (3 patients/cohort) received serial doses of twice-daily intranasal irrigations with AB-SA01 at a concentration of 3 × 108 plaque-forming units (PFU) for 7 days (cohort 1), 3 × 108 PFU for 14 days (cohort 2), and 3 × 109 PFU for 14 days (cohort 3). Main Outcomes and Measures The primary study outcome was the safety and tolerability of intranasal AB-SA01. Safety observations included vital signs, physical examinations, clinical laboratory test results, and adverse events. The secondary outcome was preliminary efficacy assessed by comparing pretreatment and posttreatment microbiology results, disease-relevant endoscopic Lund-Kennedy Scores, and symptom scores using a visual analog scale and Sino-Nasal Outcome Test-22. Results All 9 participants (4 men and 5 women; median age, 45 years [interquartile range, 41.0-71.5 years]) completed the trial. Intranasal phage treatment was well tolerated, with no serious adverse events or deaths reported in any of the 3 cohorts. No change in vital signs occurred before and 0.5 and 2.0 hours after administration of AB-SA01 and at the exit visit. No changes in biochemistry were found except for 1 participant in cohort 3 who showed a decrease in blood bicarbonate levels on exit visit, with normal results of physical examination and vital signs. All biochemistry values were normalized 8 days later. No changes in temperature were recorded before, during, or after treatment. Six adverse effects were reported in 6 participants; all were classified as mild treatment-emergent adverse effects and resolved by the end of the study. Preliminary efficacy results indicated favorable outcomes across all cohorts, with 2 of 9 patients showing clinical and microbiological evidence of eradication of infection. Conclusions and Relevance Intranasal irrigation with AB-SA01 of doses to 3 × 109 PFU for 14 days was safe and well tolerated, with promising preliminary efficacy observations. Phage therapy could be an alternative to antibiotics for patients with CRS. Trial Registration http://anzctr.org.au identifier: ACTRN12616000002482.
Collapse
Affiliation(s)
- Mian Li Ooi
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia
| | - Amanda Jane Drilling
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia
| | | | - Stephanie Fong
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia
| | - Sophia Moraitis
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia
| | - Luis Macias-Valle
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia.,Department of Otolaryngology-Head and Neck Surgery, Hospital Español de México, Facultad Mexicana de Medicina Universidad La Salle, Mexico City, Mexico
| | - Sarah Vreugde
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia
| | - Alkis James Psaltis
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
37
|
Ahlgren NA, Perelman JN, Yeh YC, Fuhrman JA. Multi-year dynamics of fine-scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom-up factors. Environ Microbiol 2019; 21:2948-2963. [PMID: 31106939 DOI: 10.1111/1462-2920.14687] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/01/2022]
Abstract
Currently defined ecotypes in marine cyanobacteria Prochlorococcus and Synechococcus likely contain subpopulations that themselves are ecologically distinct. We developed and applied high-throughput sequencing for the 16S-23S rRNA internally transcribed spacer (ITS) to examine ecotype and fine-scale genotypic community dynamics for monthly surface water samples spanning 5 years at the San Pedro Ocean Time-series site. Ecotype-level structure displayed regular seasonal patterns including succession, consistent with strong forcing by seasonally varying abiotic parameters (e.g. temperature, nutrients, light). We identified tens to thousands of amplicon sequence variants (ASVs) within ecotypes, many of which exhibited distinct patterns over time, suggesting ecologically distinct populations within ecotypes. Community structure within some ecotypes exhibited regular, seasonal patterns, but not for others, indicating other more irregular processes such as phage interactions are important. Network analysis including T4-like phage genotypic data revealed distinct viral variants correlated with different groups of cyanobacterial ASVs including time-lagged predator-prey relationships. Variation partitioning analysis indicated that phage community structure more strongly explains cyanobacterial community structure at the ASV level than the abiotic environmental factors. These results support a hierarchical model whereby abiotic environmental factors more strongly shape niche partitioning at the broader ecotype level while phage interactions are more important in shaping community structure of fine-scale variants within ecotypes.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jessica N Perelman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
38
|
Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 2019; 103:2121-2131. [PMID: 30680434 DOI: 10.1007/s00253-019-09629-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents.
Collapse
|
39
|
Hoang HA, Yen MH, Ngoan VT, Nga LP, Oanh DTH. Virulent bacteriophage of Edwardsiella ictaluri isolated from kidney and liver of striped catfish Pangasianodon hypophthalmus in Vietnam. DISEASES OF AQUATIC ORGANISMS 2018; 132:49-56. [PMID: 30530930 DOI: 10.3354/dao03302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Striped catfish Pangasianodon hypophthalmus farmed in the Mekong Delta, Vietnam, represents an important contribution to Vietnamese aquaculture exports. However, these fish are affected by frequent disease outbreaks across the entire region. One of the most common infections involves white spots in the internal organs, caused by the bacterium Edwardsiella ictaluri. In this study, a virulent phage specific to E. ictaluri, designated MK7, was isolated from striped catfish kidney and liver samples and characterized. Morphological analysis indicates probable placement in the family Myoviridae with a 65 nm icosahedral head and a 147 %%CONV_ERR%% 19 nm tail. A double-stranded DNA genome of approximately 34 kb was predicted by restriction fragment analysis following digestion with SmaI. The adsorption affinity (ka) of the MK7 phage was estimated as 1.6 %%CONV_ERR%% 10-8 ml CFU-1 min-1, and according to a 1-step growth curve, its latent period and burst size were ~45 min and ~55 phage particles per infected host cell, respectively. Of the 17 bacterial strains tested, MK7 only infected E. ictaluri, although other species of Edwardsiella were not tested. E. ictaluri was also challenged in vitro, in both broth and water from a striped catfish pond and was inactivated by MK7 for 15 h in broth and 51 h in pond water. Thus, initial characterization of phage MK7 indicates its potential utility as a biotherapeutic agent against E. ictaluri infection in striped catfish. This is the first report of a lytic phage specific to an important striped catfish pathogen.
Collapse
Affiliation(s)
- Hoang A Hoang
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Vietnam National University - Ho Chi Minh City (VNU-HCM), 268 Ly Thuong Kiet St., District 10, HCMC, Vietnam
| | | | | | | | | |
Collapse
|
40
|
Jurač K, Nabergoj D, Podgornik A. Bacteriophage production processes. Appl Microbiol Biotechnol 2018; 103:685-694. [DOI: 10.1007/s00253-018-9527-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
|
41
|
The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infect 2018; 7:168. [PMID: 30302018 PMCID: PMC6177407 DOI: 10.1038/s41426-018-0169-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Abstract
Faced with the crisis of multidrug-resistant bacteria, bacteriophages, viruses that infect and replicate within bacteria, have been reported to have both beneficial and detrimental effects with respect to disease management. Bacteriophages (phages) have important ecological and evolutionary impacts on their bacterial hosts and have been associated with therapeutic use to kill bacterial pathogens, but can lead to the transmission of antibiotic resistance. Although the process known as transduction has been reported for many bacterial species by classic and modern genetic approaches, its contribution to the spread of antibiotic resistance in nature remains unclear. In addition, detailed molecular studies have identified phages residing in bacterial genomes, revealing unexpected interactions between phages and their bacterial hosts. Importantly, antibiotics can induce the production of phages and phage-encoded products, disseminating these viruses and virulence-related genes, which have dangerous consequences for disease severity. These unwanted side-effects of antibiotics cast doubt on the suitability of some antimicrobial treatments and may require new strategies to prevent and limit the selection for virulence. Foremost among these treatments is phage therapy, which could be used to treat many bacterial infectious diseases and confront the pressing problem of antibiotic resistance in pathogenic bacteria. This review discusses the interactions between bacteriophages, antibiotics, and bacteria and provides an integrated perspective that aims to inspire the development of successful antibacterial therapies.
Collapse
|
42
|
Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039. Appl Microbiol Biotechnol 2018; 102:8963-8977. [DOI: 10.1007/s00253-018-9269-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 02/01/2023]
|
43
|
Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018; 10:E351. [PMID: 29966329 PMCID: PMC6070868 DOI: 10.3390/v10070351] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Bacteriophage (phage) therapy, i.e., the use of viruses that infect bacteria as antimicrobial agents, is a promising alternative to conventional antibiotics. Indeed, resistance to antibiotics has become a major public health problem after decades of extensive usage. However, one of the main questions regarding phage therapy is the possible rapid emergence of phage-resistant bacterial variants, which could impede favourable treatment outcomes. Experimental data has shown that phage-resistant variants occurred in up to 80% of studies targeting the intestinal milieu and 50% of studies using sepsis models. Phage-resistant variants have also been observed in human studies, as described in three out of four clinical trials that recorded the emergence of phage resistance. On the other hand, recent animal studies suggest that bacterial mutations that confer phage-resistance may result in fitness costs in the resistant bacterium, which, in turn, could benefit the host. Thus, phage resistance should not be underestimated and efforts should be made to develop methodologies for monitoring and preventing it. Moreover, understanding and taking advantage of the resistance-induced fitness costs in bacterial pathogens is a potentially promising avenue.
Collapse
Affiliation(s)
- Frank Oechslin
- Department of Fundamental Microbiology (DMF), University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Parallel Evolution of Host-Attachment Proteins in Phage PP01 Populations Adapting to Escherichia coli O157:H7. Pharmaceuticals (Basel) 2018; 11:ph11020060. [PMID: 29925767 PMCID: PMC6027323 DOI: 10.3390/ph11020060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of antibiotic resistance has sparked interest in phage therapy, which uses virulent phages as antibacterial agents. Bacteriophage PP01 has been studied for potential bio-control of Escherichia coli O157:H7, its natural host, but in the laboratory, PP01 can be inefficient at killing this bacterium. Thus, the goal of this study was to improve the therapeutic potential of PP01 through short-term experimental evolution. Four replicate populations of PP01 were serially passaged 21 times on non-evolving E. coli O157:H7 with the prediction that the evolved phage populations would adsorb faster and more efficiently kill the host bacteria. Dead-cell adsorption assays and in vitro killing assays confirmed that evolved viruses improved their adsorption ability on E. coli O157:H7, and adapted to kill host bacteria faster than the wildtype ancestor. Sequencing of candidate tail-fiber genes revealed that the phage populations evolved in parallel; the lineages shared two point mutations in gp38 that encodes a host recognition protein, and surprisingly shared a ~600 bp deletion in gp37 that encodes the distal tail fibers. In contrast, no mutations were observed in the gp12 gene encoding PP01’s short tail fibers. We discuss the functional role of the observed mutations, including the possible adaptive role of the evolved deletions. This study demonstrates how experimental evolution can be used to select for viral traits that improve phage attack of an important bacterial pathogen, and that the molecular targets of selection include loci contributing to cell attachment and phage virulence.
Collapse
|
45
|
Cortez MH. Genetic variation determines which feedbacks drive and alter predator-prey eco-evolutionary cycles. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1304] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael H. Cortez
- Department of Mathematics and Statistics; Utah State University; Logan Utah 84322 USA
| |
Collapse
|
46
|
Abstract
The optimal conditions for the production of virulent bacteriophages in bioreactors can vary greatly depending on the host-bacteriophage system used. We present a general method for the production of virulent bacteriophages in bioreactors that can be adapted to many host-bacteriophage systems and various operating conditions (reactor volume, medium composition, temperature, etc.). The procedures detail how to establish optimal initial infection conditions (infection load and initial multiplicity of infection (MOI)), prepare the host pre-culture and bioreactor, operate the bioreactor, and harvest the bacteriophage product. Batch operation is detailed but a short discussion addresses other modes of operation, namely two-stage continuous bioreactors and two-stage cycling bioreactors.
Collapse
Affiliation(s)
- Maryam Agboluaje
- Chemical and Materials Engineering, University of Alberta, 12th floor Donadeo ICE Building, 9211 116 St NW, Edmonton, AB, Canada, T5M 0L5
| | - Dominic Sauvageau
- Chemical and Materials Engineering, University of Alberta, 12th floor Donadeo ICE Building, 9211 116 St NW, Edmonton, AB, Canada, T5M 0L5.
| |
Collapse
|
47
|
Coevolution between Staphylococcus aureus isolated from mastitic milk and its lytic bacteriophage ΦSA012 in batch co-culture with serial transfer. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Kloesener MH, Bose J, Schulte RD. Experimental evolution with a multicellular host causes diversification within and between microbial parasite populations-Differences in emerging phenotypes of two different parasite strains. Evolution 2017; 71:2194-2205. [PMID: 28714591 DOI: 10.1111/evo.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Host-parasite coevolution is predicted to have complex evolutionary consequences, potentially leading to the emergence of genetic and phenotypic diversity for both antagonists. However, little is known about variation in phenotypic responses to coevolution between different parasite strains exposed to the same experimental conditions. We infected Caenorhabditis elegans with one of two strains of Bacillus thuringiensis and either allowed the host and the parasite to experimentally coevolve (coevolution treatment) or allowed only the parasite to adapt to the host (one-sided parasite adaptation). By isolating single parasite clones from evolved populations, we found phenotypic diversification of the ancestral strain into distinct clones, which varied in virulence toward ancestral hosts and competitive ability against other parasite genotypes. Parasite phenotypes differed remarkably not only between the two strains, but also between and within different replicate populations, indicating diversification of the clonal population caused by selection. This study highlights that the evolutionary selection pressure mediated by a multicellular host causes phenotypic diversification, but not necessarily with the same phenotypic outcome for different parasite strains.
Collapse
Affiliation(s)
- Michaela H Kloesener
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| | - Joy Bose
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany.,Evolutionary Biology Laboratory, Evolutionary and Integrative Biology Unit (EIBU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India
| | - Rebecca D Schulte
- Department of Behavioural Biology, University of Osnabrueck, 49076, Osnabrueck, Germany
| |
Collapse
|
49
|
Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME JOURNAL 2017; 11:1836-1851. [PMID: 28440802 PMCID: PMC5520035 DOI: 10.1038/ismej.2017.47] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023]
Abstract
Phages and hosts coexist in nature with a high degree of population diversity. This is often explained through coevolutionary models, such as the arms race or density-dependent fluctuating selection, which differ in assumptions regarding the emergence of phage mutants that overcome host resistance. Previously, resistance in the abundant marine cyanobacterium, Prochlorococcus, was found to occur frequently. However, little is known about the ability of phages to overcome this resistance. Here we report that, in some cases, T7-like cyanophage mutants emerge to infect resistant Prochlorococcus strains. These resistance-breaking phages retained the ability to infect the wild-type host. However, fitness of the mutant phages differed on the two hosts. Furthermore, in one case, resistance-breaking was accompanied by costs of decreased fitness on the wild-type host and decreased adsorption specificity, relative to the wild-type phage. In two other cases, fitness on the wild-type host increased. Whole-genome sequencing revealed mutations in probable tail-related genes. These were highly diverse in isolates and natural populations of T7-like cyanophages, suggesting that antagonistic coevolution enhances phage genome diversity. Intriguingly, most interactions did not yield resistance-breaking phages. Thus, resistance mutations raise genetic barriers to continuous arms race cycles and are indicative of an inherent asymmetry in coevolutionary capacity, with hosts having the advantage. Nevertheless, phages coexist with hosts, which we propose relies on combined, parallel action of a limited arms race, fluctuating selection and passive host-switching within diverse communities. Together, these processes generate a constantly changing network of interactions, enabling stable coexistence between hosts and phages in nature.
Collapse
|
50
|
Bacteria-Bacteriophage Coevolution in the Human Gut: Implications for Microbial Diversity and Functionality. Trends Microbiol 2017; 25:614-623. [PMID: 28342597 DOI: 10.1016/j.tim.2017.02.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 02/08/2023]
Abstract
Antagonistic coevolution (AC) between bacteria and bacteriophages plays a key role in driving and maintaining microbial diversity. Consequently, AC is predicted to affect all levels of biological organisation, from the individual to ecosystem scales. Nonetheless, we know nothing about bacteria-bacteriophage AC in perhaps the most important and clinically relevant microbial ecosystem known to humankind - the human gut microbiome. In this opinion piece I review current research on bacteria-phage AC in in vitro and natural populations of microbes. I then examine the evidence and discuss the potential role of AC in driving observed patterns of intra- and interindividual variation in the gut microbiome together with detailing the potential functional consequences of such AC-driven microbial variation for human health and disease.
Collapse
|