1
|
Strugnell RA. When secretion turns into excretion - the different roles of IgA. Front Immunol 2022; 13:1076312. [PMID: 36618388 PMCID: PMC9812643 DOI: 10.3389/fimmu.2022.1076312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
IgA deficiency is the commonest immunodeficiency affecting up to 1 in 700 individuals. The effects of IgA deficiency are difficult to see in many individuals, are mild in many fewer and severe in fewer still. While monovalent IgA is found in serum, dimeric IgA is secreted through mucosal surfaces where it helps to maintain epithelial homeostasis. Studies with knockout mice have taught us that there are subtle inflammatory consequences of removing secretory IgA (sIgA), and the best explanation for these changes can be related by the loss of the 'excretory' immune system. The excretion of antigens is a logical process in regulating the immune system, given the long half-life of complement fixing antibodies. But the function of IgA as an immune or inflammation regulator may go beyond antigen removal.
Collapse
|
2
|
Culture-dependent evaluation of the respiratory microbiome in children with cystic fibrosis. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The study aimed to assess the regional peculiarities of the respiratory profile of children with cystic fibrosis (CF) in the Dnipro region (Ukraine).
Methods. Children living in the Dnipro region and aged younger than 18 years old with molecular-genetic confirmation of CF were enrolled in the study. Lung colonization was evaluated using a culture-dependent method. Sputum, mucus from the posterior pharyngeal wall and bronchoalveolar lavage fluid (BALF) were utilized.
Results. The Firmicutes phylum was the most common and occupied 54.00 % of the general proportion. On the other hand, the Proteobacteria phylum demonstrated overexpression in CF airways and kept the second rank with 28.87 %.
Sorensen's species similarity coefficient showed an allied affinity between the microbial burden of oropharyngeal samples with nasopharyngeal and sputum, QS = 0.61 and 0.91, respectively. However, the species composition within the nasal cavity was distinct from sputum and BALF (QS=0.47).
The primary pathogens in childhood were S. aureus, H. influenza, P. aeruginosa and A. fumigatus. In contrast to gram-negative non-fermenters (GNNF), the prevalence of S. aureus isolates by age had a non-linear character. The commensal microbiota changed negatively with age. Among children under 12 years, the Streptococcus genus was identified in 23.08 % of the samples, but among the age category older than 15 – only in 9.22 %.
11.06 % of S. aureus had small colony variants (SCVs) morphotypes. Isolates of P. aeruginosa with the properties of SCVs were also found in children who underwent prolonged antimicrobial treatment. However, the most prominent was the mucoid phenotype – 34.31 % of isolates.
Conclusions. Along with conventional microbiological properties, obligate pathobionts in children with CF exhibited changes, resulting in difficulties in identification. These included auxotrophic modification into SCVs and mucoid transformation.
The culture-dependent technique gives crucial data about the profile of pathogens usually associated with CF, although it is sufficiently limited
Collapse
|
3
|
Han X, Liu H, Hu L, Zhao N, Xu S, Lin Z, Chen Y. Bacterial Community Characteristics in the Gastrointestinal Tract of Yak ( Bos grunniens) Fully Grazed on Pasture of the Qinghai-Tibetan Plateau of China. Animals (Basel) 2021; 11:ani11082243. [PMID: 34438701 PMCID: PMC8388508 DOI: 10.3390/ani11082243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The Qinghai–Tibetan plateau is considered as the third Pole of the world and is characterized by low oxygen, high altitude, extreme cold weather and strong ultraviolet radiation. Yak, as the main domestic animals raised on the plateau, play various roles in local herdsmen’s lives by supplying necessities such as meat, milk and fuel. Yak are adapted to the harsh environment on the plateau; microbiota in gut equip the hosts with special abilities including adaptability, as illustrated by numerous research projects. Accordingly, the microbes in the gastrointestinal tract of yak must be characteristically profiled as a strategy to adapt to the environment. However, little is known about the microbial community in whole tract of yak; almost all of reported researches focused on rumen. Therefore, in the current study the bacterial community in the gastrointestinal tract of yak was explored using 16S rDNA amplicon sequencing technology, and the community profiling characteristic in each section was clearly elucidated. Abstract In the current research, samples of yak gastrointestinal tracts (GITs) were used to profile the bacterial compositional characteristics using high through-put sequencing technology of 16S RNA amplicon. A total of 6959 OTUs was obtained from 20,799,614 effective tags, among which 751 OTUs were shared by ten sections. A total of 16 known phyla were obtained in all samples—the most abundant phyla were Firmicutes (34.58%), Bacteroidetes (33.96%) and Verrucomicrobia (11.70%). At the genus level, a total of 66 genera were obtained—Rikenellaceae_RC9_gut_group (7.24%), Akkermansia (6.32%) and Ruminococcaceae_UCG-005 (6.14%) were the most abundant. Species of Observed (Sob), Shannon and Chao values of the Stomach were the greatest, followed by the large intestine, while small intestine had the lowest diversity (p < 0.05). Bacteroidete were more abundant in sections from rumen to duodenum; while Firmicutes were the most abundant in sections from jejunum. ABC transporters (7.82%), Aminoacyl-tRNA biosynthesis (4.85%) and Purine metabolism (3.77%) were the most abundant level-3 pathways in all samples. The results of associated correlation analysis indicated that rectum samples might be used as an estimator of rumen bacterial communities and fermentation. The results of this research enrich the current knowledge about the unique animals of the QTP and extend our insight into GITs microecology of various animals.
Collapse
Affiliation(s)
- Xueping Han
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
- Correspondence: (X.H.); (S.X.)
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.H.); (S.X.)
| | - Zhijia Lin
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| | - Yongwei Chen
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| |
Collapse
|
4
|
Yang Y, Palm NW. Immunoglobulin A and the microbiome. Curr Opin Microbiol 2020; 56:89-96. [PMID: 32889295 DOI: 10.1016/j.mib.2020.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023]
Abstract
The trillions of microbes that constitutively colonize the intestine (the gut microbiota) impact diverse aspects of human physiology in health and disease. Immunoglobulin A (IgA) is the most abundant antibody isotype produced at mucosal surfaces, and nearly two grams of IgA is secreted into the intestine every day. Secretory IgA (SIgA) provides critical protection against pathogens and toxins, but can also directly bind to and 'coat' commensal bacteria in the gut. Commensal targeting by SIgA shapes gut microbiota composition, modulates bacterial behaviors, and enforces host-microbiota homeostasis in both mice and humans.
Collapse
Affiliation(s)
- Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Increasing oxygen deficiency changes rare and moderately abundant bacterial communities in coastal soft sediments. Sci Rep 2019; 9:16341. [PMID: 31704947 PMCID: PMC6841974 DOI: 10.1038/s41598-019-51432-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Coastal hypoxia is a major environmental problem worldwide. Hypoxia-induced changes in sediment bacterial communities harm marine ecosystems and alter biogeochemical cycles. Nevertheless, the resistance of sediment bacterial communities to hypoxic stress is unknown. We investigated changes in bacterial communities during hypoxic-anoxic disturbance by artificially inducing oxygen deficiency to the seafloor for 0, 3, 7, and 48 days, with subsequent molecular biological analyses. We further investigated relationships between bacterial communities, benthic macrofauna and nutrient effluxes across the sediment-water-interface during hypoxic-anoxic stress, considering differentially abundant operational taxonomic units (OTUs). The composition of the moderately abundant OTUs changed significantly after seven days of oxygen deficiency, while the abundant and rare OTUs first changed after 48 days. High bacterial diversity maintained the resistance of the communities during oxygen deficiency until it dropped after 48 days, likely due to anoxia-induced loss of macrofaunal diversity and bioturbation. Nutrient fluxes, especially ammonium, correlated positively with the moderate and rare OTUs, including potential sulfate reducers. Correlations may reflect bacteria-mediated nutrient effluxes that accelerate eutrophication. The study suggests that even slightly higher bottom-water oxygen concentrations, which could sustain macrofaunal bioturbation, enable bacterial communities to resist large compositional changes and decrease the harmful consequences of hypoxia in marine ecosystems.
Collapse
|
6
|
Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1300-1310. [PMID: 31100210 DOI: 10.1016/j.ajpath.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Mammals have coevolved with a large community of symbiotic, commensal, and some potentially pathogenic microbes. The trillions of bacteria and hundreds of species in our guts form a relatively stable community that resists invasion by outsiders, including pathogens. This powerful protective force is referred to as colonization resistance. We discuss the variety of proposed or demonstrated mechanisms that can mediate colonization resistance and some potential ways to manipulate them for improved human health. Instances in which certain bacterial pathogens can overcome colonization resistance are also discussed.
Collapse
|
7
|
Simpfendorfer KR, Wang N, Tull DL, De Souza DP, Nahid A, Mu A, Hocking DM, Pedersen JS, Wijburg OLC, McConville MJ, Strugnell RA. Mus musculus deficient for secretory antibodies show delayed growth with an altered urinary metabolome. Mol Med 2019; 25:12. [PMID: 30943912 PMCID: PMC6446318 DOI: 10.1186/s10020-019-0077-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background The polymeric immunoglobulin receptor (pIgR) maintains the integrity of epithelial barriers by transporting polymeric antibodies and antigens through the epithelial mucosa into the lumen. In this study, we examined the role of pIgR in maintaining gut barrier integrity, which is important for the normal development in mice. Methods Cohorts of pIgR−/− mice and their wildtype controls were housed under Specific Pathogen Free (SPF) conditions and monitored for weight gain as an indicator of development over time. The general physiology of the gastrointestinal tract was analysed using immunohistochemistry in young (8–12 weeks of age) and aged mice (up to 18 months of age), and the observed immunopathology in pIgR−/− mice was further characterised using flow cytometry. Urinary metabolites were analysed using gas chromatography-mass spectrometry (GC-MS), which revealed changes in metabolites that correlated with age-related increase in gut permeability in pIgR−/− mice. Results We observed that pIgR−/− mice exhibited delayed growth, and this phenomenon is associated with low-grade gut inflammation that increased with ageing. The gross intraepithelial lymphocytic (IEL) infiltration characteristic of pIgR−/− mice was redefined as CD8α+αβ+ T cells, the majority of which expressed high levels of CD103 and CD69 consistent with tissue resident memory T cells (TRM). Comparison of the urinary metabolome between pIgR−/− and wild-type mice revealed key changes in urinary biomarkers fucose, glycine and Vitamin B5, suggestive of altered mucosal permeability. A significant increase in gut permeability was confirmed by analysing the site-specific uptake of sugar probes in different parts of the intestine. Conclusion Our data show that loss of the secretory antibody system in mice results in enhanced accumulation of inflammatory IELs in the gut, which likely reflects ongoing inflammation in reaction to gut microbiota or food antigens, leading to delayed growth in pIgR−/− mice. We demonstrate that this leads to the presence of a unique urinary metabolome profile, which may provide a biomarker for altered gut permeability. Electronic supplementary material The online version of this article (10.1186/s10020-019-0077-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim R Simpfendorfer
- The Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Present address: The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Nancy Wang
- The Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Amsha Nahid
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Andre Mu
- The Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Dianna M Hocking
- The Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Odilia L C Wijburg
- The Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Richard A Strugnell
- The Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
8
|
Luhtanen AM, Eronen-Rasimus E, Oksanen HM, Tison JL, Delille B, Dieckmann GS, Rintala JM, Bamford DH. The first known virus isolates from Antarctic sea ice have complex infection patterns. FEMS Microbiol Ecol 2019; 94:4898008. [PMID: 29481638 DOI: 10.1093/femsec/fiy028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/21/2018] [Indexed: 01/21/2023] Open
Abstract
Viruses are recognized as important actors in ocean ecology and biogeochemical cycles, but many details are not yet understood. We participated in a winter expedition to the Weddell Sea, Antarctica, to isolate viruses and to measure virus-like particle abundance (flow cytometry) in sea ice. We isolated 59 bacterial strains and the first four Antarctic sea-ice viruses known (PANV1, PANV2, OANV1 and OANV2), which grow in bacterial hosts belonging to the typical sea-ice genera Paraglaciecola and Octadecabacter. The viruses were specific for bacteria at the strain level, although OANV1 was able to infect strains from two different classes. Both PANV1 and PANV2 infected 11/15 isolated Paraglaciecola strains that had almost identical 16S rRNA gene sequences, but the plating efficiencies differed among the strains, whereas OANV1 infected 3/7 Octadecabacter and 1/15 Paraglaciecola strains and OANV2 1/7 Octadecabacter strains. All the phages were cold-active and able to infect their original host at 0°C and 4°C, but not at higher temperatures. The results showed that virus-host interactions can be very complex and that the viral community can also be dynamic in the winter-sea ice.
Collapse
Affiliation(s)
- Anne-Mari Luhtanen
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | | | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jean-Louis Tison
- Laboratoire de Glaciologie, DGES, Université Libre de Bruxelles, Belgium
| | - Bruno Delille
- Unité d'Océanographie Chimique, Université de Liège, Belgium
| | - Gerhard S Dieckmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Janne-Markus Rintala
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.,Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Natural Secretory Immunoglobulins Promote Enteric Viral Infections. J Virol 2018; 92:JVI.00826-18. [PMID: 30232191 DOI: 10.1128/jvi.00826-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Noroviruses are enteric pathogens causing significant morbidity, mortality, and economic losses worldwide. Secretory immunoglobulins (sIg) are a first line of mucosal defense against enteric pathogens. They are secreted into the intestinal lumen via the polymeric immunoglobulin receptor (pIgR), where they bind to antigens. However, whether natural sIg protect against norovirus infection remains unknown. To determine if natural sIg alter murine norovirus (MNV) pathogenesis, we infected pIgR knockout (KO) mice, which lack sIg in mucosal secretions. Acute MNV infection was significantly reduced in pIgR KO mice compared to controls, despite increased MNV target cells in the Peyer's patch. Natural sIg did not alter MNV binding to the follicle-associated epithelium (FAE) or crossing of the FAE into the lymphoid follicle. Instead, naive pIgR KO mice had enhanced levels of the antiviral inflammatory molecules interferon gamma (IFN-γ) and inducible nitric oxide synthase (iNOS) in the ileum compared to controls. Strikingly, depletion of the intestinal microbiota in pIgR KO and control mice resulted in comparable IFN-γ and iNOS levels, as well as MNV infectious titers. IFN-γ treatment of wild-type (WT) mice and neutralization of IFN-γ in pIgR KO mice modulated MNV titers, implicating the antiviral cytokine in the phenotype. Reduced gastrointestinal infection in pIgR KO mice was also observed with another enteric virus, reovirus. Collectively, our findings suggest that natural sIg are not protective during enteric virus infection, but rather, that sIg promote enteric viral infection through alterations in microbial immune responses.IMPORTANCE Enteric virus, such as norovirus, infections cause significant morbidity and mortality worldwide. However, direct antiviral infection prevention strategies are limited. Blocking host entry and initiation of infection provides an established avenue for intervention. Here, we investigated the role of the polymeric immunoglobulin receptor (pIgR)-secretory immunoglobulin (sIg) cycle during enteric virus infections. The innate immune functions of sIg (agglutination, immune exclusion, neutralization, and expulsion) were not required during control of acute murine norovirus (MNV) infection. Instead, lack of pIgR resulted in increased IFN-γ levels, which contributed to reduced MNV titers. Another enteric virus, reovirus, also showed decreased infection in pIgR KO mice. Collectively, our data point to a model in which sIg-mediated microbial sensing promotes norovirus and reovirus infection. These data provide the first evidence of the proviral role of natural sIg during enteric virus infections and provide another example of how intestinal bacterial communities indirectly influence MNV pathogenesis.
Collapse
|
10
|
Turula H, Wobus CE. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity. Viruses 2018; 10:E237. [PMID: 29751532 PMCID: PMC5977230 DOI: 10.3390/v10050237] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.
Collapse
Affiliation(s)
- Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Jensen HS, Sekar R, Shepherd WJ, Osborn AM, Tait S, Biggs CA. Spatial and temporal variability of bacterial communities within a combined sewer system. Microbiologyopen 2016; 5:616-25. [PMID: 27063341 PMCID: PMC4985595 DOI: 10.1002/mbo3.356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 11/21/2022] Open
Abstract
This study describes the temporal and spatial variability of bacterial communities within a combined sewer system in England. Sampling was conducted over 9 months in a sewer system with intensive monitoring of hydraulic conditions. The bacterial communities were characterized by 16S rRNA gene-targeted terminal restriction fragment length polymorphism analysis. These data were related to the hydraulic data as well as the sample type, location, and time. Temporal and spatial variation was observed between and within wastewater communities and biofilm communities. The bacterial communities in biofilm were distinctly different from the communities in wastewater and exhibited greater spatial variation, while the wastewater communities exhibited variability between different months of sampling. This study highlights the variation of bacterial communities between biofilm and wastewater, and has shown both spatial and temporal variations in bacterial communities in combined sewers. The temporal variation is of interest for in-sewer processes, for example, sewer odor generation, as field measurements for these processes are often carried out over short durations and may therefore not capture the influence of this temporal variation of the bacterial communities.
Collapse
Affiliation(s)
| | - Raju Sekar
- Department of Biological SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Will J. Shepherd
- Department of Civil and Structural EngineeringUniversity of SheffieldSheffieldUK
| | | | - Simon Tait
- Department of Civil and Structural EngineeringUniversity of SheffieldSheffieldUK
| | - Catherine A. Biggs
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| |
Collapse
|
12
|
Jiang X, Hu J, Thirumalai D, Zhang X. Immunoglobulin Transporting Receptors Are Potential Targets for the Immunity Enhancement and Generation of Mammary Gland Bioreactor. Front Immunol 2016; 7:214. [PMID: 27375616 PMCID: PMC4901538 DOI: 10.3389/fimmu.2016.00214] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
The functions of immunoglobulin transporting receptors (Ig transporting receptors) in immune system encompass from passive immunity to adaptive immunity by transporting immunoglobulins (Igs) and prolonging their half-life as well as enhancing immunosurveillance. Prior to the weaning, Ig transportations from mother to offspring confer the immediate passive immunity for neonates. After the weaning, FcRn and polymeric immunoglobulin receptor on infant intestinal epithelial cells retrieve Ig in intestinal lamina propria into the gut lumen for preventing pathogen invasion. This is not only improving the pathological consequences of infection but also helping the neonates for developing their own immune response; besides it would be the guidance for designing novel vaccines. Moreover, the investigations on Ig transporting receptors over-expressed transgenic animals have been carried out to improve Ig concentrations in serum and milk; thus, it would be a sustainable method to produce antibody-enriched milk-derived colostrum replacer for neonates. In order to generate mammary gland bioreactor, a series of methods have been developed for enhanced regulation of Ig transporting receptors expression and Ig transportation.
Collapse
Affiliation(s)
- Xuemei Jiang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Jianjun Hu
- Key Laboratory of Tarim Animal Husbandry Science and Technology, College of Animal Science and Technology, Tarim University , Alar, Xinjiang , China
| | - Diraviyam Thirumalai
- College of Veterinary Medicine, Northwest A&F University , Xianyang, Shaanxi , China
| | - Xiaoying Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
13
|
Eronen-Rasimus E, Lyra C, Rintala JM, Jürgens K, Ikonen V, Kaartokallio H. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. FEMS Microbiol Ecol 2015; 91:1-13. [PMID: 25764550 DOI: 10.1093/femsec/fiu022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community.
Collapse
Affiliation(s)
- Eeva Eronen-Rasimus
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, PO Box 140, Helsinki 00251, Finland Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, PO Box 56, Viikinkaari 9, FI-00014 University of Helsinki, Finland
| | - Janne-Markus Rintala
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, PO Box 65, Viikinkaari 1, FI-00014 University of Helsinki, Finland
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Biological Oceanography, Seestr. 15, 18119 Rostock, Germany
| | - Vilma Ikonen
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, PO Box 140, Helsinki 00251, Finland
| | - Hermanni Kaartokallio
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, PO Box 140, Helsinki 00251, Finland
| |
Collapse
|
14
|
Fredriksson NJ, Hermansson M, Wilén BM. Tools for T-RFLP data analysis using Excel. BMC Bioinformatics 2014; 15:361. [PMID: 25388093 PMCID: PMC4228162 DOI: 10.1186/s12859-014-0361-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terminal restriction fragment length polymorphism (T-RFLP) analysis is a DNA-fingerprinting method that can be used for comparisons of the microbial community composition in a large number of samples. There is no consensus on how T-RFLP data should be treated and analyzed before comparisons between samples are made, and several different approaches have been proposed in the literature. The analysis of T-RFLP data can be cumbersome and time-consuming, and for large datasets manual data analysis is not feasible. The currently available tools for automated T-RFLP analysis, although valuable, offer little flexibility, and few, if any, options regarding what methods to use. To enable comparisons and combinations of different data treatment methods an analysis template and an extensive collection of macros for T-RFLP data analysis using Microsoft Excel were developed. RESULTS The Tools for T-RFLP data analysis template provides procedures for the analysis of large T-RFLP datasets including application of a noise baseline threshold and setting of the analysis range, normalization and alignment of replicate profiles, generation of consensus profiles, normalization and alignment of consensus profiles and final analysis of the samples including calculation of association coefficients and diversity index. The procedures are designed so that in all analysis steps, from the initial preparation of the data to the final comparison of the samples, there are various different options available. The parameters regarding analysis range, noise baseline, T-RF alignment and generation of consensus profiles are all given by the user and several different methods are available for normalization of the T-RF profiles. In each step, the user can also choose to base the calculations on either peak height data or peak area data. CONCLUSIONS The Tools for T-RFLP data analysis template enables an objective and flexible analysis of large T-RFLP datasets in a widely used spreadsheet application.
Collapse
Affiliation(s)
- Nils Johan Fredriksson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
15
|
Fredriksson NJ, Hermansson M, Wilén BM. Impact of T-RFLP data analysis choices on assessments of microbial community structure and dynamics. BMC Bioinformatics 2014; 15:360. [PMID: 25381552 PMCID: PMC4232699 DOI: 10.1186/s12859-014-0360-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
Background Terminal restriction fragment length polymorphism (T-RFLP) analysis is a common DNA-fingerprinting technique used for comparisons of complex microbial communities. Although the technique is well established there is no consensus on how to treat T-RFLP data to achieve the highest possible accuracy and reproducibility. This study focused on two critical steps in the T-RFLP data treatment: the alignment of the terminal restriction fragments (T-RFs), which enables comparisons of samples, and the normalization of T-RF profiles, which adjusts for differences in signal strength, total fluorescence, between samples. Results Variations in the estimation of T-RF sizes were observed and these variations were found to affect the alignment of the T-RFs. A novel method was developed which improved the alignment by adjusting for systematic shifts in the T-RF size estimations between the T-RF profiles. Differences in total fluorescence were shown to be caused by differences in sample concentration and by the gel loading. Five normalization methods were evaluated and the total fluorescence normalization procedure based on peak height data was found to increase the similarity between replicate profiles the most. A high peak detection threshold, alignment correction, normalization and the use of consensus profiles instead of single profiles increased the similarity of replicate T-RF profiles, i.e. lead to an increased reproducibility. The impact of different treatment methods on the outcome of subsequent analyses of T-RFLP data was evaluated using a dataset from a longitudinal study of the bacterial community in an activated sludge wastewater treatment plant. Whether the alignment was corrected or not and if and how the T-RF profiles were normalized had a substantial impact on ordination analyses, assessments of bacterial dynamics and analyses of correlations with environmental parameters. Conclusions A novel method for the evaluation and correction of the alignment of T-RF profiles was shown to reduce the uncertainty and ambiguity in alignments of T-RF profiles. Large differences in the outcome of assessments of bacterial community structure and dynamics were observed between different alignment and normalization methods. The results of this study can therefore be of value when considering what methods to use in the analysis of T-RFLP data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0360-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Johan Fredriksson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Britt-Marie Wilén
- Department of Civil and Environmental Engineering, Water Environment Technology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
16
|
Sukegawa S, Ihara Y, Yuge K, Rao S, Oka K, Arakawa F, Fujimura T, Murakami H, Kurazono H, Takahashi M, Morimatsu F. Effects of oral administration of heat-killed Enterococcus faecium strain NHRD IHARA in post-weaning piglets. Anim Sci J 2014; 85:454-60. [PMID: 24450962 DOI: 10.1111/asj.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/29/2013] [Indexed: 12/17/2022]
Abstract
Probiotic bacteria such as lactic acid bacteria (LAB) have recently received attention as candidates for alternative anti-microbial feed additives. We previously isolated Enterococcus faecium strain NHRD IHARA (FERM BP-11090, NHRD IHARA strain) and reported its probiotic efficacy. However, we have not determined the effect of oral administration of heat-killed cells of this strain. Here, we performed two experiments to investigate the effect of oral administration of the heat-killed NHRD IHARA strain on post-weaning piglets. In Experiment 1, there was a significant improvement in growth performance (P = 0.04) and increase in serum immunoglobulin A (IgA) production (P = 0.03) in the group fed heat-killed cells. These results were similar to previous results we obtained with live cells. We also found changes in serum and fecal IgA production that were unrelated to the patterns of microbiotal change. In Experiment 2, we detected a significant improvement in villus growth in the jejunum (P = 0.0002). In conclusion, oral administration of the heat-killed NHRD IHARA strain in post-weaning piglets had the same efficacy as administration of the live strain. The heat-killed NHRD IHARA strain can be used as feed additives to improve pig growth and health on commercial farms.
Collapse
Affiliation(s)
- Shin Sukegawa
- Research and Development Center, Nippon Meat Packers, Inc., Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Eronen-Rasimus E, Kaartokallio H, Lyra C, Autio R, Kuosa H, Dieckmann GS, Thomas DN. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment. Microbiologyopen 2014; 3:139-56. [PMID: 24443388 PMCID: PMC3937737 DOI: 10.1002/mbo3.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 11/11/2022] Open
Abstract
The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation.
Collapse
Affiliation(s)
- Eeva Eronen-Rasimus
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, PO Box 140, Helsinki 00251, Finland
| | | | | | | | | | | | | |
Collapse
|
18
|
Comparing activated sludge fungal community population diversity using denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism. Antonie van Leeuwenhoek 2014; 105:559-69. [DOI: 10.1007/s10482-013-0108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
|
19
|
Mirpuri J, Raetz M, Sturge CR, Wilhelm CL, Benson A, Savani RC, Hooper LV, Yarovinsky F. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 2014; 5:28-39. [PMID: 24637807 PMCID: PMC4049932 DOI: 10.4161/gmic.26489] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The intestinal microbiota changes dynamically from birth to adulthood. In this study we identified γ-Proteobacteria as a dominant phylum present in newborn mice that is suppressed in normal adult microbiota. The transition from a neonatal to a mature microbiota was in part regulated by induction of a γ-Proteobacteria-specific IgA response. Neocolonization experiments in germ-free mice further revealed a dominant Proteobacteria-specific IgA response triggered by the immature microbiota. Finally, a role for B cells in the regulation of microbiota maturation was confirmed in IgA-deficient mice. Mice lacking IgA had persistent intestinal colonization with γ-Proteobacteria that resulted in sustained intestinal inflammation and increased susceptibility to neonatal and adult models of intestinal injury. Collectively, these results identify an IgA-dependent mechanism responsible for the maturation of the intestinal microbiota.
Collapse
Affiliation(s)
- Julie Mirpuri
- Department of Pediatrics; Division of Neonatal-Perinatal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Megan Raetz
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Carolyn R Sturge
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Cara L Wilhelm
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Alicia Benson
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Rashmin C Savani
- Department of Pediatrics; Division of Neonatal-Perinatal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Lora V Hooper
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA,Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Felix Yarovinsky
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA,Correspondence to: Felix Yarovinsky,
| |
Collapse
|
20
|
Pervin HM, Dennis PG, Lim HJ, Tyson GW, Batstone DJ, Bond PL. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. WATER RESEARCH 2013; 47:7098-7108. [PMID: 24216229 DOI: 10.1016/j.watres.2013.07.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system.
Collapse
Affiliation(s)
- Hasina M Pervin
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Davies LO, Schäfer H, Marshall S, Bramke I, Oliver RG, Bending GD. Light structures phototroph, bacterial and fungal communities at the soil surface. PLoS One 2013; 8:e69048. [PMID: 23894406 PMCID: PMC3716809 DOI: 10.1371/journal.pone.0069048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/04/2013] [Indexed: 02/01/2023] Open
Abstract
The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.
Collapse
Affiliation(s)
- Lawrence O Davies
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge. Syst Appl Microbiol 2013; 36:281-90. [DOI: 10.1016/j.syapm.2013.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/22/2022]
|
23
|
Lu Y, Slater F, Bello-Mendoza R, Batstone DJ. Shearing of biofilms enables selective layer based microbial sampling and analysis. Biotechnol Bioeng 2013; 110:2600-5. [DOI: 10.1002/bit.24947] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Lu
- Advanced Water Management Centre; The University of Queensland; Level 4, Gehrmann Laboratories Building (60); Brisbane; QLD 4072; Australia
| | - Frances Slater
- Advanced Water Management Centre; The University of Queensland; Level 4, Gehrmann Laboratories Building (60); Brisbane; QLD 4072; Australia
| | - Ricardo Bello-Mendoza
- Department of Environmental Biotechnology; El Colegio de la Frontera Sur; Tapachula; Chiapas; Mexico
| | - Damien J. Batstone
- Advanced Water Management Centre; The University of Queensland; Level 4, Gehrmann Laboratories Building (60); Brisbane; QLD 4072; Australia
| |
Collapse
|
24
|
Takiguchi H, Endo S, Omagari D, Okabayashi K, Watanabe T, Asano M, Komiyama K. Reduced production of polymeric immunoglobulin receptor in murine dextran sodium sulfate-induced colitis. J Oral Sci 2012; 54:23-32. [PMID: 22466883 DOI: 10.2334/josnusd.54.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Polymeric immunoglobulin receptor (pIgR) plays an intrinsic role in protecting the intestinal tract from invading pathogens. In the present study, we observed a decrease in pIgR in colon lysate from mice with dextran sodium sulfate (DSS) colitis. A decrease in pIgR was detected in both mRNA and protein levels. Histologic examinations revealed marked destruction of intestinal epithelial cells (IECs), and only a small number of regenerating IECs expressed pIgR. These results suggest that the decrease in pIgR was due to the destruction of IECs. Because activation of toll-like receptor 3 slows the progression of DSS colitis, we injected polyriboinosinic: polyribocytidylic acid (poly I:C) intraperitoneally and observed the correlation between pIgR level and severity of DSS colitis. Poly I:C markedly decreased progression of DSS colitis, and pIgR levels significantly recovered. Furthermore, we found that expressions of IFN-γ and TNF-α were higher in DSS colitis. These results indicate that the decrease in pIgR was not compensated for by increased expression of these cytokines. In sum, our findings show that pIgR levels vary according to the severity of DSS colitis and that these changes might be useful as a biomarker of the severity of inflammatory bowel disease.
Collapse
Affiliation(s)
- Hatakazu Takiguchi
- Division of Oral Health Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Reikvam DH, Derrien M, Islam R, Erofeev A, Grcic V, Sandvik A, Gaustad P, Meza-Zepeda LA, Jahnsen FL, Smidt H, Johansen FE. Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice. Eur J Immunol 2012; 42:2959-70. [DOI: 10.1002/eji.201242543] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Dag Henrik Reikvam
- Department of Pathology and Centre for Immune Regulation; University of Oslo and Oslo University Hospital - Rikshospitalet; Oslo Norway
| | - Muriel Derrien
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - Rejoanoul Islam
- Department of Pathology and Centre for Immune Regulation; University of Oslo and Oslo University Hospital - Rikshospitalet; Oslo Norway
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - Alexander Erofeev
- Department of Pathology and Centre for Immune Regulation; University of Oslo and Oslo University Hospital - Rikshospitalet; Oslo Norway
| | - Vedrana Grcic
- Department of Pathology and Centre for Immune Regulation; University of Oslo and Oslo University Hospital - Rikshospitalet; Oslo Norway
| | - Anders Sandvik
- Department of Pathology and Centre for Immune Regulation; University of Oslo and Oslo University Hospital - Rikshospitalet; Oslo Norway
| | - Peter Gaustad
- Institute of Microbiology; University of Oslo; Oslo Norway
| | - Leonardo A. Meza-Zepeda
- Department of Tumor Biology; Oslo University Hospital - The Norwegian Radium Hospital; Oslo Norway
- Norwegian Microarray Consortium,; Department of Molecular Biosciences; University of Oslo; Oslo Norway
| | - Frode L. Jahnsen
- Department of Pathology and Centre for Immune Regulation; University of Oslo and Oslo University Hospital - Rikshospitalet; Oslo Norway
| | - Hauke Smidt
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - Finn-Eirik Johansen
- Department of Pathology and Centre for Immune Regulation; University of Oslo and Oslo University Hospital - Rikshospitalet; Oslo Norway
- Department of Molecular Biosciences; University of Oslo; Oslo Norway
| |
Collapse
|
26
|
Nithya C, Pandian SK. Evaluation of bacterial diversity in Palk Bay sediments using terminal-restriction fragment length polymorphisms (T-RFLP). Appl Biochem Biotechnol 2012; 167:1763-77. [PMID: 22528645 DOI: 10.1007/s12010-012-9578-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/19/2012] [Indexed: 11/24/2022]
Abstract
Although it is known that Palk Bay sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their molecular diversity is still lacking. In the present study, bacterial diversity in Palk Bay sediments was characterized using the molecular method terminal-restriction fragment length polymorphisms (T-RFLP). The bacterial assemblages detected by T-RFLP analysis revealed that the nearshore sediment harbored high number of bacterial count, whereas the 2.5-m sediment harbored diverse and distinct bacterial composition with fine heterogeneity. The major bacterial groups detected in all the three sediment samples were Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria (including alpha (α), gamma (γ), delta (δ), and epsilon (ε)-Proteobacteria), and uncultured bacteria. This is the first study that reveals the presence of Bacteroidetes, delta (δ)- and epsilon (ε)-Proteobacteria, and uncultured bacteria in Palk Bay sediments. The hitherto unexplored wide microbial diversity of Palk Bay coastal area was unraveled in the current study through culture-independent approach. These data suggest that the continued use of cultivation-independent techniques will undoubtedly lead to the discovery of additional bacterial diversity and provide a direct means to learn more about the ecophysiology and biotechnological potential of Palk Bay coastal area.
Collapse
Affiliation(s)
- Chari Nithya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| | | |
Collapse
|
27
|
Sibley CD, Peirano G, Church DL. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology. INFECTION GENETICS AND EVOLUTION 2012; 12:505-21. [PMID: 22342514 PMCID: PMC7106020 DOI: 10.1016/j.meegid.2012.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/25/2022]
Abstract
Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections.
Collapse
Affiliation(s)
- Christopher D. Sibley
- Department of Microbiology, Immunology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alta, Canada
| | - Gisele Peirano
- Division of Microbiology, Calgary Laboratory Services, Calgary, Alta, Canada
| | - Deirdre L. Church
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, Alta, Canada
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alta, Canada
- Division of Microbiology, Calgary Laboratory Services, Calgary, Alta, Canada
- Corresponding author. Address: c/o Calgary Laboratory Services, 9-3535 Research Rd. N.W., Calgary, Alta, Canada T2L 2K8. Tel.: +1 403 770 3281; fax: +1 403 770 3347.
| |
Collapse
|
28
|
Perryman SE, Rees GN, Grace MR. Sediment bacterial community structure and function in response to C and Zn amendments: urban and nonurban streams. ACTA ACUST UNITED AC 2011. [DOI: 10.1899/11-009.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shane E. Perryman
- Water Studies Centre and School of Chemistry, Monash University, Clayton Victoria 3800, Australia and CSIRO Land and Water and Murray-Darling Freshwater Research Centre, La Trobe University, Wodonga, Victoria 3689, Australia
| | - Gavin N. Rees
- CSIRO Land and Water and Murray-Darling Freshwater Research Centre, La Trobe University, Wodonga, Victoria 3689, Australia
| | - Michael R. Grace
- Water Studies Centre and School of Chemistry, Monash University, Clayton Victoria 3800, Australia
| |
Collapse
|
29
|
Abstract
SUMMARYEnrichment culture is often used to isolateCampylobacter. This study compared isolation ofCampylobacterspp. from 119 broiler chicken environments from two farms, using Preston and modified Exeter (mExeter) and modified Bolton (mBolton) enrichments. mExeter was significantly more effective in isolatingCampylobacterspp. from the environmental samples compared to Preston (P<0·001) and mBolton (P<0·04) broths but there was no significant difference between the latter two methods (P>0·05). Enrichment broth type did not affect isolation from chicken faecal or soil and litter samples.C. jejuniwas isolated from significantly more environmental samples using mExeter broth compared to Preston (P<0·01) and mBolton (P<0·003) broths; there was no difference between the latter two methods or between all methods for detection ofC. coli(P>0·05). OnlyC. coliwas isolated from the soil and litter samples and although bothC. jejuniandC. coliwere recovered from the faecal samples there was no effect of using different enrichment broths. The majority of samples where the same species had been isolated yielded the same or closely related genotypes as defined by pulsed-field gel electrophoresis. Isolates recovered using Preston and mBolton broths were less genetically diverse than those from mExeter broth. We conclude that the enrichment method used affects both the number and species ofCampylobacterisolated from naturally contaminated samples.
Collapse
|
30
|
Sinkko H, Lukkari K, Jama AS, Sihvonen LM, Sivonen K, Leivuori M, Rantanen M, Paulin L, Lyra C. Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges. PLoS One 2011; 6:e21555. [PMID: 21747910 PMCID: PMC3126828 DOI: 10.1371/journal.pone.0021555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/03/2011] [Indexed: 11/23/2022] Open
Abstract
Background External nutrient discharges have caused eutrophication in many estuaries and coastal seas such as the Baltic Sea. The sedimented nutrients can affect bacterial communities which, in turn, are widely believed to contribute to release of nutrients such as phosphorus from the sediment. Methods We investigated relationships between bacterial communities and chemical forms of phosphorus as well as elements involved in its cycling in brackish sediments using up-to-date multivariate statistical methods. Bacterial community composition was determined by terminal restriction fragment length polymorphism and cloning of the 16S rRNA gene. Results and Conclusions The bacterial community composition differed along gradients of nutrients, especially of different phosphorus forms, from the estuary receiving agricultural phosphorus loading to the open sea. This suggests that the chemical composition of sediment phosphorus, which has been affected by riverine phosphorus loading, influenced on bacterial communities. Chemical and spatial parameters explained 25% and 11% of the variation in bacterial communities. Deltaproteobacteria, presumptively sulphate and sulphur/iron reducing, were strongly associated to chemical parameters, also when spatial autocorrelation was taken into account. Sulphate reducers correlated positively with labile organic phosphorus and total nitrogen in the open sea sediments. Sulphur/iron reducers and sulphate reducers linked to iron reduction correlated positively with aluminium- and iron-bound phosphorus, and total iron in the estuary. The sulphate and sulphur/iron reducing bacteria can thus have an important role both in the mineralization and mobilization of nutrients from sediment. Significance Novelty in our study is that relationships between bacterial community composition and different phosphorus forms, instead of total phosphorus, were investigated. Total phosphorus does not necessarily bring out interactions between bacteria and phosphorus chemistry since proportions of easily usable mobile (reactive) phosphorus and immobile phosphorus forms in different sediments can vary. Our study suggested possible feedbacks between different forms of phosphorus and bacterial community composition.
Collapse
Affiliation(s)
- Hanna Sinkko
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kaarina Lukkari
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Abdullahi S. Jama
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Leila M. Sihvonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Mirja Leivuori
- Reference Laboratory, Finnish Environment Institute, Helsinki, Finland
| | - Matias Rantanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Perryman SE, Rees GN, Walsh CJ, Grace MR. Urban stormwater runoff drives denitrifying community composition through changes in sediment texture and carbon content. MICROBIAL ECOLOGY 2011; 61:932-940. [PMID: 21384215 DOI: 10.1007/s00248-011-9833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.
Collapse
Affiliation(s)
- Shane E Perryman
- Water Studies Centre, Monash University, Monash, VIC 3800, Australia.
| | | | | | | |
Collapse
|
32
|
Cantalapiedra-Hijar G, Yáñez-Ruiz D, Newbold C, Molina-Alcaide E. The effect of the feed-to-buffer ratio on bacterial diversity and ruminal fermentation in single-flow continuous-culture fermenters. J Dairy Sci 2011; 94:1374-84. [DOI: 10.3168/jds.2010-3260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022]
|
33
|
Jeyanathan J, Kirs M, Ronimus RS, Hoskin SO, Janssen PH. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol Ecol 2011; 76:311-26. [DOI: 10.1111/j.1574-6941.2011.01056.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Slater FR, Johnson CR, Blackall LL, Beiko RG, Bond PL. Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP). WATER RESEARCH 2010; 44:4908-4923. [PMID: 20701946 DOI: 10.1016/j.watres.2010.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/26/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
The role of Candidatus "Accumulibacter phosphatis" (Accumulibacter) in enhanced biological phosphorus removal (EBPR) is well established but the relevance of different Accumulibacter clades to the performance of EBPR systems is unknown. We developed a terminal-restriction fragment length polymorphism (T-RFLP) technique to monitor changes in the relative abundance of key members of the bacterial community, including Accumulibacter clades, in four replicate mini-sequencing batch reactors (mSBRs) operated for EBPR over a 35-day period. The ability of the T-RFLP technique to detect trends was confirmed using fluorescence in situ hybridisation (FISH). EBPR performance varied between reactors and over time; by day 35, performance was maintained in mSBR2 whilst it had deteriorated in mSBR1. However, reproducible trends in structure-function relationships were detected in the mSBRs. EBPR performance was strongly associated with the relative abundance of total Accumulibacter. A shift in the ratio of the dominant Accumulibacter clades was also detected, with Type IA associated with good EBPR performance and Type IIC associated with poor EBPR performance. Changes in ecosystem function of the mSBRs in the early stages of the experiment were more closely associated with changes in the abundance of (unknown) members of the flanking community than of either Accumulibacter or Candidatus "Competibacter phosphatis". This study therefore reveals a hitherto unrecorded and complex relationship between Accumulibacter clades, the flanking community and ecosystem function of laboratory-scale EBPR systems.
Collapse
Affiliation(s)
- F R Slater
- The University of Queensland, Advanced Water Management Centre (AWMC), Qld 4072, Australia.
| | | | | | | | | |
Collapse
|
35
|
Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME JOURNAL 2010; 4:719-28. [PMID: 20164863 DOI: 10.1038/ismej.2010.9] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.
Collapse
|
36
|
Wang H, Vuorela M, Keränen AL, Lehtinen TM, Lensu A, Lehtomäki A, Rintala J. Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production. FEMS Microbiol Ecol 2010; 72:496-506. [DOI: 10.1111/j.1574-6941.2010.00850.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Tanaka Y, Takahashi H, Kitazawa N, Kimura B. Rapid estimation of microbial populations in fish samples by using terminal restriction fragment length polymorphism analysis of 16S rDNA. J Food Prot 2010; 73:104-13. [PMID: 20051212 DOI: 10.4315/0362-028x-73.1.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.
Collapse
Affiliation(s)
- Yuichiro Tanaka
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
38
|
Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development. Infect Immun 2009; 78:639-50. [PMID: 19933833 DOI: 10.1128/iai.01043-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Commensal bacteria possess immunostimulatory activities that can modulate host responses to affect development and homeostasis in the intestine. However, how different populations of resident bacteria stimulate the immune system remains largely unknown. We characterized here the ability of intestinal and oral microflora to stimulate individual pattern recognition receptors (PRRs) in bone marrow-derived macrophages and mesothelial cells. The intestinal but not oral microflora elicited age- and cell type-specific immunostimulation. The immunostimulatory activity of the intestinal microflora varied among individual mice but was largely mediated via Toll-like receptor 4 (TLR4) during breast-feeding, whereas it became TLR4 independent after weaning. This transition was associated with a change from a microflora rich in TLR4-stimulatory proteobacteria to one dominated by Bacteroidales and/or Clostridiales that poorly stimulate TLR4. The major stimulatory activity of the intestinal microflora was still intact in NOD1-, NOD2-, TLR2-, TLR4-, TLR5-, TLR9-, TLR11-, ASC-, or RICK-deficient cells but still relied on the adaptor MyD88. These studies demonstrate a transition in the intestinal microflora accompanied by a dynamic change of its ability to stimulate different PRRs which control intestinal homeostasis.
Collapse
|
39
|
Nochi T, Yuki Y, Katakai Y, Shibata H, Tokuhara D, Mejima M, Kurokawa S, Takahashi Y, Nakanishi U, Ono F, Mimuro H, Sasakawa C, Takaiwa F, Terao K, Kiyono H. A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:6538-44. [PMID: 19880451 DOI: 10.4049/jimmunol.0901480] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We previously showed that oral immunization of mice with a rice-based vaccine expressing cholera toxin (CT) B subunit (MucoRice-CT-B) induced CT-specific immune responses with toxin-neutralizing activity in both systemic and mucosal compartments. In this study, we examined whether the vaccine can induce CT-specific Ab responses in nonhuman primates. Orally administered MucoRice-CT-B induced high levels of CT-neutralizing serum IgG Abs in the three cynomolgus macaques we immunized. Although the Ab level gradually decreased, detectable levels were maintained for at least 6 mo, and high titers were rapidly recovered after an oral booster dose of the rice-based vaccine. In contrast, no serum IgE Abs against rice storage protein were induced even after multiple immunizations. Additionally, before immunization the macaques harbored intestinal secretory IgA (SIgA) Abs that reacted with both CT and homologous heat-labile enterotoxin produced by enterotoxigenic Escherichia coli and had toxin-neutralizing activity. The SIgA Abs were present in macaques 1 mo to 29 years old, and the level was not enhanced after oral vaccination with MucoRice-CT-B or after subsequent oral administration of the native form of CT. These results show that oral MucoRice-CT-B can effectively induce CT-specific, neutralizing, serum IgG Ab responses even in the presence of pre-existing CT- and heat-labile enterotoxin-reactive intestinal SIgA Abs in nonhuman primates.
Collapse
Affiliation(s)
- Tomonori Nochi
- Division of Mucosal Immunology, Department of Microbiology and Immunology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Frey JC, Pell AN, Berthiaume R, Lapierre H, Lee S, Ha JK, Mendell JE, Angert ER. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J Appl Microbiol 2009; 108:1982-93. [PMID: 19863686 DOI: 10.1111/j.1365-2672.2009.04602.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Understanding factors that influence the composition of microbial populations of the digestive system of dairy cattle will be key in regulating these populations to improve animal performance. Although rumen microbes are well studied, little is known of the dynamics and role of microbial populations in the small intestine of cows. Comparisons of fingerprints of microbial populations were used to investigate the effects of gastrointestinal (GI) segment and animal on community structure. METHODS AND RESULTS Samples from four lactating dairy cows with ruminal, duodenal and ileal cannulae were collected. Terminal-restriction fragment length polymorphism (T-RFLP) comparisons of small subunit rRNA genes revealed differences in microbial populations between GI segments (P < 0.05). No significant differences in either methanogen populations or microbial community profiles between animals were observed. Quantitative PCR was used to assay relative changes in methanogen numbers compared to procaryote rRNA gene numbers, and direct microscopic counts were used to enumerate total procaryote numbers of the duodenal and ileal samples. CONCLUSIONS T-RFLP comparisons illustrate significant changes in microbial diversity as digesta passes from one segment to another. Direct counts indicate that microbial numbers are reduced by eight orders of magnitude from the rumen, through the abomasum, and into the duodenum (from c. 10(12) to c. 3.6 x 10(4) cells per ml). Quantitative PCR analyses of rRNA genes indicate that methanogens are present in the duodenum and ileum. SIGNIFICANCE AND IMPACT OF THE STUDY The contribution of microbial populations of the small intestine to the nutrition and health of cattle is seldom addressed but warrants further investigation.
Collapse
Affiliation(s)
- J C Frey
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang H, Tolvanen K, Lehtomäki A, Puhakka J, Rintala J. Microbial community structure in anaerobic co-digestion of grass silage and cow manure in a laboratory continuously stirred tank reactor. Biodegradation 2009; 21:135-46. [PMID: 19642000 DOI: 10.1007/s10532-009-9288-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 07/17/2009] [Indexed: 11/24/2022]
Abstract
The impacts of feeding ratio and loading rate on the microbial community during co-digestion of grass silage with cow manure in an anaerobic laboratory continuously stirred tank reactor were investigated by 16S rRNA gene-based fingerprints. The microbial community remained stable when the reactor was fed with cow manure alone and with up to 20% of grass silage in feedstock at an organic loading rate (OLR) of 2 kg VS m(-3) day(-1). Large changes in the bacterial community were observed when the loading ratio of grass was increased to 40%, while there was little change in the archaeal community. During the increase in OLR from 2 to 4 kg VS m(-3) day(-1) the bacterial community structure showed few differences, whereas Archaea was undetectable. Sequencing of the major DGGE bands indicated that the phylum Bacteriodetes predominated in the bacterial community. Two unclassified bacteria with high abundance survived throughout the operation of the reactor.
Collapse
Affiliation(s)
- Hong Wang
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (NSC), 40014 University of Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
42
|
Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH. T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 2009; 10:171. [PMID: 19500385 PMCID: PMC2702334 DOI: 10.1186/1471-2105-10-171] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/06/2009] [Indexed: 11/15/2022] Open
Abstract
Background Despite increasing popularity and improvements in terminal restriction fragment length polymorphism (T-RFLP) and other microbial community fingerprinting techniques, there are still numerous obstacles that hamper the analysis of these datasets. Many steps are required to process raw data into a format ready for analysis and interpretation. These steps can be time-intensive, error-prone, and can introduce unwanted variability into the analysis. Accordingly, we developed T-REX, free, online software for the processing and analysis of T-RFLP data. Results Analysis of T-RFLP data generated from a multiple-factorial study was performed with T-REX. With this software, we were able to i) label raw data with attributes related to the experimental design of the samples, ii) determine a baseline threshold for identification of true peaks over noise, iii) align terminal restriction fragments (T-RFs) in all samples (i.e., bin T-RFs), iv) construct a two-way data matrix from labeled data and process the matrix in a variety of ways, v) produce several measures of data matrix complexity, including the distribution of variance between main and interaction effects and sample heterogeneity, and vi) analyze a data matrix with the additive main effects and multiplicative interaction (AMMI) model. Conclusion T-REX provides a free, platform-independent tool to the research community that allows for an integrated, rapid, and more robust analysis of T-RFLP data.
Collapse
Affiliation(s)
- Steven W Culman
- Department of Crop and Soil Sciences, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
43
|
Characterization of mucosa-associated bacterial communities of the mouse intestine by terminal restriction fragment length polymorphism: Utility of sampling strategies and methods to reduce single-stranded DNA artifacts. J Microbiol Methods 2009; 78:175-80. [PMID: 19463863 DOI: 10.1016/j.mimet.2009.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/15/2009] [Indexed: 11/22/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) is a molecular technique used for comparative analysis of microbial community structure and dynamics. We evaluated three sampling methods for recovering bacterial community DNA associated with intestinal mucosa of mice (i.e. mechanical agitation with PBS, hand washing with PBS containing Tween 80, and direct DNA extraction from mucosal plugs). In addition, the utility of two methods (i.e. Klenow fragment and mung-bean nuclease) to reduce single-stranded DNA artifacts was tested. T-RFLP analysis indicated that diverse communities of bacteria are associated with mucosa of the ileum, cecum, and descending colon of mice. Although there was no significant difference in bacterial community structure between the mechanical agitation and direct DNA extraction methods regardless of intestinal location, community diversity was reduced for the hand wash method in the colon. The use of Klenow fragment and mung-bean nuclease have been reported to eliminate single-stranded DNA artifacts (i.e. pseudo-T-restriction fragments), but neither method was beneficial for characterizing mucosa-associated bacterial communities of the mouse cecum. Our study showed that the mechanical agitation and direct plug extraction methods yielded equivalent bacterial community DNA from the mucosa of the small and large intestines of mice, but the latter method was superior for logistical reasons. We also applied a combination of different statistical approaches to analyze T-RFLP data, including statistical detection of true peaks, analysis of variance for peak number, and group significance test, which provided a quantitative improvement for the interpretation of the T-RFLP data.
Collapse
|
44
|
Lahtinen SJ, Boyle RJ, Kivivuori S, Oppedisano F, Smith KR, Robins-Browne R, Salminen SJ, Tang MLK. Prenatal probiotic administration can influence Bifidobacterium microbiota development in infants at high risk of allergy. J Allergy Clin Immunol 2009; 123:499-501. [PMID: 19135234 DOI: 10.1016/j.jaci.2008.11.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/31/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
45
|
Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 2008; 80:365-80. [PMID: 18648804 DOI: 10.1007/s00253-008-1565-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods. Web-based tools designed to perform virtual polymerase chain reaction and restriction enzyme digests greatly facilitate the choice of primers and restriction enzymes for T-RFLP analysis. Significant improvements have also been made in the statistical analysis of T-RFLP profiles such as the introduction of objective procedures to distinguish between signal and noise, the alignment of T-RFLP peaks between profiles, and the use of multivariate statistical methods to detect changes in the structure and composition of microbial communities due to spatial and temporal variation or treatment effects. The progress made in T-RFLP analysis of 16S rRNA and genes allows researchers to make methodological and statistical choices appropriate for the hypotheses of their studies.
Collapse
|
46
|
Cultivation-independent characterization of methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 2008; 74:2218-28. [PMID: 18263752 DOI: 10.1128/aem.02532-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNA(Ala) gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems.
Collapse
|
47
|
Young VB, Schmidt TM. Overview of the gastrointestinal microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 635:29-40. [PMID: 18841701 PMCID: PMC4460826 DOI: 10.1007/978-0-387-09550-9_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The community of microbes that inhabits the mammalian intestinal tract exists in a symbiosis with their host. The structure of this community represents the combined effects of selection pressure on the part of the host and on the part of the microbes themselves. Through recent advances in the field of microbial ecology we are beginning to understand the forces that shape this complex community. We will review what is known about the interaction between the host and the indigenous microbial community. Following this discussion we will introduce methods that have been used to study the structure, function and dynamics of this community.
Collapse
Affiliation(s)
- Vincent B Young
- Department of Medicine, Division of Infectious Diseases, The University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
48
|
Tan MP, Kaparakis M, Galic M, Pedersen J, Pearse M, Wijburg OLC, Janssen PH, Strugnell RA. Chronic Helicobacter pylori infection does not significantly alter the microbiota of the murine stomach. Appl Environ Microbiol 2007; 73:1010-3. [PMID: 17142378 PMCID: PMC1800740 DOI: 10.1128/aem.01675-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 11/20/2006] [Indexed: 12/12/2022] Open
Abstract
We examined the impact of Helicobacter pylori infection on the murine gastric microbiota by culture and terminal-restriction fragment length polymorphism and found that neither acute nor chronic H. pylori infection substantially affected the gastric microbial composition. Interestingly, the total H. pylori burden detected by real-time PCR was significantly higher than that revealed by viable counts, suggesting that the antigenic load sustaining H. pylori-induced gastritis could be considerably higher than previously believed.
Collapse
Affiliation(s)
- Mai Ping Tan
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Davids BJ, Palm JED, Housley MP, Smith JR, Andersen YS, Martin MG, Hendrickson BA, Johansen FE, Svärd SG, Gillin FD, Eckmann L. Polymeric Immunoglobulin Receptor in Intestinal Immune Defense against the Lumen-Dwelling Protozoan ParasiteGiardia. THE JOURNAL OF IMMUNOLOGY 2006; 177:6281-90. [PMID: 17056558 DOI: 10.4049/jimmunol.177.9.6281] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The polymeric Ig receptor (pIgR) is conserved in mammals and has an avian homologue, suggesting evolutionarily important functions in vertebrates. It transports multimeric IgA and IgM across polarized epithelia and is highly expressed in the intestine, yet little direct evidence exists for its importance in defense against common enteric pathogens. In this study, we demonstrate that pIgR can play a critical role in intestinal defense against the lumen-dwelling protozoan parasite Giardia, a leading cause of diarrheal disease. The receptor was essential for the eradication of Giardia when high luminal IgA levels were required. Clearance of Giardia muris, in which IgA plays a dominant role, was severely compromised in pIgR-deficient mice despite significant fecal IgA output at 10% of normal levels. In contrast, eradication of the human strain Giardia lamblia GS/M, for which adaptive immunity is less IgA dependent in mice, was unaffected by pIgR deficiency, indicating that pIgR had no physiologic role when lower luminal IgA levels were sufficient for parasite elimination. Immune IgA was greatly increased in the serum of pIgR-deficient mice, conferred passive protection against Giardia, and recognized several conserved giardial Ags, including ornithine carbamoyltransferase, arginine deiminase, alpha-enolase, and alpha- and beta-giardins, that are also detected in human giardiasis. Corroborative observations were made in mice lacking the J chain, which is required for pIgR-dependent transepithelial IgA transport. These results, together with prior data on pIgR-mediated immune neutralization of luminal cholera toxin, suggest that pIgR is essential in intestinal defense against pathogenic microbes with high-level and persistent luminal presence.
Collapse
Affiliation(s)
- Barbara J Davids
- Department of Pathology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rees GN, Watson GO, Baldwin DS, Mitchell AM. Variability in sediment microbial communities in a semipermanent stream: impact of drought. ACTA ACUST UNITED AC 2006. [DOI: 10.1899/0887-3593(2006)25[370:vismci]2.0.co;2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|