1
|
Tangsongcharoen C, Toca-Herrera JL, Promdonkoy B, Srisucharitpanit K, Tharad S. Oligomer assembly of Bacillus thuringiensis Cyt2Aa2 on lipid membranes reveals a thread-like structure. Toxicon X 2025; 26:100220. [PMID: 40162061 PMCID: PMC11951046 DOI: 10.1016/j.toxcx.2025.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/20/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Bacillus thuringiensis, a well-known insecticidal bacterium, produces several insecticidal proteins, including cytolytic (Cyt) proteins. Cyt proteins bind directly to the lipid membrane and form large protein complexes. In addition to the protein ladder bands, information on the oligomeric structure in lipid membranes is necessary to understand the mechanism of Cyt proteins on target cells. In this work, we have investigated the oligomeric Cyt2Aa2 complex with synthetic lipid and with erythrocyte membranes. When the activated Cyt2Aa2 protein was incubated with these lipid membranes, the protein ladder pattern relevant to hemolytic activity was detected in SDS-PAGE. Moreover, AFM topographic images revealed a fusilli-like structure and a ring-like structure for synthetic POPC and POPC/Chol, respectively. Furthermore, TEM micrographs provided an additional information on the oligomeric structure of Cyt2Aa2 in erythrocytes. Cyt2Aa2 appears to oligomerise/aggregate into mixed structures between the filamentous structure and small protein complexes in erythrocytes. In addition, a nanopore was found to be a substructure of the filamentous structure. These results strengthen the understanding of Cyt2Aa2 behavior in these two membrane systems, the fusilli and ring-like structures, depending on the type of lipid membrane. Furthermore, the structure of Cyt2Aa2 in insect target membranes remains to be investigated.
Collapse
Affiliation(s)
| | - Jose L. Toca-Herrera
- Institut für Biophysik, Department für Bionanowissenschaften, Universität für Bodenkultur Wien (BOKU), Vienna, 1190, Austria
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology, Development Agency, Pathumthani, 12120, Thailand
| | | | - Sudarat Tharad
- Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| |
Collapse
|
2
|
Ashmi M, He C, Drobniewski F. Can immuno-PCR (IPCR) transform bacterial disease diagnostics? Expert Rev Mol Diagn 2024; 24:927-936. [PMID: 39381910 DOI: 10.1080/14737159.2024.2413556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Approximately 15 million deaths occur globally each year due to infectious diseases. Timely diagnosis is crucial in promoting cure and preventing disease transmission. Currently, molecular diagnostics have replaced many conventional diagnostic tools due to their inherent limitations. However, the full potential of Immuno Polymerase Chain Reaction (IPCR) remains largely untapped. AREAS COVERED This review focuses on the use of IPCR in the diagnosis of different bacterial diseases, highlighting its advantages over traditional methods. EXPERT OPINION Early and accurate diagnosis of infectious diseases is crucial because it enhances treatment effectiveness, reduces morbidity and mortality, helps identify potential causes of sepsis earlier, and reduces the risk of unknowingly spreading the disease to others. IPCR in turn has shown promise for the early diagnosis of bacterial diseases as an alternative to conventional culture-based or serological diagnostic assays leading to delayed diagnosis and treatment. IPCR has the potential to revolutionize the diagnostic field due to its increased sensitivity and specificity. Although efforts are needed to reduce the time of the assay and to reduce background noise, IPCR can be combined with other platforms like lateral flow assay/biosensors/automation to improve its use as a point-of-care assay, especially in resource-limited settings.
Collapse
Affiliation(s)
- Marcia Ashmi
- Adult Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Changchunzi He
- Adult Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Francis Drobniewski
- Adult Infectious Disease, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
3
|
Palma L, Sauka DH, Berry C, Peralta C. Positive selection analysis of Cyt proteins from Bacillus thuringiensis: A conservative trend driven by negative (purifying) selection. Toxicon 2024; 247:107853. [PMID: 38972359 DOI: 10.1016/j.toxicon.2024.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Bacillus thuringiensis is a Gram-positive entomopathogenic bacterium that produces different pesticidal proteins: vegetative insecticidal proteins (Vpb1/Vpa2, Vip3, and Vpb4) during vegetative growth, which are secreted to the culture medium, and δ-endotoxins (Cry and Cyt) during sporulation, which accumulate into parasporal crystals. Cyt proteins are the smaller subset of δ-endotoxins targeting Diptera species. While Cry and Vip3 proteins undergo positive selection, our analysis suggests that Cyt proteins evolve following a conservative trend driven negative (purifying) selection.
Collapse
Affiliation(s)
- Leopoldo Palma
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, 1555, Argentina; Laboratorio de Control Biotecnológico de Plagas, Instituto BIOTECMED, Departamento de Genética, Universitat de València, Burjassot, València, 46100, Spain.
| | - Diego Herman Sauka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMYZA), Hurlingham, Buenos Aires, 1686, Argentina
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cecilia Peralta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, 1555, Argentina; Laboratorio de Control Biotecnológico de Plagas, Instituto BIOTECMED, Departamento de Genética, Universitat de València, Burjassot, València, 46100, Spain
| |
Collapse
|
4
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
5
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
6
|
Šolinc G, Anderluh G, Podobnik M. Bacillus thuringiensis toxin Cyt2Aa forms filamentous oligomers when exposed to lipid membranes or detergents. Biochem Biophys Res Commun 2023; 674:44-52. [PMID: 37393643 DOI: 10.1016/j.bbrc.2023.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
The bacterium Bacillus thuringiensis (Bt) produces insecticidal proteins during the sporulation phase. These proteins are located in parasporal crystals consisting of two delta-endotoxin classes, crystal (Cry) and cytolytic (Cyt) toxins. In vitro, Cyt toxins show cytolytic activity against bacterial and a variety of insect and mammalian cells. They bind to cell membranes with unsaturated phospholipids and sphingomyelin. Although Bt and its parasporal crystals containing both Cry and Cyt toxins have been successfully used as bioinsecticides, the molecular mechanism of action of Cyt toxins is not yet fully understood. To address this, we exposed Cyt2Aa to lipid membranes and visualized membrane disruption process using cryo-electron microscopy. We observed two types of Cyt2Aa oligomers. First, Cyt2Aa forms smaller curved oligomers on the membrane surface that become linear over time, and detach when the membrane ruptures. Similar linear filamentous oligomers were also formed by Cyt2Aa in the presence of detergents without prior exposure to lipid membranes, which exhibited attenuated cytolytic activity. Furthermore, our data suggest that Cyt2Aa adopts different conformations between its monomeric and oligomeric forms. Overall, our results provide new evidence for a detergent-like mechanism of action of Cyt2Aa rather than the pore-forming model of target membrane disruption of this important class of insecticidal proteins.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia.
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Rocha GT, Queiroz PRM, Grynberg P, Togawa RC, de Lima Ferreira ADC, do Nascimento IN, Gomes ACMM, Monnerat R. Biocontrol potential of bacteria belonging to the Bacillus subtilis group against pests and diseases of agricultural interest through genome exploration. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01822-3. [PMID: 37178245 DOI: 10.1007/s10482-023-01822-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The usage of microorganisms as biocontrol agents and biofertilizers has been recommended and recognized as an ecologically correct alternative to maintaining the productivity and safety of crops. Thus, the objectives of this work were to characterize twelve strains belonging to Invertebrate Bacteria Collection of Embrapa Genetic Resources and Biotechnology by molecular, morphological, and biochemical methods and to evaluate the pathogenicity of these strains against pests and diseases of agricultural interest. The morphological characteristic of the strains was performed according to the principles of Bergy's Manual of Systematic Bacteriology. The genomes of the 12 strains were sequenced in Macrogen, Inc. (Seoul, Korea) using the HiSeq2000 and GS-FLX Plus high-performance platforms. In the determination of antibiotic sensibility profiles, disc-diffusion methods (Cefar Diagnótica Ltda) were adopted©. Selective bioassays were carried out with insects of the Lepidoptera (Spodoptera frugiperda, Helicoverpa armigera, and Chrysodeixis includens), Coleoptera (Anthonomus grandis), Diptera (Aedes aegypti) and Hemiptera (Euschistus heros) orders, and with the nematode Caenorhabditis elegans. In addition, the antagonistic action of the phytopathogens Fusarium oxysporum f. sp. vasinfectum and Sclerotinia sclerotiorum against the strains under study, and in vitro assays of phosphate solubilization were also performed. Sequencing of the complete genome of the 12 strains determined that all of them belonged to the Bacillus subtilis sensu lato group. In the strains genome were detected genic clusters responsible for encoding secondary metabolites such as surfactin, iturin, fengycins/plipastatin, bacillomycin, bacillisin, and siderophores. Due to the production of these compounds, there was a survival reduction of the Lepidoptera order insects and a reduction in the phytopathogens mycelial growth. These results show that the species of group B. subtilis s.l. can become promising microbiological alternatives to pest and disease control.
Collapse
Affiliation(s)
- Gabriela Teodoro Rocha
- Faculdade de Agronomia e Medicina Veterinária., Universidade de Brasília - Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
| | - Paulo Roberto Martins Queiroz
- Centro Universitário de Brasília - CEUB 707/907 - Campus Universitário, SEPN - Asa Norte, Brasília, DF, 70790-075, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | | | - Izabela Nunes do Nascimento
- Universidade Federal da Paraíba - Centro de Ciências Agrárias, Campus II, Rodovia PB 079 - Km 12, Areia, PB, 58397-000, Brazil
| | - Ana Cristina Meneses Mendes Gomes
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Rose Monnerat
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| |
Collapse
|
8
|
Tangsongcharoen C, Toca-Herrera JL, Promdonkoy B, Tharad S. Mutation of a Threonine Residue in αD-β4 Loop of Cyt2Aa2 Protein Influences Binding on Fluid Lipid Membranes. Toxins (Basel) 2023; 15:167. [PMID: 36828480 PMCID: PMC9967203 DOI: 10.3390/toxins15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cyt proteins are insecticidal proteins originally from Bacillus thuringiensis. The lipid binding of the Cyt2Aa2 protein depends on the phase of the lipid bilayer. In this work, the importance of the conserved T144 residue in the αD-β4 loop for lipid binding on fluid lipid membranes was investigated via atomic force microscopy (AFM). Lipid membrane fluidity could be monitored for the following lipid mixture systems: POPC/DPPC, POPC/SM, and DOPC/SM. AFM results revealed that the T144A mutant was unable to bind to pure POPC bilayers. Similar topography between the wildtype and T144A mutant was seen for the POPC/Chol system. Small aggregates of T144A mutant were observed in the POPC and DOPC domains of the lipid mixture systems. In addition, the T144A mutant had no cytotoxic effect against human colon cancer cells. These results suggest that alanine replacement into threonine 144 hinders the binding of Cyt2Aa2 on liquid lipid membranes. These observations provide a possibility to modify the Cyt2Aa2 protein to specific cells via lipid phase selection.
Collapse
Affiliation(s)
| | - Jose L. Toca-Herrera
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Sudarat Tharad
- Department of Biology, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
9
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|
10
|
Gutierrez-Villagomez JM, Patey G, To TA, Lefebvre-Raine M, Lara-Jacobo LR, Comte J, Klein B, Langlois VS. Frogs Respond to Commercial Formulations of the Biopesticide Bacillus thuringiensis var . israelensis, Especially Their Intestine Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12504-12516. [PMID: 34460233 DOI: 10.1021/acs.est.1c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is generally believed that Bacillus thuringiensis var. israelensis (Bti) biopesticides are harmless to non-target organisms; however, new research shows controversial results. We exposed acutely and chronicallyLithobates sylvaticusandAnaxyrus americanus tadpoles until metamorphic climax to VectoBac 200G (granules) and VectoBac 1200L (aqueous suspension) at 300-20,000 ITU/L covering field-relevant concentrations and higher. The data show that the exposure parameters tested did not affect significantly the survival, total length, total weight, hepatosomatic index, gonadosomatic index, the expression of genes of interest (i.e., related to xenobiotic exposure, oxidative stress, and metamorphosis), and the intestine tissue layer detachment ofL. sylvaticusandA. americanus in a concentration-response pattern. In contrast, VectoBac 200G significantly increased the median time to metamorphosis ofL. sylvaticus tadpoles by up to 3.5 days and decreased the median by up to 1 day inA. americanus. VectoBac 1200L significantly increased the median time to metamorphosis ofL. sylvaticusandA. americanustadpoles by up to 4.5 days. Also, the exposure to VectoBac 200G and 1200L altered the intestine bacterial community composition inA. americanus at application rates recommended by the manufacturer, which led to an increase in the relative abundance of Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. Changes in the intestine microbiota might impact the fitness of individuals, including the susceptibility to parasitic infections. Our results indicate that the effect of Bti commercial products is limited; however, we recommend that Bti-spraying activities in amphibian-rich ecosystems should be kept minimal until there is more conclusive research to assess if the changes in the time to metamorphosis and microbiota can lead to negative outcomes in amphibian populations and, eventually, the functioning of ecosystems.
Collapse
Affiliation(s)
| | - Géraldine Patey
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Tuan Anh To
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Linda Ramona Lara-Jacobo
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Bert Klein
- Service des territoires fauniques et des habitats, Ministère des Forêts, de la Faune et des Parcs (MFFP), Quebec City, Quebec G1S 4X4, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| |
Collapse
|
11
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
12
|
Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins (Basel) 2020; 12:toxins12120773. [PMID: 33291447 PMCID: PMC7762171 DOI: 10.3390/toxins12120773] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The control of dipteran pests is highly relevant to humans due to their involvement in the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever, zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis, the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals with insecticidal properties and which has been widely used in the biological control of insects from different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described insecticidal activity against dipteran pests, including species of medical and agronomic importance.
Collapse
|
13
|
Onofre J, Pacheco S, Torres-Quintero MC, Gill SS, Soberon M, Bravo A. The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes. J Biol Chem 2020; 295:9606-9617. [PMID: 32444494 DOI: 10.1074/jbc.ra120.013869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Bacillus thuringiensis subsp. israelensis produces crystal inclusions composed of three-domain Cry proteins and cytolytic Cyt toxins, which are toxic to different mosquito larvae. A key component is the Cyt toxin, which synergizes the activity of the other Cry toxins, thereby resulting in high toxicity. The precise mechanism of action of Cyt toxins is still debated, and two models have been proposed: the pore formation model and the detergent effect. Here, we performed a systematic structural characterization of the Cyt toxin interaction with different membranes, including in Aedes aegypti larval brush border membrane vesicles, small unilamellar vesicle liposomes, and rabbit erythrocytes. We examined Cyt1Aa insertion into these membranes by analyzing fluorescence quenching in solution and in the membrane-bound state. For this purpose, we constructed several Cyt1Aa variants having substitutions with a single cysteine residue in different secondary structures, enabling Cys labeling with Alexa Fluor 488 for quenching analysis using I-soluble quencher in solution and in the membrane-bound state. We identified the Cyt1Aa residues exposed to the solvent upon membrane insertion, predicting a possible topology of the membrane-inserted toxin in the different membranes. Moreover, toxicity assays with these variants revealed that Cyt1Aa exerts its insecticidal activity and hemolysis through different mechanisms. We found that Cyt1Aa exhibits variable interactions with each membrane system, with deeper insertion into mosquito larva membranes, supporting the pore formation model, whereas in the case of erythrocytes and small unilamellar vesicles, Cyt1Aa's insertion was more superficial, supporting the notion that a detergent effect underlies its hemolytic activity.
Collapse
Affiliation(s)
- Janette Onofre
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mary Carmen Torres-Quintero
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Sarjeet S Gill
- Cell Biology and Neuroscience Department, University of California, Riverside, California, USA
| | - Mario Soberon
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
14
|
The Cytocidal Spectrum of Bacillus thuringiensis Toxins: From Insects to Human Cancer Cells. Toxins (Basel) 2020; 12:toxins12050301. [PMID: 32384723 PMCID: PMC7291302 DOI: 10.3390/toxins12050301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a ubiquitous bacterium in soils, insect cadavers, phylloplane, water, and stored grain, that produces several proteins, each one toxic to different biological targets such as insects, nematodes, mites, protozoa, and mammalian cells. Most Bt toxins identify their particular target through the recognition of specific cell membrane receptors. Cry proteins are the best-known toxins from Bt and a great amount of research has been published. Cry are cytotoxic to insect larvae that affect important crops recognizing specific cell membrane receptors such as cadherin, aminopeptidase-N, and alkaline phosphatase. Furthermore, some Cry toxins such as Cry4A, Cry4B, and Cry11A act synergistically with Cyt toxins against dipteran larvae vectors of human disease. Research developed with Cry proteins revealed that these toxins also could kill human cancer cells through the interaction with specific receptors. Parasporins are a small group of patented toxins that may or may not have insecticidal activity. These proteins could kill a wide variety of mammalian cancer cells by recognizing specific membrane receptors, just like Cry toxins do. Surface layer proteins (SLP), unlike the other proteins produced by Bt, are also produced by most bacteria and archaebacteria. It was recently demonstrated that SLP produced by Bt could interact with membrane receptors of insect and human cancer cells to kill them. Cyt toxins have a structure that is mostly unrelated to Cry toxins; thereby, other mechanisms of action have been reported to them. These toxins affect mainly mosquitoes that are vectors of human diseases like Anopheles spp (malaria), Aedes spp (dengue, zika, and chikungunya), and Culex spp (Nile fever and Rift Valley fever), respectively. In addition to the Cry, Cyt, and parasporins toxins produced during spore formation as inclusion bodies, Bt strains also produce Vip (Vegetative insecticidal toxins) and Sip (Secreted insecticidal proteins) toxins with insecticidal activity during their vegetative growth phase.
Collapse
|
15
|
Protein-Lipid Interaction of Cytolytic Toxin Cyt2Aa2 on Model Lipid Bilayers of Erythrocyte Cell Membrane. Toxins (Basel) 2020; 12:toxins12040226. [PMID: 32260286 PMCID: PMC7232533 DOI: 10.3390/toxins12040226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022] Open
Abstract
Cytolytic toxin (Cyt) is a toxin among Bacillus thuringiensis insecticidal proteins. Cyt toxin directly interacts with membrane lipids for cytolytic action. However, low hemolytic activity is desired to avoid non-specific effects in mammals. In this work, the interaction between Cyt2Aa2 toxin and model lipid bilayers mimicking the erythrocyte membrane was investigated for Cyt2Aa2 wild type (WT) and the T144A mutant, a variant with lower hemolytic activity. Quartz crystal microbalance with dissipation (QCM-D) results revealed a smaller lipid binding capacity for the T144A mutant than for the WT. In particular, the T144A mutant was unable to bind to the phosphatidylcholine lipid (POPC) bilayer. However, the addition of cholesterol (Chol) or sphingomyelin (SM) to the POPC bilayer promoted binding of the T144 mutant. Moreover, atomic force microscopy (AFM) images unveiled small aggregates of the T144A mutant on the 1:1 sphingomyelin/POPC bilayers. In contrast, the lipid binding trend for WT and T144A mutant was comparable for the 1:0.4 POPC/cholesterol and the 1:1:1 sphingomyelin/POPC/cholesterol bilayers. Furthermore, the binding of WT and T144A mutant onto erythrocyte cells was investigated. The experiments showed that the T144A mutant and the WT bind onto different areas of the erythrocyte membrane. Overall the results suggest that the T144 residue plays an important role for lipid binding.
Collapse
|
16
|
Anaya P, Onofre J, Torres-Quintero MC, Sánchez J, Gill SS, Bravo A, Soberón M. Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103317. [PMID: 31978588 PMCID: PMC7245338 DOI: 10.1016/j.ibmb.2020.103317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis (Bt) Cyt1Aa toxin shows toxicity to mosquitoes, to certain coleopteran pests and also to red blood cells (RBC). However, its mode of action in the different target cells is not well defined. This protein is a single α-β domain pore-forming toxin, where a β sheet is wrapped by two α-helices layers. The Cyt1Aa α-helix hairpin in the N-terminal has been proposed to be involved in initial membrane binding and oligomerization, while the β sheet inserts into the membrane to form a pore that lyze the cells. To determine the role of the N-terminal α-helix hairpin region of Cyt1Aa in its mode of action, we characterized different single point mutations located in helices α-1 and α-2. Eight cysteine substitutions in different residues were produced in Bt, and we found that three of them: Cyt1AaA65C, Cyt1AaL85C and Cyt1AaN89C, lost insecticidal toxicity against Aedes aegypti larvae but retained similar or increased hemolytic activity towards rabbit RBC. Analysis of toxin binding and oligomerization using Ae. aegypti midgut brush border membrane vesicles showed that the three Cyt1Aa mutants non-toxic to Ae. aegypti were affected in oligomerization. However, these mutants were still hemolytic. Our data shows that oligomerization of Cyt1Aa toxin is essential for its toxicity to Ae. aegypti but not for its toxicity against RBC indicating that the mode of action of Cyt1Aa is different in these distinct target membranes.
Collapse
Affiliation(s)
- Paulina Anaya
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Janette Onofre
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Mary Carmen Torres-Quintero
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Sarjeet S Gill
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
17
|
Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nat Commun 2020; 11:1153. [PMID: 32123169 PMCID: PMC7052140 DOI: 10.1038/s41467-020-14894-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/08/2020] [Indexed: 11/08/2022] Open
Abstract
Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti. Structures determined under various pH/redox conditions illuminate the role played by previously uncharacterized disulfide-bridge and domain-swapped interfaces from crystal formation in Bti to dissolution in the larval mosquito midgut. Biochemical, toxicological and biophysical methods enable the deconvolution of key steps in the Cyt1Aa bioactivation cascade. We additionally show that the size, shape, production yield, pH sensitivity and toxicity of Cyt1Aa crystals grown in Bti can be controlled by single atom substitution. Bacillus thuringiensis israelensis (Bti) produces the naturally-crystalline proteinaceous toxin Cyt1Aa that is toxic to mosquito larvae. Here the authors grow recombinant nanocrystals of the Cyt1Aa protoxin in vivo and use serial femtosecond crystallography to determine its structure at different redox and pH conditions and by combining their structural data with further biochemical, toxicological and biophysical analyses provide mechanistic insights into the Cyt1Aa bioactivation cascade.
Collapse
|
18
|
Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007590. [PMID: 31306427 PMCID: PMC6667155 DOI: 10.1371/journal.pntd.0007590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/30/2019] [Accepted: 06/30/2019] [Indexed: 11/23/2022] Open
Abstract
Background The entomopathogenic fungus Beauveria bassiana has been widely used to kill mosquito larvae and adults in the laboratory and field. However, its slow action of killing has hampered its widespread application. In our study, the B. bassiana fungus was genetically modified to express the Bacillus thuringiensis (Bt) toxin Cyt2Ba to improve its efficacy in killing mosquitoes. Methodology/Principal findings The efficacy of the wild type (WT) of B. bassiana and a transgenic strain expressing Cyt2Ba toxin (Bb-Cyt2Ba) was evaluated against larval and adult Aedes mosquitoes (Aedes aegypti and Aedes albopictus) using insect bioassays. The Bb-Cyt2Ba displayed increased virulence against larval and adult Aedes mosquitoes compared with the WT: for Ae. aegypti adults, the median lethal time (LT50) was decreased by 33% at the concentration of 1× 108 conidia/ml, 19% at 1× 107 conidia/ml and 47% at 1× 106 conidia/ml. The LT50 for Ae. albopictus adults was reduced by 20%, 23% and 29% at the same concentrations, respectively. The LT50 for Ae. aegypti larvae was decreased by 42% at 1× 107 conidia/ml and 25% at 1× 106 conidia/ml, and that for Ae. albopictus larvae was reduced by 33% and 31% at the same concentrations, respectively. In addition, infection with Bb-Cyt2Ba resulted in a dramatic reduction in the fecundity of Aedes mosquitoes. Conclusions/Significance In conclusion, our study demonstrated that the virulence of B. bassiana against mosquitoes can be significantly improved by introducing the Bt toxin gene Cyt2Ba into the genome to express the exogenous toxin in the fungus. The transgenic strain Bb-Cyt2Ba significantly reduced the survival and fecundity of Ae. aegypti and Ae. albopictus compared with the WT strain, which suggested that this recombinant B. bassiana has great potential for use in mosquito control. Mosquito vectors transmit many diseases to humans and animals, causing illness and death and resulting in substantial socio-economic burdens in endemic countries. The control of mosquitoes has almost exclusively relied on the use of chemical insecticides, which has recently led to the broad resistance of important mosquito vectors worldwide. Entomopathogenic fungi, such as Beauveria bassiana, are an important alternative or complement to chemical insecticides. However, the relatively slow action of fungal pathogens in killing mosquitoes, compared with chemical insecticides, has hampered their widespread application. To improve the insecticidal efficacy of the entomopathogen B. bassiana, the fungus was genetically modified to express the Bacillus thuringiensis toxin Cyt2Ba. The mitotically stable transformant (Bb-Cyt2Ba) successfully expressed Cyt2Ba toxin, and the virulence of this strain against adults and larvae of Aedes aegypti and Aedes albopictus mosquitoes was significantly improved. In addition, egg laying was significantly affected by Bb-Cyt2Ba infection. Infection with this fungus resulted in a dramatic reduction in fecundity of the target mosquitoes. Therefore, this recombinant B. bassiana has great potential for use in mosquito control.
Collapse
|
19
|
Panwar BS, Kaur S. Structural characterization and heterologous expression of a new cyt gene cloned from Bacillus thuringiensis. J Mol Model 2019; 25:136. [PMID: 31028552 DOI: 10.1007/s00894-019-3994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
Abstract
Bacillus thuringiensis (Bt) strains produce Cry (crystal) and Cyt (cytolytic) proteins belonging to the group of bacterial toxins known as pore-forming toxins (PFTs), which interact with midgut cells of target insects to create pores, disruption of ion homeostasis and eventual death. PFTs have synergistic insecticidal activities and have been used as biopesticides against agriculturally important insects. Identification of new Cyt proteins is important because of their specific toxicity towards hemipteran pests, against which the Cry proteins are not effective. We have structurally characterized a cyt (cyt1007) gene from an Indian Bt isolate SK-1007. The presence of a "Bacillus thuringiensis toxin" domain and maximum identity of 36% with Cyt2Ca in the deduced amino acid sequence indicated Cyt1007 protein to be a new member of Cyt family. Three dimensional (3D) modeling (PMDB ID: PM0081490) revealed that it adopts a typical ferredoxin-like fold, and is composed of a single domain of α/β architecture, in which a single β sheet is surrounded by two α helical layers. The putative lipid binding site and probable mode of action of Cyt1007 protein were predicted through comparative analysis with other Cyt toxins and their distant homologs Evf (Erwinia virulence factor) and VVA2 (Volvatoxin A2). Heterologous expression of cyt1007 gene as a 25 kDa protein in Escherichia coli was achieved at high levels in both soluble and insoluble fractions. Affinity chromatography-based purification yielded 83.6% purified Cyt1007 protein, which can be used for downstream applications for the investigation of its toxicity. Graphical abstract Steps in the structural characterization and heterologous expression of a new cyt gene cloned from Bacillus thuringiensis.
Collapse
Affiliation(s)
- Bhupendra S Panwar
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Sarvjeet Kaur
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
20
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
21
|
Torres-Quintero MC, Gómez I, Pacheco S, Sánchez J, Flores H, Osuna J, Mendoza G, Soberón M, Bravo A. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity. Sci Rep 2018; 8:4989. [PMID: 29563565 PMCID: PMC5862903 DOI: 10.1038/s41598-018-22740-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/28/2018] [Indexed: 11/09/2022] Open
Abstract
The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and cadherin (CAD). It was shown that the loop regions of domain II of Cry toxins participate in receptor binding. Cyt-toxins are dipteran specific and interact with membrane lipids. We show that Cry1Ab domain II loop3 is involved in binding to APN, ALP and CAD receptors since point mutation Cry1Ab-G439D affected binding to these proteins. We hypothesized that construction of Cyt1A-hybrid proteins providing a binding site that recognizes gut proteins in lepidopteran larvae could result in improved Cyt1Aa toxin toward lepidopteran larvae. We constructed hybrid Cyt1Aa-loop3 proteins with increased binding interaction to Manduca sexta receptors and increased toxicity against two Lepidopteran pests, M. sexta and Plutella xylostella. The hybrid Cyt1Aa-loop3 proteins were severely affected in mosquitocidal activity and showed partial hemolytic activity but retained their capacity to synergize Cry11Aa toxicity against mosquitos. Our data show that insect specificity of Cyt1Aa toxin can be modified by introduction of loop regions from another non-related toxin with different insect specificity.
Collapse
Affiliation(s)
- Mary-Carmen Torres-Quintero
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Isabel Gómez
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Sabino Pacheco
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Humberto Flores
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Joel Osuna
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Gretel Mendoza
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico.
| |
Collapse
|
22
|
The Replacement of five Consecutive Amino Acids in the Cyt1A Protein of Bacillus thuringiensis Enhances its Cytotoxic Activity against Lung Epithelial Cancer Cells. Toxins (Basel) 2018; 10:toxins10030125. [PMID: 29547530 PMCID: PMC5869413 DOI: 10.3390/toxins10030125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 01/03/2023] Open
Abstract
Cyt1A protein is a cytolytic protein encoded by the cyt gene of Bacillus thuringiensis subsp. israelensis (Bti) as part of the parasporal crystal proteins produced during the sporulation. Cyt1A protein is unique compared to the other endotoxins present in these parasporal crystals. Unlike δ-endotoxins, Cyt1A protein does not require receptors to bind to the target cell and activate the toxicity. It has the ability to affect a broad range of cell types and organisms, due to this characteristic. Cyt1A has been recognized to not only target the insect cells directly, but also recruit other endotoxins by acting as receptors. Due to these mode of actions, Cyt1A has been studied for its cytolytic activity against human cancer cell lines, although not extensively. In this study, we report a novel Cyt1A protein produced by a Bti strain QBT229 isolated from Qatar. When tested for its cytotoxicity against lung cancer cells, this local strain showed considerably higher activity compared to that of the reference Bti and other strains tested. The possible reasons for such enhanced activity were explored at the gene and protein levels. It was evidenced that five consecutive amino acid replacements in the β8 sheet of the Cyt1A protein enhanced the cytotoxicity against the lung epithelial cancer cells. Such novel Cyt1A protein with high cytotoxicity against lung cancer cells has been characterized and reported through this study.
Collapse
|
23
|
Zhang Q, Hua G, Adang MJ. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. INSECT SCIENCE 2017; 24:714-729. [PMID: 27628909 DOI: 10.1111/1744-7917.12401] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Bacillus thuringiensis is a Gram-positive aerobic bacterium that produces insecticidal crystalline inclusions during sporulation phases of the mother cell. The virulence factor, known as parasporal crystals, is composed of Cry and Cyt toxins. Most Cry toxins display a common 3-domain topology. Cry toxins exert intoxication through toxin activation, receptor binding and pore formation in a suitable larval gut environment. The mosquitocidal toxins of Bt subsp. israelensis (Bti) were found to be highly active against mosquito larvae and are widely used for vector control. Bt subsp. jegathesan is another strain which possesses high potency against broad range of mosquito larvae. The present review summarizes characterized receptors for Cry toxins in mosquito larvae, and will also discuss the diversity and effects of 3-D mosquitocidal Cry toxin and the ongoing research for Cry toxin mechanisms generated from investigations of lepidopteran and dipteran larvae.
Collapse
Affiliation(s)
- Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Gang Hua
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA, USA
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
24
|
Bideshi DK, Park HW, Hice RH, Wirth MC, Federici BA. Highly Effective Broad Spectrum Chimeric Larvicide That Targets Vector Mosquitoes Using a Lipophilic Protein. Sci Rep 2017; 7:11282. [PMID: 28900215 PMCID: PMC5596012 DOI: 10.1038/s41598-017-11717-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Two mosquitocidal bacteria, Bacillus thuringiensis subsp. israelensis (Bti) and Lysinibacillus sphaericus (Ls) are the active ingredients of commercial larvicides used widely to control vector mosquitoes. Bti’s efficacy is due to synergistic interactions among four proteins, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, whereas Ls’s activity is caused by Bin, a heterodimer consisting of BinA, the toxin, and BinB, a midgut-binding protein. Cyt1Aa is lipophilic and synergizes Bti Cry proteins by increasing midgut binding. We fused Bti’s Cyt1Aa to Ls’s BinA yielding a broad-spectrum chimeric protein highly mosquitocidal to important vector species including Anopheles gambiae, Culex quinquefasciatus, and Aedes aegypti, the latter an important Zika and Dengue virus vector insensitive to Ls Bin. Aside from its vector control potential, our bioassay data, in contrast to numerous other reports, provide strong evidence that BinA does not require conformational interactions with BinB or microvillar membrane lipids to bind to its intracellular target and kill mosquitoes.
Collapse
Affiliation(s)
- Dennis K Bideshi
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Hyun-Woo Park
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Margaret C Wirth
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA. .,Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Kim IH, Ensign J, Kim DY, Jung HY, Kim NR, Choi BH, Park SM, Lan Q, Goodman WG. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi. J Invertebr Pathol 2017; 149:21-28. [PMID: 28712711 DOI: 10.1016/j.jip.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022]
Abstract
Reduction of mosquito-borne diseases relies, in part, on the use of synthetic pesticides to control pest mosquitoes. This reliance has led to genetic resistance, environmental contamination and the nondiscriminatory elimination of both pest and non-pest species. To expand our options for control, we screened entomopathogenic bacteria for potential larvicidal activity. A lipopeptide from the bacterium, Xenorhabdus innexi, was discovered that displayed potent larvicidal activity. The LC50s of the lipopeptide towards Aedes aegypti, Culex pipiens and Anopheles gambiae larvae were 1.81, 1.25 and 1.86 parts-per-million, respectively. No mortality was observed in other insect species tested. The putative mode of action of the lipopeptide suggested that after orally ingestion, it bound to the apical membrane of anterior midgut cells and created pores in the cellular membranes. The rapid neutralization of midgut pH suggested the pores disabled the H+-V-ATPase on the basal membrane and led to epithelial cell death. Specificity and toxicity towards mosquito larvae and the unique mode of action makes this lipopeptide a potentially attractive bacterial insecticide for control of mosquitoes.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Jerald Ensign
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Do-Young Kim
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Hoe-Yune Jung
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea; R&D Center, NovMetaPharma Co., Ltd., Jigok-dong, Pohang, Republic of Korea
| | - Na-Ri Kim
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Bo-Hwa Choi
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Sun-Min Park
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Walter G Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Quantification of Bacillus thuringiensis Vip3Aa16 Entomopathogenic Toxin Using Its Hemolytic Activity. Curr Microbiol 2017; 74:584-588. [DOI: 10.1007/s00284-017-1224-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
27
|
Bacillus thuringiensis Cyt2Aa2 toxin disrupts cell membranes by forming large protein aggregates. Biosci Rep 2016; 36:BSR20160090. [PMID: 27612497 PMCID: PMC5064453 DOI: 10.1042/bsr20160090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022] Open
Abstract
We show that the lipid membrane disruption by Bacillus thuringiensis (Bt) Cyt2Aa2 is different from the general pore-forming model. Cyt2Aa2 forms protein aggregates that disrupt the lipid membrane integrity. Bacillus thuringiensis (Bt) Cyt2Aa2 showed toxicity against Dipteran insect larvae and in vitro lysis activity on several cells. It has potential applications in the biological control of insect larvae. Although pore-forming and/or detergent-like mechanisms were proposed, the mechanism underlying cytolytic activity remains unclear. Analysis of the haemolytic activity of Cyt2Aa2 with osmotic stabilizers revealed partial toxin inhibition, suggesting a distinctive mechanism from the putative pore formation model. Membrane permeability was studied using fluorescent dye entrapped in large unilamellar vesicles (LUVs) at various protein/lipid molar ratios. Binding of Cyt2Aa2 monomer to the lipid membrane did not disturb membrane integrity until the critical protein/lipid molar ratio was reached, when Cyt2Aa2 complexes and cytolytic activity were detected. The complexes are large aggregates that appeared as a ladder when separated by agarose gel electrophoresis. Interaction of Cyt2Aa2 with Aedes albopictus cells was investigated by confocal microscopy and total internal reflection fluorescent microscopy (TIRF). The results showed that Cyt2Aa2 binds on the cell membrane at an early stage without cell membrane disruption. Protein aggregation on the cell membrane was detected later which coincided with cell swelling. Cyt2Aa2 aggregations on supported lipid bilayers (SLBs) were visualized by AFM. The AFM topographic images revealed Cyt2Aa2 aggregates on the lipid bilayer at low protein concentration and subsequently disrupts the lipid bilayer by forming a lesion as the protein concentration increased. These results supported the mechanism whereby Cyt2Aa2 binds and aggregates on the lipid membrane leading to the formation of non-specific hole and disruption of the cell membrane.
Collapse
|
28
|
Anthelmintic Effect of Bacillus thuringiensis Strains against the Gill Fish Trematode Centrocestus formosanus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8272407. [PMID: 27294137 PMCID: PMC4886050 DOI: 10.1155/2016/8272407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
Parasitic agents, such as helminths, are the most important biotic factors affecting aquaculture, and the fluke Centrocestus formosanus is considered to be highly pathogenic in various fish species. There have been efforts to control this parasite with chemical helminthicides, but these efforts have had unsuccessful results. We evaluated the anthelmintic effect of 37 strains of Bacillus thuringiensis against C. formosanus metacercariae in vitro using two concentrations of total protein, and only six strains produced high mortality. The virulence (CL50) on matacercariae of three strains was obtained: the GP308, GP526, and ME1 strains exhibited a LC50 of 146.2 μg/mL, 289.2 μg/mL, and 1721.9 μg/mL, respectively. Additionally, these six B. thuringiensis strains were evaluated against the cercariae of C. formosanus; the LC50 obtained from the GP526 strain with solubilized protein was 83.8 μg/mL, and it could be considered as an alternative control of the metacercariae and cercariae of this parasite in the productivity systems of ornamental fishes.
Collapse
|
29
|
Park Y, Kyo Jung J, Kim Y. A Mixture of Bacillus thuringiensis subsp. israelensis With Xenorhabdus nematophila -Cultured Broth Enhances Toxicity Against Mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1086-1093. [PMID: 27018440 DOI: 10.1093/jee/tow063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Xenorhabdus and Photorhabdus spp. (Enterobacteriaceae) can synthesize and release secondary metabolites that play crucial roles in their pathogenicity by suppressing the immunity of target insects. The insect immunity contributes to defense against the pathogenicity of Bacillus thuringiensis (Bt). This study tested a hypothesis that bacterial immunosuppresants could enhance the susceptibility of mosquitoes ( Aedes albopictus and Culex pipiens pallens ) to Bt. Three symbiotic bacteria [ X. nematophila (Xn), X. hominickii (Xh), and P. temperata temperata (Ptt)] were cultured in nutrient broth to allow them to produce secondary metabolites. Bacillus thuringiensis israelensis (BtI) was highly toxic to both culicid mosquitoes with median lethal concentration (LC 50 , spores/ml) of 2.9 × 10 5 and 2.2 × 10 5 at 16 h after treatment, respectively. Addition of each bacteria-cultured broth enhanced BtI toxicity to these mosquito larvae. The LC 50 values of BtI to Ae. albopictus larvae were reduced to 1.5 × 10 5 in Xn mixture, 1.7 × 10 5 in Xh mixture, and 1.9 × 10 5 in Ptt mixture. The LC 50 values of BtI to Cx. pipiens pallens larvae were also reduced to 1.2 × 10 5 in Xn mixture, 1.3 × 10 5 in Xh mixture, and 1.5 × 10 5 in Ptt mixture. Adding benzylideneacetone or oxindole produced from Xn and Ptt also enhanced BtI toxicities to these mosquito larvae. Based on these results, we developed a new mosquitocidal Bt formulation called "Dip-Kill" consisting of 80% Xn-cultured broth, 10% BtI (10 10 spores/ml), and 10% preservative. Dip-Kill at 1,000 ppm was superior to a commercial BtI product at its recommended dose.
Collapse
|
30
|
Periyasamy A, Kkani P, Chandrasekaran B, Ponnusamy S, Viswanathan S, Selvanayagam P, Rajaiah S. Screening and characterization of a non-insecticidal Bacillus thuringiensis strain producing parasporal protein with selective toxicity against human colon cancer cell lines. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1204-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
31
|
Bacillus amyloliquefaciens AG1 biosurfactant: Putative receptor diversity and histopathological effects on Tuta absoluta midgut. J Invertebr Pathol 2015; 132:42-47. [DOI: 10.1016/j.jip.2015.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 08/15/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022]
|
32
|
Tharad S, Iturri J, Moreno-Cencerrado A, Mittendorfer M, Promdonkoy B, Krittanai C, Toca-Herrera JL. Effect of the Concentration of Cytolytic Protein Cyt2Aa2 on the Binding Mechanism on Lipid Bilayers Studied by QCM-D and AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10477-10483. [PMID: 26354323 DOI: 10.1021/acs.langmuir.5b02849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacillus thuringiensis is known by its insecticidal property. The insecticidal proteins are produced at different growth stages, including the cytolytic protein (Cyt2Aa2), which is a bioinsecticide and an antimicrobial protein. However, the binding mechanism (and the interaction) of Cyt2Aa2 on lipid bilayers is still unclear. In this work, we have used quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) to investigate the interaction between Cyt2Aa2 protein and (cholesterol-)lipid bilayers. We have found that the binding mechanism is concentration dependent. While at 10 μg/mL, Cyt2Aa2 binds slowly on the lipid bilayer forming a compliance protein/lipid layer with aggregates, at higher protein concentrations (100 μg/mL), the binding is fast, and the protein/lipid layer is more rigid including holes (of about a lipid bilayer thickness) in its structure. Our study suggests that the protein/lipid bilayer binding mechanism seems to be carpet-like at low protein concentrations and pore forming-like at high protein concentrations.
Collapse
Affiliation(s)
- Sudarat Tharad
- Institute of Molecular Biosciences, Mahidol University , 25/25 Phuttamonthon 4 Road, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU) , Muthgasse 11, Vienna 1190, Austria
| | - Alberto Moreno-Cencerrado
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU) , Muthgasse 11, Vienna 1190, Austria
| | - Margareta Mittendorfer
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU) , Muthgasse 11, Vienna 1190, Austria
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology , 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chartchai Krittanai
- Institute of Molecular Biosciences, Mahidol University , 25/25 Phuttamonthon 4 Road, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - José L Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU) , Muthgasse 11, Vienna 1190, Austria
| |
Collapse
|
33
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 400] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|
34
|
Xu C, Wang BC, Yu Z, Sun M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins (Basel) 2014; 6:2732-70. [PMID: 25229189 PMCID: PMC4179158 DOI: 10.3390/toxins6092732] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
Abstract
Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.
Collapse
Affiliation(s)
- Chengchen Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
European Food Safety Authority. Statement on a request from the European Commission related to an emergency measure notified by France under Article 34 of Regulation (EC) 1829/2003 to prohibit the cultivation of genetically modified maize MON 810. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Stalinski R, Tetreau G, Gaude T, Després L. Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail. J Invertebr Pathol 2014; 119:50-3. [PMID: 24768915 DOI: 10.1016/j.jip.2014.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/10/2014] [Accepted: 04/03/2014] [Indexed: 01/16/2023]
Abstract
The bioinsecticide Bacillus thuringiensis subsp. israelensis is a larvicide used worldwide for mosquito control, which contains three Cry toxins and one Cyt toxin. We investigated for the first time in Aedes aegypti (1) the evolution of resistance and cross-resistance of strains selected with each Cry toxin, and (2) the effect of pre-selection with Cry toxin on the evolution of resistance to a mix of Bti toxins. Cross resistance was higher between Cry4Ba and Cry11Aa than between Cry4Aa and either Cry4Ba or Cry11Aa, suggesting both common and specific mechanisms of resistance. Pre-selecting resistance to each Cry toxins facilitated the development of resistance to the full Bti toxins cocktail.
Collapse
Affiliation(s)
- Renaud Stalinski
- Laboratoire d'Ecologie Alpine, CNRS-UMR 5553, Université Joseph Fourier, BP 53, 38041 Grenoble cedex 09, France.
| | - Guillaume Tetreau
- Laboratoire d'Ecologie Alpine, CNRS-UMR 5553, Université Joseph Fourier, BP 53, 38041 Grenoble cedex 09, France; Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine, CNRS-UMR 5553, Université Joseph Fourier, BP 53, 38041 Grenoble cedex 09, France.
| | - Laurence Després
- Laboratoire d'Ecologie Alpine, CNRS-UMR 5553, Université Joseph Fourier, BP 53, 38041 Grenoble cedex 09, France.
| |
Collapse
|
37
|
Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins (Basel) 2014; 6:1222-43. [PMID: 24686769 PMCID: PMC4014730 DOI: 10.3390/toxins6041222] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/05/2023] Open
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.
Collapse
|
38
|
Argôlo-Filho RC, Loguercio LL. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches. INSECTS 2013; 5:62-91. [PMID: 26462580 PMCID: PMC4592628 DOI: 10.3390/insects5010062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt's pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.
Collapse
Affiliation(s)
- Ronaldo Costa Argôlo-Filho
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| |
Collapse
|
39
|
Suktham K, Pathaichindachote W, Promdonkoy B, Krittanai C. Essential role of amino acids in αD–β4 loop of a Bacillus thuringiensis Cyt2Aa2 toxin in binding and complex formation on lipid membrane. Toxicon 2013; 74:130-7. [DOI: 10.1016/j.toxicon.2013.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 11/26/2022]
|
40
|
Pathaichindachote W, Rungrod A, Audtho M, Soonsanga S, Krittanai C, Promdonkoy B. Isoleucine at position 150 of Cyt2Aa toxin from Bacillus thuringiensis plays an important role during membrane binding and oligomerization. BMB Rep 2013; 46:175-80. [PMID: 23527862 PMCID: PMC4133872 DOI: 10.5483/bmbrep.2013.46.3.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyt2Aa2 is a mosquito larvicidal and cytolytic toxin produced by Bacillus thuringiensis subsp. darmstadiensis. The toxin becomes inactive when isoleucine at position 150 was replaced by alanine. To investigate the functional role of this position, Ile150 was substituted with Leu, Phe, Glu and Lys. All mutant proteins were produced at high level, solubilized in carbonate buffer and yielded protease activated product similar to those of the wild type. Intrinsic fluorescence spectra analysis suggested that these mutants retain similar folding to the wild type. However, mosquito larvicidal and hemolytic activities dramatically decreased for the I150K and were completely abolished for I150A and I150F mutants. Membrane binding and oligomerization assays demonstrated that only I150E and I150L could bind and form oligomers on lipid membrane similar to that of the wild type. Our results suggest that amino acid at position 150 plays an important role during membrane binding and oligomerization of Cyt2Aa2 toxin. [BMB Reports 2013; 46(3): 175-180]
Collapse
Affiliation(s)
- Wanwarang Pathaichindachote
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | | | | | | | | | | |
Collapse
|
41
|
Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Proc Natl Acad Sci U S A 2013; 110:8465-70. [PMID: 23650347 DOI: 10.1073/pnas.1222144110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been used successfully for management of lepidopteran and coleopteran pest species, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. To overcome this limitation, we demonstrate that addition of a short peptide sequence selected for binding to the gut of the targeted pest species serves to increase toxicity against said pest. Insertion of a 12-aa pea aphid gut-binding peptide by adding to or replacing amino acids in one of three loops of the Bt cytolytic toxin, Cyt2Aa, resulted in enhanced binding and toxicity against both the pea aphid, Acyrthosiphon pisum, and the green peach aphid, Myzus persicae. This strategy may allow for transgenic plant-mediated suppression of other hemipteran pests, which include some of the most important pests of global agriculture.
Collapse
|
42
|
Soberón M, López-Díaz JA, Bravo A. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 2013; 41:87-93. [PMID: 22691603 DOI: 10.1016/j.peptides.2012.05.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/22/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Bacillus thuringiensis bacteria produce different insecticidal proteins known as Cry and Cyt toxins. Among them the Cyt toxins represent a special and interesting group of proteins. Cyt toxins are able to affect insect midgut cells but also are able to increase the insecticidal damage of certain Cry toxins. Furthermore, the Cyt toxins are able to overcome resistance to Cry toxins in mosquitoes. There is an increasing potential for the use of Cyt toxins in insect control. However, we still need to learn more about its mechanism of action in order to define it at the molecular level. In this review we summarize important aspects of Cyt toxins produced by Bacillus thuringiensis, including current knowledge of their mechanism of action against mosquitoes and also we will present a primary sequence and structural comparison with related proteins found in other pathogenic bacteria and fungus that may indicate that Cyt toxins have been selected by several pathogenic organisms to exert their virulence phenotypes.
Collapse
Affiliation(s)
- Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico.
| | | | | |
Collapse
|
43
|
Transgenic approaches to western corn rootworm control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:135-62. [PMID: 23604211 DOI: 10.1007/10_2013_195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance. Transgenic maize expressing insecticidal proteins are very successful in protecting against rootworm damage and preserving corn yield potential. However, the high rate of grower adoption and early reliance on hybrids expressing a single mode of action and low-dose traits threatens the durability of commercialized transgenic rootworm technology for rootworm control. A summary of current transgenic approaches for rootworm control and the corresponding insect resistance management practices is included. An overview of potential new modes of action based on insecticidal proteins, and especially RNAi targeting mRNA coding for essential insect proteins is provided.
Collapse
|
44
|
Teixeira Corrêa RF, Ardisson-Araújo DMP, Monnerat RG, Ribeiro BM. Cytotoxicity analysis of three Bacillus thuringiensis subsp. israelensis δ-endotoxins towards insect and mammalian cells. PLoS One 2012; 7:e46121. [PMID: 23029407 PMCID: PMC3448730 DOI: 10.1371/journal.pone.0046121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/29/2012] [Indexed: 11/27/2022] Open
Abstract
Three members of the δ-endotoxin group of toxins expressed by Bacillus thuringiensis subsp. israelensis, Cyt2Ba, Cry4Aa and Cry11A, were individually expressed in recombinant acrystalliferous B. thuringiensis strains for in vitro evaluation of their toxic activities against insect and mammalian cell lines. Both Cry4Aa and Cry11A toxins, activated with either trypsin or Spodoptera frugiperda gastric juice (GJ), resulted in different cleavage patterns for the activated toxins as seen by SDS-PAGE. The GJ-processed proteins were not cytotoxic to insect cell cultures. On the other hand, the combination of the trypsin-activated Cry4Aa and Cry11A toxins yielded the highest levels of cytotoxicity to all insect cells tested. The combination of activated Cyt2Ba and Cry11A also showed higher toxic activity than that of toxins activated individually. When activated Cry4Aa, Cry11A and Cyt2Ba were used simultaneously in the same assay a decrease in toxic activity was observed in all insect cells tested. No toxic effect was observed for the trypsin-activated Cry toxins in mammalian cells, but activated Cyt2Ba was toxic to human breast cancer cells (MCF-7) when tested at 20 µg/mL.
Collapse
Affiliation(s)
| | | | - Rose Gomes Monnerat
- Embrapa – Recursos Genéticos e Biotecnologia, C.P. 02373, Brasília, Distrito Federal, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
45
|
Vachon V, Laprade R, Schwartz JL. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J Invertebr Pathol 2012; 111:1-12. [DOI: 10.1016/j.jip.2012.05.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022]
|
46
|
Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mosquito larvae after contact with leaf litter. Appl Environ Microbiol 2012; 78:5189-95. [PMID: 22610426 DOI: 10.1128/aem.00903-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments.
Collapse
|
47
|
Sarker N, Mahbub KR. Bacillus thuringiensis: An Environment Friendly Microbial Control Agent. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/mj.2012.36.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
A 54-kilodalton protein encoded by pBtoxis is required for parasporal body structural integrity in Bacillus thuringiensis subsp. israelensis. J Bacteriol 2011; 194:1562-71. [PMID: 22210770 DOI: 10.1128/jb.06095-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Strains of Bacillus thuringiensis such as B. thuringiensis subsp. israelensis (ONR-60A) and B. thuringiensis subsp. morrisoni (PG-14) pathogenic for mosquito larvae produce a complex parasporal body consisting of several protein endotoxins synthesized during sporulation that form an aggregate of crystalline inclusions bound together by a multilamellar fibrous matrix. Most studies of these strains focus on the molecular biology of the endotoxins, and although it is known that parasporal body structural integrity is important to achieving high toxicity, virtually nothing is known about the matrix that binds the toxin inclusions together. In the present study, we undertook a proteomic analysis of this matrix to identify proteins that potentially mediate assembly and stability of the parasporal body. In addition to fragments of their known major toxins, namely, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, we identified peptides with 100% identity to regions of Bt152, a protein coded for by pBtoxis of B. thuringiensis subsp. israelensis, the plasmid that encodes all endotoxins of this subspecies. As it is known that the Bt152 gene is expressed in B. thuringiensis subsp. israelensis, we disrupted its function and showed that inactivation destabilized the parasporal body matrix and, concomitantly, inclusion aggregation. Using fluorescence microscopy, we further demonstrate that Bt152 localizes to the parasporal body in both strains, is absent in other structural or soluble components of the cell, including the endospore and cytoplasm, and in ligand blots binds to purified multilamellar fibrous matrix. Together, the data show that Bt152 is essential for stability of the parasporal body of these strains.
Collapse
|
49
|
Cohen S, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A, Dym O. Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. J Mol Biol 2011; 413:804-14. [PMID: 21959261 DOI: 10.1016/j.jmb.2011.09.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
During sporulation, Bacillus thuringiensis subsp. israelensis produces a mosquito larvicidal protein complex containing several crystalline and cytolytic (Cyt) toxins. Here, the activated monomeric form of Cyt1Aa, the most toxic Cyt family member, was isolated and crystallized, and its structure was determined for the first time at 2.2 Å resolution. Cyt1Aa adopts a typical cytolysin fold containing a β-sheet held by two surrounding α-helical layers. The absence of a β-strand (between residues V26 and I37) in the dimeric structure of Cyt2Aa led us to deduce that this is the only essential segment for dimer formation and that activation of the toxin occurs by proteolytic processing of its N-terminus. Based on the Cyt1Aa structure, we suggest that the toxicity of Cyt1Aa and other nonrelated proteins, all sharing a cytolysin fold, is correlated with their ability to undergo conformational changes that are necessary prior to their membrane insertion and perforation. This fold allows the α-helical layers to swing away, exposing the β-sheet to insert into the membrane. The identification of a putative lipid binding pocket between the β-sheet and the helical layer of Cyt1Aa supports this mechanism. Sequence-based structural analysis of Cyt1Aa revealed that the lack of activity of Cyt1Ca may be related to the latter's inability to undergo this conformational change due to its lack of flexibility. The pattern of the hemolytic activity of Cyt1Aa presented here (resembling that of pore-forming agents), while differing from that imposed by ionic and nonionic detergents, further supports the pore-forming model by which conformational changes occur prior to membrane insertion and perforation.
Collapse
Affiliation(s)
- Shmuel Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Paris M, David JP, Despres L. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1184-1194. [PMID: 21461926 DOI: 10.1007/s10646-011-0663-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
Sustainable insect vector disease control strategies involve delaying the evolution of resistance to insecticides in natural populations. The evolutionary dynamics of resistance in the field is highly dependent on the fitness cost of resistance alleles. To successfully manage resistance evolution in target species, it is not only important to find evidence of fitness cost in resistant insects, but also to determine at which stage of the insect's life it is expressed. Here, we show that resistance costs to the bacterio-insecticide Bacillus thuringiensis subsp. israelensis (Bti) are expressed at all the life-stages of the dengue vector Aedes aegypti, including egg survival, larval development time, and female fecundity. We show that the storage of eggs for 4 months is long enough to counter-select resistance alleles. This suggests that Bti resistance is not likely to evolve in temperate climates where most mosquito species overwinter as eggs. In tropical regions with a rapid turn-over of generations, resistance alleles are likely to be counter-selected in only few generations without treatment through fitness costs expressed in terms of larval development time and female fecundity. We discuss the implications of our findings in terms of sustainable management strategies in light of the challenge of preserving the long-term efficiency of this environmentally safe anti-mosquito bio-insecticide.
Collapse
Affiliation(s)
- Margot Paris
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Université Joseph Fourier, BP 53, 38041, Grenoble Cedex 09, France.
| | | | | |
Collapse
|