1
|
Juliet R, Loganathan A, Neeravi A, Bakthavatchalam YD, Veeraraghavan B, Manohar P, Nachimuthu R. Characterization of Salmonella phage of the genus Kayfunavirus isolated from sewage infecting clinical strains of Salmonella enterica. Front Microbiol 2024; 15:1391777. [PMID: 38887719 PMCID: PMC11180730 DOI: 10.3389/fmicb.2024.1391777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
The emergence of multi-drug resistance in Salmonella, causing food-borne infections, is a significant issue. With over 2,600 serovars in in Salmonella sp., it is crucial to identify specific solutions for each serovar. Phage therapy serves as an alternate treatment option. In this study, vB_SalP_792 phage was obtained from sewage, forming plaques in eight out of 13 tested clinical S. enterica isolates. Transmission electron microscopy (TEM) examination revealed a T7-like morphotype. The phage was characterized by its stability, life cycle, antibiofilm, and lytic ability in food sources. The phage remains stable throughout a range of temperatures (-20 to 70°C), pH levels (3-11), and in chloroform and ether. It also exhibited lytic activity within a range of MOIs from 0.0001 to 100. The life cycle revealed that 95% of the phages attached to their host within 3 min, followed by a 5-min latent period, resulting in a 50 PFU/cell burst size. The vB_SalP_792 phage genome has a dsDNA with a length of 37,281 bp and a GC content of 51%. There are 42 coding sequences (CDS), with 24 having putative functions and no resistance or virulence-related genes. The vB_SalP_792 phage significantly reduced the bacterial load in the established biofilms and also in egg whites. Thus, vB_SalP_792 phage can serve as an effective biocontrol agent for preventing Salmonella infections in food, and its potent lytic activity against the clinical isolates of S. enterica, sets out vB_SalP_792 phage as a successful candidate for future in vivo studies and therapeutical application against drug-resistant Salmonella infections.
Collapse
Affiliation(s)
- Ramya Juliet
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Archana Loganathan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | | | - Prasanth Manohar
- Department of Biochemistry and Biophysics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
- Center for Phage Technology, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
| | - Ramesh Nachimuthu
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Zhang X, Tang M, Zhou Q, Lu J, Zhang H, Tang X, Ma L, Zhang J, Chen D, Gao Y. A broad host phage, CP6, for combating multidrug-resistant Campylobacter prevalent in poultry meat. Poult Sci 2024; 103:103548. [PMID: 38442560 DOI: 10.1016/j.psj.2024.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Junxian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiujun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Lina Ma
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Jing Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Dawei Chen
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Yushi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
3
|
Choi Y, Lee W, Kwon JG, Kang A, Kwak MJ, Eor JY, Kim Y. The current state of phage therapy in livestock and companion animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:57-78. [PMID: 38618037 PMCID: PMC11007465 DOI: 10.5187/jast.2024.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 04/16/2024]
Abstract
In a global context, bacterial diseases caused by pathogenic bacteria have inflicted sustained damage on both humans and animals. Although antibiotics initially appeared to offer an easy treatment for most bacterial infections, the recent rise of multidrug-resistant bacteria, stemming from antibiotic misuse, has prompted regulatory measures to control antibiotic usage. Consequently, various alternatives to antibiotics are being explored, with a particular focus on bacteriophage (phage) therapy for treating bacterial diseases in animals. Animals are broadly categorized into livestock, closely associated with human dietary habits, and companion animals, which have attracted increasing attention. This study highlights phage therapy cases targeting prominent bacterial strains in various animals. In recent years, research on bacteriophages has gained considerable attention, suggesting a promising avenue for developing alternative substances to antibiotics, particularly crucial for addressing challenging bacterial diseases in the future.
Collapse
Affiliation(s)
- Youbin Choi
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Woongji Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Joon-Gi Kwon
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Anna Kang
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Ju-Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
4
|
Jordá J, Lorenzo-Rebenaque L, Montoro-Dasi L, Marco-Fuertes A, Vega S, Marin C. Phage-Based Biosanitation Strategies for Minimizing Persistent Salmonella and Campylobacter Bacteria in Poultry. Animals (Basel) 2023; 13:3826. [PMID: 38136863 PMCID: PMC10740442 DOI: 10.3390/ani13243826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary "green" technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy's effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.
Collapse
Affiliation(s)
- Jaume Jordá
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| |
Collapse
|
5
|
Liu S, Quek SY, Huang K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit Rev Food Sci Nutr 2023; 64:12574-12598. [PMID: 37698066 DOI: 10.1080/10408398.2023.2254837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Wang X, Tang J, Dang W, Xie Z, Zhang F, Hao X, Sun S, Liu X, Luo Y, Li M, Gu Y, Wang Y, Chen Q, Shen X, Xu L. Isolation and Characterization of Three Pseudomonas aeruginosa Viruses with Therapeutic Potential. Microbiol Spectr 2023; 11:e0463622. [PMID: 37125933 PMCID: PMC10269630 DOI: 10.1128/spectrum.04636-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
As one of the most common pathogens of opportunistic and hospital-acquired infections, Pseudomonas aeruginosa is associated with resistance to diverse antibiotics, which represents a significant challenge to current treatment modalities. Phage therapy is considered a promising alternative to conventional antimicrobials. The characterization and isolation of new bacteriophages and the concurrent evaluation of their therapeutic potential are fundamental for phage therapy. In this study, we employed an enrichment method and a double-layer agar overlay to isolate bacteriophages that infect P. aeruginosa strains PAO1 and PA14. Three phages (named PA_LZ01, PA_LZ02, and PA_LZ03) were isolated and showed icosahedral heads and contractile tails. Following full-genome sequencing, we found that phage PA_LZ01 contained a genome of 65,367 bp in size and harbored 90 predicted open reading frames (ORFs), phage PA_LZ02 contained a genome of 57,243 bp in size and harbored 75 predicted ORFs, and phage PA_LZ03 contained a genome of 57,367 bp in size and carried 77 predicted ORFs. Further comparative analysis showed that phage PA_LZ01 belonged to the genus Pbunavirus genus, phage PA_LZ02 belonged to the genus Pamexvirus, and phage PA_LZ03 belonged to the family Mesyanzhinovviridae. Next, we demonstrated that these phages were rather stable at different temperatures and pHs. One-step growth curves showed that the burst size of PA_LZ01 was 15 PFU/infected cell, and that of PA_LZ02 was 50 PFU/infected cell, while the titer of PA_LZ03 was not elevated. Similarly, the biofilm clearance capacities of PA_LZ01 and PA_LZ02 were also higher than that of PA_LZ03. Therapeutically, PA_LZ01 and PA_LZ02 treatment led to decreased bacterial loads and inflammatory responses in a mouse model. In conclusion, we isolated three phages that can infect P. aeruginosa, which were stable in different environments and could reduce bacterial biofilms, suggesting their potential as promising candidates to treat P. aeruginosa infections. IMPORTANCE Phage therapy is a promising therapeutic option for treating bacterial infections that do not respond to common antimicrobial treatments. Biofilm-mediated infections are particularly difficult to treat with traditional antibiotics, and the emergence of antibiotic-resistant strains has further complicated the situation. Pseudomonas aeruginosa is a bacterial pathogen that causes chronic infections and is highly resistant to many antibiotics. The library of phages that target P. aeruginosa is expanding, and the isolation of new bacteriophages is constantly required. In this study, three bacteriophages that could infect P. aeruginosa were isolated, and their biological characteristics were investigated. In particular, the isolated phages are capable of reducing biofilms formed by P. aeruginosa. Further analysis indicates that treatment with PA_LZ01 and PA_LZ02 phages reduces bacterial loads and inflammatory responses in vivo. This study isolated and characterized bacteriophages that could infect P. aeruginosa, which offers a resource for phage therapy.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingjing Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuhua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanchao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Natural Killers: Opportunities and Challenges for the Use of Bacteriophages in Microbial Food Safety from the One Health Perspective. Foods 2023; 12:foods12030552. [PMID: 36766081 PMCID: PMC9914193 DOI: 10.3390/foods12030552] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Ingestion of food or water contaminated with pathogenic bacteria may cause serious diseases. The One Health approach may help to ensure food safety by anticipating, preventing, detecting, and controlling diseases that spread between animals, humans, and the environment. This concept pays special attention to the increasing spread and dissemination of antibiotic-resistant bacteria, which are considered one of the most important environment-related human and animal health hazards. In this context, the development of innovative, versatile, and effective alternatives to control bacterial infections in order to assure comprehensive food microbial safety is becoming an urgent issue. Bacteriophages (phages), viruses of bacteria, have gained significance in the last years due to the request for new effective antimicrobials for the treatment of bacterial diseases, along with many other applications, including biotechnology and food safety. This manuscript reviews the application of phages in order to prevent food- and water-borne diseases from a One Health perspective. Regarding the necessary decrease in the use of antibiotics, results taken from the literature indicate that phages are also promising tools to help to address this issue. To assist future phage-based real applications, the pending issues and main challenges to be addressed shortly by future studies are also taken into account.
Collapse
|
8
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Abbas RZ, Alsayeqh AF, Aqib AI. Role of Bacteriophages for Optimized Health and Production of Poultry. Animals (Basel) 2022; 12:ani12233378. [PMID: 36496899 PMCID: PMC9736383 DOI: 10.3390/ani12233378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The poultry sector is facing infections from Salmonella, Campylobacter, Listeria and Staphylococcus spp., and Escherichia coli, that have developed multidrug resistance aptitude. Antibiotics cause disturbances in the balance of normal microbiota leading to dysbiosis, immunosuppression, and the development of secondary infections. Bacteriophages have been reported to lower the colonization of Salmonella and Campylobacter in poultry. The specificity of bacteriophages is greater than that of antibiotics and can be used as a cocktail for enhanced antibacterial activity. Specie-specific phages have been prepared, e.g., Staphylophage (used against Staphylococcus bacteria) that specifically eliminate bacterial pathogens. Bacteriophage products, e.g., BacWashTM and Ecolicide PX have been developed as antiseptics and disinfectants for effective biosecurity and biosafety measures. The success of phage therapy is influenced by time to use, the amount used, the delivery mechanism, and combination therapy with other therapeutics. It is a need of time to build a comprehensive understanding of the use of bacteriophages in poultry production. The current review thus focuses on mechanisms of bacteriophages against poultry pathogens, their applications in various therapeutics, impacts on the economy, and current challenges.
Collapse
Affiliation(s)
- Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence:
| | - Abdullah F Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| |
Collapse
|
10
|
Kanaan MHG, Tarek AM. Innovative modern bio-preservation module of meat by lytic bacteriophages against emergent contaminants. Open Vet J 2022; 12:1018-1026. [PMID: 36650867 PMCID: PMC9805770 DOI: 10.5455/ovj.2022.v12.i6.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/20/2022] [Indexed: 12/29/2022] Open
Abstract
Meat is a perishable product that has a short shelf life and can be ruined easily if the proper preservation measures are not employed. It is difficult to control all potential sources of microbial contamination due to the complexity of the habitats present during the pre-harvest, harvest, and post-harvest stages of the food supply chain. This is due to the fact that contamination can occur at any stage. As a consequence of this, the food industry is perpetually at risk of being tainted by microorganisms, notwithstanding the progress that has been made in contemporary technology. Antibiotic usage has exacerbated the problem, leading to the emergence of infections transmitted by antibiotic-resistant foods. It's critical to work on novel ways to reduce microbial contamination in meat and in the meat processing environment. Therefore, to assure the wholesomeness of the finished product, several control procedures must be adopted throughout the food manufacturing and processing chain. Because of this, bacteriophages and the derivatives of these viruses have arisen as an innovative, significant, and risk-free option for the prevention, treatment, and/or elimination of such pollutants in a variety of foodstuff handling environments. So, the focus of this review was on the future potential of integrated phage, modified phage, and their derivatives as antimicrobials in the traditional farm-to-table setting, which encompasses areas like primary production, post-harvest processing, bio-sanitation, and bio-detection. In addition to presenting certain safety concerns. Also, this paper discusses how to assure the safe and successful use of bacteriophages in the future.
Collapse
Affiliation(s)
| | - Ahmad M. Tarek
- Department of Crime Evidence, Institute of Medical Technology Al-Mansour, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
11
|
Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Mota-Gutierrez J, Lis L, Lasagabaster A, Nafarrate I, Ferrocino I, Cocolin L, Rantsiou K. Campylobacter spp. prevalence and mitigation strategies in the broiler production chain. Food Microbiol 2022; 104:103998. [DOI: 10.1016/j.fm.2022.103998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
|
13
|
Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Application of Bacteriophages to Limit Campylobacter in Poultry Production. Front Microbiol 2022; 12:458721. [PMID: 35069459 PMCID: PMC8766974 DOI: 10.3389/fmicb.2021.458721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is a major foodborne pathogen with over a million United States cases a year and is typically acquired through the consumption of poultry products. The common occurrence of Campylobacter as a member of the poultry gastrointestinal tract microbial community remains a challenge for optimizing intervention strategies. Simultaneously, increasing demand for antibiotic-free products has led to the development of several alternative control measures both at the farm and in processing operations. Bacteriophages administered to reduce foodborne pathogens are one of the alternatives that have received renewed interest. Campylobacter phages have been isolated from both conventionally and organically raised poultry. Isolated and cultivated Campylobacter bacteriophages have been used as an intervention in live birds to target colonized Campylobacter in the gastrointestinal tract. Application of Campylobacter phages to poultry carcasses has also been explored as a strategy to reduce Campylobacter levels during poultry processing. This review will focus on the biology and ecology of Campylobacter bacteriophages in poultry production followed by discussion on current and potential applications as an intervention strategy to reduce Campylobacter occurrence in poultry production.
Collapse
Affiliation(s)
- Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Micciche
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
14
|
Steffan SM, Shakeri G, Hammerl JA, Kehrenberg C, Peh E, Rohde M, Jackel C, Plotz M, Kittler S. Isolation and Characterization of Group III Campylobacter jejuni-Specific Bacteriophages From Germany and Their Suitability for Use in Food Production. Front Microbiol 2021; 12:761223. [PMID: 34956123 PMCID: PMC8696038 DOI: 10.3389/fmicb.2021.761223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter spp. are a major cause of bacterial foodborne diarrhea worldwide. While thermophilic Campylobacter species asymptomatically colonize the intestines of chickens, most human infections in industrial countries have been attributed to consumption of chicken meat or cross-contaminated products. Bacteriophages (phages) are natural predators of bacteria and their use at different stages of the food production chain has been shown to reduce the public health burden of human campylobacteriosis. However, regarding regulatory issues, the use of lytic phages in food is still under discussion and evaluation. This study aims to identify lytic phages suitable for reducing Campylobacter bacteria along the food production chain. Therefore, four of 19 recently recovered phages were further characterized in detail for their lytic efficacy against different Campylobacter field strains and their suitability under food production settings at different temperatures and pH values. Based on the results of this study, the phages vB_CjM-LmqsCP1-4 and vB_CjM-LmqsCP1-5 appear to be promising candidates for the reduction of Campylobacter jejuni in food production settings.
Collapse
Affiliation(s)
- Severin Michael Steffan
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Golshan Shakeri
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Claudia Jackel
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Madeleine Plotz
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
15
|
Barrow PA. Spotlight on avian pathology: Salmonella - new wine and old bottles. Avian Pathol 2021; 50:455-457. [PMID: 34495794 DOI: 10.1080/03079457.2021.1976726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Salmonella enterica remains an important avian and human pathogen. Control has been effective in some countries but the hygiene and biosecurity required may not be possible everywhere. Antibiotic resistance is an increasing problem for both veterinary and human medicine. This short review commentary highlights existing and potential new control measures including legislation, hygiene and biosecurity, use of live and inactivated vaccines, and bacteriophages to tackle intestinal colonization, reduce the prevalence of antibiotic resistance and improve carcass decontamination.
Collapse
Affiliation(s)
- P A Barrow
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
16
|
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production. Appl Microbiol Biotechnol 2021; 105:8575-8592. [PMID: 34694447 DOI: 10.1007/s00253-021-11509-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.
Collapse
|
17
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
The lytic siphophage vB_StyS-LmqsSP1 reduces Salmonella Typhimurium isolates on chicken skin. Appl Environ Microbiol 2021; 87:e0142421. [PMID: 34586906 DOI: 10.1128/aem.01424-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phage-based biocontrol of bacteria is considered as a natural approach to combat food-borne pathogens. Salmonella spp. are notifiable and highly prevalent pathogens that cause foodborne diseases globally. In this study, six bacteriophages were isolated and further characterized that infect food-derived Salmonella isolates from different meat sources. The siphovirus VB_StyS-LmqsSP1, which was isolated from a cow´s nasal swab, was further subjected to in-depth characterization. Phage-host interaction investigations in liquid medium showed that vB_StyS-LmqsSP1 can suppress the growth of Salmonella spp. isolates at 37°C for ten hours and reduce the bacterial titer at 4°C significantly. A reduction of 1.4 to 3 log units was observed in investigations with two food-derived Salmonella isolates and one reference strain under cooling conditions using MOIs of 104 and 105. Phage application on chicken skin resulted in a reduction of about 2 log units in the tested Salmonella isolates from the first three hours throughout a one-week experiment at cooling temperature and an MOI of 105. The one-step growth curve analysis using vB_StyS-LmqsSP1 demonstrated a 60-min latent period and a burst size of 50-61 PFU/infected cell for all tested hosts. Furthermore, the genome of the phage was determined to be free from genes causing undesired effects. Based on the phenotypic and genotypic properties, LmqsSP1 was assigned as a promising candidate for biocontrol of Salmonella Typhimurium in food. Importance: Salmonella enterica is one of the major global causes of foodborne enteritis in humans. The use of chemical sanitizers for reducing bacterial pathogens in the food chain can result in the spread of bacterial resistance. Targeted and clean label intervention strategies can reduce Salmonella contamination in food. The significance of our research demonstrates the suitability of a bacteriophage (vB_StyS-LmqsSP1) for biocontrol of Salmonella enterica serovar Typhimurium on poultry due to its lytic efficacy under conditions prevailing in food production environments.
Collapse
|
19
|
Kim J, Park H, Ryu S, Jeon B. Inhibition of Antimicrobial-Resistant Escherichia coli Using a Broad Host Range Phage Cocktail Targeting Various Bacterial Phylogenetic Groups. Front Microbiol 2021; 12:699630. [PMID: 34512575 PMCID: PMC8425383 DOI: 10.3389/fmicb.2021.699630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial-resistant (AMR) commensal Escherichia coli is a major reservoir that disseminates antimicrobial resistance to humans through the consumption of contaminated foods, such as retail poultry products. This study aimed to control AMR E. coli on retail chicken using a broad host range phage cocktail. Five phages (JEP1, 4, 6, 7, and 8) were isolated and used to construct a phage cocktail after testing infectivity on 67 AMR E. coli strains isolated from retail chicken. Transmission electron microscopic analysis revealed that the five phages belong to the Myoviridae family. The phage genomes had various sizes ranging from 39 to 170 kb and did not possess any genes associated with antimicrobial resistance and virulence. Interestingly, each phage exhibited different levels of infection against AMR E. coli strains depending on the bacterial phylogenetic group. A phage cocktail consisting of the five phages was able to infect AMR E. coli in various phylogenetic groups and inhibited 91.0% (61/67) of AMR E. coli strains used in this study. Furthermore, the phage cocktail was effective in inhibiting E. coli on chicken at refrigeration temperatures. The treatment of artificially contaminated raw chicken skin with the phage cocktail rapidly reduced the viable counts of AMR E. coli by approximately 3 log units within 3 h, and the reduction was maintained throughout the experiment without developing resistance to phage infection. These results suggest that phages can be used as a biocontrol agent to inhibit AMR commensal E. coli on raw chicken.
Collapse
Affiliation(s)
- Jinshil Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Haejoon Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Byeonghwa Jeon
- Divison of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Ramos-Vivas J, Elexpuru-Zabaleta M, Samano ML, Barrera AP, Forbes-Hernández TY, Giampieri F, Battino M. Phages and Enzybiotics in Food Biopreservation. Molecules 2021; 26:molecules26175138. [PMID: 34500572 PMCID: PMC8433972 DOI: 10.3390/molecules26175138] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Presently, biopreservation through protective bacterial cultures and their antimicrobial products or using antibacterial compounds derived from plants are proposed as feasible strategies to maintain the long shelf-life of products. Another emerging category of food biopreservatives are bacteriophages or their antibacterial enzymes called "phage lysins" or "enzybiotics", which can be used directly as antibacterial agents due to their ability to act on the membranes of bacteria and destroy them. Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly because they have a practically unique host range that gives them great specificity. In addition to their potential ability to specifically control strains of pathogenic bacteria, their use does not generate a negative environmental impact as in the case of antibiotics. Both phages and their enzymes can favor a reduction in antibiotic use, which is desirable given the alarming increase in resistance to antibiotics used not only in human medicine but also in veterinary medicine, agriculture, and in general all processes of manufacturing, preservation, and distribution of food. We present here an overview of the scientific background of phages and enzybiotics in the food industry, as well as food applications of these biopreservatives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
| | - María Luisa Samano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - Alina Pascual Barrera
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | | | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| |
Collapse
|
21
|
Crippen CS, Zhou B, Andresen S, Patry RT, Muszyński A, Parker CT, Cooper KK, Szymanski CM. RNA and Sugars, Unique Properties of Bacteriophages Infecting Multidrug Resistant Acinetobacter radioresistens Strain LH6. Viruses 2021; 13:1652. [PMID: 34452516 PMCID: PMC8402811 DOI: 10.3390/v13081652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages (phages) are predicted to be the most ubiquitous biological entity on earth, and yet, there are still vast knowledge gaps in our understanding of phage diversity and phage-host interactions. Approximately one hundred Acinetobacter-infecting DNA viruses have been identified, and in this report, we describe eight more. We isolated two typical dsDNA lytic podoviruses (CAP1-2), five unique dsRNA lytic cystoviruses (CAP3-7), and one dsDNA lysogenic siphovirus (SLAP1), all capable of infecting the multidrug resistant isolate Acinetobacter radioresistens LH6. Using transmission electron microscopy, bacterial mutagenesis, phage infectivity assays, carbohydrate staining, mass-spectrometry, genomic sequencing, and comparative studies, we further characterized these phages. Mutation of the LH6 initiating glycosyltransferase homolog, PglC, necessary for both O-linked glycoprotein and capsular polysaccharide (CPS) biosynthesis, prevented infection by the lytic podovirus CAP1, while mutation of the pilin protein, PilA, prevented infection by CAP3, representing the lytic cystoviruses. Genome sequencing of the three dsRNA segments of the isolated cystoviruses revealed low levels of homology, but conserved synteny with the only other reported cystoviruses that infect Pseudomonas species. In Pseudomonas, the cystoviruses are known to be enveloped phages surrounding their capsids with the inner membrane from the infected host. To characterize any membrane-associated glycoconjugates in the CAP3 cystovirus, carbohydrate staining was used to identify a low molecular weight lipid-linked glycoconjugate subsequently identified by mutagenesis and mass-spectrometry as bacterial lipooligosaccharide. Together, this study demonstrates the isolation of new Acinetobacter-infecting phages and the determination of their cell receptors. Further, we describe the genomes of a new genus of Cystoviruses and perform an initial characterization of membrane-associated glycoconjugates.
Collapse
Affiliation(s)
- Clay S. Crippen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Bibi Zhou
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Silke Andresen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Robert T. Patry
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
22
|
D’Angelantonio D, Scattolini S, Boni A, Neri D, Di Serafino G, Connerton P, Connerton I, Pomilio F, Di Giannatale E, Migliorati G, Aprea G. Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter. Viruses 2021; 13:v13081428. [PMID: 34452294 PMCID: PMC8402772 DOI: 10.3390/v13081428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Campylobacteriosis is the most commonly reported gastrointestinal disease in humans. Campybacter jejuni is the main cause of the infection, and bacterial colonization in broiler chickens is widespread and difficult to prevent, leading to high risk of occurrence in broiler meat. Phage therapy represents an alternative strategy to control Campylobacter in poultry. The aim of this work was to assess the efficacy of two field-isolated bacteriophages against experimental infections with an anti-microbial resistant (AMR) Campylobacter jejuni strain. A two-step phage application was tested according to a specific combination between chickens’ rearing time and specific multiplicities of infections (MOIs), in order to reduce the Campylobacter load in the animals at slaughtering and to limit the development of phage-resistant mutants. In particular, 75 broilers were divided into three groups (A, B and C), and phages were administered to animals of groups B and C at day 38 (Φ 16-izsam) and 39 (Φ 7-izsam) at MOI 0.1 (group B) and 1 (group C). All broilers were euthanized at day 40, and Campylobacter jejuni was enumerated in cecal contents. Reductions in Campylobacter counts were statistically significant in both group B (1 log10 colony forming units (cfu)/gram (gr)) and group C (2 log10 cfu/gr), compared to the control group. Our findings provide evidence about the ability of phage therapy to reduce the Campylobacter load in poultry before slaughtering, also associated with anti-microbial resistance pattern.
Collapse
Affiliation(s)
- Daniela D’Angelantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Arianna Boni
- Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Diana Neri
- Local Health Unit of Ferrara (USL Ferrara), 44121 Ferrara, Italy;
| | | | - Philippa Connerton
- Division of Food Science, School of Bioscience, The University of Nottingham, Nottingham LE12 5RD, UK; (P.C.); (I.C.)
| | - Ian Connerton
- Division of Food Science, School of Bioscience, The University of Nottingham, Nottingham LE12 5RD, UK; (P.C.); (I.C.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
- Correspondence: ; Tel.: +39-0861-33-2-469
| |
Collapse
|
23
|
Kittler S, Steffan S, Peh E, Plötz M. Phage Biocontrol of Campylobacter: A One Health Approach. Curr Top Microbiol Immunol 2021; 431:127-168. [PMID: 33620651 DOI: 10.1007/978-3-030-65481-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human infections by Campylobacter species are among the most reported bacterial gastrointestinal diseases in the European Union and worldwide with severe outcomes in rare cases. Considering the transmission routes and farm animal reservoirs of these zoonotic pathogens, a comprehensive One Health approach will be necessary to reduce human infection rates. Bacteriophages are viruses that specifically infect certain bacterial genera, species, strains or isolates. Multiple studies have demonstrated the general capacity of phage treatments to reduce Campylobacter loads in the chicken intestine. However, phage treatments are not yet approved for extensive use in the agro-food industry in Europe. Technical inconvenience is mainly related to the efficacy of phages, depending on the optimal choice of phages and their combination, as well as application route, concentration and timing. Additionally, regulatory uncertainties have been a major concern for investment in commercial phage-based products. This review addresses the question as to how phages can be put into practice and can help to solve the issue of human campylobacteriosis in a sustainable One Health approach. By compiling the reported findings from the literature in a standardized manner, we enabled inter-experimental comparisons to increase our understanding of phage infection in Campylobacter spp. and practical on-farm studies. Further, we address some of the hurdles that still must be overcome before this new methodology can be adapted on an industrial scale. We envisage that phage treatment can become an integrated and standardized part of a multi-hurdle anti-bacterial strategy in food production. The last part of this chapter deals with some of the issues raised by legal authorities, bringing together current knowledge on Campylobacter-specific phages and the biosafety requirements for approval of phage treatment in the food industry.
Collapse
Affiliation(s)
- Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Severin Steffan
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| |
Collapse
|
24
|
Isolation, host specificity and genetic characterization of Campylobacter specific bacteriophages from poultry and swine sources. Food Microbiol 2021; 97:103742. [PMID: 33653521 DOI: 10.1016/j.fm.2021.103742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
The isolation and characterization of 304 Campylobacter specific bacteriophage isolates from broiler and swine sources is reported in this study. Genome size characterization determined by PFGE classified these isolates,called CAM1-CAM304, within the campylophages group II (n = 18) and group III (n = 286). Host range analyses showed a high host specificity and similar lytic spectrum among isolates of the same group. Campylophages of group II infected C. jejuni, C. coli and even a C. fetus strain whereas those of group III only infected C. jejuni strains. The most promising 59 campylophage candidates were selected according to their lytic activity and their genetic diversity was analyzed by RFLP using SmiI and HhaI endonucleases for group II and III campylophages, respectively. Moreover, RAPD-PCR technique was for the first time assessed in the genetic characterization of campylophages and it was shown to be effective only for those of group II. Bacteriophage isolates grouped in a same genotype displayed different host ranges, therefore, 13 campylophages of group II and eight of group III were differentiated considering all the approaches assayed. An in-depth analysis of these bacteriophages will be performed to confirm their promising potential for the biocontrol of Campylobacter within the farm to fork process.
Collapse
|
25
|
Kimminau E, Russo K, Karnezos T, Oh H, Lee J, Tate C, Baxter J, Berghaus R, Hofacre C. Bacteriophage in-feed application: A novel approach to preventing Salmonella Enteritidis colonization in chicks fed experimentally contaminated feed. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Lu T, Marmion M, Ferone M, Wall P, Scannell AGM. On farm interventions to minimise Campylobacter spp. contamination in chicken. Br Poult Sci 2020; 62:53-67. [PMID: 32835499 DOI: 10.1080/00071668.2020.1813253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This review explores current and proposed on-farm interventions and assess the potential of these interventions against Campylobacter spp. 2. Interventions such as vaccination, feed/water-additives and, most importantly, consistent biosecurity, exhibit potential for the effective control of this pathogen and its dissemination within the food chain. 3. Due to the extensive diversity in the Campylobacter spp. genome and surface-expressed proteins, vaccination of poultry is not yet regarded as a completely effective strategy. 4. The acidification of drinking water through the addition of organic acids has been reported to decrease the risk of Campylobacter spp. colonisation in broiler flocks. Whilst this treatment alone will not completely protect birds, use of water acidification in combination with in-feed measures to further reduce the level of Campylobacter spp. colonisation in poultry may be an option meriting further exploration. 5. The use of varied types of feed supplements to reduce the intestinal population and shedding rate of Campylobacter spp. in poultry is an area of growing interest in the poultry industry. Such supplements include pro - and pre-biotics, organic acids, bacteriocins and bacteriophage, which may be added to feed and water. 6. From the literature, it is clear that a distinct, albeit not unexpected, difference between the performance of in-feed interventions exists when examined in vitro compared to those determined in in vivo studies. It is much more likely that pooling some of the discussed approaches in the in-feed tool kit will provide an answer. 7. Whilst on-farm biosecurity is essential to maintain a healthy flock and reduce disease transmission, even the most stringent biosecurity measures may not have sufficient, consistent and predictable effects in controlling Campylobacter spp. Furthermore, the combination of varied dietary approaches and improved biosecurity measures may synergistically improve control.
Collapse
Affiliation(s)
- T Lu
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Marmion
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Ferone
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - P Wall
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| | - A G M Scannell
- UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| |
Collapse
|
27
|
Shebs-Maurine EL, Torres ES, Yeh-Parker Y, de Mello AS. Application of MS bacteriophages on contaminated trimmings reduces Escherichia coli O157 and non-O157 in ground beef. Meat Sci 2020; 170:108243. [PMID: 32688222 DOI: 10.1016/j.meatsci.2020.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
According to the United States Food and Drug Administration (FDA) agency, bacteriophage solutions targeting the serotype O157:H7 are Generally Recognized as Safe (GRAS) to control STEC during beef processing. However, outbreaks involving the "Big Six" STEC increased the industry concern about those serotypes. The objective of this study was to test the efficacy of MS bacteriophages to reduce the "Big Six" non-O157 STEC in beef. The lysing efficacy of phages isolated for each specific serotype varied from 96.2% to 99.9% in vitro. When applied to contaminated trim, reductions ranging from 0.7 to 1.3 Log of all STEC were observed in ground beef. Bacteriophages may provide an additional barrier against the "Big Six" STEC in ground beef. Results of this research provide support documentation to the FDA to extend GRAS status for bacteriophages as processing aids against all adulterant STEC.
Collapse
Affiliation(s)
- E L Shebs-Maurine
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - E S Torres
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - Y Yeh-Parker
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - A S de Mello
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America.
| |
Collapse
|
28
|
Ahmadi H, Barbut S, Lim LT, Balamurugan S. Examination of the Use of Bacteriophage as an Additive and Determining Its Best Application Method to Control Listeria monocytogenes in a Cooked-Meat Model System. Front Microbiol 2020; 11:779. [PMID: 32670205 PMCID: PMC7326079 DOI: 10.3389/fmicb.2020.00779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The study examined the efficacy of using bacteriophage as an additive in a cooked-meat model system to control growth of contaminating Listeria monocytogenes during subsequent storage. Studies were designed where Listeria bacteriophage A511 and L. monocytogenes introduced inside or on the surface of the cooked-meat to simulate different bacteriophage application and pathogen contamination scenarios. These scenarios include: (1) A511 and L. monocytogenes in meat; (2) A511 in meat, L. monocytogenes on surface; (3) L. monocytogenes in meat, A511 on surface; and (4) L. monocytogenes followed by A511 on meat surface. Real world bacteriophage application and pathogen contamination levels of 109 PFU/g and 103-4 CFU/g, respectively, were used. These meats were then vacuum packaged and stored at 4°C and changes in A511 titers and L. monocytogenes numbers were enumerated during the 28-day storage. Under the conditions tested, application of A511 directly on top of L. monocytogenes contaminating the surface of the meat was the only scenario where L. monocytogenes numbers were reduced to below detection limits and remained significantly lower than the controls for up to 20 days. Although A511 titers remained stable when applied as an additive in meat, they were not successful in controlling growth of the contaminating L. monocytogenes (present inside or on surface of meat). Similarly, application of A511 on the surface of the meat could not control growth of L. monocytogenes present inside the meat. L. monocytogenes numbers increased from the initial 3-log CFU/g to 9-log CFU/g similar to the controls by the end of the 28-day storage. These results suggest that bacteriophages are effective in controlling growth of surface contaminating bacteria only when applied directly onto the surface of the contaminated food product, and are ineffective as a biocontrol agent when used as an additive.
Collapse
Affiliation(s)
- Hanie Ahmadi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - S. Balamurugan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
29
|
Żbikowska K, Michalczuk M, Dolka B. The Use of Bacteriophages in the Poultry Industry. Animals (Basel) 2020; 10:E872. [PMID: 32443410 PMCID: PMC7278383 DOI: 10.3390/ani10050872] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of multidrug-resistant infections and antibiotic failures have raised concerns over human and veterinary medicine worldwide. Poultry production has had to confront the problems of an alarming increase in bacterial resistance, including zoonotic pathogens. According to the European Food Safety Authority (EFSA), campylobacteriosis and salmonellosis have been the most frequently reported human foodborne diseases linked to poultry. This situation has strongly stimulated a renewal of scientists' interest in bacteriophages (phages) since the beginning of the 21st century. Bacteriophages are the viruses of bacteria. They are abundant in nature, and accompany bacteria in each environment they colonize, including human microbiota. In this review, we focused on the use of bacteriophages as therapeutic agents to treat infections and reduce counts of pathogenic bacteria in poultry, as biocontrol agents to eliminate foodborne pathogens on/in food, and also as disinfectants to reduce contamination on food-contact surfaces or poultry carcasses in industrial conditions. Most of the phage-based products are targeted against the main foodborne pathogens, such as Campylobacter jejuni, Salmonella spp., Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Clostridium perfringens. Phages are currently addressed at all stages of the poultry production "from farm to fork", however, their implementation into live birds and food products still provokes discussions especially in the context of the current legal framework, limitations, as well as public health and safety.
Collapse
Affiliation(s)
- Katarzyna Żbikowska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (K.Ż.); (M.M.)
| | - Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (K.Ż.); (M.M.)
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c St., 02-776 Warsaw, Poland
| |
Collapse
|
30
|
Chinivasagam HN, Estella W, Maddock L, Mayer DG, Weyand C, Connerton PL, Connerton IF. Bacteriophages to Control Campylobacter in Commercially Farmed Broiler Chickens, in Australia. Front Microbiol 2020; 11:632. [PMID: 32395115 PMCID: PMC7197261 DOI: 10.3389/fmicb.2020.00632] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
This study describes the development and use of bacteriophage cocktails to control Campylobacter in broiler chickens, in a commercial setting, in Queensland Australia, following the birds from farm to the processing plant. The components of the bacteriophage cocktails were selected to be effective against the maximum number of Campylobacter jejuni and Campylobacter coli isolates encountered on SE Queensland farms. Farms were identified that had suitable Campylobacter target populations and phage were undetectable 1 week prior to the intended treatment. Cocktails of phages were administered at 47 days of age. Groups of study birds were slaughtered the following day, on-farm, at the end of flock transport to the plant, and at processing (approximately 28 h post-treatment). On Farm A, the phage treatment significantly reduced Campylobacter levels in the ceca at the farm in the range of 1-3 log10 CFU/g (p = 0.007), compared to mock treated controls. However, individual birds sampled on farm (1/10) or following transport (2/10) exhibited high cecal Campylobacter counts with low phage titers, suggesting that treatment periods > 24 h may be required to ensure phage replication for effective biocontrol in vivo. At the time of the trial the control birds in Farm B were phage positive despite having been negative one week earlier. There was no significant difference in the cecal Campylobacter counts between the treatment and control groups following treatment but a fall of 1.7 log10 CFU/g was observed from that determined from birds collected the previous week (p = 0.0004). Campylobacter isolates from both farms retained sensitivity to the treatment phages. These trials demonstrated bacteriophages sourced from Queensland farms have the potential to reduce intestinal Campylobacter levels in market ready broiler chickens.
Collapse
Affiliation(s)
- Helene N. Chinivasagam
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Wiyada Estella
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Lance Maddock
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - David G. Mayer
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Caitlin Weyand
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Thung TY, Lee E, Mahyudin NA, Wan Mohamed Radzi CWJ, Mazlan N, Tan CW, Radu S. Partial characterization and in vitro evaluation of a lytic bacteriophage for biocontrol of
Campylobacter jejuni
in mutton and chicken meat. J Food Saf 2020. [DOI: 10.1111/jfs.12770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tze Young Thung
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | - Epeng Lee
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS)Universiti Putra Malaysia Serdang Malaysia
| | - Nor Ainy Mahyudin
- Department of Food Service Management, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | | | - Nurzafirah Mazlan
- Department of Diagnostic and Allied Science, Faculty of Health and Life SciencesManagement and Science University Shah Alam Malaysia
| | - Chia Wanq Tan
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS)Universiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
32
|
Development of a Lyophilization Process for Campylobacter Bacteriophage Storage and Transport. Microorganisms 2020; 8:microorganisms8020282. [PMID: 32093083 PMCID: PMC7074765 DOI: 10.3390/microorganisms8020282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages are a sustainable alternative to control pathogenic bacteria in the post-antibiotic era. Despite promising reports, there are still obstacles to phage use, notably titer stability and transport-associated expenses for applications in food and agriculture. In this study, we have developed a lyophilization approach to maintain phage titers, ensure efficacy and reduce transport costs of Campylobacter bacteriophages. Lyophilization methods were adopted with various excipients to enhance stabilization in combination with packaging options for international transport. Lyophilization of Eucampyvirinae CP30A using tryptone formed a cake that limited processing titer reduction to 0.35 ± 0.09 log10 PFU mL−1. Transmission electron microscopy revealed the initial titer reduction was associated with capsid collapse of a subpopulation. Freeze-dried phages were generally stable under refrigerated vacuum conditions and showed no significant titer changes over 3 months incubation at 4 °C (p = 0.29). Reduced stability was observed for lyophilized phages that were incubated either at 30 °C under vacuum or at 4 °C at 70% or 90% relative humidity. Refrigerated international transport and rehydration of the cake resulted in a total phage titer reduction of 0.81 ± 0.44 log10 PFU mL−1. A significantly higher titer loss was observed for phages that were not refrigerated during transport (2.03 ± 0.32 log10 PFU mL−1). We propose that lyophilization offers a convenient method to preserve and transport Campylobacter phages, with minimal titer reduction after the drying process.
Collapse
|
33
|
Kim JH, Kim HJ, Jung SJ, Mizan MFR, Park SH, Ha SD. Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat. J Food Sci 2020; 85:526-534. [PMID: 32043599 DOI: 10.1111/1750-3841.15042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Chicken breast meat is considered as the main source of Salmonella infection in humans. The aim of this study was to isolate lytic bacteriophages specific for Salmonella enterica serovars Enteritidis and examine their efficacy in a cocktail for the biocontrol of Salmonella spp. in raw chicken breast meat. Four lytic phages belonging to the Myoviridae and Siphoviridae families were isolated from a river proximate to a duck farm. They exhibited broad lytic activities against 11 strains of S. Enteritidis, 11 strains of S. Typhimurium, and one each of S. Paratyphi A, S. San Diego, and S. Typhi. The phages were determined to be stable, exhibited similar degrees of resistance to heat and pH, and had latent periods ranging from 5 to 30 min. In addition, the phage particles were 100% adsorbed within 18 to 40 min. Viable cell counts of bacteria were significantly reduced in raw chicken breast samples (P < 0.05) when treated with a cocktail of all four bacteriophages at 4 °C for 7 days (multiplicities of infection were from 104 to 106 ). These results indicate the potential efficacy of the bacteriophage cocktail as a biological agent against S. Enteritidis in raw chicken breast meat. PRACTICAL APPLICATION: Our findings demonstrate that the phages could be effective in reducing the viability of Salmonella spp. bacteria in chicken breast meat. Therefore, the phage cocktail is a potential bactericidal agent for the biocontrol of Salmonella spp. in raw chicken breast meat and could be used use in various poultry industries in the future.
Collapse
Affiliation(s)
- Jin Hee Kim
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Hee Jeong Kim
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Soo Jin Jung
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| | - Si Hong Park
- Dept. of Food Science and Technology, Oregon State Univ., Corvallis, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang Univ., 72-1 Nae-Ri, Daeduck-Myun, Anseong, Gyunggido, 456-756, Republic of Korea
| |
Collapse
|
34
|
Połaska M, Sokołowska B. Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiol 2019; 5:324-346. [PMID: 31915746 PMCID: PMC6946638 DOI: 10.3934/microbiol.2019.4.324] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are viruses that are ubiquitous in nature and infect only bacterial cells. These organisms are characterized by high specificity, an important feature that enables their use in the food industry. Phages are applied in three sectors in the food industry: primary production, biosanitization, and biopreservation. In biosanitization, phages or the enzymes that they produce are mainly used to prevent the formation of biofilms on the surface of equipment used in the production facilities. In the case of biopreservation, phages are used to extend the shelf life of products by combating pathogenic bacteria that spoil the food. Although phages are beneficial in controlling the food quality, they also have negative effects. For instance, the natural ability of phages that are specific to lactic acid bacteria to destroy the starter cultures in dairy production incurs huge financial losses to the dairy industry. In this paper, we discuss how bacteriophages can be either an effective weapon in the fight against bacteria or a bane negatively affecting the quality of food products depending on the type of industry they are used.
Collapse
Affiliation(s)
- Marzena Połaska
- Institute of Agricultural and Food Biotechnology, Department of Microbiology, 36 Rakowiecka, 02-532 Warsaw, Poland
| | | |
Collapse
|
35
|
Nowaczek A, Urban‐Chmiel R, Dec M, Puchalski A, Stępień‐Pyśniak D, Marek A, Pyzik E. Campylobacter spp. and bacteriophages from broiler chickens: Characterization of antibiotic susceptibility profiles and lytic bacteriophages. Microbiologyopen 2019; 8:e00784. [PMID: 30656847 PMCID: PMC6612548 DOI: 10.1002/mbo3.784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/24/2023] Open
Abstract
Bacteria of the genus Campylobacter are the most common pathogens causing zoonotic diseases in humans. Therefore, the aim of the study was to isolate Campylobacter bacteria from broiler chickens and evaluate their susceptibility to selected antibiotics by determining minimum inhibitory concentrations (MIC), followed by isolation and characterization of bacteriophages specific for Campylobacter spp. The material for the study consisted of field isolates of Campylobacter spp. obtained from the gut (cecum) of broiler chickens directly after slaughter in slaughterhouses, and bacteriophages specific for these strains. We isolated 48 strains from poultry (140 broiler chickens): 31 strains of Campylobacter jejuni and 17 of Campylobacter coli. Identification of the strains was confirmed by multiplex PCR and MALDI-TOF mass spectrometry. Over 83% of Campylobacter strains were resistant to ciprofloxacin, and over half the isolates were resistant to erythromycin, gentamicin, and tetracycline. Resistance to three or more antibiotics was observed in 91.6% of all strains. Four bacteriophages were obtained, and on the basis of their morphological structure, they were assigned to two families of the order Caudovirales: Myoviridae and Siphoviridae. A high percentage of the Campylobacter strains were resistant to at least three of the antibiotic groups tested. All of the phages exhibited lytic activity against the Campylobacter spp. isolates, but the antibacterial effect of the phages was not observed for all strains.
Collapse
Affiliation(s)
- Anna Nowaczek
- Sub‐Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Basis of Animal DiseasesUniversity of Life SciencesLublinPoland
| | - Renata Urban‐Chmiel
- Sub‐Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Basis of Animal DiseasesUniversity of Life SciencesLublinPoland
| | - Marta Dec
- Sub‐Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Basis of Animal DiseasesUniversity of Life SciencesLublinPoland
| | - Andrzej Puchalski
- Sub‐Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Basis of Animal DiseasesUniversity of Life SciencesLublinPoland
| | - Dagmara Stępień‐Pyśniak
- Sub‐Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Basis of Animal DiseasesUniversity of Life SciencesLublinPoland
| | - Agnieszka Marek
- Sub‐Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Basis of Animal DiseasesUniversity of Life SciencesLublinPoland
| | - Ewelina Pyzik
- Sub‐Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Basis of Animal DiseasesUniversity of Life SciencesLublinPoland
| |
Collapse
|
36
|
|
37
|
Shannon R, Radford DR, Balamurugan S. Impacts of food matrix on bacteriophage and endolysin antimicrobial efficacy and performance. Crit Rev Food Sci Nutr 2019; 60:1631-1640. [DOI: 10.1080/10408398.2019.1584874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rachel Shannon
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Devon R. Radford
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Sampathkumar Balamurugan
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
38
|
Campylobacter Phage Isolation and Characterization: What We Have Learned So Far. Methods Protoc 2019; 2:mps2010018. [PMID: 31164600 PMCID: PMC6481058 DOI: 10.3390/mps2010018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Lytic Campylobacter phages, which can be used to combat this pathogen in animals and on food products, have been studied for more than 30 years. Though, due to some peculiarities of the phages, which hampered their isolation and particularly their molecular analysis for a long time, progress in this research field was rather slow. Meanwhile, the situation has changed and much more is known about the biology and genetics of those phages. In this article, we address specific issues that should be considered when Campylobacter phages are studied, starting with the isolation and propagation of the phages and ending with a thorough characterization including whole-genome sequencing. The basis for advice and recommendations given here is a careful review of the scientific literature and experiences that we have had ourselves with Campylobacter phages.
Collapse
|
39
|
Micciche AC, Rubinelli PM, Ricke SC. Source of Water and Potential Sanitizers and Biological Antimicrobials for Alternative Poultry Processing Food Safety Applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
40
|
Milho C, Silva MD, Melo L, Santos S, Azeredo J, Sillankorva S. Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. BIOFOULING 2018; 34:753-768. [PMID: 30270665 DOI: 10.1080/08927014.2018.1501475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Salmonella is one of the worldwide leading foodborne pathogens responsible for illnesses and hospitalizations, and its capacity to form biofilms is one of its many virulence factors. This work evaluated (bacterio)phage control of adhered and biofilm cells of Salmonella Enteritidis on three different substrata at refrigerated and room temperatures, and also a preventive approach in poultry skin. PVP-SE2 phage was efficient in reducing both 24- and 48-h old Salmonella biofilms from polystyrene and stainless steel causing 2 to 5 log CFU cm-2 reductions with a higher killing efficiency at room temperature. PVP-SE2 phage application on poultry skins reduced levels of Salmonella. Freezing phage-pretreated poultry skin samples had no influence on the viability of phage PVP-SE2 and their in vitro contamination with S. Enteritidis provided evidence that phages prevented their further growth. Although not all conditions favor phage treatment, this study endorses their use to prevent and control foodborne pathogen colonization of surfaces.
Collapse
Affiliation(s)
- Catarina Milho
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Maria Daniela Silva
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Luís Melo
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Sílvio Santos
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Joana Azeredo
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Sanna Sillankorva
- a Centre of Biological Engineering , LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| |
Collapse
|
41
|
Onarinde BA, Dixon RA. Prospects for Biocontrol of Vibrio parahaemolyticus Contamination in Blue Mussels ( Mytilus edulus)-A Year-Long Study. Front Microbiol 2018; 9:1043. [PMID: 29922246 PMCID: PMC5996151 DOI: 10.3389/fmicb.2018.01043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Vibrio parahaemolyticus is an environmental organism normally found in subtropical estuarine environments which can cause seafood-related human infections. Clinical disease is associated with diagnostic presence of tdh and/or trh virulence genes and identification of these genes in our preliminary isolates from retail shellfish prompted a year-long surveillance of isolates from a temperate estuary in the north of England. The microbial and environmental analysis of 117 samples of mussels, seawater or sediment showed the presence of V. parahaemolyticus from mussels (100%) at all time-points throughout the year including the colder months although they were only recovered from 94.9% of seawater and 92.3% of sediment samples. Throughout the surveillance, 96 isolates were subjected to specific PCR for virulence genes and none tested positive for either. The common understanding that consuming poorly cooked mussels only represents a risk of infection during summer vacations therefore is challenged. Further investigations with V. parahaemolyticus using RAPD-PCR cluster analysis showed a genetically diverse population. There was no distinct clustering for “environmental” or “clinical” reference strains although a wide variability and heterogeneity agreed with other reports. Continued surveillance of isolates to allay public health risks are justified since geographical distribution and composition of V. parahaemolyticus varies with Future Ocean warming and the potential of environmental strains to acquire virulence genes from pathogenic isolates. The prospects for intervention by phage-mediated biocontrol to reduce or eradicate V. parahaemolyticus in mussels was also investigated. Bacteriophages isolated from enriched samples collected from the river Humber were assessed for their ability to inhibit the growth of V. parahaemolyticus strains in-vitro and in-vivo (with live mussels). V. parahaemolyticus were significantly reduced in-vitro, by an average of 1 log−2 log units and in-vivo, significant reduction of the organisms in mussels occurred in three replicate experimental tank set ups with a “phage cocktail” containing 12 different phages. Our perspective biocontrol study suggests that a cocktail of specific phages targeted against strains of V. parahaemolyticus provides good evidence in an experimental setting of the valuable potential of phage as a decontamination agent in natural or industrial mussel processing (343w).
Collapse
Affiliation(s)
- Bukola A Onarinde
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Ronald A Dixon
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
42
|
Huang C, Virk SM, Shi J, Zhou Y, Willias SP, Morsy MK, Abdelnabby HE, Liu J, Wang X, Li J. Isolation, Characterization, and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat (RTE) Foods. Front Microbiol 2018; 9:1046. [PMID: 29887839 PMCID: PMC5982681 DOI: 10.3389/fmicb.2018.01046] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/02/2018] [Indexed: 01/21/2023] Open
Abstract
Salmonella infection is an important foodborne consumer health concern that can be mitigated during food processing. Bacteriophage therapy imparts many advantages over conventional chemical preservatives including pathogen specificity, natural derivation, potency, and providing a high degree of safety. The objective of this study aimed to isolate and characterize a phage that effectively control Salmonella food contamination. Out of 35 isolated phages, LPSE1 demonstrated a broad Salmonella host range, robust lytic ability, extensive pH tolerance, and prolonged thermal stability. The capacity for phage LPSE1 to control Salmonella Enteritidis-ATCC13076 in milk, sausage, and lettuce was established. Incubation of LPSE1 at 28°C in milk reduced recoverable Salmonella by approximately 1.44 log10 CFU/mL and 2.37 log10 CFU/mL at MOI of 1 and 100, respectively, as relative to the phage-excluded control. Upon administration of LPSE1 at an MOI of 1 in sausage, Salmonella count decreased 0.52 log10 at 28°C. At MOI of 100, the count decreased 0.49 log10 at 4°C. Incubation of LPSE1 on lettuce reduced recoverable Salmonella by 2.02 log10, 1.71 log10, and 1.45 log10 CFU/mL at an MOI of 1, 10, and 100, respectively, as relative to the negative control. Taken together, these findings establish LPSE1 as an effective weapon against human pathogenic Salmonella in various ready to eat foods.
Collapse
Affiliation(s)
- Chenxi Huang
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Safiullah M Virk
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianchun Shi
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, United States
| | - Stephan P Willias
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, United States
| | - Mohamed K Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Hazem E Abdelnabby
- Department of Food Technology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Jie Liu
- College of Medicine, Hebei University of Engineering, Handan, China
| | - Xiaohong Wang
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinquan Li
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci 2018; 139:44-48. [DOI: 10.1016/j.meatsci.2018.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 11/20/2022]
|
44
|
Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage Applications for Food Production and Processing. Viruses 2018; 10:E205. [PMID: 29671810 PMCID: PMC5923499 DOI: 10.3390/v10040205] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods.
Collapse
Affiliation(s)
- Zachary D Moye
- Intralytix, Inc., The Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | - Joelle Woolston
- Intralytix, Inc., The Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | | |
Collapse
|
45
|
Tie K, Yuan Y, Yan S, Yu X, Zhang Q, Xu H, Zhang Y, Gu J, Sun C, Lei L, Han W, Feng X. Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes 2018; 54:446-456. [PMID: 29564689 DOI: 10.1007/s11262-018-1549-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/05/2018] [Indexed: 11/28/2022]
Abstract
Salmonella pullorum is the major pathogen that is harmful to the poultry industry in developing countries, and the treatment of chicken diarrhea caused by S. pullorum has become increasingly difficult. In this study, a virulent bacteriophage YSP2, which was able to specifically infect Salmonella, was isolated and characterized. Phage YSP2 was classified in the Siphoviridae family and had a short latent period of 10 min. No bacterial virulence- or lysogenesis-related ORF is present in the YSP2 genome, making it eligible for use in phage therapy. Experiments in vivo investigated the potential use of phages as a therapy against diarrhea in chickens caused by S. pullorum in a chicken diarrhea model, demonstrating that a single oral administration of YSP2 (1 × 1010 PFU/mL, 80 μL/chicken) 2 h after S. pullorum oral administration at a double median lethal dose was sufficient to protect chickens against diarrhea. Gross inspection showed that YSP2 can effectively reduce organ damage and significantly relieve hemorrhage in the intestine and liver tissue. Moreover, YSP2 can maintain a high curative effect when diluted to 108 PFU/mL. In light of its therapeutic effect on chicken diarrhea, YSP2 may serve as an alternative treatment strategy for infections caused by S. pullorum.
Collapse
Affiliation(s)
- Kunyuan Tie
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Yuyu Yuan
- College of Life Science and Technology, Dalian University of Technology, No. 2 Lingshui Road, Dalian, 116024, Liaoning, People's Republic of China
| | - Shiqing Yan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Xi Yu
- College of Animal Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Qiuyang Zhang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Huihui Xu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Yang Zhang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
46
|
Jäckel C, Hammerl JA, Rau J, Hertwig S. A multiplex real-time PCR for the detection and differentiation of Campylobacter phages. PLoS One 2017; 12:e0190240. [PMID: 29272305 PMCID: PMC5741259 DOI: 10.1371/journal.pone.0190240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni and C. coli are important food-borne pathogens that are widespread in animal husbandry. To combat Campylobacter along the food chain, the application of lytic phages has been shown to be a promising tool. Campylobacter phages are currently classified into three groups, of which group II and group III phages are the most common. Members of each group are closely related, whereas the two groups share only little DNA similarity. Moreover, while group III phages are specific for C. jejuni, group II phages additionally infect C. coli. Phage cocktails intended to be used for applications should be composed of various phages that differ in their host range and growth kinetics. The isolation of phages is generally performed by plaque assays. This approach has the limitation that phages are merely identified by their lytic activity on certain indicator strains and that relatively high numbers of phages must be present in a tested sample. Therefore, a more sensitive molecular detection system would be beneficial, which allows a pre-screening of samples and the quick detection and discrimination of group II and group III phages. New phages can then be isolated by use of indicator strains that may be different from those typically applied. On the basis of available Campylobacter phage genome sequences, we developed a multiplex PCR system for group II and group III phages selecting the tail tube gene and the gene for the base plate wedge, respectively, as target. Phages of both groups could be identified with primers deduced from the putative tail fiber gene. Efficient release of phage DNA from capsids was achieved by an extended heat treatment or digestion of phage particles with proteinase K/SDS yielding a detection limit of 1 pfu/ml. Individual detection of group II phages, group III phages and of both groups was studied with artificially contaminated chicken skin. To recover phages that had strongly adhered to the skin, stomaching was the most efficient technique. The developed PCR protocol was employed to detect Campylobacter phages in food and environmental samples. In 50 out of 110 samples group II and/or group III phages were identified.
Collapse
Affiliation(s)
- Claudia Jäckel
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jens A. Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jörg Rau
- Chemical and Veterinary Investigatory Office (CVUA) Stuttgart, Fellbach, Germany
| | - Stefan Hertwig
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- * E-mail:
| |
Collapse
|
47
|
Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2017; 44:318-335. [DOI: 10.1080/1040841x.2017.1373062] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, Québec, QC, Canada
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon, India
| | | | | | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologie Environnementales Inc, Shawinigan, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Stephane Godbout
- Institut de recherche et de développement en agroenvironnement, Québec, Canada
| |
Collapse
|
48
|
El-Shibiny A, El-Sahhar S. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Can J Microbiol 2017; 63:865-879. [PMID: 28863269 DOI: 10.1139/cjm-2017-0030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.
Collapse
Affiliation(s)
- Ayman El-Shibiny
- University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt
| | - Salma El-Sahhar
- University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt
| |
Collapse
|
49
|
Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. Meat Sci 2017; 127:30-34. [DOI: 10.1016/j.meatsci.2017.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 11/17/2022]
|
50
|
Zampara A, Sørensen MCH, Elsser-Gravesen A, Brøndsted L. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|