1
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
2
|
Patra D, Mandal S. Non-rhizobia are the alternative sustainable solution for growth and development of the nonlegume plants. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36471635 DOI: 10.1080/02648725.2022.2152623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
The major research focus for biological nitrogen fixation (BNF) has mostly been on typical rhizobia with legumes. But the newly identified non-rhizobial bacteria, both individually or in combination could also be an alternative for nitrogen supplementation in both legumes and nonlegume plants. Although about 90% of BNF is derived from a legume - rhizobia symbiosis, the non-legumes specially the cereals lack canonical nitrogen fixation system through root-nodule organogenesis. The non-rhizobia may colonize in the rhizosphere or present in endophytic/associative nature. The non-rhizobia are well known for facilitating plant growth through their potential to alleviate various stresses (salt, drought, and pathogens), acquisition of minerals (P, K, etc.), or by producing phytohormones. Bacterial symbiosis in non-legumes represents by the Gram-positive Frankia having a major contribution in overall fortification of usable nitrogenous material in soil where they are associated with their hosts. This review discusses the recent updates on the diversity and association of the non-rhizobial species and their impact on the growth and productivity of their host plants with particular emphasis on major economically important cereal plants. The future application possibilities of non-rhizobia for soil fertility and plant growth enhancement for sustainable agriculture have been discussed.
Collapse
Affiliation(s)
- Dipanwita Patra
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
3
|
Lv F, Zhan Y, Lu W, Ke X, Shao Y, Ma Y, Zheng J, Yang Z, Jiang S, Shang L, Ma Y, Cheng L, Elmerich C, Yan Y, Lin M. Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri. iScience 2022; 25:105663. [PMID: 36505936 PMCID: PMC9730152 DOI: 10.1016/j.isci.2022.105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Pseudomonas consume preferred carbon substrates in nearly reverse order to that of enterobacteria, and this process is controlled by RNA-binding translational repressors and regulatory ncRNA antagonists. However, their roles in microbe-plant interactions and the underlying mechanisms remain uncertain. Here we show that root-associated diazotrophic Pseudomonas stutzeri A1501 preferentially catabolizes succinate, followed by the less favorable substrate citrate, and ultimately glucose. Furthermore, the Hfq/Crc/CrcZY regulatory system orchestrates this preference and contributes to optimal nitrogenase activity and efficient root colonization. Hfq has a central role in this regulatory network through different mechanisms of action, including repressing the translation of substrate-specific catabolic genes, activating the nitrogenase gene nifH posttranscriptionally, and exerting a positive effect on the transcription of an exopolysaccharide gene cluster. Our results illustrate an Hfq-mediated mechanism linking carbon metabolism to nitrogen fixation and root colonization, which may confer rhizobacteria competitive advantages in rhizosphere environments.
Collapse
Affiliation(s)
- Fanyang Lv
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Zhan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lu
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Shao
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyuan Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Zheng
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhimin Yang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Jiang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liguo Shang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | | | - Yongliang Yan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Corresponding author
| | - Min Lin
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China,Corresponding author
| |
Collapse
|
4
|
Endophytic Fungal and Bacterial Microbiota Shift in Rice and Barnyardgrass Grown under Co-Culture Condition. PLANTS 2022; 11:plants11121592. [PMID: 35736742 PMCID: PMC9231121 DOI: 10.3390/plants11121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
Although barnyardgrass (Echinochloa crus-galli L.) is more competitive than rice (Oryza sativa L.) in the aboveground part, little is known about whether barnyardgrass is still competitive in recruiting endophytes and the root microbiota composition variation of rice under the barnyardgrass stress. Here, by detailed temporal characterization of root-associated microbiomes of rice plants during co-planted barnyardgrass stress and a comparison with the microbiomes of unplanted soil, we found that the bacterial community diversity of rice was dramatically higher while the fungal community richness was significantly lower than that of barnyardgrass at BBCH 45 and 57. More importantly, rice recruited more endophytic bacteria at BBCH 45 and 57, and more endophytic fungi at BBCH 17, 24, 37 to aginst the biotic stress from barnyardgrass. Principal coordinates analysis (PCoA) showed that rice and barnyardgrass had different community compositions of endophytic bacteria and fungi in roots. The PICRUSt predictive analysis indicated that majority of metabolic pathways of bacteria were overrepresented in barnyardgrass. However, eleven pathways were significantly presented in rice. In addition, rice and barnyardgrass harbored different fungal trophic modes using FUNGuild analysis. A negative correlation between bacteria and fungi in rice and barnyardgrass roots was found via network analysis. Actinobacteria was the vital bacteria in rice, while Proteobacteria dominated in barnyardgrass, and Ascomycota was the vital fungi in each species. These findings provided data and a theoretical basis for the in-depth understanding of the competition of barnyardgrass and endophytes and have implications relevant to weed prevention and control strategies using root microbiota.
Collapse
|
5
|
Chen P, He W, Shen Y, Zhu L, Yao X, Sun R, Dai C, Sun B, Chen Y. Interspecific Neighbor Stimulates Peanut Growth Through Modulating Root Endophytic Microbial Community Construction. FRONTIERS IN PLANT SCIENCE 2022; 13:830666. [PMID: 35310651 PMCID: PMC8928431 DOI: 10.3389/fpls.2022.830666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
Plants have evolved the capability to respond to interspecific neighbors by changing morphological performance and reshaping belowground microbiota. However, whether neighboring plants influence the microbial colonization of the host's root and further affect host performance is less understood. In this study, using 16S rRNA high-throughput sequencing of peanut (Arachis hypogaea L.) roots from over 5 years of mono- and intercropping field systems, we found that neighbor maize can alter the peanut root microbial composition and re-shape microbial community assembly. Interspecific maize coexistence increased the colonization of genera Bradyrhizobium and Streptomyces in intercropped peanut roots. Through endophytic bacterial isolation and isolate back inoculation experiments, we demonstrated that the functional potentials of available nutrient accumulation and phytohormones production from Bradyrhizobium and Streptomyces endowed them with the ability to act as keystones in the microbial network to benefit peanut growth and production with neighbor competition. Our results support the idea that plants establish a plant-endophytic microbial holobiont through root selective filtration to enhance host competitive dominance, and provide a promising direction to develop modern diversified planting for harnessing crop microbiomes for the promotion of crop growth and productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Pin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wei He
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiangzhi Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Chuanchao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Yan Chen,
| |
Collapse
|
6
|
Master regulator NtrC controls the utilization of alternative nitrogen sources in Pseudomonas stutzeri A1501. World J Microbiol Biotechnol 2021; 37:177. [PMID: 34524580 PMCID: PMC8443478 DOI: 10.1007/s11274-021-03144-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas stutzeri A1501 is a model strain used to study associative nitrogen fixation, and it possesses the nitrogen regulatory NtrC protein in the core genome. Nitrogen sources represent one of the important factors affecting the efficiency of biological nitrogen fixation in the natural environment. However, the regulation of NtrC during nitrogen metabolism in P. stutzeri A1501 has not been clarified. In this work, a phenotypic analysis of the ntrC mutant characterized the roles of NtrC in nitrogen metabolism and the oxidative stress response of P. stutzeri A1501. To systematically identify NtrC-controlled gene expression, RNA-seq was performed to further analyse the gene expression differences between the wild-type strain and the ∆ntrC mutant under nitrogen fixation conditions. A total of 1431 genes were found to be significantly altered by ntrC deletion, among which 147 associative genes had NtrC-binding sites, and the pathways for nitrogen fixation regulation, nitrogenous compound acquisition and catabolism and nitrate assimilation were discussed. Furthermore, the oxidative stress-related gene (katB), which was upregulated by ntrC deletion, was suggested to be a potential target gene of NtrC, thus highlighting the importance of NtrC in nitrogenase protection against oxygen damage. Based on these findings, we propose that NtrC is a high-ranking element in the regulatory network of P. stutzeri A1501 that controls a variety of nitrogen metabolic and oxidative stress responsive traits required for adaptation to complex rhizosphere environments.
Collapse
|
7
|
Lu C, Yang Z, Liu J, Liao Q, Ling W, Waigi MG, Odinga ES. Chlorpyrifos inhibits nitrogen fixation in rice-vegetated soil containing Pseudomonas stutzeri A1501. CHEMOSPHERE 2020; 256:127098. [PMID: 32470732 DOI: 10.1016/j.chemosphere.2020.127098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 05/28/2023]
Abstract
Chlorpyrifos, a common organophosphorus pesticide, is widely used for agricultural pest control and can inhibit nitrogen-fixing bacteria biomass in paddy. In this study, the additions of chlorpyrifos (1 and 8 mg kg-1) to soil, with or without Pseudomonas stutzeri A1501, resulted in a significant decrease in nitrogen fixation, despite insignificant effects on the abundances of P. stutzeri A1501 and bacteria in soil. Toxic effect of chlorpyrifos on P. stutzeri A1501 nitrogenase activity in medium was also observed, accompanied by a significant reduction in the expression of nitrogen-fixing related genes (nifA and nifH). Furthermore, rhizosphere colonization and biofilm formation by P. stutzeri A1501 were repressed by chlorpyrifos, leading to decreased nitrogenase activity in the rhizosphere. Biofilm formation in medium was inhibited by bacterial hyperkinesis and reduction of extracellular polymeric substance, including exopolysaccharides and proteins. Together, these findings showed that chlorpyrifos-induced production of reactive oxygen species (ROS) which was directly responsible for reduced nitrogenase activity in the medium, soil, and rhizosphere by inhibiting the expressions of nitrogen-fixing related genes. Furthermore, the inhibition of biofilm formation by chlorpyrifos or ROS likely aggravated the reduction in rhizospherere nitrogenase activity. These findings provide potentially valuable insights into the toxicity of chlorpyrifos on nitrogen-fixing bacteria and its mechanisms. Furthermore, for sustainable rice production, it is necessary to evaluate whether other pesticides affect nitrogen fixation and select pesticides that do not inhibit nitrogen fixation.
Collapse
Affiliation(s)
- Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhimin Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qihang Liao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Geries LSM, Elsadany AY. Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Arch Microbiol 2020; 203:169-181. [PMID: 32789754 DOI: 10.1007/s00203-020-01991-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
The study focuses on the impact of foliar spraying cyanobacterium Spirulina platensis extract and the inoculation with the endophyte N2-fixing Pseudomonas stutzeri, and their mixture in the presence of different nitrogen doses on growth and yield of onion under field conditions. Bioactive compounds of Spirulina and Pseudomonas were analyzed by GC-MC and amino acid production of Spirulina by the amino acid analyzer. Hydrogen cyanide (HCN), indole acetic acid (IAA), ammonia (NH3), pectinase activity, and N2-fixation of Pseudomonas were measured. Plant height (cm), leaf length (cm), number of green leaves, bulb diameter (cm), fresh and dry weight of plant (g), chlorophyll a, b of leaves, bulb weight (g), marketable bulb yield (t. ha-1), cull bulb weight (t. ha-1), total bulb yield (t. ha-1), bulb diameter (cm), total soluble solids (TSS%), dry matter content (DM%), evaluation of storage behavior, and economic feasibility were estimated. Spirulina extract has several bioactive compounds. Pseudomonas can produce HCN, NH3, IAA, pectinase, and nitrogen fixation. The application of mixture with recommended dose of nitrogen increases the onion plant parameters, marketable yield, total bulb yield, bulb weight, bulb diameter, TSS%, DM%, net return, benefit-cost ratio (B:C), lowest cumulative weight loss% of bulbs during storage, and reduce culls weight compared with other treatments in two seasons. Application of S. platensis extract and inoculation with endophyte nitrogen-fixing P. stutzeri enhance the growth and productivity of the onion under different doses of nitrogen fertilizer.
Collapse
Affiliation(s)
- L S M Geries
- Onion Res. Dept., Field Crops Research Institute, Agric. Res. Center, Giza, Egypt
| | - Abdelgawad Y Elsadany
- Cyanobacteria Lab., Microbiology Dept., Sakha Agricultural Research Station, Soils, Water and Environment Research Institute, Agric. Res. Center, Giza, Egypt.
| |
Collapse
|
9
|
Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané JM, Voigt CA. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 2019; 5:314-330. [DOI: 10.1038/s41564-019-0631-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
|
10
|
Metagenomic study of endophytic bacterial community of sweet potato (Ipomoea batatas) cultivated in different soil and climatic conditions. World J Microbiol Biotechnol 2019; 35:176. [PMID: 31673867 DOI: 10.1007/s11274-019-2754-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The aim of this study was to clarify effects of soil and climatic conditions on community structure of sweet potato bacterial endophytes by applying locked nucleic acid oligonucleotide-PCR clamping technique and metagenomic analysis. For this purpose, the soil samples in three locations were transferred each other and sweet potato nursery plants from the same farm were cultivated for ca. 3 months. After removal of plastid, mitochondria and undefined sequences, the averaged numbers of retained sequences and operational taxonomic units per sample were 20,891 and 846, respectively. Proteobacteria (85.0%), Bacteroidetes (6.6%) and Actinobacteria (6.3%) were the three most dominant phyla, accounting for 97.9% of the reads, and γ-Proteobacteria (66.3%) being the most abundant. Top 10 genera represented 81.2% of the overall reads in which Pseudomonas (31.9-45.0%) being the most predominant. The overall endophytic bacterial communities were similar among the samples which indicated that the soil and the climatic conditions did not considerably affect the entire endophytic community. The original endophytic bacterial community might be kept during the cultivation period.
Collapse
|
11
|
Puri RR, Adachi F, Omichi M, Saeki Y, Yamamoto A, Hayashi S, Ali MA, Itoh K. Metagenomic study of endophytic bacterial community of sweet potato (Ipomoea batatas) cultivated in different soil and climatic conditions. World J Microbiol Biotechnol 2019; 35:176. [PMID: 31673867 DOI: 10.9734/jamb/2018/45442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/24/2019] [Indexed: 05/27/2023]
Abstract
The aim of this study was to clarify effects of soil and climatic conditions on community structure of sweet potato bacterial endophytes by applying locked nucleic acid oligonucleotide-PCR clamping technique and metagenomic analysis. For this purpose, the soil samples in three locations were transferred each other and sweet potato nursery plants from the same farm were cultivated for ca. 3 months. After removal of plastid, mitochondria and undefined sequences, the averaged numbers of retained sequences and operational taxonomic units per sample were 20,891 and 846, respectively. Proteobacteria (85.0%), Bacteroidetes (6.6%) and Actinobacteria (6.3%) were the three most dominant phyla, accounting for 97.9% of the reads, and γ-Proteobacteria (66.3%) being the most abundant. Top 10 genera represented 81.2% of the overall reads in which Pseudomonas (31.9-45.0%) being the most predominant. The overall endophytic bacterial communities were similar among the samples which indicated that the soil and the climatic conditions did not considerably affect the entire endophytic community. The original endophytic bacterial community might be kept during the cultivation period.
Collapse
Affiliation(s)
- Ramesh Raj Puri
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Fumihiko Adachi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Shimane, Japan
| | - Masayuki Omichi
- Department of Agricultural Science and Business, Takushoku University, Hokkaido College, Memu 4558, Fukagawa, 074-8585, Hokkaido, Japan
| | - Yuichi Saeki
- Faculty of Agriculture, University of Miyazaki, Gakuen-Kibanadai-Nishi 1-1, Miyazaki, 889-2192, Japan
| | - Akihiro Yamamoto
- Faculty of Agriculture, University of Miyazaki, Gakuen-Kibanadai-Nishi 1-1, Miyazaki, 889-2192, Japan
| | - Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Shimane, Japan
| | - Md Arshad Ali
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kazuhito Itoh
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Shimane, Japan.
| |
Collapse
|
12
|
Fidan O, Zhan J. Discovery and engineering of an endophytic Pseudomonas strain from Taxus chinensis for efficient production of zeaxanthin diglucoside. J Biol Eng 2019; 13:66. [PMID: 31388354 PMCID: PMC6676639 DOI: 10.1186/s13036-019-0196-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Endophytic microorganisms are a rich source of bioactive natural products. They are considered as promising biofertilizers and biocontrol agents due to their growth-promoting interactions with the host plants and their bioactive secondary metabolites that can help manage plant pathogens. Identification of new endophytes may lead to the discovery of novel molecules or provide new strains for production of valuable compounds. RESULTS In this study, we isolated an endophytic bacterium from the leaves of Taxus chinensis, which was identified as Pseudomonas sp. 102515 based on the 16S rRNA gene sequence and physiological characteristics. Analysis of its secondary metabolites revealed that this endophytic strain produces a major product zeaxanthin diglucoside, a promising antioxidant natural product that belongs to the family of carotenoids. A carotenoid (Pscrt) biosynthetic gene cluster was amplified from this strain, and the functions of PsCrtI and PsCrtY in the biosynthesis of zeaxanthin diglucoside were characterized in Escherichia coli BL21(DE3). The entire Pscrt biosynthetic gene cluster was successfully reconstituted in E. coli BL21(DE3) and Pseudomonas putida KT2440. The production of zeaxanthin diglucoside in Pseudomonas sp. 102515 was improved through the optimization of fermentation conditions such as medium, cultivation temperature and culture time. The highest yield under the optimized conditions reached 206 mg/L. The engineered strain of P. putida KT2440 produced zeaxanthin diglucoside at 121 mg/L in SOC medium supplemented with 0.5% glycerol at 18 °C, while the yield of zeaxanthin diglucoside in E. coli BL21(DE3) was only 2 mg/L. To further enhance the production, we introduced an expression plasmid harboring the Pscrt biosynthetic gene cluster into Pseudomonas sp. 102515. The yield in this engineered strain reached 380 mg/L, 85% higher than the wild type. Through PCR, we also discovered the presence of a turnerbactin biosynthetic gene cluster in Pseudomonas sp. 102515. Because turnerbactin is involved in nitrogen fixation, this endophytic strain might have a role in promoting growth of the host plant. CONCLUSIONS We isolated and identified an endophytic strain of Pseudomonas from T. chinensis. A zeaxanthin diglucoside biosynthetic gene cluster was discovered and characterized in this bacterium. Through fermentation and genetic engineering, the engineered strain produced zeaxanthin diglucoside at 380 ± 12 mg/L, representing a promising strain for the production of this antioxidant natural product. Additionally, Pseudomonas sp. 102515 might also be utilized as a plant-promoting strain for agricultural applications.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
- TCM and Ethnomedicine Innovation & Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| |
Collapse
|
13
|
Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 2019; 221:36-49. [DOI: 10.1016/j.micres.2019.02.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
|
14
|
Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 2018; 42:248-260. [PMID: 30477902 DOI: 10.1016/j.syapm.2018.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Plant growth promoting diazotrophs with the ability to associate with plant roots are in common use as inoculants to benefit crop yield and to mitigate chemical nitrogen fertilization. However, limited information is available in understanding to what extent the plant growth-promoting effect of the inoculum has on the plant's nitrogen acquisition as well as on the impact of inoculation on the indigenous rhizosphere microbial population. Here we reported on experiments that assessed how endophytic Pseudomonas stutzeri A1501 inoculated on maize improved plant growth and plant nitrogen content using a 15N dilution technique under two water regime conditions. The effects of inoculation and different water regimes were also assessed for the maize rhizospheric and surface soil communities by MiSeq community sequencing combined with qPCR of functional genes and transcripts (nifH and amoA) related to nitrogen cycling. Results support maize inoculated with P. stutzeri A1501 grew better and accumulated more nitrogen with a lower δ15N signature after 60 days than did plants inoculated with nifH-mutant and sterilized A1501 cells (non N2-fixing controls). Inoculant contribution to the plant was estimated to range from 0.30 to 0.82g N/plant, depending on water conditions. Inoculation with P. stutzeri A1501 significantly altered the composition of the diazotrophic community that P. stutzeri became dominant in the rhizosphere, and also increased the population of indigenous diazotrophs and ammonia oxidizers and functional genes transcripts. Redundancy analysis revealed that soil compartment and A1501 inoculation treatments were the main factors affecting the distribution of the diazotrophic community.
Collapse
Affiliation(s)
- Xiubin Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Feng
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Wei Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci Rep 2018; 8:10928. [PMID: 30026566 PMCID: PMC6053447 DOI: 10.1038/s41598-018-29204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Transfer of nitrogen fixation (nif) genes from diazotrophs to amenable heterologous hosts is of increasing interest to genetically engineer nitrogen fixation. However, how the non-diazotrophic host maximizes opportunities to fine-tune the acquired capacity for nitrogen fixation has not been fully explored. In this study, a global investigation of an engineered nitrogen-fixing Escherichia coli strain EN-01 harboring a heterologous nif island from Pseudomonas stutzeri was performed via transcriptomics and proteomics analyses. A total of 1156 genes and 206 discriminative proteins were found to be significantly altered when cells were incubated under nitrogen-fixation conditions. Pathways for regulation, metabolic flux and oxygen protection to nitrogenase were particularly discussed. An NtrC-dependent regulatory coupling between E. coli nitrogen regulation system and nif genes was established. Additionally, pentose phosphate pathway was proposed to serve as the primary route for glucose catabolism and energy supply to nitrogenase. Meanwhile, HPLC analysis indicated that organic acids produced by EN-01 might have negative effects on nitrogenase activity. This study provides a global view of the complex network underlying the acquired nif genes in the recombinant E. coli and also provides clues for the optimization and redesign of robust nitrogen-fixing organisms to improve nitrogenase efficiency by overcoming regulatory or metabolic obstacles.
Collapse
|
16
|
Fu H, Jiang P, Zhao J, Wu C. Comparative Genomics of Pseudomonas sp. Strain SI-3 Associated With Macroalga Ulva prolifera, the Causative Species for Green Tide in the Yellow Sea. Front Microbiol 2018; 9:1458. [PMID: 30013544 PMCID: PMC6036183 DOI: 10.3389/fmicb.2018.01458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022] Open
Abstract
Algae-bacteria associations occurred widely in marine habitats, however, contributions of bacteria to macroalgal blooming were almost unknown. In this study, a potential endophytic strain SI-3 was isolated from Ulva prolifera, the causative species for the world's largest green tide in the Yellow Sea, following a strict bleaching treatment to eliminate epiphytes. The genomic sequence of SI-3 was determined in size of 4.8 Mb and SI-3 was found to be mostly closed to Pseudomonas stutzeri. To evaluate the characteristics of SI-3 as a potential endophyte, the genomes of SI-3 and other 20 P. stutzeri strains were compared. We found that SI-3 had more strain-specific genes than most of the 20 P. stutzeri strains. Clusters of Orthologous Groups (COGs) analysis revealed that SI-3 had a higher proportion of genes assigned to transcriptional regulation and signal transduction compared with the 20 P. stutzeri strains, including four rhizosphere bacteria, indicating a complicated interaction network between SI-3 and its host. P. stutzeri is renowned for its metabolic versatility in aromatic compounds degradation. However, significant gene loss was observed in several aromatic compounds degradation pathways in SI-3, which may be an evolutional adaptation that developed upon association with its host. KEGG analysis revealed that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, two competing dissimilatory nitrate reduction pathways, co-occurred in the genome of SI-3, like most of the other 20 P. stutzeri strains. We speculated that DNRA of SI-3 may contribute a competitive advantage in nitrogen acquisition of U. prolifera by conserving nitrogen in NH4+ form, as in the case of microalgae bloom. Collectively, these data suggest that Pseudomonas sp. strain SI-3 was a suitable candidate for investigation of the algae-bacteria interaction with U. prolifera and the ecological impacts on algal blooming.
Collapse
Affiliation(s)
- Huihui Fu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Peng Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jin Zhao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chunhui Wu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
17
|
Sun S, Chen Y, Cheng J, Li Q, Zhang Z, Lan Z. Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots. Folia Microbiol (Praha) 2018; 63:789-802. [PMID: 29876800 DOI: 10.1007/s12223-018-0608-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
Abstract
A gram-negative bacterium GXGL-4A was originally isolated from maize roots. It displayed nitrogen-fixing (NF) ability under nitrogen-free culture condition, and had a significant promotion effect on cucumber growth in the pot inoculation test. The preliminary physiological and biochemical traits of GXGL-4A were characterized. Furthermore, a phylogenetic tree was constructed based on 16S ribosomal DNA (rDNA) sequences of genetically related species. To determine the taxonomic status of GXGL-4A and further utilize its nitrogen-fixing potential, genome sequence was obtained using PacBio RS II technology. The analyses of average nucleotide identity based on BLAST+ (ANIb) and correlation indexes of tetra-nucleotide signatures (Tetra) showed that the NF isolate GXGL-4A is closely related to the Kosakonia radicincitans type strain DSM 16656. Therefore, the isolate GXGL-4A was eventually classified into the species of Kosakonia radicincitans and designated K. radicincitans GXGL-4A. A high consistency in composition and gene arrangement of nitrogen-fixing gene cluster I (nif cluster I) was found between K. radicincitans GXGL-4A and other Kosakonia NF strains. The mutants tagged with green fluorescence protein (GFP) were obtained by transposon Tn5 mutagenesis, and then, the colonization of gfp-marked K. radicincitans GXGL-4A cells on cucumber seedling root were observed under fluorescence microscopy. The preferential sites of the labeled GXGL-4A cell population were the lateral root junctions, the differentiation zone, and the elongation zone. All these results should benefit for the deep exploration of nitrogen fixation mechanism of K. radicincitans GXGL-4A and will definitely facilitate the genetic modification process of this NF bacterium in sustainable agriculture.
Collapse
Affiliation(s)
- Shuaixin Sun
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Yunpeng Chen
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China.
| | - Jiejie Cheng
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Qiongjie Li
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Zhenchuan Zhang
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Zhengliang Lan
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
18
|
The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 2017; 199:513-517. [PMID: 28070613 DOI: 10.1007/s00203-016-1332-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
The use of plant growth-promoting rhizobacteria as a sustainable alternative for chemical nitrogen fertilizers has been explored for many economically important crops. For one such strain isolated from rice rhizosphere and endosphere, nitrogen-fixing Pseudomonas stutzeri A15, unequivocal evidence of the plant growth-promoting effect and the potential contribution of biological nitrogen fixation (BNF) is still lacking. In this study, we investigated the effect of P. stutzeri A15 inoculation on the growth of rice seedlings in greenhouse conditions. P. stutzeri A15 induced significant growth promotion compared to uninoculated rice seedlings. Furthermore, inoculation with strain A15 performed significantly better than chemical nitrogen fertilization, clearly pointing to the potential of this bacterium as biofertilizer. To assess the contribution of BNF to the plant growth-promoting effect, rice seedlings were also inoculated with a nitrogen fixation-deficient mutant. Our results suggest that BNF (at best) only partially contributes to the stimulation of plant growth.
Collapse
|
19
|
Morimoto H, Kadoya R, Takahashi K, Kasahara Y. Proteome analysis of Pseudomonas putida F1 genes induced in soil environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:825-832. [PMID: 27452675 DOI: 10.1111/1758-2229.12445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Knowledge of the gene expression dynamics of a single soil bacterial strain contributes to the understanding of its behaviour, physiological state and surrounding microenvironment. Genes expressed in soil environments rather than in laboratory media are considered to particularly relevant. Here, we compared genome-wide gene expression profiles of the bacterium Pseudomonas putida F1 inoculated in three different types of nonsterile soils deduced using proteome analysis via sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with liquid chromatography-tandem mass spectrometry. Proteins commonly detected in all three samples and involved with bacterial growth and fundamental metabolism were excluded. Nine proteins were identified as specifically expressed in soil including an aldehyde dehydrogenase, a nitric oxide dioxygenase and five proteins encoded by a cluster of metabolism-associated genes. Expression factor analysis revealed that the nitric oxide dioxygenase-coding gene was induced by nitric oxide and the five clustered genes were induced under phosphate starvation. The expression of these genes can be attributed to response to soil environmental stimuli surrounding the F1 cells. These results strongly suggest that our soil metaproteome approach is useful for understanding the autecology and lifestyle of a single bacterial strain in soil environments and allows the prediction of the microenvironment surrounding the bacterial cells.
Collapse
Affiliation(s)
- Hajime Morimoto
- Institute of Low Temperature Science, Hokkaido University, Kita 19, Nishi 8, Kita-ku, Sapporo 060-0819, Japan
| | - Ryosuke Kadoya
- Institute of Low Temperature Science, Hokkaido University, Kita 19, Nishi 8, Kita-ku, Sapporo 060-0819, Japan
| | - Kazuhiro Takahashi
- Institute of Low Temperature Science, Hokkaido University, Kita 19, Nishi 8, Kita-ku, Sapporo 060-0819, Japan
| | - Yasuhiro Kasahara
- Institute of Low Temperature Science, Hokkaido University, Kita 19, Nishi 8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
20
|
Babaei P, Marashi SA, Asad S. Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501. MOLECULAR BIOSYSTEMS 2016; 11:3022-32. [PMID: 26302703 DOI: 10.1039/c5mb00086f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pseudomonas stutzeri A1501 is an endophytic bacterium capable of nitrogen fixation. This strain has been isolated from the rice rhizosphere and provides the plant with fixed nitrogen and phytohormones. These interesting features encouraged us to study the metabolism of this microorganism at the systems-level. In this work, we present the first genome-scale metabolic model (iPB890) for P. stutzeri, involving 890 genes, 1135 reactions, and 813 metabolites. A combination of automatic and manual approaches was used in the reconstruction process. Briefly, using the metabolic networks of Pseudomonas aeruginosa and Pseudomonas putida as templates, a draft metabolic network of P. stutzeri was reconstructed. Then, the draft network was driven through an iterative and curative process of gap filling. In the next step, the model was evaluated using different experimental data such as specific growth rate, Biolog substrate utilization data and other experimental observations. In most of the evaluation cases, the model was successful in correctly predicting the cellular phenotypes. Thus, we posit that the iPB890 model serves as a suitable platform to explore the metabolism of P. stutzeri.
Collapse
Affiliation(s)
- Parizad Babaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
21
|
Mercado-Blanco J, Alós E, Rey MD, Prieto P. Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiol Ecol 2016; 92:fiw092. [PMID: 27130938 DOI: 10.1093/femsec/fiw092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas fluorescens PICF7, an indigenous inhabitant of olive roots, displays an endophytic lifestyle in this woody crop and exerts biocontrol against the fungal phytopathogen Verticillium dahliae Here we report microscopy evidence that the strain PICF7 is also able to colonize and persist on or in wheat and barley root tissues. Root colonization of both cereal species followed a similar pattern to that previously reported in olive, including inner colonization of the root hairs. This demonstrates that strain PICF7 can colonize root systems of distant botanical species. Barley plants germinated from PICF7-treated seeds showed enhanced vegetative growth. Moreover, significant increases in the number of grains (up to 19.5%) and grain weight (up to 20.5%) per plant were scored in this species. In contrast, growth and yield were not significantly affected in wheat plants by the presence of PICF7. Proteomics analysis of the root systems revealed that different proteins were exclusively found depending on the presence or absence of PICF7 and only one protein with hydrogen ion transmembrane transporter activity was exclusively found in both PICF7-inoculated barley and wheat plants but not in the controls.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Departments of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - Enriqueta Alós
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - María Dolores Rey
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| |
Collapse
|
22
|
Wang W, Cao J, Yang F, Wang X, Zheng S, Sharshov K, Li L. High-throughput sequencing reveals the core gut microbiome of Bar-headed goose (Anser indicus) in different wintering areas in Tibet. Microbiologyopen 2016; 5:287-95. [PMID: 26842811 PMCID: PMC4831473 DOI: 10.1002/mbo3.327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Elucidating the spatial dynamic and core gut microbiome related to wild bar‐headed goose is of crucial importance for probiotics development that may meet the demands of bar‐headed goose artificial breeding industries and accelerate the domestication of this species. However, the core microbial communities in the wild bar‐headed geese remain totally unknown. Here, for the first time, we present a comprehensive survey of bar‐headed geese gut microbial communities by Illumina high‐throughput sequencing technology using nine individuals from three distinct wintering locations in Tibet. A total of 236,676 sequences were analyzed, and 607 OTUs were identified. We show that the gut microbial communities of bar‐headed geese have representatives of 14 phyla and are dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The additive abundance of these four most dominant phyla was above 96% across all the samples. At the genus level, the sequences represented 150 genera. A set of 19 genera were present in all samples and considered as core gut microbiome. The top seven most abundant core genera were distributed in that four dominant phyla. Among them, four genera (Lactococcus, Bacillus, Solibacillus, and Streptococcus) belonged to Firmicutes, while for other three phyla, each containing one genus, such as Proteobacteria (genus Pseudomonas), Actinobacteria (genus Arthrobacter), and Bacteroidetes (genus Bacteroides). This broad survey represents the most in‐depth assessment, to date, of the gut microbes that associated with bar‐headed geese. These data create a baseline for future bar‐headed goose microbiology research, and make an original contribution to probiotics development for bar‐headed goose artificial breeding industries.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610000, China
| | - Jian Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,University of the Chinese Academy of Sciences, Beijing, 100101,, China
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| | - Xuelian Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| | - Sisi Zheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,University of the Chinese Academy of Sciences, Beijing, 100101,, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | - Laixing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| |
Collapse
|
23
|
Allard N, Garneau D, Poulin-Laprade D, Burrus V, Brzezinski R, Roy S. A diaminopimelic acid auxotrophic Escherichia coli donor provides improved counterselection following intergeneric conjugation with actinomycetes. Can J Microbiol 2015; 61:565-74. [PMID: 26166710 DOI: 10.1139/cjm-2015-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considering the medical, biotechnological, and economical importance of actinobacteria, there is a continuous need to improve the tools for genetic engineering of a broad range of these microorganisms. Intergeneric conjugation has proven to be a valuable yet imperfect tool for this purpose. The natural resistance of many actinomycetes to nalidixic acid (Nal) is generally exploited to eliminate the sensitive Escherichia coli donor strain following conjugation. Nevertheless, Nal can delay growth and have other unexpected effects on the recipient strain. To provide an improved alternative to antibiotics, we propose a postconjugational counterselection using a diaminopimelic acid (DAP) auxotrophic donor strain. The DAP-negative phenotype was obtained by introducing a dapA deletion into the popular methylase-negative donor strain E. coli ET12567/pUZ8002. The viability of ET12567 and its ΔdapA mutant exposed to DAP deprivation or Nal selection were compared in liquid pure culture and after mating with Streptomyces coelicolor. Results showed that death of the E. coli ΔdapA Nal-sensitive donor strain occurred more efficiently when subjected to DAP deprivation than when exposed to Nal. Our study shows that postconjugational counterselection based on DAP deprivation circumvents the use of antibiotics and will facilitate the transfer of plasmids into actinomycetes with high biotechnological potential, yet currently not accessible to conjugative techniques.
Collapse
Affiliation(s)
- Nancy Allard
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Daniel Garneau
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Dominic Poulin-Laprade
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Vincent Burrus
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Ryszard Brzezinski
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Roy
- Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.,Centre d'étude et de valorisation de la diversité microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
24
|
Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V. Plant-Influenced Gene Expression in the Rice Endophyte Burkholderia kururiensis M130. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:10-21. [PMID: 25494355 DOI: 10.1094/mpmi-07-14-0225-r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Burkholderia kururiensis M130 is one of the few rice endophytic diazotrophic bacteria identified thus far which is able to enhance growth of rice. To date, very little is known of how strain M130 and other endophytes enter and colonize plants. Here, we identified genes of strain M130 that are differentially regulated in the presence of rice plant extract. A genetic screening of a promoter probe transposon mutant genome bank and RNAseq analysis were performed. The screening of 10,100 insertions of the genomic transposon reporter library resulted in the isolation of 61 insertions displaying differential expression in response to rice macerate. The RNAseq results validated this screen and indicated that this endophytic bacterium undergoes major changes in the presence of plant extract regulating 27.7% of its open reading frames. A large number of differentially expressed genes encode membrane transporters and secretion systems, indicating that the exchange of molecules is an important aspect of bacterial endophytic growth. Genes related to motility, chemotaxis, and adhesion were also overrepresented, further suggesting plant–bacteria interaction. This work highlights the potential close signaling taking place between plants and bacteria and helps us to begin to understand the adaptation of an endophyte in planta.
Collapse
|
25
|
Chitarra W, Decastelli L, Garibaldi A, Gullino ML. Potential uptake of Escherichia coli O157:H7 and Listeria monocytogenes from growth substrate into leaves of salad plants and basil grown in soil irrigated with contaminated water. Int J Food Microbiol 2014; 189:139-45. [PMID: 25150671 DOI: 10.1016/j.ijfoodmicro.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/21/2014] [Accepted: 08/02/2014] [Indexed: 11/23/2022]
Abstract
Outbreaks of foodborne illness, resulting from the consumption of fresh produce contaminated with human pathogens, are increasing. Potential uptake and persistence of human pathogens within edible parts of consumed fresh vegetables become an important issue in food safety. This study was conducted to assess the potential uptake and internalization of Escherichia coli O157:H7 and Listeria monocytogenes from an autoclaved substrate into edible parts of basil and baby salad plants (lettuce, cultivated rocket, wild rocket and corn salad) from 20 to 60-80days after inoculation, when plants are ready to be harvested and commercialized. Plants were grown in mesocosms under different temperature conditions (24°C and 30°C) and the growing substrate was inoculated using contaminated irrigation water (7logCFU/mL). E. coli O157:H7 could be internalized in the leaves of the tested leafy vegetables through the roots and persist up to the harvesting time with negligible differences between 24°C and 30°C. Significant decreases in pathogen titers were observed over time in the growing substrate on which the plants grew, until the last sampling time. In contrast, L. monocytogenes internalized and persisted only in lettuce mesocosms at 24°C. Neither pathogen was observed in basil leaves. Similarly, in basil growing substrates, enteric bacteria were undetectable at the end of the experiments, suggesting that basil plants may produce and release antimicrobial compounds active against both bacteria in root exudates. These results suggest that enteric bacteria are able to persist within baby salad leaves up to market representing a risk for consumer's health.
Collapse
Affiliation(s)
- Walter Chitarra
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Lucia Decastelli
- Zooprophylactic Institute of Piemonte, Liguria and Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Angelo Garibaldi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Maria Lodovica Gullino
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
26
|
Jayaraman D, Valdés-López O, Kaspar CW, Ané JM. Response of Medicago truncatula seedlings to colonization by Salmonella enterica and Escherichia coli O157:H7. PLoS One 2014; 9:e87970. [PMID: 24551073 PMCID: PMC3925098 DOI: 10.1371/journal.pone.0087970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Disease outbreaks due to the consumption of legume seedlings contaminated with human enteric bacterial pathogens like Escherichia coli O157:H7 and Salmonella enterica are reported every year. Besides contaminations occurring during food processing, pathogens present on the surface or interior of plant tissues are also responsible for such outbreaks. In the present study, surface and internal colonization of Medicago truncatula, a close relative of alfalfa, by Salmonella enterica and Escherichia coli O157:H7 were observed even with inoculum levels as low as two bacteria per plant. Furthermore, expression analyses revealed that approximately 30% of Medicago truncatula genes were commonly regulated in response to both of these enteric pathogens. This study highlights that very low inoculum doses trigger responses from the host plant and that both of these human enteric pathogens may in part use similar mechanisms to colonize legume seedlings.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin–Madison, Madison Madison, Wisconsin, United States of America
| | - Oswaldo Valdés-López
- Department of Agronomy, University of Wisconsin–Madison, Madison Madison, Wisconsin, United States of America
| | - Charles W. Kaspar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin–Madison, Madison Madison, Wisconsin, United States of America
| |
Collapse
|
27
|
Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol 2013; 80:138-45. [PMID: 24141122 DOI: 10.1128/aem.02571-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative transfer ranges of three different plasmids of the incompatibility groups IncP-1 (pBP136), IncP-7 (pCAR1), and IncP-9 (NAH7) were investigated in soil bacterial communities by culture-dependent and culture-independent methods. Pseudomonas putida, a donor of each plasmid, was mated with soil bacteria, and green fluorescent protein (GFP), encoded on the plasmid, was used as a reporter protein for successful transfer. GFP-expressing transconjugants were detected and separated at the single-cell level by flow cytometry. Each cell was then analyzed by PCR and sequencing of its 16S rRNA gene following either whole-genome amplification or cultivation. A large number of bacteria within the phylum Proteobacteria was identified as transconjugants for pBP136 by both culture-dependent and culture-independent methods. Transconjugants belonging to the phyla Actinobacteria, Bacteroidetes, and Firmicutes were detected only by the culture-independent method. Members of the genus Pseudomonas (class Gammaproteobacteria) were identified as major transconjugants of pCAR1 and NAH7 by both methods, whereas Delftia species (class Betaproteobacteria) were detected only by the culture-independent method. The transconjugants represented a minority of the soil bacteria. Although pCAR1-containing Delftia strains could not be cultivated after a one-to-one filter mating assay between the donor and cultivable Delftia strains as recipients, fluorescence in situ hybridization detected pCAR1-containing Delftia cells, suggesting that Delftia was a "transient" host of pCAR1.
Collapse
|
28
|
Fernández M, Conde S, Duque E, Ramos JL. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microb Biotechnol 2013; 6:307-13. [PMID: 23433036 PMCID: PMC3815925 DOI: 10.1111/1751-7915.12037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida KT2440 has the ability to colonize the rhizosphere of a wide range of plants and can reach cell densities in the range of 105–106 cfu g soil−1. Using the IVET technology we investigated which KT2440 genes were expressed in the rhizosphere of four different plants: pine, cypress, evergreen oak and rosemary. We identified 39 different transcriptional fusions containing the promoters of annotated genes that were preferentially expressed in the rhizosphere. Six of them were expressed in the rhizosphere of all the plant types tested, 11 were expressed in more than one plant and the remaining 22 fusions were found to be expressed in only one type of plant. Another 40 fusions were found to correspond to likely promoters that encode antisense RNAs of unknown function, some of which were isolated as fusions from the bacteria recovered in the rhizosphere from all of the plants, while others were specific to one or several of the plants. The results obtained in this study suggest that plant-specific signals are sensed by KT2440 in the rhizosphere and that the signals and consequent gene expression are related to the bacteria's successful establishment in this niche.
Collapse
Affiliation(s)
- Matilde Fernández
- Bio-Iliberis Research and Development, I+D Department, 18210, Peligros, Granada, Spain
| | | | | | | |
Collapse
|
29
|
Abstract
Endophytic bacteria are defined as bacteria detected inside surface-sterilized plants or extracted from inside plants and having no visibly harmful effects on the plants. Various kinds of endophytic bacteria, such as Pantoea, Methylobacterium, Azospirillum, Herbaspirillum, Burkholderia and Rhizobium etc., have been found inside rice plants. This minireview summarizes and discusses recent studies of endophytic bacteria residing in rice plants, focusing on flora, origin, movement, and interaction with plants/other microbes and referring to endophytes in other plants. The findings concerning bacterial flora obtained by cultural and non-cultural methods are also compared and discussed. Some attempts to apply endophytes to the rice plant and the resultant effects are introduced. The future perspective to deepen the study of endophytes in terms of both application and basic science is considered.
Collapse
Affiliation(s)
- Hironobu Mano
- Product Research & Development Dept., Pokka Corporation
| | | |
Collapse
|
30
|
Li X, Nan X, Wei C, He H. The gut bacteria associated with Camponotus japonicus Mayr with culture-dependent and DGGE methods. Curr Microbiol 2012; 65:610-6. [PMID: 22878556 DOI: 10.1007/s00284-012-0197-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The bacterial composition and distribution in the different gut regions of Camponotus japonicus were investigated using both culture-dependent method and culture-independent method of polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE). Five different bacterial strains were isolated using culture-dependent method, and they all belong to the phylum Firmicutes, including three genera of bacteria Bacillus, Paenibacillus, and Enterococcus. Bacillus cereus and Enterococcus mundtii were found in the midgut; Paenibacillus sp. was isolated from the hindgut; and the other two Bacillus spp. were isolated from the crop. Twelve distinct DGGE bands were found using PCR-DGGE method, and their sequences blasting analysis shows that they are members of the Proteobacteria and the Firmicutes, respectively, including three genera (Pseudomonas, Candidatus Blochmannia, Fructobacillus) and one uncultured bacterium, in which Pseudomonas was the most dominant bacteria group in all the three gut regions. According to the DGGE profile, the three gut regions had very similar gut communities, and all the DGGE bands were presented in the midgut and hindgut, while just two bands representing Blochmannia were not present in the crop. The results of our study indicate that the gut of C. japonicus harbors several other bacteria besides the obligate endosymbionts Blochmannia, and more work should be carried on to verify if they are common in the guts of other Camponotus ants.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang, Shaanxi, China
| | | | | | | |
Collapse
|
31
|
Nishiyama E, Ohtsubo Y, Yamamoto Y, Nagata Y, Tsuda M. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil. FEMS Microbiol Lett 2012; 330:46-55. [PMID: 22360670 DOI: 10.1111/j.1574-6968.2012.02532.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 01/21/2023] Open
Abstract
In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment.
Collapse
Affiliation(s)
- Eri Nishiyama
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
32
|
Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. MICROBIAL ECOLOGY 2011; 62:435-45. [PMID: 21347721 PMCID: PMC3155037 DOI: 10.1007/s00248-011-9827-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/08/2011] [Indexed: 05/05/2023]
Abstract
The use of indigenous bacterial root endophytes with biocontrol activity against soil-borne phytopathogens is an environmentally-friendly and ecologically-efficient action within an integrated disease management framework. The earliest steps of olive root colonization by Pseudomonas fluorescens PICF7 and Pseudomonas putida PICP2, effective biocontrol agents (BCAs) against Verticillium wilt of olive (Olea europaea L.) caused by the fungus Verticillium dahliae Kleb., are here described. A gnotobiotic study system using in vitro propagated olive plants, differential fluorescent-protein tagging of bacteria, and confocal laser scanning microscopy analysis have been successfully used to examine olive roots-Pseudomonas spp. interactions at the single-cell level. In vivo simultaneous visualization of PICF7 and PICP2 cells on/in root tissues enabled to discard competition between the two bacterial strains during root colonization. Results demonstrated that both BCAs are able to endophytically colonized olive root tissues. Moreover, results suggest a pivotal role of root hairs in root colonization by both biocontrol Pseudomonas spp. However, colonization of root hairs appeared to be a highly specific event, and only a very low number of root hairs were effectively colonized by introduced bacteria. Strains PICF7 and PICP2 can simultaneously colonize the same root hair, demonstrating that early colonization of a given root hair by one strain did not hinder subsequent attachment and penetration by the other. Since many environmental factors can affect the number, anatomy, development, and physiology of root hairs, colonization competence and biocontrol effectiveness of BCAs may be greatly influenced by root hair's fitness. Finally, the in vitro study system here reported has shown to be a suitable tool to investigate colonization processes of woody plant roots by microorganisms with biocontrol potential.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - Elisabetta Schilirò
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - María Mercedes Maldonado-González
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - Raquel Valderrama
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | | | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| |
Collapse
|
33
|
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonasgenomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652-80. [DOI: 10.1111/j.1574-6976.2011.00269.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
34
|
Shankar M, Ponraj P, Ilakkiam D, Gunasekaran P. Root colonization of a rice growth promoting strain of Enterobacter cloacae. J Basic Microbiol 2011; 51:523-30. [DOI: 10.1002/jobm.201000342] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/22/2011] [Indexed: 11/07/2022]
|
35
|
Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis. PLoS One 2011; 6:e17352. [PMID: 21399698 PMCID: PMC3047566 DOI: 10.1371/journal.pone.0017352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/31/2011] [Indexed: 11/22/2022] Open
Abstract
Molecular studies of bacterial virulence are enhanced by expression of
recombinant DNA during infection to allow complementation of mutants and
expression of reporter proteins in vivo. For highly pathogenic
bacteria, such as Yersinia pestis, these studies are currently
limited because deliberate introduction of antibiotic resistance is restricted
to those few which are not human treatment options. In this work, we report the
development of alternatives to antibiotics as tools for host-pathogen research
during Yersinia pestis infections focusing on the
diaminopimelic acid (DAP) pathway, a requirement for cell wall synthesis in
eubacteria. We generated a mutation in the dapA-nlpB(dapX)
operon of Yersinia pestis KIM D27 and CO92 which eliminated the
expression of both genes. The resulting strains were auxotrophic for
diaminopimelic acid and this phenotype was complemented in
trans by expressing dapA in single and multi-copy.
In vivo, we found that plasmids derived from the p15a
replicon were cured without selection, while selection for DAP enhanced
stability without detectable loss of any of the three resident virulence
plasmids. The dapAX mutation rendered Y.
pestis avirulent in mouse models of bubonic and septicemic plague
which could be complemented when dapAX was inserted in single
or multi-copy, restoring development of disease that was indistinguishable from
the wild type parent strain. We further identified a high level, constitutive
promoter in Y. pestis that could be used to drive expression of
fluorescent reporters in dapAX strains that had minimal impact
to virulence in mouse models while enabling sensitive detection of bacteria
during infection. Thus, diaminopimelic acid selection for single or multi-copy
genetic systems in Yersinia pestis offers an improved
alternative to antibiotics for in vivo studies that causes
minimal disruption to virulence.
Collapse
|
36
|
Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ Microbiol 2010; 12:2539-58. [DOI: 10.1111/j.1462-2920.2010.02227.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Molina-Henares MA, de la Torre J, García-Salamanca A, Molina-Henares AJ, Herrera MC, Ramos JL, Duque E. Identification of conditionally essential genes for growth ofPseudomonas putidaKT2440 on minimal medium through the screening of a genome-wide mutant library. Environ Microbiol 2010; 12:1468-85. [DOI: 10.1111/j.1462-2920.2010.02166.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Li D, Yan Y, Ping S, Chen M, Zhang W, Li L, Lin W, Geng L, Liu W, Lu W, Lin M. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol 2010; 10:36. [PMID: 20137101 PMCID: PMC2907835 DOI: 10.1186/1471-2180-10-36] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/08/2010] [Indexed: 11/20/2022] Open
Abstract
Background Soil microorganisms are mainly responsible for the complete mineralization of aromatic compounds that usually originate from plant products or environmental pollutants. In many cases, structurally diverse aromatic compounds can be converted to a small number of structurally simpler intermediates, which are metabolized to tricarboxylic acid intermediates via the β-ketoadipate pathway. This strategy provides great metabolic flexibility and contributes to increased adaptation of bacteria to their environment. However, little is known about the evolution and regulation of the β-ketoadipate pathway in root-associated diazotrophs. Results In this report, we performed a genome-wide analysis of the benzoate and 4-hydroxybenzoate catabolic pathways of Pseudomonas stutzeri A1501, with a focus on the functional characterization of the β-ketoadipate pathway. The P. stutzeri A1501 genome contains sets of catabolic genes involved in the peripheral pathways for catabolism of benzoate (ben) and 4-hydroxybenzoate (pob), and in the catechol (cat) and protocatechuate (pca) branches of the β-ketoadipate pathway. A particular feature of the catabolic gene organization in A1501 is the absence of the catR and pcaK genes encoding a LysR family regulator and 4-hydroxybenzoate permease, respectively. Furthermore, the BenR protein functions as a transcriptional activator of the ben operon, while transcription from the catBC promoter can be activated in response to benzoate. Benzoate degradation is subject to carbon catabolite repression induced by glucose and acetate in A1501. The HPLC analysis of intracellular metabolites indicated that low concentrations of 4-hydroxybenzoate significantly enhance the ability of A1501 to degrade benzoate. Conclusions The expression of genes encoding proteins involved in the β-ketoadipate pathway is tightly modulated by both pathway-specific and catabolite repression controls in A1501. This strain provides an ideal model system for further study of the evolution and regulation of aromatic catabolic pathways.
Collapse
Affiliation(s)
- Danhua Li
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yan Y, Ping S, Peng J, Han Y, Li L, Yang J, Dou Y, Li Y, Fan H, Fan Y, Li D, Zhan Y, Chen M, Lu W, Zhang W, Cheng Q, Jin Q, Lin M. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC Genomics 2010; 11:11. [PMID: 20053297 PMCID: PMC2820453 DOI: 10.1186/1471-2164-11-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/07/2010] [Indexed: 12/11/2022] Open
Abstract
Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr) and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif-specific and ntr gene regulatory systems. Furthermore, microarray and mutational analyses revealed that many genes of unknown function may play some essential roles in controlling the expression or activity of nitrogenase. The findings presented here establish the foundation for further studies on the physiological function of nitrogen fixation-inducible genes.
Collapse
Affiliation(s)
- Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Biotechnology, Ministry of Agriculture, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Flores-Cruz Z, Allen C. Ralstonia solanacearum encounters an oxidative environment during tomato infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:773-82. [PMID: 19522559 DOI: 10.1094/mpmi-22-7-0773] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ralstonia solanacearum genes that are induced during tomato infection suggested that this pathogen encounters reactive oxygen species (ROS) during bacterial wilt pathogenesis. The genomes of R. solanacearum contain multiple redundant ROS-scavenging enzymes, indirect evidence that this pathogen experiences intense oxidative stress during its life cycle. Over 9% of the bacterium's plant-induced genes were also upregulated by hydrogen peroxide in culture, suggesting that oxidative stress may be linked to life in the plant host. Tomato leaves infected by R. solanacearum contained hydrogen peroxide, and concentrations of this ROS increased as pathogen populations increased. Mutagenesis of a plant-induced predicted peroxidase gene, bcp, resulted in an R. solanacearum strain with reduced ability to detoxify ROS in culture. The bcp mutant caused slightly delayed bacterial wilt disease onset in tomato. Moreover, its virulence was significantly reduced on tobacco plants engineered to overproduce hydrogen peroxide, demonstrating that Bcp is necessary for detoxification of plant-derived hydrogen peroxide and providing evidence that host ROS can limit the success of this pathogen. These results reveal that R. solanacearum is exposed to ROS during pathogenesis and that it has evolved a redundant and efficient oxidative stress response to adapt to the host environment and cause disease.
Collapse
Affiliation(s)
- Zomary Flores-Cruz
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
41
|
Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SAC, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 2009; 10:R51. [PMID: 19432983 PMCID: PMC2718517 DOI: 10.1186/gb-2009-10-5-r51] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/21/2009] [Accepted: 05/11/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. RESULTS Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. CONCLUSIONS P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Collapse
Affiliation(s)
- Mark W Silby
- Centre for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Ana M Cerdeño-Tárraga
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Georgios S Vernikos
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen R Giddens
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Robert W Jackson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Xue-Xian Zhang
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - Christina D Moon
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Stefanie M Gehrig
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Scott AC Godfrey
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: School of Life Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Christopher G Knight
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jacob G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Zena Robinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: SIMBIOS Centre, Level 5, Kydd Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, UK
| | - Simon Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Alice M Yaxley
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathy Seeger
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Lee Murphy
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Rutter
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Rob Squares
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Michael A Quail
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Elizabeth Saunders
- DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Konstantinos Mavromatis
- Genome Biology Program, Department of Energy's Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Thomas S Brettin
- DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen D Bentley
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Joanne Hothersall
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elton Stephens
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher M Thomas
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stuart B Levy
- Centre for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University Auckland, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - Nicholas R Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
42
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
43
|
Hardoim PR, van Overbeek LS, Elsas JDV. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 2008; 16:463-71. [PMID: 18789693 DOI: 10.1016/j.tim.2008.07.008] [Citation(s) in RCA: 710] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/26/2008] [Accepted: 07/14/2008] [Indexed: 01/25/2023]
Abstract
Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant. Endophytes with this capacity might profit from association with the plant, because colonization is enhanced. In turn, host plants benefit by stress reduction and increased root growth. This mechanism leads to the concept of 'competent' endophytes, defined as endophytes that are equipped with genes important for maintenance of plant-endophyte associations. The ecological role of these endophytes and their relevance for plant growth are discussed here.
Collapse
Affiliation(s)
- Pablo R Hardoim
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | | | | |
Collapse
|
44
|
Dudley EG. In VivoExpression Technology and Signature-Tagged Mutagenesis Screens for Identifying Mechanisms of Survival of Zoonotic Foodborne Pathogens. Foodborne Pathog Dis 2008; 5:473-85. [DOI: 10.1089/fpd.2008.0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Edward G. Dudley
- Department of Food Science, Penn State University, University Park, Pennsylvania
| |
Collapse
|
45
|
Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 2008; 105:7564-9. [PMID: 18495935 DOI: 10.1073/pnas.0801093105] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capacity to fix nitrogen is widely distributed in phyla of Bacteria and Archaea but has long been considered to be absent from the Pseudomonas genus. We report here the complete genome sequencing of nitrogen-fixing root-associated Pseudomonas stutzeri A1501. The genome consists of a single circular chromosome with 4,567,418 bp. Comparative genomics revealed that, among 4,146 protein-encoding genes, 1,977 have orthologs in each of the five other Pseudomonas representative species sequenced to date. The genome contains genes involved in broad utilization of carbon sources, nitrogen fixation, denitrification, degradation of aromatic compounds, biosynthesis of polyhydroxybutyrate, multiple pathways of protection against environmental stress, and other functions that presumably give A1501 an advantage in root colonization. Genetic information on synthesis, maturation, and functioning of nitrogenase is clustered in a 49-kb island, suggesting that this property was acquired by lateral gene transfer. New genes required for the nitrogen fixation process have been identified within the nif island. The genome sequence offers the genetic basis for further study of the evolution of the nitrogen fixation property and identification of rhizosphere competence traits required in the interaction with host plants; moreover, it opens up new perspectives for wider application of root-associated diazotrophs in sustainable agriculture.
Collapse
|
46
|
Barr M, East AK, Leonard M, Mauchline TH, Poole PS. In vivo expression technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34 expressed in the rhizosphere. FEMS Microbiol Lett 2008; 282:219-27. [PMID: 18399996 DOI: 10.1111/j.1574-6968.2008.01131.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
IVET was used to identify genes that are specifically expressed in the rhizosphere of the pea-nodulating bacterium Rhizobium leguminosarum A34. A library of R. leguminosarum A34 cloned in the integration vector pIE1, with inserts upstream of a promoter-less purN:gfp:gusA, was conjugated into purN host RU2249 and recombined into the genome. After removal of colonies that expressed the reporter genes of the vector under laboratory conditions, the library was inoculated into a nonsterile pea rhizosphere. The key result is that 29 rhizosphere-induced loci were identified. Sequence analysis of these clones showed that a wide variety of R. leguminosarum A34 genes are expressed specifically in the rhizosphere including those encoding proteins involved in environmental sensing, control of gene expression, metabolic reactions and membrane transport. These genes are likely to be important for survival and colonization of the pea rhizosphere.
Collapse
Affiliation(s)
- Michelle Barr
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | | | | | |
Collapse
|
47
|
van Overbeek L, van Elsas JD. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 2008; 64:283-96. [PMID: 18355298 DOI: 10.1111/j.1574-6941.2008.00469.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Désirée, Merkur and transgenic Désirée line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons between both experiments were made using Désirée plants. Culture-dependent and -independent approaches were used to demonstrate effects on total bacterial, actinobacterial and Pseudomonas communities in bulk and rhizosphere soils and endospheres. PCR-denaturing gradient gel electrophoresis fingerprints prepared with group-specific primers were analyzed using multivariate analyses and revealed that bacterial communities in Achirana Inta plants differed most from those of Désirée and Merkur. No significant effects were found between Désirée and DL12 lines. Plant growth stage strongly affected different plant-associated communities in both experiments. To investigate the effect of plant-associated communities on plant health, 800 isolates from rhizospheres and endospheres at the flowering stage were tested for suppression of Ralstonia solanacearum biovar 2 and/or Rhizoctonia solani AG3. A group of isolates closely resembling Lysobacter sp. dominated in young plants. Its prevalence was affected by plant growth stage and experiment rather than by plant genotype. It was concluded that plant growth stage overwhelmed any effect of plant genotype on the bacterial communities associated with potato.
Collapse
|
48
|
An Q, Dong Y, Wang W, Li Y, Li J. Constitutive expression of the nifA gene activates associative nitrogen fixation of Enterobacter gergoviae 57-7, an opportunistic endophytic diazotroph. J Appl Microbiol 2007; 103:613-20. [PMID: 17714394 DOI: 10.1111/j.1365-2672.2007.03289.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS This study was undertaken to investigate whether a nitrogen-fixing bacterium Enterobacter gergoviae 57-7, which was isolated from surface-sterilized maize (Zea mays L.) roots, can colonize in roots and whether constitutive expression of the nifA gene encoding the transcriptional activator of nitrogenase genes can activate nif gene expression in planta. METHODS AND RESULTS Maize seedlings grown in an agar medium were inoculated with Ent. gergoviae strains containing the green fluorescent protein reporter gene. Root colonization and expression of the dinitrogenase reductase gene (nifH) by Ent. gergoviae were observed by confocal laser scanning microscopy. gfp-tagged Ent. gergoviae was observed to colonize predominantly in cortical aerenchyma of primary and lateral roots and in stellar parenchyma cells and xylem vessels of primary roots. In planta nifH :: gfp expression was not detected but after a constitutively expressed nifA gene was introduced into Ent. gergoviae. CONCLUSIONS Enterobacter gergoviae 57-7 is an opportunistic endophyte because it can live in soil and colonize in maize roots in the gnotobiotic agar culture. In agreement with previous (15)N-dilution evidence that Ent. gergoviae 57-7 did not fix N(2) in association with maize in pots whereas a derivative E7 containing a constitutively expressed nifA gene promoted plant growth partly through associative nitrogen fixation, constitutive expression of the nifA gene can activate bacterial nif gene expression in planta. SIGNIFICANCE AND IMPACT OF THE STUDY This study and our previous studies suggest that manipulation of the promoter of the nifA gene in a nitrogen-fixing bacterium having a high colonization competence is a practical and promising approach to achieve a stable associative nitrogen fixation for cereals.
Collapse
Affiliation(s)
- Q An
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Klerks MM, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AHC. Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. THE ISME JOURNAL 2007; 1:620-31. [PMID: 18043669 DOI: 10.1038/ismej.2007.82] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of knowledge of the route of infection and critical plant and microbe factors influencing the colonization efficiency of plants by human pathogenic bacteria is essential for the design of preventive strategies to maintain safe food. This research describes the differential interaction of human pathogenic Salmonella enterica with commercially available lettuce cultivars. The prevalence and degree of endophytic colonization of axenically grown lettuce by the S. enterica serovars revealed a significant serovar-cultivar interaction for the degree of colonization (S. enterica CFUs per g leaf), but not for the prevalence. The evaluated S. enterica serovars were each able to colonize soil-grown lettuce epiphytically, but only S. enterica serovar Dublin was able to colonize the plants also endophytically. The number of S. enterica CFU per g of lettuce was negatively correlated to the species richness of the surface sterilized lettuce cultivars. A negative trend was observed for cultivars Cancan and Nelly, but not for cultivar Tamburo. Chemotaxis experiments revealed that S. enterica serovars actively move toward root exudates of lettuce cultivar Tamburo. Subsequent micro-array analysis identified genes of S. enterica serovar Typhimurium that were activated by the root exudates of cultivar Tamburo. A sugar-like carbon source was correlated with chemotaxis, while also pathogenicity-related genes were induced in presence of the root exudates. The latter revealed that S. enterica is conditioned for host cell attachment during chemotaxis by these root exudates. Finally, a tentative route of infection is described that includes plant-microbe factors, herewith enabling further design of preventive strategies.
Collapse
Affiliation(s)
- Michel M Klerks
- Wageningen University and Research Centre, Plant Research International BV, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Rediers H, Vanderleyden J, De Mot R. Nitrate respiration in Pseudomonas stutzeri A15 and its involvement in rice and wheat root colonization. Microbiol Res 2007; 164:461-8. [PMID: 17467964 DOI: 10.1016/j.micres.2007.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/22/2007] [Accepted: 03/05/2007] [Indexed: 11/28/2022]
Abstract
Unlike most bacteria, the nitrogen-fixing rice-associated Pseudomonas stutzeri A15 disposes of three different nitrate reductases that enable conversion of nitrate to nitrite through three physiologically distinct processes, called nitrate assimilation, nitrate respiration and nitrate dissimilation. To study the role of nitrate respiration in rhizosphere fitness, a Pseudomonas stutzeri narG mutant was constructed and characterized by assessing its growth characteristics and whole-cell nitrate reductase activity in different oxygen tensions. Unexpectedly, the Pseudomonas stutzeri A15 narG mutant appeared to be a better root colonizer, outcompeting the wild type strain in a wheat and rice hydroponic system.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| | | | | |
Collapse
|