1
|
Fan L, Shi T, Chen X, Li Y, Han P, Jensen PR, Zhang YHPJ. Biosynthesis of a healthy natural sugar D-tagatose: advances and opportunities. Crit Rev Biotechnol 2025:1-16. [PMID: 40268513 DOI: 10.1080/07388551.2025.2489424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
D-tagatose is a natural low-calorie rare sugar with nearly the same sweet taste as sucrose. It has nutritional and functional properties of great interest for health, such as anti-diabetes, anti-caries, anti-atherosclerosis, anti-hyperlipidemia, anti-aging, improvement of intestinal microflora, etc. The production of D-tagatose from D-galactose catalyzed by an alkali suffers from limited supplies of costly feedstock (i.e., lactose) and high manufacturing costs due to harsh reaction conditions, costly separation, as well as severe degradation and pollution. In this review, we briefly present the properties of D-tagatose and its physiological effects, review the recent advances in the biosynthesis of D-tagatose from inexpensive and abundant glucans (e.g., starch) and their derivatives (e.g., D-glucose and D-fructose) and from lactose, including both academic literature and industrial patents, as well as discuss its future challenges and opportunities. The biosynthesis of D-tagatose can be catalyzed by four types of biocatalysts: enzymes, whole-cells, microbial fermentation, and in vitro multi-enzyme molecular machines. The biomanufacturing of starchy D-tagatose catalyzed by multi-enzyme molecular machines could be the most promising approach because it not only makes D-tagatose from ample starch but also surpasses the equilibria of monosaccharide isomerization reactions (e.g., D-fructose-to-D-tagatose, D-galactose-to-D-tagatose). D-tagatose as a filler for a variety of food and drinks or a key component mixed with other sweeteners would become a predominant starch-derived sweetener and partially replace high-fructose corn sirup in the future.
Collapse
Affiliation(s)
- Lin Fan
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ting Shi
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xuemei Chen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Yunjie Li
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pingping Han
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | | | - Yi-Heng P Job Zhang
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
2
|
Masuda Y, Ohbayashi K, Iba K, Kitano R, Kimura T, Yamada T, Hira T, Yada T, Iwasaki Y. Abilities of Rare Sugar Members to Release Glucagon-like Peptide-1 and Suppress Food Intake in Mice. Nutrients 2025; 17:1221. [PMID: 40218979 PMCID: PMC11990814 DOI: 10.3390/nu17071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Rare sugars, which naturally exist in small quantities, have gained attention as next-generation functional sugars due to their sweetness and low calorie content. Some of them have already been commercialized. Rare sugar-containing syrups, produced through alkaline isomerization of high-fructose corn syrup, are effective in preventing obesity and type 2 diabetes. However, the mechanisms underlying these effects remain incompletely understood. Recently, D-allulose has been found to improve hyperphagic obesity by stimulating the secretion of the intestinal hormone glucagon-like peptide-1 (GLP-1). The present study aimed to determine the comparative effects of aldohexoses (D-glucose, D-allose) and ketohexoses (D-fructose, D-allulose, D-tagatose, D-sorbose) on GLP-1 secretion and food intake in male mice. Method and Results: Single peroral administration of four ketohexoses at 1 and 3 g/kg, but not aldohexoses at 1 and 3 g/kg, significantly increased plasma GLP-1 concentrations with comparable efficacy. Moreover, these ketohexoses at 1 g/kg suppressed food intake in the short term, an effect blunted by GLP-1 receptor antagonism. In contrast, zero-calorie D-allose at 3 g/kg suppressed feeding without raising plasma GLP-1 levels. Conclusions: These results demonstrate that D-allulose, D-tagatose, and D-sorbose, which are low-calorie rare sugars classified as ketohexoses, suppress food intake through promoting GLP-1 secretion, showing their potential to prevent and/or ameliorate type 2 diabetes, obesity and related diseases.
Collapse
Affiliation(s)
- Yuta Masuda
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Kengo Iba
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Rika Kitano
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Tomonori Kimura
- Research and Development, Matsutani Chemical Industry Company, Limited, Itami 664-8508, Japan
| | - Takako Yamada
- Research and Development, Matsutani Chemical Industry Company, Limited, Itami 664-8508, Japan
| | - Tohru Hira
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan;
| | - Toshihiko Yada
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Osaka 553-0003, Japan
- Department of Diabetes, Endocrinology and Metabolism/Rheumatology and Clinical Immunology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu 501-1194, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| |
Collapse
|
3
|
Nakakita SI, Hirabayashi J. Transforming monosaccharides: Recent advances in rare sugar production and future exploration. BBA ADVANCES 2025; 7:100143. [PMID: 39926187 PMCID: PMC11803239 DOI: 10.1016/j.bbadva.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Rare sugars are defined as monosaccharides and their derivatives that do not exist in nature at all or that exist in extremely limited amounts despite being theoretically possible. At present, no comprehensive dogma has been presented regarding how and why these rare sugars have deviated from the naturally selected monosaccharides. In this minireview, we adopt a hypothesis on the origin and evolution of elementary hexoses, previously presented by one of the authors (Hirabayashi, Q Rev Biol, 1996, 71:365-380). In this scenario, monosaccharides, which constitute various kinds of glycans in nature, are assumed to have been generated by formose reactions on the prebiotic Earth (chemical evolution era). Among them, the most stable hexoses, i.e., fructose, glucose, and mannose remained accumulated. After the birth of life, the "chemical origin" saccharides thus survived were transformed into a variety of "bricolage products", which include galactose and other recognition saccharides like fucose and sialic acid through the invention of diverse metabolic pathways (biological evolution era). The remaining monosaccharides that have deviated from this scenario are considered rare sugars. If we can produce rare sugars as we wish, it is expected that various more useful biomaterials will be created by using them as raw materials. Thanks to the pioneering research of the Izumori group in the 1990's, and to a few other investigations by other groups, almost all monosaccharides including l-sugars can now be produced by combining both chemical and enzymatic approaches. After briefly giving an overview of the origin of elementary hexoses and the current state of the rare sugar production, we will look ahead to the next generation of monosaccharide research which also targets glycosides including disaccharides.
Collapse
Affiliation(s)
- Shin-ichi Nakakita
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Saiwai, Takamatsu, Kagawa 760-8521 Japan
| | - Jun Hirabayashi
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- Institute for Glyco-core Research, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-0814, Japan
| |
Collapse
|
4
|
Ma D, Qiu L, Wang X, Li L, Peng S, Liao Y, Li K. L-arabinose isomerase from Lactobacillus fermentum C6: Enzymatic characteristics and its recombinant Bacillus subtilis whole cells achieving a significantly increased production of D-tagatose. Int J Biol Macromol 2024; 278:134753. [PMID: 39147336 DOI: 10.1016/j.ijbiomac.2024.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
L-arabinose isomerase (L-AI) is a functional enzyme for the isomerizing of D-galactose to produce D-tagatose. In this study, L-AI-C6-encoding gene from the probiotic Lactobacillus fermentum C6 was cloned and expressed in Bacillus subtilis WB600 for investigating enzymatic characteristics and bioconverting D-tagatose by means of whole-cell catalysis. Results showed that the engineered B. subtilis WB600-pMA5-LAI achieved a maximum specific activity of L-AI-C6 (232.65 ± 15.54 U/mg protein) under cultivation in LB medium at 28 °C for 40 h. The recombinant L-AI-C6 was purified, and enzymatic characteristics test showed its optimum reaction temperature and pH at 60 °C and 8.0, respectively. In addition, L-AI-C6 exhibited good stability within the pH range of 5.5-9.0. By using B. subtilis WB600-pMA5-LAI cells as whole-cell catalyst, the highest D-tagatose yield reached 42.91 ± 0.28 % with D-galactose as substrate, which was 2.41 times that of L. fermentum C6 (17.79 ± 0.11 %). This suggested that the cloning and heterologous expression of L-AI-C6 was an effective strategy for improving D-tagatose conversion by whole-cell catalysis. In brief, the present study demonstrated that the reaction temperature, pH, and stability of L-AI-C6 from L. fermentum C6 meet the demands of industrial application, and the constructed B. subtilis WB600-pMA5-LAI shows promising potential for the whole-cell biotransformation of D-tagatose.
Collapse
Affiliation(s)
- Donglin Ma
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lu Qiu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaofang Wang
- Agriculture Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Lilang Li
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shuaiying Peng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yan Liao
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Kuntai Li
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Nirwantono R, Laksmi FA, Nuryana I, Firdausa S, Herawan D, Giyandini R, Hidayat AA. Exploring an l-arabinose isomerase from cryophile bacteria Arthrobacter psychrolactophilus B7 for d-tagatose production. Int J Biol Macromol 2024; 254:127781. [PMID: 37923040 DOI: 10.1016/j.ijbiomac.2023.127781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
A novel l-arabinose isomerase (L-AI) from Arthrobacter psychrolactophilus (Ap L-AI) was successfully cloned and characterized. The enzyme catalyzes the isomerization of d-galactose into a rare sugar d-tagatose. The recombinant Ap L-AI had an approximate molecular weight of about 258 kDa, suggesting it was an aggregate of five 58 kDa monomers and became the first record as a homo-pentamer L-AI. The catalytic efficiency (kcat/Km) and Km for d-galactose were 0.32 mM-1 min-1 and 51.43 mM, respectively, while for l-arabinose, were 0.64 mM-1 min-1 and 23.41 mM, respectively. It had the highest activity at pH 7.0-7.5 and 60 °C in the presence of 0.250 mM Mn2+. Ap L-AI was discovered to be an outstanding thermostable enzyme that only lost its half-life value at 60 °C for >1000 min. These findings suggest that l-arabinose isomerase from Arthrobacter psychrolactophilus is a promising candidate for d-tagatose mass-production due to its industrially competitive temperature.
Collapse
Affiliation(s)
- Rudi Nirwantono
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor 16911, Indonesia; School of Chemistry and Molecular Bioscience, University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane, QLD 4072, Australia; Department of Biotechnology, Faculty of Food Technology, Bina Nusantara University, Anggrek Jl. Kebon Jeruk Raya No. 27, Kebon Jeruk, West Jakarta 11530, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor 16911, Indonesia
| | - Salsabila Firdausa
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor 16911, Indonesia
| | - David Herawan
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor 16911, Indonesia
| | - Ranistia Giyandini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor 16911, Indonesia
| | - Alam Ahmad Hidayat
- Mathematics Department, School of Computer Science, Bina Nusantara University, Anggrek Jl. Kebon Jeruk Raya No. 27, Kebon Jeruk, West Jakarta 11530, Indonesia
| |
Collapse
|
6
|
Hertel JS, Bitterwolf P, Kröll S, Winterhalter A, Weber AJ, Grösche M, Walkowsky LB, Heißler S, Schwotzer M, Wöll C, van de Kamp T, Zuber M, Baumbach T, Rabe KS, Niemeyer CM. Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303952. [PMID: 37358068 DOI: 10.1002/adma.202303952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Industrial biocatalysis plays an important role in the development of a sustainable economy, as enzymes can be used to synthesize an enormous range of complex molecules under environmentally friendly conditions. To further develop the field, intensive research is being conducted on process technologies for continuous flow biocatalysis in order to immobilize large quantities of enzyme biocatalysts in microstructured flow reactors under conditions that are as gentle as possible in order to realize efficient material conversions. Here, monodisperse foams consisting almost entirely of enzymes covalently linked via SpyCatcher/SpyTag conjugation are reported. The biocatalytic foams are readily available from recombinant enzymes via microfluidic air-in-water droplet formation, can be directly integrated into microreactors, and can be used for biocatalytic conversions after drying. Reactors prepared by this method show surprisingly high stability and biocatalytic activity. The physicochemical characterization of the new materials is described and exemplary applications in biocatalysis are shown using two-enzyme cascades for the stereoselective synthesis of chiral alcohols and the rare sugar tagatose.
Collapse
Affiliation(s)
- Julian S Hertel
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Patrick Bitterwolf
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Sandra Kröll
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Astrid Winterhalter
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Annika J Weber
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Maximilian Grösche
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Laurenz B Walkowsky
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Heißler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), D-76131, Karlsruhe, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), D-76131, Karlsruhe, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), D-76131, Karlsruhe, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Zhao J, Wang Z, Jin Q, Feng D, Lee J. Isomerization of Galactose to Tagatose: Recent Advances in Non-enzymatic Isomerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4228-4234. [PMID: 36867179 DOI: 10.1021/acs.jafc.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The valorization of galactose derived from acid whey to low-calorie tagatose has gained increasing attention. Enzymatic isomerization is of great interest but faces several challenges, such as poor thermal stability of enzymes and a long processing time. In this work, non-enzymatic (supercritical fluids, triethylamine, arginine, boronate affinity, hydrotalcite, Sn-β zeolite, and calcium hydroxide) pathways for galactose to tagatose isomerization were critically discussed. Unfortunately, most of these chemicals showed poor tagatose yields (<30%), except for calcium hydroxide (>70%). The latter is able to form a tagatose-calcium hydroxide-water complex, which stimulates the equilibrium toward tagatose and prevents sugar degradation. Nevertheless, the excessive use of calcium hydroxide may pose challenges in terms of economic and environmental feasibility. Moreover, the proposed mechanisms for the base (enediol intermediate) and Lewis acid (hydride shift between C-2 and C-1) catalysis of galactose were elucidated. Overall, it is crucial to explore novel and effective catalysts as well as integrated systems for isomerizing of galactose to tagatose.
Collapse
Affiliation(s)
- Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Zhuo Wang
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - Danyi Feng
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Juhee Lee
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
8
|
Joo Y, Sung JY, Shin SM, Park SJ, Kim KS, Park KD, Kim SB, Lee DW. A Retro-Aldol Reaction Prompted the Evolvability of a Phosphotransferase System for the Utilization of a Rare Sugar. Microbiol Spectr 2023; 11:e0366022. [PMID: 36786576 PMCID: PMC10101011 DOI: 10.1128/spectrum.03660-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The evolution of the bacterial phosphotransferase system (PTS) linked to glycolysis is dependent on the availability of naturally occurring sugars. Although bacteria exhibit sugar specificities based on carbon catabolite repression, the acquisition and evolvability of the cellular sugar preference under conditions that are suboptimal for growth (e.g., environments rich in a rare sugar) are poorly understood. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. We detected a minimal set of adaptive mutations in the d-fructose-specific PTS to render E. coli capable of d-tagatose utilization. These E. coli mutant strains lost the tight regulation of both the d-fructose and N-acetyl-galactosamine PTS following deletions in the binding site of the catabolite repressor/activator protein (Cra) upstream from the fruBKA operon and in the agaR gene, encoding the N-acetylgalactosamine (GalNAc) repressor, respectively. Acquired d-tagatose catabolic pathways then underwent fine-tuned adaptation via an additional mutation in 1-phosphofructose kinase to adjust metabolic fluxes. We determined the evolutionary trajectory at the molecular level, providing insights into the mechanism by which enteric bacteria evolved a substrate preference for the rare sugar d-tagatose. Furthermore, the engineered E. coli mutant strain could serve as an in vivo high-throughput screening platform for engineering non-phosphosugar isomerases to produce rare sugars. IMPORTANCE Microorganisms generate energy through glycolysis, which might have preceded a rapid burst of evolution, including the evolution of cellular respiration in the primordial biosphere. However, little is known about the evolvability of cellular sugar preferences. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. Consequently, we identified mutational hot spots and determined the evolutionary trajectory at the molecular level. This provided insights into the mechanism by which enteric bacteria evolved substrate preferences for various sugars, accounting for the widespread occurrence of these taxa. Furthermore, the adaptive laboratory evolution-induced cellular chassis could serve as an in vivo high-throughput screening platform for engineering tailor-made non-phosphorylated sugar isomerases to produce low-calorigenic rare sugars showing antidiabetic, antihyperglycemic, and antitumor activities.
Collapse
Affiliation(s)
- Yunhye Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Yoon Sung
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sun-Mi Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Jun Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Li J, Dai Q, Zhu Y, Xu W, Zhang W, Chen Y, Mu W. Low-calorie bulk sweeteners: Recent advances in physical benefits, applications, and bioproduction. Crit Rev Food Sci Nutr 2023; 64:6581-6595. [PMID: 36705477 DOI: 10.1080/10408398.2023.2171362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
At present, with the continuous improvement of living standards, people are paying increasing attention to dietary nutrition and health. Low sugar and low energy consumption have become important dietary trends. In terms of sugar control, more and more countries have implemented sugar taxes in recent years. Hence, as the substitute for sugar, low-calorie sweeteners have been widely used in beverage, bakery, and confectionary industries. In general, low-calorie sweeteners consist of high-intensity and low-calorie bulk sweeteners (some rare sugars and sugar alcohols). In this review, recent advances and challenges in low-calorie bulk sweeteners are explored. Bioproduction of low-calorie bulk sweeteners has become the focus of many researches, because it has the potential to replace the current industrial scale production through chemical synthesis. A comprehensive summary of the physicochemical properties, physiological functions, applications, bioproduction, and regulation of typical low-calorie bulk sweeteners, such as D-allulose, D-tagatose, D-mannitol, sorbitol, and erythritol, is provided.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Han Z, Li N, Xu H, Xu Z. Improved thermostability and robustness of L-arabinose isomerase by C-terminal elongation and its application in rare sugar production. Biochem Biophys Res Commun 2022; 637:224-231. [DOI: 10.1016/j.bbrc.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
11
|
Characterization of l-Arabinose Isomerase from Klebsiella pneumoniae and Its Application in the Production of d-Tagatose from d-Galactose. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli, and the expressed enzyme was purified and characterized. The purified l-arabinose isomerase, a soluble protein with 11.6-fold purification and a 22% final yield, displayed a specific activity of 1.8 U/mg for d-galactose and existed as a homohexamer of 336 kDa. The enzyme exhibited maximum activity at pH 8.0 and 40 °C in the presence of Mn2+ and relative activity for pentoses and hexoses in the order l-arabinose > d-galactose > l-ribulose > d-xylulose > d-xylose > d-tagatose > d-glucose. The thermal stability of recombinant E. coli cells expressing l-arabinose isomerase from K. pneumoniae was higher than that of the enzyme. Thus, the reaction conditions of the recombinant cells were optimized to pH 8.0, 50 °C, and 4 g/L cell concentration using 100 g/L d-galactose with 1 mM Mn2+. Under these conditions, 33.5 g/L d-tagatose was produced from d-galactose with 33.5% molar yield and 67 g/L/h productivity. Our findings will help produce d-tagatose using whole-cell reactions, extending its industrial application.
Collapse
|
12
|
Zhang S, Xu Z, Ma M, Zhao G, Chang R, Si H, Dai M. A novel Lactococcus lactis l-arabinose isomerase for d-tagatose production from lactose. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Vera C, Guerrero C, Illanes A. Trends in lactose-derived bioactives: synthesis and purification. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:393-412. [PMID: 38624767 PMCID: PMC8776390 DOI: 10.1007/s43393-021-00068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Lactose obtained from cheese whey is a low value commodity despite its great potential as raw material for the production of bioactive compounds. Among them, prebiotics stand out as valuable ingredients to be added to food matrices to build up functional foods, which currently represent the most active sector within the food industry. Functional foods market has been growing steadily in the recent decades along with the increasing awareness of the World population about healthy nutrition, and this is having a strong impact on lactose-derived bioactives. Most of them are produced by enzyme biocatalysis because of molecular precision and environmental sustainability considerations. The current status and outlook of the production of lactose-derived bioactive compounds is presented with special emphasis on downstream operations which are critical because of the rather modest lactose conversion and product yields that are attainable. Even though some of these products have already an established market, there are still several challenges referring to the need of developing better catalysts and more cost-effective downstream operations for delivering high quality products at affordable prices. This technological push is expected to broaden the spectrum of lactose-derived bioactive compounds to be produced at industrial scale in the near future. Graphical abstract
Collapse
Affiliation(s)
- Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| |
Collapse
|
14
|
Liangfei L, Yafeng Z, Kai X, Zheng X. Identification of a thermostable cellobiose 2-epimerase from Caldicellulosiruptor sp. Rt8.B8 and production of epilactose using Bacillus subtilis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:85-94. [PMID: 34031874 DOI: 10.1002/jsfa.11333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epilactose, a potential prebiotics, was derived from lactose through enzymatic catalysis. However, production and purification of epilactose are currently difficult due to powerless enzymes and inefficient downstream processing steps. RESULTS The encoding gene of cellobiose 2-epimerase (CE) from Caldicellulosiruptor sp. Rt8.B8 was cloned and expressed in Escherichia coli BL21(DE3). The enzyme was purified and it was suitable for industrial production of epilactose from lactose without by-products, because of high kcat (197.6 s-1 ) and preferable thermostability. The Rt8-CE gene was further expressed in the Bacillus subtilis strain. We successfully produced epilactose from 700 g L-1 lactose in 30.4% yield by using the recombinant Bacillus subtilis whole cells. By screening of a β-galactosidase from Bacillus stearothermophilus (BsGal), a process for separating epilactose and lactose was established, which showed a purity of over 95% in a total yield of 69.2%. In addition, a mixed rare sugar syrup composed of epilactose and d-tagatose was successfully produced from lactose through the co-expression of l-arabinose isomerase and β-galactosidase. CONCLUSION Our study shed light on the efficient production of epilactose using a food-grade host expressing a novel CE enzyme. Moreover, an efficient and low-cost process was attempted to obtain high purity epilactose. In order to improve the utilization of raw materials, the production process of mixed syrup containing epilactose and d-tagatose with prebiotic properties produced from lactose was also established for the first time. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Liangfei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhu Yafeng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xu Kai
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Xu Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
15
|
Li XY, Xu MQ, Liu H, Zhou Q, Gao J, Zhang YW. Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for L-tagatose synthesis via in situ cofactor regeneration. Bioprocess Biosyst Eng 2021; 45:353-364. [PMID: 34797400 DOI: 10.1007/s00449-021-02665-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
The combined cross-linked enzyme aggregates (combi-CLEAs) containing galactitol dehydrogenase (Gdh) and NADH oxidase (Nox) were prepared for L-tagatose synthesis. To prevent the excess consumption of cofactor, Nox in the combi-CLEAs was used to in situ regenerate NAD+. In the immobilization process, ammonia sulfate and glutaraldehyde were used as the precipitant and cross-linking reagent, respectively. The preparation conditions were optimized as follows: 60% ammonium sulfate, 1:1 (molar ratio) of Gdh to Nox, 20:1 (molar ratio) of protein to glutaraldehyde, and 6 h of cross-linking time at 35 °C. Under these conditions, the activity of the combi-CLEAs was 210 U g-1. The combi-CLEAs exhibited higher thermostability and preserved 51.5% of the original activity after eight cycles of reuses at 45 °C. The combi-CLEAs were utilized for the preparation of L-tagatose without by-products. Therefore, the combi-CLEAs have the industrial potential for the bioconversion of galactitol to L-tagatose.
Collapse
Affiliation(s)
- Xue-Yong Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Meng-Qiu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Hui Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qiang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jian Gao
- College of Petroleum and Chemical Engineering, Qinzhou, 535100, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
16
|
Production of d-tagatose in packed bed reactor containing an immobilized l-arabinose isomerase on alginate support. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Biotechnological production of d-tagatose from lactose using metabolically engineering Lactiplantibacillus plantarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Jayaraman AB, Kandasamy T, Venkataraman D, S M. Rational design of Shewanella sp. l-arabinose isomerase for d-galactose isomerase activity under mesophilic conditions. Enzyme Microb Technol 2021; 147:109796. [PMID: 33992411 DOI: 10.1016/j.enzmictec.2021.109796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
d-Tagatose, a potential low calorific substitute for sucrose, can be produced by bioconversion of d-galactose catalysed by l-arabinose isomerase. l-Arabinose isomerase from Shewanella sp. ANA-3 is unique for its ability to catalyse bioconversion reactions under mesophilic conditions. However, d-galactose not being a natural substrate for l-arabinose isomerase is catalysed at a slower rate. We attempted to increase the biocatalytic efficiency of Shewanella sp. l-arabinose isomerase by rational design to enhance galactose isomerisation activity. In silico molecular docking, analysis has revealed that F279 is sterically hindering the binding of d-galactose at the C6 position. Substitution of bulky Phe residue with smaller hydrophilic residues such as Asn and Thr increased the galactose isomerase activity by 86 % and 12 % respectively. At mesophilic conditions, F279N mutant catalysed the bioconversion of d-galactose more efficiently than l-arabinose, indicating a shift in substrate preference.
Collapse
Affiliation(s)
- Arun Baskaran Jayaraman
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Thirukumaran Kandasamy
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | | | | |
Collapse
|
19
|
Ravikumar Y, Ponpandian LN, Zhang G, Yun J, Qi X. Harnessing -arabinose isomerase for biological production of -tagatose: Recent advances and its applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Gautam J, Xu Z. Construction and Validation of a Genome-Scale Metabolic Network of Thermotoga sp. Strain RQ7. Appl Biochem Biotechnol 2020; 193:896-911. [PMID: 33200269 DOI: 10.1007/s12010-020-03470-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022]
Abstract
Thermotoga are anaerobic hyperthermophiles that have a deep lineage to the last universal ancestor and produce biological hydrogen gas accompanying cell growth. In recent years, systems-level approaches have been used to elucidate their metabolic capacities, by integrating mathematical modeling and experimental results. To assist biochemical engineering studies of T. sp. strain RQ7, this work aims at building a metabolic model of the bacterium that quantitatively simulates its metabolism at the genome scale. The constructed model, RQ7_iJG408, consists of 408 genes, 692 reactions, and 538 metabolites. Constraint-based flux balance analyses were used to simulate cell growth in both the complex and defined media. Quantitative comparison of the predicted and measured growth rates resulted in good agreements. This model serves as a foundation for an integrated biochemical description of T. sp. strain RQ7. It is a useful tool in designing growth media, identifying metabolic engineering strategies, and exploiting the physiological potentials of this biotechnologically significant organism.
Collapse
Affiliation(s)
- Jyotshana Gautam
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
21
|
Expression and characterization of l-arabinose isomerase from Geobacillus stearothermophilus for improved activity under acidic condition. Protein Expr Purif 2020; 175:105692. [DOI: 10.1016/j.pep.2020.105692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/11/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022]
|
22
|
Shin KC, Lee TE, Seo MJ, Kim DW, Kang LW, Oh DK. Development of Tagaturonate 3-Epimerase into Tagatose 4-Epimerase with a Biocatalytic Route from Fructose to Tagatose. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kyung-Chul Shin
- Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minneapolis, Minnesota 55108, United States
| | - Dae Wook Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Kim IJ, Kim KH. Thermophilic l-fucose isomerase from Thermanaeromonas toyohensis for l-fucose synthesis from l-fuculose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Bortone N, Fidaleo M. Stabilization of immobilizedl‐arabinose isomerase for the production ofd‐tagatose fromd‐galactose. Biotechnol Prog 2020; 36:e3033. [DOI: 10.1002/btpr.3033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Nadia Bortone
- Department for Innovation in Biological, Agro‐food and Forest Systems University of Tuscia Viterbo Italy
| | - Marcello Fidaleo
- Department for Innovation in Biological, Agro‐food and Forest Systems University of Tuscia Viterbo Italy
| |
Collapse
|
25
|
Zhang G, An Y, Parvez A, Zabed HM, Yun J, Qi X. Exploring a Highly D-Galactose Specific L-Arabinose Isomerase From Bifidobacterium adolescentis for D-Tagatose Production. Front Bioeng Biotechnol 2020; 8:377. [PMID: 32411693 PMCID: PMC7201074 DOI: 10.3389/fbioe.2020.00377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
D-Galactose-specific L-arabinose isomerase (L-AI) would have much potential for the enzymatic conversion of D-Galactose into D-tagatose, while most of the reported L-AIs are L-arabinose specific. This study explored a highly D-Galactose-specific L-AI from Bifidobacterium adolescentis (BAAI) for the production of D-tagatose. In the comparative protein-substrate docking for D-Galactose and L-arabinose, BAAI showed higher numbers of hydrogen bonds in D-Galactose-BAAI bonding site than those found in L-arabinose-BAAI bonding site. The activity of BAAI was 24.47 U/mg, and it showed good stability at temperatures up to 65°C and a pH range 6.0–7.5. The Km, Vmax, and Kcat/Km of BAAI were found to be 22.4 mM, 489 U/mg and 9.3 mM–1 min–1, respectively for D-Galactose, while the respective values for L-arabinose were 40.2 mM, 275.1 U/mg, and 8.6 mM–1 min–1. Enzymatic conversion of D-Galactose into D-tagatose by BAAI showed 56.7% conversion efficiency at 55°C and pH 6.5 after 10 h.
Collapse
Affiliation(s)
- Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Amreesh Parvez
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Biochemical Characterization of Heat-Tolerant Recombinant L-Arabinose Isomerase from Enterococcus faecium DBFIQ E36 Strain with Feasible Applications in D-Tagatose Production. Mol Biotechnol 2019; 61:385-399. [PMID: 30919326 DOI: 10.1007/s12033-019-00161-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
D-Tagatose is a ketohexose, which presents unique properties as a low-calorie functional sweetener possessing a sweet flavor profile similar to D-sucrose and having no aftertaste. Considered a generally recognized as safe (GRAS) substance by FAO/WHO, D-tagatose can be used as an intermediate for the synthesis of other optically active compounds as well as an additive in detergent, cosmetic, and pharmaceutical formulations. This study reports important features for L-arabinose isomerase (EC 5.3.1.4) (L-AI) use in industry. We describe arabinose (araA) gene virulence analysis, gene isolation, sequencing, cloning, and heterologous overexpression of L-AI from the food-grade GRAS bacterium Enterococcus faecium DBFIQ E36 in Escherichia coli and assess biochemical properties of this recombinant enzyme. Recombinant L-AI (rL-AI) was one-step purified to homogeneity by Ni2+-agarose resin affinity chromatography and biochemical characterization revealed low identity with both thermophilic and mesophilic L-AIs but high degree of conservation in residues involved in substrate recognition. Optimal conditions for rL-AI activity were 50 °C, pH 5.5, and 0.3 mM Mn2+, exhibiting a low cofactor concentration requirement and an acidic optimum pH. Half-life at 45 °C and 50 °C were 1427 h and 11 h, respectively, and 21.5 h and 39.5 h at pH 4.5 and 5.6, respectively, showing the high stability of the enzyme in the presence of a metallic cofactor. Bioconversion yield for D-tagatose biosynthesis was 45% at 50 °C after 48 h. These properties highlight the technological potential of E. faecium rL-AI as biocatalyst for D-tagatose production.
Collapse
|
27
|
Liu X, Li Z, Chen Z, Wang N, Gao Y, Nakanishi H, Gao XD. Production of l-Ribulose Using an Encapsulated l-Arabinose Isomerase in Yeast Spores. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4868-4875. [PMID: 30995033 DOI: 10.1021/acs.jafc.9b00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rare sugar l-ribulose is produced from the abundant sugar l-arabinose by enzymatic conversion. An l-arabinose isomerase (AI) from Geobacillus thermodenitrificans was efficiently expressed and encapsulated in Saccharomyces cerevisiae spores. Deletion of the yeast OSW2 gene, which causes a mild defect in the integrity of the spore wall, substantially improved the activity of encapsulated AI, without damaging its superior enzymatic properties of thermostability, pH tolerance,and resistance toward SDS and proteinase treatments. In a 10 mL reaction, 100 mg of dry AI encapsulated in spores produced 250 mg of l-ribulose from 1 g of l-arabinose, indicating a 25% conversion rate. Notably, the product of l-ribulose was directly purified from the reaction solution with an approximately 91% recovery using a Ca2+ ion exchange column. Our results describe not only a facile approach for the production of l-ribulose but also a useful strategy for the enzymatic conversion of rare sugars in "Izumoring".
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yahui Gao
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
28
|
Roy S, Chikkerur J, Roy SC, Dhali A, Kolte AP, Sridhar M, Samanta AK. Tagatose as a Potential Nutraceutical: Production, Properties, Biological Roles, and Applications. J Food Sci 2018; 83:2699-2709. [PMID: 30334250 DOI: 10.1111/1750-3841.14358] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Nutraceuticals are gaining importance owing to their potential applications in numerous sectors including food and feed industries. Among the emerging nutraceuticals, d-tagatose occupies a significant niche because of its low calorific value, antidiabetic property and growth promoting effects on beneficial gut bacteria. As d-tagatose is present in minute quantities in naturally occurring food substances, it is produced mainly by chemical or biological means. Recently, attempts were made for bio-production of d-tagatose using l-arabinose isomerase enzyme to overcome the challenges of chemical process of production. Applications of d-tagatose for maintaining health and wellbeing are increasing due to growing consumer awareness and apprehension against modern therapeutic agents. This review outlines the current status on d-tagatose, particularly its production, properties, biological role, applications, and the future perspectives.
Collapse
Affiliation(s)
- Sohini Roy
- Jain Univ., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Jayaram Chikkerur
- Jain Univ., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Sudhir Chandra Roy
- Molecular Biology Unit, ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Arindam Dhali
- Omics Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Atul Puroshtam Kolte
- Omics Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Manpal Sridhar
- BE & ES Div., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Ashis Kumar Samanta
- Feed Additives & Nutraceuticals Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| |
Collapse
|
29
|
Laksmi FA, Arai S, Tsurumaru H, Nakamura Y, Saksono B, Tokunaga M, Ishibashi M. Improved substrate specificity for D-galactose of L-arabinose isomerase for industrial application. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1084-1091. [PMID: 30282606 DOI: 10.1016/j.bbapap.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
L-Arabinose isomerase isolated from Geobacillus stearothermophilus (GSAI) was modified to improve its substrate specificity for D-galactose for the production of D-tagatose, a potential reduced-energy sweetener. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. Analysis of the substrate specificity of H18T showed a 45.4% improvement for D-galactose. Replacing histidine with threonine at residue 18 resulted in approximately 2.7-fold and 1.8-fold higher substrate binding and catalytic efficiency, respectively, for D-galactose. Further enhancement of the specific activity and catalytic efficiency of H18T for D-galactose by up to 2.7-fold and 4.3-fold, respectively, was achieved by adding borate during L-arabinose isomerase catalysis. Moreover, H18T showed thermostability and no destabilization was detected, which is promising for the industrial production of D-tagatose.
Collapse
Affiliation(s)
- Fina Amreta Laksmi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Shigeki Arai
- National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hirohito Tsurumaru
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Yoshitaka Nakamura
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Budi Saksono
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Masao Tokunaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Matsujiro Ishibashi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
30
|
Towards efficient enzymatic conversion of D-galactose to D-tagatose: purification and characterization of L-arabinose isomerase from Lactobacillus brevis. Bioprocess Biosyst Eng 2018; 42:107-116. [PMID: 30251190 DOI: 10.1007/s00449-018-2018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
L-arabinose isomerase (L-AI) (EC 5. 3. 1. 4. L-AI) that mediates the isomerization of D-galactose to D-tagatose was isolated from Lactobacillus brevis (MF 465792), and was further purified and characterized. Pure enzyme with molecular weight of 60.1 kDa was successfully obtained after the purification using Native-PAGE gel extraction method, which was a monomer in solution. The L-AI was found to be stable at 45-75 °C, and at pH 7.0-9.0. Its optimum temperature and pH was determined as 65 °C and 7.0, respectively. Besides, we found that Ca2+, Cu2+, and Ba2+ ions inhibited the enzyme activity, whereas the enzyme activity was significantly enhanced in the presence of Mg2+, Mn2+, or Co2+ ions. The optimum concentration of Mn2+ and Co2+ was determined to be 1 mM. Furthermore, we characterized the kinetic parameters for L-AI and determined the Km (129 mM) and the Vmax (0.045 mM min- 1) values. Notably, L. brevisL-AI exhibited a high bioconversion yield of 43% from D-galactose to D-tagatose under the optimal condition, and appeared to be a more efficient catalyst compared with other L-AIs from various organisms.
Collapse
|
31
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l -arabinose isomerases: Characteristics, modification, and application. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Nguyen TK, Hong MG, Chang PS, Lee BH, Yoo SH. Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener. PLoS One 2018; 13:e0196099. [PMID: 29684065 PMCID: PMC5912747 DOI: 10.1371/journal.pone.0196099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/08/2018] [Indexed: 11/18/2022] Open
Abstract
d-Tagatose has gained substantial interest due to its potential functionalities as a sucrose substitute. In this study, the gene araA, encoding l-arabinose isomerase (l-AI) from Clostridium hylemonae (DSM 15053), was cloned and expressed in Escherichia coli BL21 (DE3). This gene consists of 1,506 nucleotides and encodes a protein of 501 amino acid residues with a calculated molecular mass of 56,554 Da. Since l-AI was expressed as an intracellular inclusion body, this enzyme was solubilized with guanidine hydrochloride, refolded, and activated with a descending concentration gradient of urea. The purified enzyme exhibited the greatest activity at 50°C, pH 7-7.5, and required 1 mM of Mg2+ as a cofactor. Notably, the catalytic efficiency (3.69 mM-1sec-1) of l-AI from C. hylemonae on galactose was significantly greater than that of other previously reported enzymes. The bioconversion yield of d-tagatose using the C. hylemonae l-arabinose isomerase at 60°C reached approximately 46% from 10 mM of d-galactose after 2 h. From these results, it is suggested that the l-arabinose isomerase from C. hylemonae could be utilized as a potential enzyme for d-tagatose production due to its high conversion yield at an industrially competitive temperature.
Collapse
Affiliation(s)
- Tien-Kieu Nguyen
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Moon-Gi Hong
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
- * E-mail: (SHY); (BHL)
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
- * E-mail: (SHY); (BHL)
| |
Collapse
|
33
|
de Sousa M, Manzo RM, García JL, Mammarella EJ, Gonçalves LRB, Pessela BC. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis. Molecules 2017; 22:molecules22122164. [PMID: 29211024 PMCID: PMC6149694 DOI: 10.3390/molecules22122164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg-1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C/Nicolás Cabrera 9, UAM Campus, 28049 Madrid, Spain.
- Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, P.O. Box 1316, Talatona-Luanda Sul, Angola.
| |
Collapse
|
34
|
Zheng Z, Mei W, Xia M, He Q, Ouyang J. Rational Design of Bacillus coagulans NL01 l-Arabinose Isomerase and Use of Its F279I Variant in d-Tagatose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4715-4721. [PMID: 28530095 DOI: 10.1021/acs.jafc.7b01709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
d-Tagatose is a prospective functional sweetener that can be produced by l-arabinose isomerase (AI) from d-galactose. To improve the activity of AI toward d-galactose, the AI of Bacillus coagulans was rationally designed on the basis of molecular modeling and docking. After alanine scanning and site-saturation mutagenesis, variant F279I that exhibited improved activity toward d-galactose was obtained. The optimal temperature and pH of F279I were determined to be 50 °C and 8.0, respectively. This variant possessed 1.4-fold catalytic efficiency compared with the wild-type (WT) enzyme. The recombinant Escherichia coli overexpressing F279I also showed obvious advantages over the WT in biotransformation. Under optimal conditions, 67.5 and 88.4 g L-1 d-tagatose could be produced from 150 and 250 g L-1 d-galactose, respectively, in 15 h. The biocatalyst constructed in this study presents a promising alternative for large-scale d-tagatose production.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University , Nanjing 210037, People's Republic of China
| | - Wending Mei
- College of Chemical Engineering, Nanjing Forestry University , Nanjing 210037, People's Republic of China
| | - Meijuan Xia
- College of Chemical Engineering, Nanjing Forestry University , Nanjing 210037, People's Republic of China
| | - Qin He
- College of Chemical Engineering, Nanjing Forestry University , Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing 210037, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University , Nanjing 210037, People's Republic of China
- Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education , Nanjing 210037, People's Republic of China
| |
Collapse
|
35
|
Jayamuthunagai J, Gautam P, Srisowmeya G, Chakravarthy M. Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications. Crit Rev Food Sci Nutr 2017; 57:3430-3437. [DOI: 10.1080/10408398.2015.1126550] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- J. Jayamuthunagai
- Centre for Biotechnology, Anna University, Tamil Nadu, Chennai, India
| | - P. Gautam
- Centre for Biotechnology, Anna University, Tamil Nadu, Chennai, India
| | - G. Srisowmeya
- Centre for Biotechnology, Anna University, Tamil Nadu, Chennai, India
| | - M. Chakravarthy
- Centre for Biotechnology, Anna University, Tamil Nadu, Chennai, India
| |
Collapse
|
36
|
TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C 5 and C 6 Epimerization Reactions. Appl Environ Microbiol 2017; 83:AEM.03291-16. [PMID: 28258150 DOI: 10.1128/aem.03291-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/26/2017] [Indexed: 01/11/2023] Open
Abstract
There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity.IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and l-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited d-erythrose/d-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries.
Collapse
|
37
|
Lee SH, Hong SH, Kim KR, Oh DK. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnol Lett 2017; 39:1141-1148. [PMID: 28405835 DOI: 10.1007/s10529-017-2340-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/06/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. RESULTS Fructose at 1 M (180 g l-1) was converted to 0.8 M (144 g l-1) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l-1 h-1. No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. CONCLUSION This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung-Hye Hong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
38
|
Xu W, Fan C, Zhang T, Jiang B, Mu W. Cloning, Expression, and Characterization of a Novel L-Arabinose Isomerase from the Psychrotolerant Bacterium Pseudoalteromonas haloplanktis. Mol Biotechnol 2017; 58:695-706. [PMID: 27586234 DOI: 10.1007/s12033-016-9969-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
L-Arabinose isomerase (L-AI, EC 5.3.1.4) catalyzes the isomerization between L-arabinose and L-ribulose, and most of the reported ones can also catalyze D-galactose to D-tagatose, except Bacillus subtilis L-AI. In this article, the L-AI from the psychrotolerant bacterium Pseudoalteromonas haloplanktis ATCC 14393 was characterized. The enzyme showed no substrate specificity toward D-galactose, which was similar to B. subtilis L-AI but distinguished from other reported L-AIs. The araA gene encoding the P. haloplanktis L-AI was cloned and overexpressed in E. coli BL21 (DE3). The recombinant enzyme was purified by one-step nickel affinity chromatography . The enzyme displayed the maximal activity at 40 °C and pH 8.0, and showed more than 75 % of maximal activity from pH 7.5-9.0. Metal ion Mn2+ was required as optimum metal cofactor for activity simulation, but it did not play a significant role in thermostability improvement as reported previously. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) for substrate L-arabinose were measured to be 111.68 mM, 773.30/min, and 6.92/mM/min, respectively. The molecular docking results showed that the active site residues of P. haloplanktis L-AI could only immobilize L-arabinose and recognized it as substrate for isomerization.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chen Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
39
|
Characterization of a novel thermostable l-rhamnose isomerase from Thermobacillus composti KWC4 and its application for production of d-allose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase. Enzyme Microb Technol 2017; 97:27-33. [DOI: 10.1016/j.enzmictec.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/10/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
41
|
Shin KC, Sim DH, Seo MJ, Oh DK. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8146-8153. [PMID: 27734668 DOI: 10.1021/acs.jafc.6b03588] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Dong-Hyun Sim
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| |
Collapse
|
42
|
Mei W, Wang L, Zang Y, Zheng Z, Ouyang J. Characterization of an L-arabinose isomerase from Bacillus coagulans NL01 and its application for D-tagatose production. BMC Biotechnol 2016; 16:55. [PMID: 27363468 PMCID: PMC4929721 DOI: 10.1186/s12896-016-0286-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background L-arabinose isomerase (AI) is a crucial catalyst for the biotransformation of D-galactose to D-tagatose. In previous reports, AIs from thermophilic bacterial strains had been wildly researched, but the browning reaction and by-products formed at high temperatures restricted their applications. By contrast, AIs from mesophilic Bacillus strains have some different features including lower optimal temperatures and lower requirements of metallic cofactors. These characters will be beneficial to the development of a more energy-efficient and safer production process. However, the relevant data about the kinetics and reaction properties of Bacillus AIs in D-tagatose production are still insufficient. Thus, in order to support further applications of these AIs, a comprehensive characterization of a Bacillus AI is needed. Results The coding gene (1422 bp) of Bacillus coagulans NL01 AI (BCAI) was cloned and overexpressed in the Escherichia coli BL21 (DE3) strain. The enzymatic property test showed that the optimal temperature and pH of BCAI were 60 °C and 7.5 respectively. The raw purified BCAI originally showed high activity in absence of outsourcing metallic ions and its thermostability did not change in a low concentration (0.5 mM) of Mn2+ at temperatures from 70 °C to 90 °C. Besides these, the catalytic efficiencies (kcat/Km) for L-arabinose and D-galactose were 8.7 mM-1 min-1 and 1.0 mM-1 min-1 respectively. Under optimal conditions, the recombinant E. coli cell containing BCAI could convert 150 g L-1 and 250 g L-1 D-galactose to D-tagatose with attractive conversion rates of 32 % (32 h) and 27 % (48 h). Conclusions In this study, a novel AI from B. coagulans NL01was cloned, purified and characterized. Compared with other reported AIs, this AI could retain high proportions of activity at a broader range of temperatures and was less dependent on metallic cofactors such as Mn2+. Its substrate specificity was understood deeply by carrying out molecular modelling and docking studies. When the recombinant E. coli expressing the AI was used as a biocatalyst, D-tagatose could be produced efficiently in a simple one-pot biotransformation system. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wending Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lu Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ying Zang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics & Biotechnology of the Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
43
|
Construction and co-expression of polycistronic plasmids encoding thermophilic l-arabinose isomerase and hyperthermophilic β-galactosidase for single-step production of d-tagatose. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Choi JM, Lee YJ, Cao TP, Shin SM, Park MK, Lee HS, di Luccio E, Kim SB, Lee SJ, Lee SJ, Lee SH, Lee DW. Structure of the thermophilic l-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability. Arch Biochem Biophys 2016; 596:51-62. [DOI: 10.1016/j.abb.2016.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 11/27/2022]
|
45
|
Xu Z, Wang R, Liu C, Chi B, Gao J, Chen B, Xu H. A new l-arabinose isomerase with copper ion tolerance is suitable for creating protein–inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC Adv 2016. [DOI: 10.1039/c5ra27035a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein–inorganic hybrid nanoflowers were prepared using Cu2+, PBS buffer, and a copper ion tolerant l-arabinose isomerase that was derived from Paenibacillus polymyxa (PPAI).
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Chao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Jian Gao
- Yancheng Institute of Technology
- China
| | | | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| |
Collapse
|
46
|
Rhimi M, Bermudez-Humaran LG, Huang Y, Boudebbouze S, Gaci N, Garnier A, Gratadoux JJ, Mkaouar H, Langella P, Maguin E. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice. Microb Cell Fact 2015; 14:204. [PMID: 26691177 PMCID: PMC4687139 DOI: 10.1186/s12934-015-0391-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/27/2015] [Indexed: 12/02/2022] Open
Abstract
Background The l-arabinose isomerase is an intracellular enzyme which converts l-arabinose into l-ribulose in living systems and d-galactose into d-tagatose in industrial processes and at industrial scales. d-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The d-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive l-arabinose isomerase should be thermoactive and acidotolerant with high catalytic efficiency. While many reports focused on the set out of a low cost process for the industrial production of d-tagatose, these procedures remain costly. When compared to intracellular enzymes, the production of extracellular ones constitutes an interesting strategy to increase the suitability of the biocatalysts. Results The l-arabinose isomerase (l-AI) from Lactobacillus sakei was expressed in Lactococcus lactis in fusion with the signal peptide of usp45 (SPUsp45). The l-AI protein and activity were detected only in the supernatant of the induced cultures of the recombinant L. lactis demonstrating the secretion in the medium of the intracellular L. sakeil-AI in an active form. Moreover, we showed an improvement in the enzyme secretion using either (1) L. lactis strains deficient for their two major proteases, ClpP and HtrA, or (2) an enhancer of protein secretion in L. lactis fused to the recombinant l-AI with the SPUsp45. Th l-AI enzyme secreted by the recombinant L. lactis strains or produced intracellularly in E. coli, showed the same functional properties than the native enzyme. Furthermore, when mice are fed with the L. lactis strain secreting the l-AI and galactose, tagatose was produced in vivo and reduced the glycemia index. Conclusions We report for the first time the secretion of the intracellular l-arabinose isomerase in the supernatant of food grade L. lactis cultures with hardly
display other secreted proteins. The secreted l-AI originated from the food grade L. sakei 23 K was active and showed the same catalytic and structural properties as the intracellular enzyme. The L. lactis strains secreting the l-arabinose isomerase has the ability to produce d-tagatose in vivo and conferred an anti-hyperglycemic effect to mice.
Collapse
Affiliation(s)
- Moez Rhimi
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Luis G Bermudez-Humaran
- INRA, UMR 1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France.
| | - Yuan Huang
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Samira Boudebbouze
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Nadia Gaci
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Alexandrine Garnier
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Jean-Jacques Gratadoux
- INRA, UMR 1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France.
| | - Héla Mkaouar
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Philippe Langella
- INRA, UMR 1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France.
| | - Emmanuelle Maguin
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| |
Collapse
|
47
|
|
48
|
Engineering of Alicyclobacillus hesperidum L-arabinose isomerase for improved catalytic activity and reduced pH optimum using random and site-directed mutagenesis. Appl Biochem Biotechnol 2015; 177:1480-92. [PMID: 26335445 DOI: 10.1007/s12010-015-1828-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
A mutation, D478N, was obtained by an error-prone polymerase chain reaction using the L-arabinose isomerase (L-AI) gene from Alicyclobacillus hesperidum URH17-3-68 as the template. The mutated isomerase showed higher activity for D-galactose isomerization. The mutation site obtained from random mutagenesis was then introduced as a single-site mutation using site-directed mutagenesis. Single-site variants, D478N, D478Q, D478A, D478K, and D478R, were constructed. The optimum temperatures were all higher than 60 °C. D478A, D478N, and D478Q retained more than 80 % of the maximum relative activity of the wild-type L-AI at 75 °C. With the exception of the D478A variant, all variants showed decreased optimum pH values in the acidic range (6.0-6.5). All of the variant L-AIs could be significantly activated by the addition of Co(2+) and Mn(2+). D478N and D478Q showed higher catalytic efficiencies (k cat/K m) toward D-galactose than that of wild-type L-AI. In addition, the D478N and D478Q variants exhibited a much higher conversion ratio of D-galactose to D-tagatose at 6.0 than the wild-type L-AI. According to the molecular model, residue D478 was located on the surface of the enzyme and distant from the active site. It was supposed that the charged state of residue 478 may influence the optimum pH for substrate binding or isomerization.
Collapse
|
49
|
Wen L, Huang K, Wei M, Meisner J, Liu Y, Garner K, Zang L, Wang X, Li X, Fang J, Zhang H, Wang PG. Facile Enzymatic Synthesis of Ketoses. Angew Chem Int Ed Engl 2015; 54:12654-8. [PMID: 26275233 DOI: 10.1002/anie.201505714] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 11/12/2022]
Abstract
Studies of rare ketoses have been hampered by a lack of efficient preparation methods. A convenient, efficient, and cost-effective platform for the facile synthesis of ketoses is described. This method enables the preparation of difficult-to-access ketopentoses and ketohexoses from common and inexpensive starting materials with high yield and purity and without the need for a tedious isomer separation step.
Collapse
Affiliation(s)
- Liuqing Wen
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Kenneth Huang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Mohui Wei
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Jeffrey Meisner
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA).,Current Address: Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 (USA)
| | - Yunpeng Liu
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Kristina Garner
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Lanlan Zang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Xuan Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Xu Li
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan 250100 (China)
| | - Houcheng Zhang
- National Glycoengineering Research Center, Shandong University, Jinan 250100 (China)
| | - Peng George Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA). .,National Glycoengineering Research Center, Shandong University, Jinan 250100 (China).
| |
Collapse
|
50
|
Wen L, Huang K, Wei M, Meisner J, Liu Y, Garner K, Zang L, Wang X, Li X, Fang J, Zhang H, Wang PG. Facile Enzymatic Synthesis of Ketoses. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|