1
|
Park J, Lim S. Review of the Proteomics and Metabolic Properties of Corynebacterium glutamicum. Microorganisms 2024; 12:1681. [PMID: 39203523 PMCID: PMC11356982 DOI: 10.3390/microorganisms12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) has become industrially important in producing glutamic acid and lysine since its discovery and has been the subject of proteomics and central carbon metabolism studies. The proteome changes depending on environmental conditions, nutrient availability, and stressors. Post-translational modification (PTMs), such as phosphorylation, methylation, and glycosylation, alter the function and activity of proteins, allowing them to respond quickly to environmental changes. Proteomics techniques, such as mass spectrometry and two-dimensional gel electrophoresis, have enabled the study of proteomes, identification of proteins, and quantification of the expression levels. Understanding proteomes and central carbon metabolism in microorganisms provides insight into their physiology, ecology, and biotechnological applications, such as biofuels, pharmaceuticals, and industrial enzyme production. Several attempts have been made to create efficient production strains to increase productivity in several research fields, such as genomics and proteomics. In addition to amino acids, C. glutamicum is used to produce vitamins, nucleotides, organic acids, and alcohols, expanding its industrial applications. Considerable information has been accumulated, but recent research has focused on proteomes and central carbon metabolism. The development of genetic engineering technologies, such as CRISPR-Cas9, has improved production efficiency by allowing precise manipulation of the metabolic pathways of C. glutamicum. In addition, methods for designing new metabolic pathways and developing customized strains using synthetic biology technology are gradually expanding. This review is expected to enhance the understanding of C. glutamicum and its industrial potential and help researchers identify research topics and design studies.
Collapse
Affiliation(s)
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Chungnam, Republic of Korea
| |
Collapse
|
2
|
Pauli S, Kohlstedt M, Lamber J, Weiland F, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metab Eng 2023; 77:100-117. [PMID: 36931556 DOI: 10.1016/j.ymben.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Collapse
Affiliation(s)
- Sarah Pauli
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jessica Lamber
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Fabia Weiland
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
3
|
Kohlstedt M, Weimer A, Weiland F, Stolzenberger J, Selzer M, Sanz M, Kramps L, Wittmann C. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Metab Eng 2022; 72:337-352. [DOI: 10.1016/j.ymben.2022.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
|
4
|
Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, Makowka A, Hildebrandt S, Gutekunst K, Portais JC, Wittmann C. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microb Cell Fact 2022; 21:69. [PMID: 35459213 PMCID: PMC9034593 DOI: 10.1186/s12934-022-01790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. RESULTS Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. CONCLUSIONS The developed approach, based on parallel 13C tracer studies with GC-MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.
Collapse
Affiliation(s)
- Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | | | | | - Kirstin Gutekunst
- Institute of Botany, Christian-Albrecht University, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
5
|
Taymaz-Nikerel H, Lara AR. Vitreoscilla Haemoglobin: A Tool to Reduce Overflow Metabolism. Microorganisms 2021; 10:microorganisms10010043. [PMID: 35056491 PMCID: PMC8779101 DOI: 10.3390/microorganisms10010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Overflow metabolism is a phenomenon extended in nature, ranging from microbial to cancer cells. Accumulation of overflow metabolites pose a challenge for large-scale bioprocesses. Yet, the causes of overflow metabolism are not fully clarified. In this work, the underlying mechanisms, reasons and consequences of overflow metabolism in different organisms have been summarized. The reported effect of aerobic expression of Vitreoscilla haemoglobin (VHb) in different organisms are revised. The use of VHb to reduce overflow metabolism is proposed and studied through flux balance analysis in E. coli at a fixed maximum substrate and oxygen uptake rates. Simulations showed that the presence of VHb increases the growth rate, while decreasing acetate production, in line with the experimental measurements. Therefore, aerobic VHb expression is considered a potential tool to reduce overflow metabolism in cells.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, İstanbul 34060, Turkey;
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
- Correspondence:
| |
Collapse
|
6
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Hoffmann SL, Kohlstedt M, Jungmann L, Hutter M, Poblete-Castro I, Becker J, Wittmann C. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metab Eng 2021; 67:293-307. [PMID: 34314893 DOI: 10.1016/j.ymben.2021.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce l-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of l-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered l-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for l-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased l-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and l-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L-1l-lysine from mannitol at a yield of 0.26 mol mol-1 and a maximum productivity of 2.1 g L-1 h-1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to l-lysine at a yield of 0.27 C-mol C-mol-1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided l-lysine at a yield of 0.40 C-mol C-mol-1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.
Collapse
Affiliation(s)
- Sarah Lisa Hoffmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lukas Jungmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Hutter
- Centre for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
8
|
Ramp P, Lehnert A, Matamouros S, Wirtz A, Baumgart M, Bott M. Metabolic engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer's disease. Metab Eng 2021; 67:173-185. [PMID: 34224896 DOI: 10.1016/j.ymben.2021.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Lehnert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
9
|
Jin C, Bao J. Lysine Production by Dry Biorefining of Wheat Straw and Cofermentation of Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1900-1906. [PMID: 33539090 DOI: 10.1021/acs.jafc.0c07902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A preliminary study shows that lysine production from lignocellulose feedstock is feasible, but the conversion of xylose in lignocellulose to lysine remains unsolved. Two technical barriers are responsible for the remaining xylose conversion: one is the xylose loss into the wastewater stream of the biorefinery processing chain, and the other is the lack of efficient lysine-producing strain with xylose utilization. Here, we conducted a new biorefinery approach of consequent dry acid pretreatment and biodetoxification, resulting in zero wastewater generation and then well-preserved xylose. To provide the lysine-producing strain with xylose utilization, we modified the Corynebacterium glutamicum by establishing the xylose assimilation pathway and improving the NADPH cofactor regeneration. The combinational modification of biorefinery processing and strain development led to 31.3 g/L of lysine production with a yield of 0.23 g lysine per gram of wheat straw derived sugars. This study provides a practical method for upgraded lysine production from lignocellulose for future industrial applications.
Collapse
Affiliation(s)
- Ci Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Löwe H, Beentjes M, Pflüger-Grau K, Kremling A. Trehalose production by Cupriavidus necator from CO 2 and hydrogen gas. BIORESOURCE TECHNOLOGY 2021; 319:124169. [PMID: 33254445 DOI: 10.1016/j.biortech.2020.124169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/12/2023]
Abstract
In this work, the hydrogen-oxidizing bacterium Cupriavidus necator H16 was engineered for trehalose production from gaseous substrates. First, it could be shown that C. necator is a natural producer of trehalose when stressed with sodium chloride. Bioinformatic investigations revealed a so far unknown mode of trehalose and glycogen metabolism in this organism. Next, it was found that expression of the sugar efflux transporter A (setA) from Escherichia coli lead to a trehalose leaky phenotype of C. necator. Finally, the strain was characterized under autotrophic conditions using a H2/CO2/O2-mixture and other substrates reaching titers of up to 0.47 g L-1 and yields of around 0.1 g g-1. Taken together, this process represents a new way to produce sugars with high areal efficiency. With further metabolic engineering, an application of this technology for the renewable production of trehalose and other sugars, as well as for the synthesis of 13C-labeled sugars seems promising.
Collapse
Affiliation(s)
- Hannes Löwe
- Systems Biotechnology, Technical University of Munich, Germany
| | | | | | | |
Collapse
|
11
|
Complete and Draft Genome Sequences of Amino Acid-Producing Corynebacterium glutamicum Strains ATCC 21799 and ATCC 31831 and Their Genomic Islands. Microbiol Resour Announc 2020; 9:9/32/e00430-20. [PMID: 32763926 PMCID: PMC7409843 DOI: 10.1128/mra.00430-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the complete and draft genome sequences of two strains of Corynebacterium glutamicum and revealed their genomic islands (GEIs). The two strains, ATCC 21799 and ATCC 31831, were found to have 3,079 and 3,109 coding sequences, respectively, with 13 GEIs each not present in the reference strain, ATCC 13032. We determined the complete and draft genome sequences of two strains of Corynebacterium glutamicum and revealed their genomic islands (GEIs). The two strains, ATCC 21799 and ATCC 31831, were found to have 3,079 and 3,109 coding sequences, respectively, with 13 GEIs each not present in the reference strain, ATCC 13032.
Collapse
|
12
|
Zhang L, Chen L, Diao J, Song X, Shi M, Zhang W. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO 2. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:82. [PMID: 32391082 PMCID: PMC7201998 DOI: 10.1186/s13068-020-01720-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cyanobacterial carbohydrates, such as sucrose, have been considered as potential renewable feedstock to support the production of fuels and chemicals. However, the separation and purification processes of these carbohydrates will increase the production cost of chemicals. Co-culture fermentation has been proposed as an efficient and economical way to utilize these cyanobacterial carbohydrates. However, studies on the application of co-culture systems to achieve green biosynthesis of platform chemicals are still rare. RESULTS In this study, we successfully achieved one-step conversion of sucrose derived from cyanobacteria to fine chemicals by constructing a microbial consortium consisting of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 and Escherichia coli to sequentially produce sucrose and then the platform chemical 3-hydroxypropionic acid (3-HP) from CO2 under photoautotrophic growth conditions. First, efforts were made to overexpress the sucrose permease-coding gene cscB under the strong promoter P cpc560 in S. elongatus UTEX 2973 for efficient sucrose secretion. Second, the sucrose catabolic pathway and malonyl-CoA-dependent 3-HP biosynthetic pathway were introduced into E. coli BL21 (DE3) for heterologous biosynthesis of 3-HP from sucrose. By optimizing the cultivation temperature from 37 to 30 °C, a stable artificial consortium system was constructed with the capability of producing 3-HP at up to 68.29 mg/L directly from CO2. In addition, cell growth of S. elongatus UTEX 2973 in the consortium was enhanced, probably due to the quick quenching of reactive oxygen species (ROS) in the system by E. coli, which in turn improved the photosynthesis of cyanobacteria. CONCLUSION The study demonstrated the feasibility of the one-step conversion of sucrose to fine chemicals using an artificial consortium system. The study also confirmed that heterotrophic bacteria could promote the cell growth of cyanobacteria by relieving oxidative stress in this microbial consortium, which further suggests the potential value of this system for future industrial applications.
Collapse
Affiliation(s)
- Li Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center of Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
13
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
14
|
Pan Y, Wang W, Huang S, Ni W, Wei Z, Cao Y, Yu S, Jia Q, Wu Y, Chai C, Zheng Q, Zhang L, Wang A, Sun Z, Huang S, Wang S, Chen W, Lu Y. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J Cell Mol Med 2019; 23:6846-6858. [PMID: 31343107 PMCID: PMC6787513 DOI: 10.1111/jcmm.14568] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/08/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022] Open
Abstract
Pyruvate kinase M2 (PKM2), playing a central role in regulating aerobic glycolysis, was considered as a promising target for cancer therapy. However, its role in cancer metastasis is rarely known. Here, we found a tight relationship between PKM2 and breast cancer metastasis, demonstrated by the findings that beta-elemene (β-elemene), an approved drug for complementary cancer therapy, exerted distinct anti-metastatic activity dependent on PKM2. The results indicated that β-elemene inhibited breast cancer cell migration, invasion in vitro as well as metastases in vivo. β-Elemene further inhibited the process of aerobic glycolysis and decreased the utilization of glucose and the production of pyruvate and lactate through suppressing pyruvate kinase activity by modulating the transformation of dimeric and tetrameric forms of PKM2. Further analysis revealed that β-elemene suppressed aerobic glycolysis by blocking PKM2 nuclear translocation and the expression of EGFR, GLUT1 and LDHA by influencing the expression of importin α5. Furthermore, the effect of β-elemene on migration, invasion, PKM2 transformation, and nuclear translocation could be reversed in part by fructose-1,6-bisphosphate (FBP) and L-cysteine. Taken together, tetrameric transformation and nuclear translocation of PKM2 are essential for cancer metastasis, and β-elemene inhibited breast cancer metastasis via blocking aerobic glycolysis mediated by dimeric PKM2 transformation and nuclear translocation, being a promising anti-metastatic agent from natural compounds.
Collapse
Affiliation(s)
- Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuzhu Cao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuan Chai
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhang
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
15
|
GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng 2019; 54:35-53. [DOI: 10.1016/j.ymben.2019.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
|
16
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
17
|
Becker J, Wittmann C. From systems biology to metabolically engineered cells — an omics perspective on the development of industrial microbes. Curr Opin Microbiol 2018; 45:180-188. [DOI: 10.1016/j.mib.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
|
18
|
Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab Eng 2018; 47:475-487. [DOI: 10.1016/j.ymben.2018.04.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
|
19
|
Vassilev I, Gießelmann G, Schwechheimer SK, Wittmann C, Virdis B, Krömer JO. Anodic electro‐fermentation: Anaerobic production of L‐Lysine by recombinant
Corynebacterium glutamicum. Biotechnol Bioeng 2018; 115:1499-1508. [DOI: 10.1002/bit.26562] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/04/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Igor Vassilev
- Centre for Microbial Electrochemical Systems (CEMES)The University of QueenslandBrisbaneQLDAustralia
- Advanced Water Management CentreThe University of QueenslandBrisbaneQLDAustralia
| | - Gideon Gießelmann
- Institute for Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | | | - Christoph Wittmann
- Institute for Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | - Bernardino Virdis
- Advanced Water Management CentreThe University of QueenslandBrisbaneQLDAustralia
| | - Jens O. Krömer
- Centre for Microbial Electrochemical Systems (CEMES)The University of QueenslandBrisbaneQLDAustralia
- Advanced Water Management CentreThe University of QueenslandBrisbaneQLDAustralia
- Departmentfor Solar MaterialsHelmholtz Centre for Environmental Research UFZLeipzigGermany
| |
Collapse
|
20
|
Lange A, Becker J, Schulze D, Cahoreau E, Portais JC, Haefner S, Schröder H, Krawczyk J, Zelder O, Wittmann C. Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab Eng 2017; 44:198-212. [PMID: 29037780 DOI: 10.1016/j.ymben.2017.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/10/2017] [Accepted: 10/04/2017] [Indexed: 01/12/2023]
Abstract
Succinic acid is a platform chemical of recognized industrial value and accordingly faces a continuous challenge to enable manufacturing from most attractive raw materials. It is mainly produced from glucose, using microbial fermentation. Here, we explore and optimize succinate production from sucrose, a globally applied substrate in biotechnology, using the rumen bacterium Basfia succiniciproducens DD1. As basis of the strain optimization, the yet unknown sucrose metabolism of the microbe was studied, using 13C metabolic flux analyses. When grown in batch culture on sucrose, the bacterium exhibited a high succinate yield of 1molmol-1 and a by-product spectrum, which did not match the expected PTS-mediated sucrose catabolism. This led to the discovery of a fructokinase, involved in sucrose catabolism. The flux approach unraveled that the fructokinase and the fructose PTS both contribute to phosphorylation of the fructose part of sucrose. The contribution of the fructokinase reduces the undesired loss of the succinate precursor PEP into pyruvate and into pyruvate-derived by-products and enables increased succinate production, exclusively via the reductive TCA cycle branch. These findings were used to design superior producers. Mutants, which (i) overexpress the beneficial fructokinase, (II) lack the competing fructose PTS, and (iii) combine both traits, produce significantly more succinate. In a fed-batch process, B. succiniciproducens ΔfruA achieved a titer of 71gL-1 succinate and a yield of 2.5molmol-1 from sucrose.
Collapse
Affiliation(s)
- Anna Lange
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Edern Cahoreau
- Université de Toulouse, INSA, UPS, INP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France
| | - Stefan Haefner
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | - Hartwig Schröder
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | - Joanna Krawczyk
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | - Oskar Zelder
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | | |
Collapse
|
21
|
13C metabolite profiling to compare the central metabolic flux in two yeast strains. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0536-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Guo W, Sheng J, Feng X. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 162:265-299. [PMID: 28424826 DOI: 10.1007/10_2017_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
23
|
Becker J, Wittmann C. Industrial Microorganisms: Corynebacterium glutamicum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Judith Becker
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| |
Collapse
|
24
|
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University; Genetics of Prokaryotes, Faculty of Biology and CeBiTec; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
25
|
Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production. Biotechnol Lett 2016; 38:2153-2161. [PMID: 27623797 DOI: 10.1007/s10529-016-2207-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To construct, test and exploit the CRISPRi system for enhancement of shikimic acid production with Corynebacterium glutamicum. RESULTS The CRISPRi system was used to regulate C. glutamicum gene expression at the transcriptional level. Hfq protein-mediated small regulatory RNAs system was compared with CRISPRi system. The more efficient CRISPRi system was used to adjust the metabolic flux involving the shikimic acid (SA) synthetic pathway. In 11 candidate genes, including transcription regulator, three targets were effective for increasing SA production. Through over-expression of ncgl1512 and down-regulating the expression of ncgl2008, ncgl2809, ncgl1856, the titers of SA increased 115 % to 7.76 g/l in 250 ml flasks and 23.8 g/l in 5 l fermentor, which is the highest shikimic acid yield reported for C. glutamicum. CONCLUSIONS CRISPRi system was constructed and is a high-performance and time-saving method to manipulate multiple genes in C. glutamicum for shikimic acid production. Moreover, CRISPRi-system was also effective in regulating the expression of a transcription regulator.
Collapse
|
26
|
Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum. Metab Eng 2016; 38:344-357. [PMID: 27553884 DOI: 10.1016/j.ymben.2016.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022]
Abstract
The performance of Corynebacterium glutamicum cell factories producing compounds which rely heavily on NADPH has been reported to depend on the sugar being metabolized. While some aspects of this phenomenon have been elucidated, there are still many unresolved questions as to how sugar metabolism is linked to redox and to the general metabolism. We here provide new insights into the regulation of the metabolism of this important platform organism by systematically characterizing mutants carrying various lesions in the fructose operon. Initially, we found that a strain where the dedicated fructose uptake system had been inactivated (KO-ptsF) was hampered in growth on sucrose minimal medium, and suppressor mutants appeared readily. Comparative genomic analysis in conjunction with enzymatic assays revealed that suppression was linked to inactivation of the pfkB gene, encoding a fructose-1-phosphate kinase. Detailed characterization of KO-ptsF, KO-pfkB and double knock-out (DKO) derivatives revealed a strong role for sugar-phosphates, especially fructose-1-phosphate (F1P), in governing sugar as well as redox metabolism due to effects on transcriptional regulation of key genes. These findings allowed us to propose a simple model explaining the correlation between sugar phosphate concentration, gene expression and ultimately the observed phenotype. To guide us in our analysis and help us identify bottlenecks in metabolism we debugged an existing genome-scale model onto which we overlaid the transcriptome data. Based on the results obtained we managed to enhance the NADPH supply and transform the wild-type strain into delivering the highest yield of lysine ever obtained on sucrose and fructose, thus providing a good example of how regulatory mechanisms can be harnessed for bioproduction.
Collapse
|
27
|
Jorge JMP, Leggewie C, Wendisch VF. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 2016; 48:2519-2531. [PMID: 27289384 DOI: 10.1007/s00726-016-2272-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Gamma-aminobutyric acid (GABA), a non-protein amino acid widespread in nature, is a component of pharmaceuticals, foods, and the biodegradable plastic polyamide 4. Corynebacterium glutamicum shows great potential for the production of GABA from glucose. GABA added to the growth medium hardly affected growth of C. glutamicum, since a half-inhibitory concentration of 1.1 M GABA was determined. As alternative to GABA production by glutamate decarboxylation, a new route for the production of GABA via putrescine was established in C. glutamicum. A putrescine-producing recombinant C. glutamicum strain was converted into a GABA producing strain by heterologous expression of putrescine transaminase (PatA) and gamma-aminobutyraldehyde dehydrogenase (PatD) genes from Escherichia coli. The resultant strain produced 5.3 ± 0.1 g L-1 of GABA. GABA production was improved further by adjusting the concentration of nitrogen in the culture medium, by avoiding the formation of the by-product N-acetylputrescine and by deletion of the genes for GABA catabolism and GABA re-uptake. GABA accumulation by this strain was increased by 51 % to 8.0 ± 0.3 g L-1, and the volumetric productivity was increased to 0.31 g L-1 h-1; the highest volumetric productivity reported so far for fermentative production of GABA from glucose in shake flasks was achieved.
Collapse
Affiliation(s)
- João M P Jorge
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
28
|
Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 2016; 42:133-146. [PMID: 27151315 DOI: 10.1016/j.copbio.2016.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 12/25/2022]
Abstract
Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.
Collapse
|
29
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Kawaguchi H, Sasaki K, Uematsu K, Tsuge Y, Teramura H, Okai N, Nakamura-Tsuruta S, Katsuyama Y, Sugai Y, Ohnishi Y, Hirano K, Sazuka T, Ogino C, Kondo A. 3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2015; 198:410-417. [PMID: 26409852 DOI: 10.1016/j.biortech.2015.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
The production of the bioplastic precursor 3-amino-4-hydroxybenzoic acid (3,4-AHBA) from sweet sorghum juice, which contains amino acids and the fermentable sugars sucrose, glucose and fructose, was assessed to address the limitations of producing bio-based chemicals from renewable feedstocks. Recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI derived from Streptomyces griseus produced 3,4-AHBA from the sweet sorghum juice of cultivar SIL-05 at a final concentration (1.0 g l(-1)) that was 5-fold higher than that from pure sucrose. Fractionation of sweet sorghum juice by nanofiltration (NF) membrane separation (molecular weight cut-off 150) revealed that the NF-concentrated fraction, which contained the highest concentrations of amino acids, increased 3,4-AHBA production, whereas the NF-filtrated fraction inhibited 3,4-AHBA biosynthesis. Amino acid supplementation experiments revealed that leucine specifically enhanced 3,4-AHBA production by strain KT01. Taken together, these results suggest that sweet sorghum juice is a potentially suitable feedstock for 3,4-AHBA production by recombinant C. glutamicum.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kengo Sasaki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kouji Uematsu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yota Tsuge
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hiroshi Teramura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Naoko Okai
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Sachiko Nakamura-Tsuruta
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
31
|
Xu S, Hao N, Xu L, Liu Z, Yan M, Li Y, Ouyang P. Series fermentation production of ornithine and succinic acid from cane molasses by Corynebacterium glutamicum. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Becker J, Wittmann C. Advanced Biotechnology: Metabolically Engineered Cells for the Bio-Based Production of Chemicals and Fuels, Materials, and Health-Care Products. Angew Chem Int Ed Engl 2015; 54:3328-50. [DOI: 10.1002/anie.201409033] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/16/2022]
|
33
|
Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Jojima T, Igari T, Moteki Y, Suda M, Yukawa H, Inui M. Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 2014; 99:1427-33. [PMID: 25363556 DOI: 10.1007/s00253-014-6170-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Corynebacterium glutamicum can consume glucose to excrete glycerol under oxygen deprivation. Although glycerol synthesis from 1,3-dihydroxyacetone (DHA) has been speculated, no direct evidence has yet been provided in C. glutamicum. Enzymatic and genetic investigations here indicate that the glycerol is largely produced from DHA and, unexpectedly, the reaction is catalyzed by (S,S)-butanediol dehydrogenase (ButA) that inherently catalyzes the interconversion between S-acetoin and (S,S)-2,3-butanediol. Consequently, the following pathway for glycerol biosynthesis in the bacterium emerges: dihydroxyacetone phosphate is dephosphorylated by HdpA to DHA, which is subsequently reduced to glycerol by ButA. This study emphasizes the importance of promiscuous activity of the enzyme in vivo.
Collapse
Affiliation(s)
- Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Bücker R, Heroven AK, Becker J, Dersch P, Wittmann C. The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis. J Biol Chem 2014; 289:30114-32. [PMID: 25164818 DOI: 10.1074/jbc.m114.581348] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [(13)C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia.
Collapse
Affiliation(s)
- René Bücker
- From the Institute of Systems Biotechnology, Saarland University, 66123 Saarbrücken, the Institute of Biochemical Engineering, Technische Universität, Braunschweig and
| | - Ann Kathrin Heroven
- the Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Judith Becker
- From the Institute of Systems Biotechnology, Saarland University, 66123 Saarbrücken
| | - Petra Dersch
- the Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Christoph Wittmann
- From the Institute of Systems Biotechnology, Saarland University, 66123 Saarbrücken,
| |
Collapse
|
36
|
Rodrigues AL, Becker J, de Souza Lima AO, Porto LM, Wittmann C. Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnol Bioeng 2014; 111:2280-9. [PMID: 24889673 DOI: 10.1002/bit.25297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
Abstract
Deoxyviolacein is a microbial drug with biological activity against tumors, gram-positive bacteria, and fungal plant pathogens. Here, we describe an Escherichia coli strain for heterologous production of this high-value drug from glycerol. Plasmid-based expression of the deoxyviolacein cluster vioABCE was controlled by the araBAD promoter and induction by L-arabinose. Through elimination of L-arabinose catabolism in E. coli, the pentose sugar could be fully directed to induction of deoxyviolacein biosynthesis and was no longer metabolized, as verified by (13) C isotope experiments. Deletion of the araBAD genes beneficially complemented with previously described (i) engineering of the pentose phosphate pathway, (ii) chorismate biosynthesis, (iii) tryptophan biosynthesis, (iv) improved supply of L-serine, (v) elimination of tryptophan repression, and (vi) of tryptophan catabolism. Subsequent screening of the created next-generation producer E. coli dVio-8 identified glycerol as optimum carbon source and a level of 100 mg L(-1) of L-arabinose as optimum for induction. Transferred to a glycerol-based fed-batch process, E. coli dVio-8 surpassed the gram scale and produced 1.6 g L(-1) deoxyviolacein. With straightforward extraction from culture broth and purification by flash chromatography, deoxyviolacein was obtained at >99.5% purity. Biotechnol. Bioeng. 2014;111: 2280-2289. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- André Luis Rodrigues
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany; Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
37
|
Improvement of cell growth and L-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses. J Ind Microbiol Biotechnol 2013; 40:1423-32. [PMID: 24029876 DOI: 10.1007/s10295-013-1329-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/06/2013] [Indexed: 12/14/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase) and fructokinase (ScrK) have important roles in regenerating glucose-6-phosphate in the pentose phosphate pathway (PPP), and thus increasing L-lysine production. This article focuses on the development of L-lysine high-producing strains by heterologous expression of FBPase gene fbp and ScrK gene scrK in C. glutamicum lysC (fbr) with molasses as the sole carbon source. Heterologous expression of fbp and scrK lead to a decrease of residual sugar in fermentation broth, and heterologous expression of scrK prevents the fructose efflux. Heterologous expression of fbp and scrK not only increases significantly the activity of corresponding enzymes but also improves cell growth during growth on molasses. FBPase activities are increased tenfold by heterologous expression of fbp, whereas the FBPase activity is only increase fourfold during co-expression of scrK and fbp. Compared with glucose, the DCW of heterologous expression strains are higher on molasses except co-expression of fbp and scrK strain. In addition, heterologous expression of fbp and scrK can strongly increase the L-lysine production with molasses as the sole carbon source. The highest increase (88.4 %) was observed for C. glutamicum lysC (fbr) pDXW-8-fbp-scrK, but the increase was also significant for C. glutamicum lysC (fbr) pDXW-8-fbp (47.2 %) and C. glutamicum lysC (fbr) pDXW-8-scrK (36.8 %). By-products, such as glycerol and dihydroxyacetone, are decreased by heterologous expression of fbp and scrK, whereas trehalose is only slightly increased. The strategy for enhancing L-lysine production by regeneration of glucose-6-phosphate in PPP may provide a reference to enhance the production of other amino acids during growth on molasses or starch.
Collapse
|
38
|
Hörl M, Schnidder J, Sauer U, Zamboni N. Non-stationary13C-metabolic flux ratio analysis. Biotechnol Bioeng 2013; 110:3164-76. [DOI: 10.1002/bit.25004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Manuel Hörl
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
- PhD Program Systems Biology; Life Science Zurich Graduate School; Zurich Switzerland
| | - Julian Schnidder
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
- PhD Program Systems Biology; Life Science Zurich Graduate School; Zurich Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
| |
Collapse
|
39
|
Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H. Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum (D)-lactate productivity under oxygen deprivation. Appl Microbiol Biotechnol 2013; 97:6693-703. [PMID: 23712891 DOI: 10.1007/s00253-013-4986-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/25/2022]
Abstract
We previously demonstrated the simplicity of oxygen-deprived Corynebacterium glutamicum to produce D-lactate, a primary building block of next-generation biodegradable plastics, at very high optical purity by introducing heterologous D-ldhA gene from Lactobacillus delbrueckii. Here, we independently evaluated the effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production in C. glutamicum. We consequently show that while the reactions catalyzed by glucokinase (GLK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase had positive effects on D-lactate productivity by increasing 98, 39, 15, 13, and 10 %, respectively, in 10 h reactions in minimal salts medium, the reaction catalyzed by pyruvate kinase had large negative effect by decreasing 70 %. The other glycolytic enzymes did not affect D-lactate productivity when each of encoding genes was overexpressed. It is noteworthy that all reactions associated with positive effects are located upstream of glycerate-1,3-bisphosphate in the glycolytic pathway. The D-lactate yield also increased by especially overexpressing TPI encoding gene up to 94.5 %. Interestingly, overexpression of PFK encoding gene reduced the yield of succinate, one of the main by-products of D-lactate production, by 52 %, whereas overexpression of GAPDH encoding gene increased succinate yield by 26 %. Overexpression of GLK encoding gene markedly increased the yield of dihydroxyacetone and glycerol by 10- and 5.8-fold in exchange with decreasing the D-lactate yield. The effect of overexpressing glycolytic genes was also evaluated in 80 h long-term reactions. The variety of effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production is discussed.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan
| | | | | | | | | |
Collapse
|
40
|
Rajvanshi M, Gayen K, Venkatesh KV. Lysine overproducing Corynebacterium glutamicum is characterized by a robust linear combination of two optimal phenotypic states. SYSTEMS AND SYNTHETIC BIOLOGY 2013; 7:51-62. [PMID: 24432142 DOI: 10.1007/s11693-013-9107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/09/2023]
Abstract
A homoserine auxotroph strain of Corynebacterium glutamicum accumulates storage compound trehalose with lysine when limited by growth. Industrially lysine is produced from C. glutamicum through aspartate biosynthetic pathway, where enzymatic activity of aspartate kinase is allosterically controlled by the concerted feedback inhibition of threonine plus lysine. Ample threonine in the medium supports growth and inhibits lysine production (phenotype-I) and its complete absence leads to inhibition of growth in addition to accumulating lysine and trehalose (phenotype-II). In this work, we demonstrate that as threonine concentration becomes limiting, metabolic state of the cell shifts from maximizing growth (phenotype-I) to maximizing trehalose phenotype (phenotype-II) in a highly sensitive manner (with a Hill coefficient of 4). Trehalose formation was linked to lysine production through stoichiometry of the network. The study demonstrated that the net flux of the population was a linear combination of the two optimal phenotypic states, requiring only two experimental measurements to evaluate the flux distribution. The property of linear combination of two extreme phenotypes was robust for various medium conditions including varying batch time, initial glucose concentrations and medium osmolality.
Collapse
Affiliation(s)
- Meghna Rajvanshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Kalyan Gayen
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
41
|
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. Systems metabolic engineering of xylose-utilizingCorynebacterium glutamicumfor production of 1,5-diaminopentane. Biotechnol J 2013; 8:557-70. [DOI: 10.1002/biot.201200367] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/09/2022]
|
42
|
Pathways at Work: Metabolic Flux Analysis of the Industrial Cell Factory Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Jojima T, Igari T, Gunji W, Suda M, Inui M, Yukawa H. Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS Lett 2012; 586:4228-32. [PMID: 23108048 DOI: 10.1016/j.febslet.2012.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/18/2012] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum produces 1,3-dihydroxyacetone (DHA) as metabolite of sugar catabolism but the responsible enzyme is yet to be identified. Using a transposon mutant library, the gene hdpA (cgR_2128) was shown to encode a haloacid dehalogenase superfamily member that catalyzes dephosphorylation of dihydroxyacetone phosphate to produce DHA. Inactivation of hdpA led to a drastic decrease in DHA production from each of glucose, fructose, and sucrose, indicating that HdpA is the main enzyme responsible for DHA production from sugars in C. glutamicum. Confirmation of DHA production via dihydroxyacetone phosphatase finally confirms a long-speculated route through which bacteria produce DHA.
Collapse
Affiliation(s)
- Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Peifer S, Barduhn T, Zimmet S, Volmer DA, Heinzle E, Schneider K. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine. Microb Cell Fact 2012; 11:138. [PMID: 23092390 PMCID: PMC3538647 DOI: 10.1186/1475-2859-11-138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1) derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.
Collapse
Affiliation(s)
- Susanne Peifer
- Biochemical Engineering Institute, Saarland University, Campus A1.5, 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Vertès AA, Inui M, Yukawa H. Postgenomic Approaches to Using Corynebacteria as Biocatalysts. Annu Rev Microbiol 2012; 66:521-50. [DOI: 10.1146/annurev-micro-010312-105506] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alain A. Vertès
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| |
Collapse
|
46
|
Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr Opin Biotechnol 2012; 23:718-26. [DOI: 10.1016/j.copbio.2011.12.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/20/2011] [Indexed: 12/12/2022]
|
47
|
Beurton-Aimar M, Beauvoit B, Monier A, Vallée F, Dieuaide-Noubhani M, Colombié S. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells. BMC SYSTEMS BIOLOGY 2011; 5:95. [PMID: 21682932 PMCID: PMC3148577 DOI: 10.1186/1752-0509-5-95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/20/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND (13)C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. RESULTS Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. CONCLUSION This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement (13)C metabolic flux analysis, by allowing the prediction of changes in internal fluxes before carbon labelling experiments.
Collapse
Affiliation(s)
- Marie Beurton-Aimar
- LaBRI, Univ. Bordeaux, UMR 5800. 351, cours de la Libération. F-33405 Talence Cedex, France
| | | | | | | | | | | |
Collapse
|
48
|
Ruiz JC, D'Afonseca V, Silva A, Ali A, Pinto AC, Santos AR, Rocha AAMC, Lopes DO, Dorella FA, Pacheco LGC, Costa MP, Turk MZ, Seyffert N, Moraes PMRO, Soares SC, Almeida SS, Castro TLP, Abreu VAC, Trost E, Baumbach J, Tauch A, Schneider MPC, McCulloch J, Cerdeira LT, Ramos RTJ, Zerlotini A, Dominitini A, Resende DM, Coser EM, Oliveira LM, Pedrosa AL, Vieira CU, Guimarães CT, Bartholomeu DC, Oliveira DM, Santos FR, Rabelo ÉM, Lobo FP, Franco GR, Costa AF, Castro IM, Dias SRC, Ferro JA, Ortega JM, Paiva LV, Goulart LR, Almeida JF, Ferro MIT, Carneiro NP, Falcão PRK, Grynberg P, Teixeira SMR, Brommonschenkel S, Oliveira SC, Meyer R, Moore RJ, Miyoshi A, Oliveira GC, Azevedo V. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 2011; 6:e18551. [PMID: 21533164 PMCID: PMC3078919 DOI: 10.1371/journal.pone.0018551] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/11/2011] [Indexed: 02/02/2023] Open
Abstract
Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.
Collapse
Affiliation(s)
- Jerônimo C. Ruiz
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian D'Afonseca
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Amjad Ali
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne C. Pinto
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson R. Santos
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aryanne A. M. C. Rocha
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora O. Lopes
- Health Sciences Center, Federal University of São João Del Rei, Divinópilis, Minas Gerais, Brazil
| | - Fernanda A. Dorella
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luis G. C. Pacheco
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biointeraction Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Marcília P. Costa
- Department of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Meritxell Z. Turk
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Núbia Seyffert
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pablo M. R. O. Moraes
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar C. Soares
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sintia S. Almeida
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago L. P. Castro
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vinicius A. C. Abreu
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eva Trost
- Department of Genetics, University of Bielefeld, CeBiTech, Bielefeld, Nordrhein-Westfale, Germany
| | - Jan Baumbach
- Department of Computer Science, Max-Planck-Institut für Informatik, Saarbrücken, Saarlan, Germany
| | - Andreas Tauch
- Department of Genetics, University of Bielefeld, CeBiTech, Bielefeld, Nordrhein-Westfale, Germany
| | | | - John McCulloch
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Adhemar Zerlotini
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Dominitini
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela M. Resende
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
- Department of Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Elisângela M. Coser
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M. Oliveira
- Department of Phisics, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - André L. Pedrosa
- Department of Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Biological Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlos U. Vieira
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Cláudia T. Guimarães
- Brazilian Agricultural Research Corporation (EMBRAPA), Sete Lagoas, Minas Gerais, Brazil
| | - Daniela C. Bartholomeu
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diana M. Oliveira
- Department of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Fabrício R. Santos
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Élida Mara Rabelo
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco P. Lobo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glória R. Franco
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Flávia Costa
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ieso M. Castro
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Sílvia Regina Costa Dias
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jesus A. Ferro
- Department of Technology, State University of São Paulo, Jaboticabal, São Paulo, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano V. Paiva
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Luiz R. Goulart
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Juliana Franco Almeida
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maria Inês T. Ferro
- Department of Technology, State University of São Paulo, Jaboticabal, São Paulo, Brazil
| | - Newton P. Carneiro
- Brazilian Agricultural Research Corporation (EMBRAPA), Sete Lagoas, Minas Gerais, Brazil
| | - Paula R. K. Falcão
- Brazilian Agricultural Research Corporation (EMBRAPA), Campinas, São Paulo, Brazil
| | - Priscila Grynberg
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Santuza M. R. Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Brommonschenkel
- Department of Plant Pathology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sérgio C. Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto Meyer
- Department of Biointeraction Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Anderson Miyoshi
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme C. Oliveira
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
- Center of Excellence in Bioinformatics, National Institute of Science and Technology, Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
49
|
Neuner A, Heinzle E. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J 2011; 6:318-29. [DOI: 10.1002/biot.201000307] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Buschke N, Schröder H, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 2011; 6:306-17. [DOI: 10.1002/biot.201000304] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/12/2022]
|