1
|
Sheng T, Yang W, Li X, Chen X, Li Z, Sun K. 2,4,6-TCP migrates and transforms in different cultivated soil in China: Kinetic analysis and mechanistic modeling. ENVIRONMENTAL RESEARCH 2023; 238:117309. [PMID: 37802310 DOI: 10.1016/j.envres.2023.117309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Organochlorine pesticides are widely used in agriculture, wood preservation, pulp bleaching and other fields, which increased the pollution risk of cultivated land. In this study, a typical organochlorine pesticides-2,4,6-TCP was conducted as the target pollutants to investigated the migration and transformation characteristics in different cultivated soils in China. The results indicated that the adsorption of 2,4,6-TCP in soil samples was in order: black soil>laterite>fluvo-aquic soil, and the maximum adsorption was 71.0870, 27.0575 and 6.1292 mg/kg, respectively. The dispersion coefficient of black soil, laterite and fluvo-aquic soil was 0.0329, 0.0501 and 0.0149, and the hysteretic factor R was 5.381, 1.455 and 2.238, respectively, indicating that the migration ability of 2,4,6-TCP in different cultivated soils samples was in order: black soil>laterite>fluvo-aquic soil. The fitting results of one-dimensional migration model indicated that the model well reflected the migration and transformation of 2,4,6-TCP in different cultivated soil samples. Meanwhile, the Two-dimensional migration model fitting results indicated that the maximum concentration of 2,4,6-TCP of different cultivated soil samples were found along the longitudinal flow direction, reaching 40% of the initial pollution concentration at 15 m, corresponding to the center of the pollutant plume.
Collapse
Affiliation(s)
- Tao Sheng
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Wenxin Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueqi Li
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Xueqi Chen
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiling Li
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kai Sun
- Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Machado LF, de Assis Leite DC, da Costa Rachid CTC, Paes JE, Martins EF, Peixoto RS, Rosado AS. Tracking Mangrove Oil Bioremediation Approaches and Bacterial Diversity at Different Depths in an in situ Mesocosms System. Front Microbiol 2019; 10:2107. [PMID: 31572322 PMCID: PMC6753392 DOI: 10.3389/fmicb.2019.02107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, oil spills were simulated in field-based mangrove mesocosms to compare the efficiency of bioremediation strategies and to characterize the presence of the alkB, ndo, assA, and bssA genes and the ecological structures of microbial communities in mangrove sediments at two different depths, (D1) 1–10 cm and (D2) 25–35 cm. The results indicated that the hydrocarbon degradation efficiency was higher in superficial sediment layers, although no differences in the hydrocarbon degradation rates or in the abundances of the alkB and ndo genes were detected among the tested bioremediation strategies at this depth. Samples from the deeper layer exhibited higher abundances of the analyzed genes, except for assA and bssA, which were not detected in our samples. For all of the treatments and depths, the most abundant phyla were Proteobacteria, Firmicutes and Bacteroidetes, with Gammaproteobacteria, Flavobacteriales and Clostridiales being the most common classes. The indicator species analysis (ISA) results showed strong distinctions among microbial taxa in response to different treatments and in the two collection depths. Our results indicated a high efficiency of the monitored natural attenuation (MNA) for oil consumption in the tested mangrove sediments, revealing the potential of this strategy for environmental decontamination and suggesting that environmental and ecological factors may select for specific bacterial populations in distinct niches.
Collapse
Affiliation(s)
- Laís Feitosa Machado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jorge Eduardo Paes
- Research Center Leopoldo Américo Miguez de Mello, Rio de Janeiro, Brazil
| | - Edir Ferreira Martins
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Where less may be more: how the rare biosphere pulls ecosystems strings. ISME JOURNAL 2017; 11:853-862. [PMID: 28072420 PMCID: PMC5364357 DOI: 10.1038/ismej.2016.174] [Citation(s) in RCA: 649] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/06/2016] [Accepted: 11/12/2016] [Indexed: 02/05/2023]
Abstract
Rare species are increasingly recognized as crucial, yet vulnerable components of Earth's ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area.
Collapse
|
4
|
|
5
|
Han L, Zhao D, Li C. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71. Braz J Microbiol 2015; 46:433-41. [PMID: 26273258 PMCID: PMC4507535 DOI: 10.1590/s1517-838246220140211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022] Open
Abstract
An indigenous bacterial strain capable of utilizing 2,4-dichlorophenoxyacetic acid as the sole carbon and energy source was isolated from a soil used for grown wheat with a long-term history of herbicide use in Beijing, China. The strain BJ71 was identified as Cupriavidus campinensis based on its 16S rRNA sequence analysis and morphological, physiological, and biochemical characteristics. The degradation characteristics of strain BJ71 were evaluated. The optimal conditions for 2,4-D degradation were as follows: pH 7.0, 30 °C, 3% (v/v) inoculum size, and an initial 2,4-D concentration of 350 mg L(-1). Up to 99.57% of the 2,4-D was degraded under optimal conditions after 6 days of incubation. Strain BJ71 was also able to degrade quizalofop and fluroxypyr. This is the first report of a 2,4-D-degrader containing tfdA gene that can utilize these two herbicides. In a biodegradation experiment, 87.13% and 42.53% of 2,4-D (initial concentration, 350 mg kg(-1)) was degraded in non-sterile and sterilized soil inoculated with BJ71, respectively, after 14 days. The 2,4-D degradation was more rapid in a soil microcosm including BJ71 than in a soil microcosm without BJ71. These results indicate that strain BJ71 is a potential candidate for the bioremediation of soil contaminated with the herbicide 2,4-D.
Collapse
Affiliation(s)
- Lizhen Han
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China. ; Guizhou University, College of Life Sciences, Guizhou University, Guiyang, China, College of Life Sciences, Guizhou University, Guiyang, China. ; Guizhou University, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China. ; Guizhou University, College of Life Sciences, Guizhou University, Guiyang, China, College of Life Sciences, Guizhou University, Guiyang, China. ; Guizhou University, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Cuicui Li
- Guizhou University, College of Life Sciences, Guizhou University, Guiyang, China, College of Life Sciences, Guizhou University, Guiyang, China. ; Guizhou University, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Sinkkonen A, Ollila S, Romantschuk M. Changes in TcpA gene frequency explain 2,4,6-trichlorophenol degradation in mesocosms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:756-759. [PMID: 25065827 DOI: 10.1080/03601234.2014.929865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Soils are often polluted by chlorophenols in timber production areas in the northern hemisphere. The tcpA gene encodes the first step of 2,4,6-trichlorophenol (246-TCP) degradation. We tested tcpA gene frequency in three natural pristine soils with different 246-TCP degradation capacity. Gene tcpA frequency increased more in spiked than non-spiked 10-L pails containing coniferous humus soil with high degradation capacity, in contrast to soils where degradation was slower. As the soil in each mesocosm originated from a spatially separate field plot, changes in tcpA gene frequency affected 246-TCP degradation over a range of soil origins. This indicates that the abundance of and changes in tcpA gene frequency could be utilized in estimating the efficacy of natural attenuation and biostimulation treatments in controlled conditions.
Collapse
Affiliation(s)
- Aki Sinkkonen
- a University of Helsinki , Department of Environmental Sciences , Lahti , Finland
| | | | | |
Collapse
|
7
|
Simarro R, González N, Bautista LF, Molina MC. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:158-167. [PMID: 24025312 DOI: 10.1016/j.jhazmat.2013.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/29/2013] [Accepted: 08/11/2013] [Indexed: 06/02/2023]
Abstract
This work aimed to assess the effectiveness of different in situ bioremediation treatments (bioaugmentation, biostimulation, bioaugmentation and biostimulation, and natural attenuation) on creosote polluted soil. Toxicity, microbial respiration, creosote degradation and the evolution of bacterial communities were analyzed. Results showed that creosote decreased significantly in all treatments, and no significant differences were found between treatments. However, some specific polycyclic aromatic hydrocarbons (PAH) were degraded to a greater extent by biostimulation. The dominance of low temperatures (8.9 °C average) slowed down microbial creosote and PAH uptake and, despite significantly creosote degradation (>60%) at the end of the experiment, toxicity remained constant and high throughout the biodegradation process. DGGE results revealed that biostimulation showed the highest microbial biodiversity, although at the end of the biodegradation process, community composition in all treatments was different from that of the control assay (unpolluted soil). The active uncultured bacteria belonged to the genera Pseudomonas, Sphingomonas, Flexibacter, Pantoea and Balneimonas, the latter two of which have not been previously described as PAH degraders. The majority of the species identified during the creosote biodegradation belonged to Pseudomonas genus, which has been widely studied in bioremediation processes. Results confirmed that some bacteria have an intrinsic capacity to degrade the creosote without previous exposure.
Collapse
Affiliation(s)
- R Simarro
- Department of Biology and Geology, ESCET, Universidad Rey Juan Carlos, E-28933 Móstoles, Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Sinkkonen A, Kauppi S, Simpanen S, Rantalainen AL, Strömmer R, Romantschuk M. Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1737-1745. [PMID: 22752813 DOI: 10.1007/s11356-012-1047-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g(-1), or moderate, ca. 20 μg g(-1)) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.
Collapse
Affiliation(s)
- Aki Sinkkonen
- Department of Environmental Sciences, Section of Environmental Ecology, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | | | | | | | | | | |
Collapse
|
9
|
Su ZH, Xu ZS, Peng RH, Tian YS, Zhao W, Han HJ, Yao QH, Wu AZ. Phytoremediation of trichlorophenol by Phase II metabolism in transgenic Arabidopsis overexpressing a Populus glucosyltransferase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4016-4024. [PMID: 22409265 DOI: 10.1021/es203753b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Trichlorophenol (TCP) and its derivatives are introduced into the environment through numerous sources, including wood preservatives and biocides. Environmental contamination by TCPs is associated with human health risks, necessitating the development of cost-effective remediation techniques. Efficient phytoremediation of TCP is potentially feasible because it contains a hydroxyl group and is suitable for direct phase II metabolism. In this study, we present a system for TCP phytoremediation based on sugar conjugation by overexpressing a Populus putative UDP-glc-dependent glycosyltransferase (UGT). The enzyme PtUGT72B1 displayed the highest TCP-conjugating activity among all reported UGTs. Transgenic Arabidopsis demonstrated significantly enhanced tolerances to 2,4,5-TCP and 2,4,6-TCP. Transgenic plants also exhibited a strikingly higher capacity to remove TCP from their media. This work indicates that Populus UGT overexpression in Arabidopsis may be an efficient method for phytoremoval and degradation of TCP. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TCP.
Collapse
Affiliation(s)
- Zhen-Hong Su
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Karn SK, Reddy MS. Degradation of 2,4,6-trichlorophenol by bacteria isolated from secondary sludge of a pulp and paper mill. J GEN APPL MICROBIOL 2012; 58:413-20. [DOI: 10.2323/jgam.58.413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Degradation of 2,4,6-tribromophenol and 2,4,6-trichlorophenol by aerobic heterotrophic bacteria present in psychrophilic lakes. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9923-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Manzano M, Morán AC, Tesser B, González B. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Antonie van Leeuwenhoek 2006; 91:115-26. [PMID: 17043913 DOI: 10.1007/s10482-006-9101-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Cupriavidus necator (formerly Ralstonia eutropha) JMP134, harbouring the catabolic plasmid pJP4, is the best-studied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide degrading bacterium. A study of the survival and catabolic performance of strain JMP134 in agricultural soil microcosms exposed to high levels of 2,4-D was carried out. When C. necator JMP134 was introduced into soil microcosms, the rate of 2,4-D removal increased only slightly. This correlated with the poor survival of the strain, as judged by 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) profiles, and the semi-quantitative detection of the pJP4-borne tfdA gene sequence, encoding the first step in 2,4-D degradation. After 3 days of incubation in irradiated soil microcosms, the survival of strain JMP134 dramatically improved and the herbicide was completely removed. The introduction of strain JMP134 into native soil microcosms did not produce detectable changes in the structure of the bacterial community, as judged by 16S rRNA gene T-RFLP profiles, but provoked a transient increase of signals putatively corresponding to protozoa, as indicated by 18S rRNA gene T-RFLP profiling. Accordingly, a ciliate able to feed on C. necator JMP134 could be isolated after soil enrichment. In native soil microcosms, C. necator JMP134 survived better than Escherichia coli DH5alpha (pJP4) and similarly to Pseudomonas putida KT2442 (pJP4), indicating that species specific factors control the survival of strains harbouring pJP4. The addition of cycloheximide to soil microcosms strongly improved survival of these three strains, indicating that the eukaryotic microbiota has a strong negative effect in bioaugmentation with catabolic bacteria.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/metabolism
- Animals
- Biodegradation, Environmental
- Biodiversity
- Ciliophora/isolation & purification
- Cupriavidus necator/genetics
- Cupriavidus necator/growth & development
- Cupriavidus necator/metabolism
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Escherichia coli/growth & development
- Eukaryota/genetics
- Eukaryota/isolation & purification
- Eukaryota/metabolism
- Microbial Viability
- Plasmids/genetics
- Polymorphism, Restriction Fragment Length
- Pseudomonas putida/growth & development
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Soil Microbiology
Collapse
Affiliation(s)
- Marlene Manzano
- Laboratorio de Microbiologia, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | |
Collapse
|
13
|
De la Iglesia R, Castro D, Ginocchio R, van der Lelie D, González B. Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. J Appl Microbiol 2006; 100:537-44. [PMID: 16478493 DOI: 10.1111/j.1365-2672.2005.02793.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To study the effect that copper residues exert on bacterial communities and the ability of bacteria to colonize different microhabitats in abandoned tailing dumps. METHODS AND RESULTS We used the terminal-restriction fragment length polymorphism technique, a culture-independent molecular approach based on PCR amplification of ribosomal genes, to compare the structure of the bacterial communities from samples taken at two nearby located abandoned tailing dumps found in the Mediterranean-climate area of central Chile. Our results show that elevated available copper content in tailings has a strong effect on the bacterial community composition, but that other factors like pH and organic matter content also play an important role in the structure of these communities. We also found that the number of abundant bacteria in these samples was significantly lower than in soils not exposed to metal pollution. CONCLUSIONS In addition to bioavailable copper, bacterial communities found in copper-tailings dumps are also affected by several other environmental factors. SIGNIFICANCE AND IMPACT OF THE STUDY This first report on environmental factors influencing microbial communities in copper-tailings dumps will help to devise appropriate restoration procedures in this type of polluted habitat.
Collapse
Affiliation(s)
- R De la Iglesia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Laboratorio de Microbiología, Center for Advanced Studies in Ecology and Biodiversity, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|