1
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
2
|
Lötstedt B, Stražar M, Xavier R, Regev A, Vickovic S. Spatial host-microbiome sequencing reveals niches in the mouse gut. Nat Biotechnol 2024; 42:1394-1403. [PMID: 37985876 PMCID: PMC11392810 DOI: 10.1038/s41587-023-01988-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2023] [Indexed: 11/22/2023]
Abstract
Mucosal and barrier tissues, such as the gut, lung or skin, are composed of a complex network of cells and microbes forming a tight niche that prevents pathogen colonization and supports host-microbiome symbiosis. Characterizing these networks at high molecular and cellular resolution is crucial for understanding homeostasis and disease. Here we present spatial host-microbiome sequencing (SHM-seq), an all-sequencing-based approach that captures tissue histology, polyadenylated RNAs and bacterial 16S sequences directly from a tissue by modifying spatially barcoded glass surfaces to enable simultaneous capture of host transcripts and hypervariable regions of the 16S bacterial ribosomal RNA. We applied our approach to the mouse gut as a model system, used a deep learning approach for data mapping and detected spatial niches defined by cellular composition and microbial geography. We show that subpopulations of gut cells express specific gene programs in different microenvironments characteristic of regional commensal bacteria and impact host-bacteria interactions. SHM-seq should enhance the study of native host-microbe interactions in health and disease.
Collapse
Affiliation(s)
- Britta Lötstedt
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- New York Genome Center, New York, NY, USA
| | | | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts, General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| | - Sanja Vickovic
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- New York Genome Center, New York, NY, USA.
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA.
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Jaswal K, Todd OA, Flores Audelo RC, Santus W, Paul S, Singh M, Miao J, Underhill DM, Peters BM, Behnsen J. Commensal Yeast Promotes Salmonella Typhimurium Virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606421. [PMID: 39211098 PMCID: PMC11360897 DOI: 10.1101/2024.08.08.606421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enteric pathogens engage in complex interactions with the host and the resident microbiota to establish gut colonization. Although mechanistic interactions between enteric pathogens and bacterial commensals have been extensively studied, whether and how commensal fungi affect pathogenesis of enteric infections remains largely unknown. Here we show that colonization with the common human gut commensal fungus Candida albicans worsened infections with the enteric pathogen Salmonella enterica serovar Typhimurium. Presence of C. albicans in the mouse gut increased Salmonella cecum colonization and systemic dissemination. We investigated the underlying mechanism and found that Salmonella binds to C. albicans via Type 1 fimbriae and uses its Type 3 Secretion System (T3SS) to deliver effector proteins into C. albicans . A specific effector, SopB, was sufficient to manipulate C. albicans metabolism, triggering increased arginine biosynthesis in C. albicans and the release of millimolar amounts of arginine into the extracellular environment. The released arginine, in turn, induced T3SS expression in Salmonella , increasing its invasion of epithelial cells. C. albicans deficient in arginine production was unable to increase Salmonella virulence in vitro or in vivo . In addition to modulating pathogen invasion, arginine also directly influenced the host response to infection. Arginine-producing C. albicans dampened the inflammatory response during Salmonella infection, whereas C. albicans deficient in arginine production did not. Arginine supplementation in the absence of C. albicans increased the systemic spread of Salmonella and decreased the inflammatory response, phenocopying the presence of C. albicans . In summary, we identified C. albicans colonization as a susceptibility factor for disseminated Salmonella infection, and arginine as a central metabolite in the cross-kingdom interaction between fungi, bacteria, and host.
Collapse
|
4
|
Montgomery TL, Toppen LC, Eckstrom K, Heney ER, Kennedy JJ, Scarborough MJ, Krementsov DN. Lactobacillaceae differentially impact butyrate-producing gut microbiota to drive CNS autoimmunity. Gut Microbes 2024; 16:2418415. [PMID: 39462277 PMCID: PMC11520542 DOI: 10.1080/19490976.2024.2418415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), produced by the gut microbiota, are thought to exert an anti-inflammatory effect on the host immune system. The levels of SCFAs and abundance of the microbiota that produce them are depleted in multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS). The mechanisms leading to this depletion are unknown. Using experimental autoimmune encephalomyelitis (EAE) as a model for MS, we have previously shown that gut microbiomes divergent in their abundance of specific commensal Lactobacillaceae, Limosilactobacillus reuteri (L. reuteri) and Ligilactobacillus murinus (L. murinus), differentially impact CNS autoimmunity. To determine the underlying mechanisms, we employed colonization by L. reuteri and L. murinus in disparate gut microbiome configurations in vivo and in vitro, profiling their impact on gut microbiome composition and metabolism, coupled with modulation of dietary fiber in the EAE model. RESULTS We show that stable colonization by L. reuteri, but not L. murinus, exacerbates EAE, in conjunction with a significant remodeling of gut microbiome composition, depleting SCFA-producing microbiota, including Lachnospiraceae, Prevotellaceae, and Bifidobacterium, with a net decrease in bacterial metabolic pathways involved in butyrate production. In a minimal microbiome culture model in vitro, L. reuteri directly inhibited SCFA-producer growth and depleted butyrate. Genomic analysis of L. reuteri isolates revealed an enrichment in bacteriocins with known antimicrobial activity against SCFA-producing microbiota. Functionally, provision of excess dietary fiber, as the prebiotic substrate for SCFA production, elevated SCFA levels and abrogated the ability of L. reuteri to exacerbate EAE. CONCLUSTIONS Our data highlight a potential mechanism for reduced SCFAs and their producers in MS through depletion by other members of the gut microbiome, demonstrating that interactions between microbiota can impact CNS autoimmunity in a diet-dependent manner. These data suggest that therapeutic restoration of SCFA levels in MS may require not only dietary intervention, but also modulation of the gut microbiome.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Lucinda C. Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Eamonn R. Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | | | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Desjardins A, Zerfas P, Filion D, Palmer RJ, Falcone EL. Mucispirillum schaedleri: Biofilm Architecture and Age-Dependent Pleomorphy. Microorganisms 2023; 11:2200. [PMID: 37764045 PMCID: PMC10535455 DOI: 10.3390/microorganisms11092200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Round bodies in spirochete cultures have been a controversial subject since their description seven decades ago. We report the existence of round bodies (spherical cells) in cultures of Mucispirillum schaedleri, a spiral bacterium phylogenetically distant from spirochetes. Furthermore, when grown in biofilms, M. schaedleri demonstrates a unique morphology known as cording, which has been previously described only in mycobacteria. Thus, M. schaedleri has two distinct features, each previously thought to be unique to two different phylogenetically distant groups of bacteria.
Collapse
Affiliation(s)
- Aléhandra Desjardins
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada;
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Patricia Zerfas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Dominic Filion
- Microscopy and Imaging Platform, Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Robert J. Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Emilia Liana Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada;
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
6
|
Spring J, Beilinson V, DeFelice BC, Sanchez JM, Fischbach M, Chervonsky A, Golovkina T. Retroviral Infection and Commensal Bacteria Dependently Alter the Metabolomic Profile in a Sterile Organ. Viruses 2023; 15:386. [PMID: 36851600 PMCID: PMC9967258 DOI: 10.3390/v15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Both viruses and bacteria produce "pathogen associated molecular patterns" that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites, while viruses could change the metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of murine leukemia virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus open a new avenue for future investigations.
Collapse
Affiliation(s)
- Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Michael Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Chervonsky
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Tatyana Golovkina
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Spring J, Beilinson V, DeFelice BC, Sanchez JM, Fischbach M, Chervonsky A, Golovkina T. Retroviral infection and commensal bacteria dependently alter the metabolomic profile in a sterile organ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523497. [PMID: 36711645 PMCID: PMC9882031 DOI: 10.1101/2023.01.10.523497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Both viruses and bacteria produce 'pathogen associated molecular patterns' that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites while viruses could change metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of Murine Leukemia Virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus, open a new avenue for future investigations.
Collapse
|
8
|
Santus W, Rana AP, Devlin JR, Kiernan KA, Jacob CC, Tjokrosurjo J, Underhill DM, Behnsen J. Mycobiota and diet-derived fungal xenosiderophores promote Salmonella gastrointestinal colonization. Nat Microbiol 2022; 7:2025-2038. [PMID: 36411353 PMCID: PMC11981548 DOI: 10.1038/s41564-022-01267-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
Abstract
The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis, such as inflammatory bowel disease. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. Here we investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium, a major cause of gastroenteritis worldwide. We found that, in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella and elucidates an additional function of the gut mycobiota, revealing the importance of these understudied members of the gut ecosystem during bacterial infection.
Collapse
Affiliation(s)
- William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Amisha P Rana
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Jason R Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Kaitlyn A Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Carol C Jacob
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Joshua Tjokrosurjo
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Fawad JA, Luzader DH, Hanson GF, Moutinho TJ, McKinney CA, Mitchell PG, Brown-Steinke K, Kumar A, Park M, Lee S, Bolick DT, Medlock GL, Zhao JY, Rosselot AE, Chou CJ, Eshleman EM, Alenghat T, Hong CI, Papin JA, Moore SR. Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms. Gastroenterology 2022; 163:1377-1390.e11. [PMID: 35934064 PMCID: PMC11551968 DOI: 10.1053/j.gastro.2022.07.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism. METHODS We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites. RESULTS Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells. CONCLUSIONS Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Jibraan A Fawad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Deborah H Luzader
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Gabriel F Hanson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Thomas J Moutinho
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Craig A McKinney
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Paul G Mitchell
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kathleen Brown-Steinke
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Ajay Kumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Miri Park
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Suengwon Lee
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - David T Bolick
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Greg L Medlock
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Jesse Y Zhao
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Andrew E Rosselot
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - C James Chou
- College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina
| | - Emily M Eshleman
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Theresa Alenghat
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Christian I Hong
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Sean R Moore
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
10
|
Proctor A, Parvinroo S, Richie T, Jia X, Lee STM, Karp PD, Paley S, Kostic AD, Pierre JF, Wannemuehler MJ, Phillips GJ. Resources to Facilitate Use of the Altered Schaedler Flora (ASF) Mouse Model to Study Microbiome Function. mSystems 2022; 7:e0029322. [PMID: 35968975 PMCID: PMC9600240 DOI: 10.1128/msystems.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.
Collapse
Affiliation(s)
- Alexandra Proctor
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Shadi Parvinroo
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tanner Richie
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Xinglin Jia
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Aleksandar D. Kostic
- Department of Microbiology and Immunology, Joslin Diabetes Center, Harvard University, Cambridge Massachusetts, USA
| | - Joseph F. Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | | | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Gut commensal bacteria enhance pathogenesis of a tumorigenic murine retrovirus. Cell Rep 2022; 40:111341. [PMID: 36103821 DOI: 10.1016/j.celrep.2022.111341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The influence of the microbiota on viral transmission and replication is well appreciated. However, its impact on retroviral pathogenesis outside of transmission/replication control remains unknown. Using murine leukemia virus (MuLV), we found that some commensal bacteria promoted the development of leukemia induced by this retrovirus. The promotion of leukemia development by commensals is due to suppression of the adaptive immune response through upregulation of several negative regulators of immunity. These negative regulators include Serpinb9b and Rnf128, which are associated with a poor prognosis of some spontaneous human cancers. Upregulation of Serpinb9b is mediated by sensing of bacteria by the NOD1/NOD2/RIPK2 pathway. This work describes a mechanism by which the microbiota enhances tumorigenesis within gut-distant organs and points at potential targets for cancer therapy.
Collapse
|
12
|
Van Camp PJ, Porollo A. SEQ2MGS: an effective tool for generating realistic artificial metagenomes from the existing sequencing data. NAR Genom Bioinform 2022; 4:lqac050. [PMID: 35899079 PMCID: PMC9310082 DOI: 10.1093/nargab/lqac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Assessment of bioinformatics tools for the metagenomics analysis from the whole genome sequencing data requires realistic benchmark sets. We developed an effective and simple generator of artificial metagenomes from real sequencing experiments. The tool (SEQ2MGS) analyzes the input FASTQ files, precomputes genomic content, and blends shotgun reads from different sequenced isolates, or spike isolate(s) in real metagenome, in desired proportions. SEQ2MGS eliminates the need for simulation of sequencing platform variations, reads distributions, presence of plasmids, viruses, and contamination. The tool is especially useful for a quick generation of multiple complex samples that include new or understudied organisms, even without assembled genomes. For illustration, we first demonstrated the ease of SEQ2MGS use for the simulation of altered Schaedler flora (ASF) in comparison with de novo metagenomics generators Grinder and CAMISIM. Next, we emulated the emergence of a pathogen in the human gut microbiome and observed that Kraken, Centrifuge, and MetaPhlAn, while correctly identified Klebsiella pneumoniae, produced inconsistent results for the rest of real metagenome. Finally, using the MG-RAST platform, we affirmed that SEQ2MGS properly transfers genomic information from an isolate into the simulated metagenome by the correct identification of antimicrobial resistance genes anticipated to appear compared to the original metagenome.
Collapse
Affiliation(s)
- Pieter-Jan Van Camp
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aleksey Porollo
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Fox E, Lyte M. Variation in spatial organization of the gut microbiota along the longitudinal and transverse axes of the intestines. Arch Microbiol 2022; 204:424. [PMID: 35750957 DOI: 10.1007/s00203-022-02952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Elucidation of the mechanisms by which the microbiota-gut-brain axis influences behavior requires understanding the anatomical relationship of bacteria with mucosal elements. We herein report that microbes were mainly associated with food or fecal matter in the intestinal lumen. In the small intestine, bacterial density increased from proximal-to-distal levels and was much higher in the large intestine. A mucus layer was present between the mucosal epithelium and fecal boluses in the large intestine, but not between food and the mucosal epithelium in the small intestine. In contrast, in all intestinal regions lacking food or fecal boluses, the lumen was small, or absent, and contained little or no bacteria or mucus. The association of bacteria with food was tested in the small intestine by examining the effect of fasting on it. Bacterial density was equivalent in the ileum of fasted and fed mice, but fasting greatly reduced the amount of food containing bacteria, suggesting the amount of bacteria was reduced. Critically, this study provides evidence that the vast majority of the microbiota in the intestines are associated with the food matrix thereby raising questions regarding how the gut microbiota can potentially signal the brain and influence behavior. Given their spatial location within the lumen, which keeps them at a great distance from neuronal elements in the mucosa, combined with immune and mucus barriers, microbiota more likely to influence behavior through secretion of bacterial products that can traverse the spatial difference to interact with gut neurons and not through direct physical association.
Collapse
Affiliation(s)
- Edward Fox
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN, 47907, USA.
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
14
|
Gastric Non-Helicobacter pylori Urease-Positive Staphylococcus epidermidis and Streptococcus salivarius Isolated from Humans Have Contrasting Effects on H. pylori-Associated Gastric Pathology and Host Immune Responses in a Murine Model of Gastric Cancer. mSphere 2022; 7:e0077221. [PMID: 35138124 PMCID: PMC8826947 DOI: 10.1128/msphere.00772-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In populations with similar prevalence of Helicobacter pylori infection, cancer risk can vary dramatically. Changes in composition or structure of bacterial communities in the stomach, either at the time of exposure or over the course of H. pylori infection, may contribute to gastric pathology. In this study, a population of 37 patients from the low-gastric-cancer-risk (LGCR) region of Tumaco, Colombia, and the high-gastric-cancer-risk (HGCR) region of Túquerres, Colombia, were recruited for gastric endoscopy. Antral biopsy specimens were processed for histology and bacterial isolation. Fifty-nine distinct species among 26 genera were isolated by aerobic, anaerobic, and microaerobic culture and confirmed by 16S rRNA analysis. Urease-positive Staphylococcus epidermidis and Streptococcus salivarius were frequently isolated from gastric biopsy specimens. We asked whether coinfection of H. pylori with urease-positive S. salivarius and/or S. epidermidis had a demonstrable effect on H. pylori-induced gastritis in the germfree (GF) INS-GAS mouse model. Coinfections with S. salivarius and/or S. epidermidis did not affect gastric H. pylori colonization. At 5 months postinfection, GF INS-GAS mice coinfected with H. pylori and S. salivarius had statistically higher pathological scores in the stomachs than mice infected with H. pylori only or H. pylori with S. epidermidis (P < 0.05). S. epidermidis coinfection with H. pylori did not significantly change stomach pathology, but levels of the proinflammatory cytokine genes Il-1β, Il-17A , and Il-22 were significantly lower than in H. pylori-monoinfected mice. This study demonstrates that non-H. pylori urease-positive bacteria may play a role in the severity of H. pylori-induced gastric cancer in humans. IMPORTANCE Chronic infection with H. pylori is the main cause of gastric cancer, which is a global health problem. In two Colombian populations with high levels of H. pylori prevalence, the regional gastric cancer rates are considerably different. Host genetic background, H. pylori biotype, environmental toxins, and dietary choices are among the known risk factors for stomach cancer. The potential role of non-H. pylori gastric microbiota in gastric carcinogenesis is being increasingly recognized. In this study, we isolated 59 bacterial species from 37 stomach biopsy samples of Colombian patients from both low-gastric-cancer-risk and high-gastric-cancer-risk regions. Urease-positive S. epidermidis and S. salivarius commonly cultured from the stomachs, along with H. pylori, were inoculated into germfree INS-GAS mice. S. salivarius coinfection with H. pylori induced significantly higher gastric pathology than in H. pylori-monoinfected mice, whereas S. epidermidis coinfection caused significantly lower H. pylori-induced proinflammatory cytokine responses than in H. pylori-monoinfected mice. This study reinforces the argument that the non-H. pylori stomach microflora play a role in the severity of H. pylori-induced gastric cancer.
Collapse
|
15
|
Vilchez-Vargas R, Salm F, Znalesniak EB, Haupenthal K, Schanze D, Zenker M, Link A, Hoffmann W. Profiling of the Bacterial Microbiota along the Murine Alimentary Tract. Int J Mol Sci 2022; 23:1783. [PMID: 35163705 PMCID: PMC8836272 DOI: 10.3390/ijms23031783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Here, the spatial distribution of the bacterial flora along the murine alimentary tract was evaluated using high throughput sequencing in wild-type and Tff3-deficient (Tff3KO) animals. Loss of Tff3 was linked to increased dextran sodium sulfate-induced colitis. This systematic study shows the results of 13 different regions from the esophagus to the rectum. The number of bacterial species (richness) increased from the esophagus to the rectum, from 50 to 200, respectively. Additionally, the bacterial community structure changed continuously; the highest changes were between the upper/middle and lower gastrointestinal compartments when comparing adjacent regions. Lactobacillus was the major colonizer in the upper/middle gastrointestinal tract, especially in the esophagus and stomach. From the caecum, a drastic diminution of Lactobacillus occurred, while members of Lachnospiraceae significantly increased. A significant change occurred in the bacterial community between the ascending and the transverse colon with Bacteroidetes being the major colonizers with relative constant abundance until the rectum. Interestingly, wild-type and Tff3KO animals did not show significant differences in their bacterial communities, suggesting that Tff3 is not involved in alterations of intraluminal or adhesive microbiota but is obviously important for mucosal protection, e.g., of the sensitive stem cells in the colonic crypts probably by a mucus plume.
Collapse
Affiliation(s)
- Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectiology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| | - Denny Schanze
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.S.); (M.Z.)
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.S.); (M.Z.)
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectiology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| |
Collapse
|
16
|
Nishio J, Negishi H, Yasui-Kato M, Miki S, Miyanaga K, Aoki K, Mizusawa T, Ueno M, Ainai A, Muratani M, Hangai S, Yanai H, Hasegawa H, Ishii Y, Tanji Y, Taniguchi T. Identification and characterization of a novel Enterococcus bacteriophage with potential to ameliorate murine colitis. Sci Rep 2021; 11:20231. [PMID: 34642357 PMCID: PMC8511138 DOI: 10.1038/s41598-021-99602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
Increase of the enteric bacteriophages (phage), components of the enteric virome, has been associated with the development of inflammatory bowel diseases. However, little is known about how a given phage contributes to the regulation of intestinal inflammation. In this study, we isolated a new phage associated with Enterococcus gallinarum, named phiEG37k, the level of which was increased in C57BL/6 mice with colitis development. We found that, irrespective of the state of inflammation, over 95% of the E. gallinarum population in the mice contained phiEG37k prophage within their genome and the phiEG37k titers were proportional to that of E. gallinarum in the gut. To explore whether phiEG37k impacts intestinal homeostasis and/or inflammation, we generated mice colonized either with E. gallinarum with or without the prophage phiEG37k. We found that the mice colonized with the bacteria with phiEG37k produced more Mucin 2 (MUC2) that serves to protect the intestinal epithelium, as compared to those colonized with the phage-free bacteria. Consistently, the former mice were less sensitive to experimental colitis than the latter mice. These results suggest that the newly isolated phage has the potential to protect the host by strengthening mucosal integrity. Our study may have clinical implication in further understanding of how bacteriophages contribute to the gut homeostasis and pathogenesis.
Collapse
Affiliation(s)
- Junko Nishio
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Department of Immunopathology and Immunoregulation, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hideo Negishi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Mika Yasui-Kato
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shoji Miki
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Takuma Mizusawa
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Masami Ueno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infection Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sho Hangai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infection Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-8 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
17
|
Jain U, Ver Heul AM, Xiong S, Gregory MH, Demers EG, Kern JT, Lai CW, Muegge BD, Barisas DAG, Leal-Ekman JS, Deepak P, Ciorba MA, Liu TC, Hogan DA, Debbas P, Braun J, McGovern DPB, Underhill DM, Stappenbeck TS. Debaryomyces is enriched in Crohn's disease intestinal tissue and impairs healing in mice. Science 2021; 371:1154-1159. [PMID: 33707263 PMCID: PMC10114606 DOI: 10.1126/science.abd0919] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/15/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Alterations of the mycobiota composition associated with Crohn's disease (CD) are challenging to link to defining elements of pathophysiology, such as poor injury repair. Using culture-dependent and -independent methods, we discovered that Debaryomyces hansenii preferentially localized to and was abundant within incompletely healed intestinal wounds of mice and inflamed mucosal tissues of CD human subjects. D. hansenii cultures from injured mice and inflamed CD tissues impaired colonic healing when introduced into injured conventionally raised or gnotobiotic mice. We reisolated D. hansenii from injured areas of these mice, fulfilling Koch's postulates. Mechanistically, D. hansenii impaired mucosal healing through the myeloid cell-specific type 1 interferon-CCL5 axis. Taken together, we have identified a fungus that inhabits inflamed CD tissue and can lead to dysregulated mucosal healing.
Collapse
Affiliation(s)
- Umang Jain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron M Ver Heul
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martin H Gregory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elora G Demers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chin-Wen Lai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA 94080, USA
| | - Brian D Muegge
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, VA Medical Center, St. Louis, MO 63106, USA
| | - Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J Steven Leal-Ekman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Parakkal Deepak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew A Ciorba
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Philip Debbas
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jonathan Braun
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Basic M, Bolsega S, Smoczek A, Gläsner J, Hiergeist A, Eberl C, Stecher B, Gessner A, Bleich A. Monitoring and contamination incidence of gnotobiotic experiments performed in microisolator cages. Int J Med Microbiol 2021; 311:151482. [PMID: 33636479 DOI: 10.1016/j.ijmm.2021.151482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022] Open
Abstract
With the increased interest in the microbiome research, gnotobiotic animals and techniques emerged again as valuable tools to investigate functional effects of host-microbe and microbe-microbe interactions. The increased demand for gnotobiotic experiments has resulted in the greater need for housing systems for short-term maintenance of gnotobiotic animals. During the last six years, the gnotobiotic facility of the Hannover Medical School has worked intensively with different housing systems for gnotobiotic animals. Here, we report our experience in handling, contamination incidence, and monitoring strategies that we apply for controlling gnotobiotic experiments. From our experience, the risk of introducing contaminants to animals housed in microisolator cages is higher than in isolators. However, with strict operating protocols, the contamination rate in these systems can be minimized. In addition to spore-forming bacteria and fungi from the environment, spore-forming bacteria from defined bacterial communities used in experiments represent the major risk for contamination of gnotobiotic experiments performed in microisolator cages. The presence/absence of contaminants in germ-free animals can be easily monitored by preparation of wet mounts and Gram staining of fecal samples. Contaminants in animals colonized with specific microorganisms need to be tracked with methods such as next-generation sequencing. However, when using PCR-based methods it is important to consider that relatively small amounts of bacterial DNA detected likely originates from food, bedding, or reagents and is not to be interpreted as true contamination.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Anna Smoczek
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Joachim Gläsner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Eberl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany; German Center of Infection Research (DZIF), Partner Site Munich, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
19
|
Crittenden S, Goepp M, Pollock J, Robb CT, Smyth DJ, Zhou Y, Andrews R, Tyrrell V, Gkikas K, Adima A, O'Connor RA, Davies L, Li XF, Yao HX, Ho GT, Zheng X, Mair A, Vermeren S, Qian BZ, Mole DJ, Gerasimidis K, Schwarze JKJ, Breyer RM, Arends MJ, O'Donnell VB, Iredale JP, Anderton SM, Narumiya S, Maizels RM, Rossi AG, Howie SE, Yao C. Prostaglandin E 2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. SCIENCE ADVANCES 2021; 7:eabd7954. [PMID: 33579710 PMCID: PMC7880593 DOI: 10.1126/sciadv.abd7954] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/24/2020] [Indexed: 05/26/2023]
Abstract
The gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (Tregs), yet how the microbiota-Treg cross-talk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E2 (PGE2), a well-known mediator of inflammation, inhibits mucosal Tregs in a manner depending on the gut microbiota. PGE2 through its receptor EP4 diminishes Treg-favorable commensal microbiota. Transfer of the gut microbiota that was modified by PGE2-EP4 signaling modulates mucosal Treg responses and exacerbates intestinal inflammation. Mechanistically, PGE2-modified microbiota regulates intestinal mononuclear phagocytes and type I interferon signaling. Depletion of mononuclear phagocytes or deficiency of type I interferon receptor diminishes PGE2-dependent Treg inhibition. Together, our findings provide emergent evidence that PGE2-mediated disruption of microbiota-Treg communication fosters intestinal inflammation.
Collapse
Affiliation(s)
- Siobhan Crittenden
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jolinda Pollock
- SRUC Veterinary Services, Scotland's Rural College, Easter Bush Estate EH26 0PZ, UK
| | - Calum T Robb
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Danielle J Smyth
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert Andrews
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Victoria Tyrrell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Konstantinos Gkikas
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G31 2ER, UK
| | - Alexander Adima
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard A O'Connor
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Luke Davies
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Xue-Feng Li
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hatti X Yao
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Amil Mair
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Damian J Mole
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G31 2ER, UK
| | - Jürgen K J Schwarze
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XR, UK
| | - Valerie B O'Donnell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - John P Iredale
- Senate House, University of Bristol, Bristol BS8 1TH, UK
| | - Stephen M Anderton
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah E Howie
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
20
|
Molina Ortiz JP, McClure DD, Shanahan ER, Dehghani F, Holmes AJ, Read MN. Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models. Gut Microbes 2021; 13:1965698. [PMID: 34455914 PMCID: PMC8432618 DOI: 10.1080/19490976.2021.1965698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome has emerged as a contributing factor in non-communicable disease, rendering it a target of health-promoting interventions. Yet current understanding of the host-microbiome dynamic is insufficient to predict the variation in intervention outcomes across individuals. We explore the mechanisms that underpin the gut bacterial ecosystem and highlight how a more complete understanding of this ecology will enable improved intervention outcomes. This ecology varies within the gut over space and time. Interventions disrupt these processes, with cascading consequences throughout the ecosystem. In vivo studies cannot isolate and probe these processes at the required spatiotemporal resolutions, and in vitro studies lack the representative complexity required. However, we highlight that, together, both approaches can inform in silico models that integrate cellular-level dynamics, can extrapolate to explain bacterial community outcomes, permit experimentation and observation over ecological processes at high spatiotemporal resolution, and can serve as predictive platforms on which to prototype interventions. Thus, it is a concerted integration of these techniques that will enable rational targeted manipulations of the gut ecosystem.
Collapse
Affiliation(s)
- Juan P. Molina Ortiz
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
| | - Dale D. McClure
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
| | - Erin R. Shanahan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
| | - Andrew J. Holmes
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Mark N. Read
- Faculty of Engineering, Centre for Advanced Food Engineering, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Crittenden S, Goepp M, Pollock J, Robb CT, Smyth DJ, Zhou Y, Andrews R, Tyrrell V, Adima A, O’connor RA, Davies L, Li X, Yao HX, Ho G, Zheng X, Mair A, Vermeren S, Qian B, Mole DJ, Schwarze JK, Breyer RM, Arends MJ, O’donnell VB, Iredale JP, Anderton SM, Narumiya S, Maizels RM, Rossi AG, Howie SE, Yao C. Prostaglandin E 2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells.. [DOI: 10.1101/2020.07.12.199513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
AbstractThe gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (Tregs), yet how the microbiota-Treg crosstalk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E2 (PGE2), a well-known mediator of inflammation, inhibits mucosal Tregs in a manner depending on the gut microbiota. PGE2 through its receptor EP4 diminishes Treg-favorable commensal microbiota. Transfer of the gut microbiota that was modified by PGE2-EP4 signaling modulates mucosal Treg responses and exacerbates intestinal inflammation. Mechanistically, PGE2-modified microbiota regulates intestinal mononuclear phagocytes and type I interferon signaling. Depletion of mononuclear phagocytes or deficiency of type I interferon receptor contracts PGE2-dependent Treg inhibition. Taken together, our findings provide emergent evidence that PGE2-mediated disruption of microbiota-Treg communication fosters intestinal inflammation.
Collapse
|
22
|
Lactobacillus rescues postnatal neurobehavioral and microglial dysfunction in a model of maternal microbiome dysbiosis. Brain Behav Immun 2019; 81:617-629. [PMID: 31351186 DOI: 10.1016/j.bbi.2019.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Increasing reports of pregnancy events leading to maternal microbiome dysbiosis (MMD) show strong correlates with atypical neurodevelopmental outcomes. However, the mechanism(s) driving microbiome-mediated behavioral dysfunction in offspring remain understudied. Here, we demonstrate the presence of a novel gut commensal bacterium strain, Lactobacillus murinus HU-1, was sufficient to rescue behavioral deficits and brain region-specific microglial activationobserved in MMD-reared murine offspring. We furtheridentified a postnatal window of susceptibility that could prevent social impairments with timed maternal administration of the symbiotic bacterium. Moreover, MMD increased expression of microglial senescence genes, Trp53 and Il1β, and Cx3cr1 protein in the prefrontal cortex, which correlated with dysfunctional modeling of synapses and accompanied dysbiosis-induced microglial activation. MMD male offspring harboring Lactobacillus murinus HU-1 or lacking Cx3cr1 showed amelioration of these effects. The current study describes a new avenue of influence by which maternally transferred Lactobacillus drives proper development of social behavior in the offspring through microglia-specific regulation of Cx3cr1 signaling.
Collapse
|
23
|
Schlomann BH, Parthasarathy R. Timescales of gut microbiome dynamics. Curr Opin Microbiol 2019; 50:56-63. [PMID: 31689582 PMCID: PMC6899164 DOI: 10.1016/j.mib.2019.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
Vast communities of microorganisms inhabit the gastrointestinal tracts of humans and other animals. Understanding their initial development, fluctuations in composition, stability over long times, and responses to transient perturbations - in other words their dynamics - is important both for gaining basic insights into these ecosystems and for rationally manipulating them for therapeutic ends. Gut microbiome dynamics, however, remain poorly understood. We review here studies of gut microbiome dynamics in the presence and absence of external perturbations, noting especially the long timescales associated with overall stability and the short timescales associated with various underlying biological processes. Integrating these disparate timescales, we suggest, is an important goal for future work and is necessary for developing a predictive understanding of microbiome dynamics.
Collapse
Affiliation(s)
- Brandon H Schlomann
- Department of Physics, Materials Science Institute, and Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
| | - Raghuveer Parthasarathy
- Department of Physics, Materials Science Institute, and Institute of Molecular Biology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
24
|
Bolsega S, Basic M, Smoczek A, Buettner M, Eberl C, Ahrens D, Odum KA, Stecher B, Bleich A. Composition of the Intestinal Microbiota Determines the Outcome of Virus-Triggered Colitis in Mice. Front Immunol 2019; 10:1708. [PMID: 31396223 PMCID: PMC6664081 DOI: 10.3389/fimmu.2019.01708] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota is a complex ecosystem implicated in host health and disease. Inflammatory bowel disease (IBD) is a multifactorial chronic disorder of the gastrointestinal mucosa. Even though the exact mechanisms are still unknown, the intestinal microbiota is crucial in IBD development. We previously showed that murine norovirus (MNV) induces colitis in the Il10-deficient (Il10−/−) mouse model of IBD in a microbiota-dependent manner. Thus, in this study we analyzed whether distinct minimal bacterial consortia influence the outcome of MNV-triggered colitis in Il10−/− mice. Gnotobiotic Il10−/− mice associated with Oligo-Mouse-Microbiota 12 (OMM12) or Altered Schaedler Flora (ASF) developed little to no inflammatory lesions in the colon and cecum. MNV infection exacerbated colitis severity only in ASF-colonized mice, but not in those associated with OMM12. Four weeks after MNV infection, inflammatory lesions in ASF-colonized Il10−/− mice were characterized by epithelial hyperplasia, infiltration of inflammatory cells, and increased barrier permeability. Co-colonization of ASF-colonized Il10−/− mice with segmented filamentous bacteria (SFB) abolished MNV-induced colitis, whereas histopathological scores in SFB-OMM12-co-colonized mice stayed unchanged. Moreover, SFB only colonized mice associated with ASF. The SFB-mediated protective effects in ASF-colonized mice involved enhanced activation of intestinal barrier defense mechanisms and mucosal immune responses in the chronic and acute phase of MNV infection. SFB colonization strengthened intestinal barrier function by increasing expression of tight junction proteins, antimicrobial peptides and mucus. Furthermore, SFB colonization enhanced the expression of pro-inflammatory cytokines such as Tnfα, Il1β, and Il12a, as well as the expression of the regulatory cytokine Tgfβ. Altogether, our results showed that MNV-triggered colitis depends on the microbial context.
Collapse
Affiliation(s)
- Silvia Bolsega
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Marijana Basic
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Anna Smoczek
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Manuela Buettner
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Claudia Eberl
- Faculty of Medicine, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, LMU Munich, Munich, Germany
| | - Daniel Ahrens
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Kodwo Appoh Odum
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Bärbel Stecher
- Faculty of Medicine, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, LMU Munich, Munich, Germany.,German Center of Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andre Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| |
Collapse
|
25
|
Abstract
Gnotobiotics or gnotobiology is a research field exploring organisms with a known microbiological state. In animal research, the development of gnotobiotics started in the late 19th century with the rederivation of germ-free guinea pigs. Cutting-edge achievements were accomplished by scientists in the Laboratories of Bacteriology at the University of Notre Dame (LOBUND). The primary goals of gnotobiotics were not only the development of the equipment required for long-term husbandry but also phenotypic characterization of germ-free animals. The first isolators were designed by Reynolds and Gustafsson as rigid-wall stainless steel autoclave-like chambers, which were subsequently replaced by Trexler’s flexible-film polyvinyl plastic isolators. Flexible-film or semi-rigid isolators are commonly used today. The long-term maintenance of gnotobiotic rodents is performed in positive-pressure isolators. However, to facilitate gnotobiotic experimental procedures, short-term husbandry systems have been developed. Gnotobiotic animal husbandry is laborious and requires experienced staff. Germ-free animals can be rederived from existing rodent colonies by hysterectomy or embryo transfer. The physiology and anatomy of germ-free rodents are different from those of specified pathogen-free (SPF) rodents. Furthermore, to guarantee gnotobiotic status, the colonies need to be regularly microbiologically monitored. Today, gnotobiotics provides a powerful tool to analyse functional effects of host-microbe interactions, especially in complex disease models. Gnotobiotic models combined with ‘omics’ approaches will be indispensable for future advances in microbiome research. Furthermore, these approaches will contribute to the development of novel therapeutic targets. In addition, regional or national gnotobiotic core facilities should be established in the future to support further applications of gnotobiotic models.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| |
Collapse
|
26
|
Yin X, Heeney DD, Srisengfa YT, Chen SY, Slupsky CM, Marco ML. Sucrose metabolism alters Lactobacillus plantarum survival and interactions with the microbiota in the digestive tract. FEMS Microbiol Ecol 2019; 94:4996782. [PMID: 29771345 DOI: 10.1093/femsec/fiy084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
We investigated whether sucrose metabolism by probiotic Lactobacillus plantarum influences the intestinal survival and microbial responses to this organism when administered to mice fed a sucrose-rich, Western diet. A L. plantarum mutant unable to metabolize sucrose was constructed by deleting scrB, coding for beta-fructofuranosidase, in a rifampicin-resistant strain of L. plantarum NCIMB8826. The ScrB deficient mutant survived in 8-fold higher numbers compared to the wild-type strain when measured 24 h after administration on two consecutive days. According to 16S rRNA marker gene sequencing, proportions of Faecalibacterium and Streptococcus were elevated in mice fed the L. plantarum ΔscrB mutant. Metagenome predictions also indicated those mice contained a higher abundance of lactate dehydrogenases. This was further supported by a trend in elevated fecal lactate concentrations among mice fed the ΔscrB mutant. L. plantarum also caused other changes to the fecal metabolomes including higher concentrations of glycerol in mice fed the ΔscrB mutant and increased uracil, acetate and propionate levels among mice fed the wild-type strain. Taken together, these results suggest that sucrose metabolism alters the properties of L. plantarum in the digestive tract and that probiotics can differentially influence intestinal metabolomes via their carbohydrate consumption capabilities.
Collapse
Affiliation(s)
- Xiaochen Yin
- Department of Food Science and Technology, University of California, Davis, USA
| | - Dustin D Heeney
- Department of Food Science and Technology, University of California, Davis, USA
| | - Yanin Tab Srisengfa
- Department of Food Science and Technology, University of California, Davis, USA
| | - Shin-Yu Chen
- Department of Nutrition, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, USA.,Department of Nutrition, University of California, Davis, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, USA
| |
Collapse
|
27
|
The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiol Mol Biol Rev 2019; 83:83/2/e00054-18. [PMID: 30867232 DOI: 10.1128/mmbr.00054-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal ecosystem is characterized by a complex interplay between different microorganisms and the host. The high variation within the human population further complicates the quest toward an adequate understanding of this complex system that is so relevant to human health and well-being. To study host-microbe interactions, defined synthetic bacterial communities have been introduced in gnotobiotic animals or in sophisticated in vitro cell models. This review reinforces that our limited understanding has often hampered the appropriate design of defined communities that represent the human gut microbiota. On top of this, some communities have been applied to in vivo models that differ appreciably from the human host. In this review, the advantages and disadvantages of using defined microbial communities are outlined, and suggestions for future improvement of host-microbe interaction models are provided. With respect to the host, technological advances, such as the development of a gut-on-a-chip system and intestinal organoids, may contribute to more-accurate in vitro models of the human host. With respect to the microbiota, due to the increasing availability of representative cultured isolates and their genomic sequences, our understanding and controllability of the human gut "core microbiota" are likely to increase. Taken together, these advancements could further unravel the molecular mechanisms underlying the human gut microbiota superorganism. Such a gain of insight would provide a solid basis for the improvement of pre-, pro-, and synbiotics as well as the development of new therapeutic microbes.
Collapse
|
28
|
Hubbard TD, Liu Q, Murray IA, Dong F, Miller C, Smith PB, Gowda K, Lin JM, Amin S, Patterson AD, Perdew GH. Microbiota Metabolism Promotes Synthesis of the Human Ah Receptor Agonist 2,8-Dihydroxyquinoline. J Proteome Res 2019; 18:1715-1724. [PMID: 30777439 DOI: 10.1021/acs.jproteome.8b00946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a major regulator of immune function within the gastrointestinal tract. Resident microbiota are capable of influencing AHR-dependent signaling pathways via production of an array of bioactive molecules that act as AHR agonists, such as indole or indole-3-aldehyde. Bacteria produce a number of quinoline derivatives, of which some function as quorum-sensing molecules. Thus, we screened relevant hydroxyquinoline derivatives for AHR activity using AHR responsive reporter cell lines. 2,8-Dihydroxyquinoline (2,8-DHQ) was identified as a species-specific AHR agonist that exhibits full AHR agonist activity in human cell lines, but only induces modest AHR activity in mouse cells. Additional dihydroxylated quinolines tested failed to activate the human AHR. Nanomolar concentrations of 2,8-DHQ significantly induced CYP1A1 expression and, upon cotreatment with cytokines, synergistically induced IL6 expression. Ligand binding competition studies subsequently confirmed 2,8-DHQ to be a human AHR ligand. Several dihydroxyquinolines were detected in human fecal samples, with concentrations of 2,8-DHQ ranging between 0 and 3.4 pmol/mg feces. Additionally, in mice the microbiota was necessary for the presence of DHQ in cecal contents. These results suggest that microbiota-derived 2,8-DHQ would contribute to AHR activation in the human gut, and thus participate in the protective and homeostatic effects observed with gastrointestinal AHR activation.
Collapse
Affiliation(s)
| | | | | | | | - Charles Miller
- Department of Global Environmental Health Sciences , Tulane University School of Public Health and Tropical Medicine , New Orleans , Louisiana 70112 , United States
| | | | - Krishne Gowda
- Department of Pharmacology , Penn State College of Medicine , Hershey , Pennsylvania 17033 , United States
| | - Jyh Ming Lin
- Department of Biochemistry and Molecular Biology , Penn State College of Medicine , Hershey , Pennsylvania 17033 , United States
| | - Shantu Amin
- Department of Pharmacology , Penn State College of Medicine , Hershey , Pennsylvania 17033 , United States
| | | | | |
Collapse
|
29
|
Ohtsu A, Takeuchi Y, Katagiri S, Suda W, Maekawa S, Shiba T, Komazaki R, Udagawa S, Sasaki N, Hattori M, Izumi Y. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis 2019; 25:868-880. [PMID: 30667148 DOI: 10.1111/odi.13044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Increasing evidence suggests that periodontitis can exacerbate diabetes, and gut bacterial dysbiosis appears to be linked with the diabetic condition. The present study examined the effects of oral administration of the periodontopathic bacterium, Porphyromonas gingivalis, on the gut microbiota and systemic conditions in streptozotocin-induced diabetic mice. MATERIALS AND METHODS Diabetes was induced by streptozotocin injection in C57BL/6J male mice (STZ). STZ and wild-type (WT) mice were orally administered P. gingivalis (STZPg, WTPg) or saline (STZco, WTco). Feces were collected, and the gut microbiome was examined by 16S rRNA gene sequencing. The expression of genes related to inflammation, epithelial tight junctions, and glucose/fatty acid metabolism in the ileum or liver were examined by quantitative PCR. RESULTS The relative abundance of several genera, including Brevibacterium, Corynebacterium, and Facklamia, was significantly increased in STZco mice compared to WTco mice. The relative abundances of Staphylococcus and Turicibacter in the gut microbiome were altered by oral administration of P. gingivalis in STZ mice. STZPg mice showed higher concentrations of fasting blood glucose and inflammatory genes levels in the ileum, compared to STZco mice. CONCLUSIONS Oral administration of P. gingivalis altered the gut microbiota and aggravated glycemic control in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- Anri Ohtsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Komazaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Udagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Sasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Faculty of Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Stromberg ZR, Van Goor A, Redweik GAJ, Wymore Brand MJ, Wannemuehler MJ, Mellata M. Pathogenic and non-pathogenic Escherichia coli colonization and host inflammatory response in a defined microbiota mouse model. Dis Model Mech 2018; 11:dmm035063. [PMID: 30275104 PMCID: PMC6262807 DOI: 10.1242/dmm.035063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
Most Escherichia coli strains in the human intestine are harmless. However, enterohemorrhagic Ecoli (EHEC) is a foodborne pathogen that causes intestinal disease in humans. Conventionally reared (CONV) mice are inconsistent models for human infections with EHEC because they are often resistant to Ecoli colonization, in part due to their gastrointestinal (GI) microbiota. Although antibiotic manipulation of the mouse microbiota has been a common means to overcome colonization resistance, these models have limitations. Currently, there are no licensed treatments for clinical EHEC infections and, thus, new tools to study EHEC colonization need to be developed. Here, we used a defined microbiota mouse model, consisting of the altered Schaedler flora (ASF), to characterize intestinal colonization and compare host responses following colonization with EHEC strain 278F2 or non-pathogenic Ecoli strain MG1655. Significantly higher (P<0.05) levels of both strains were found in feces and cecal and colonic contents of C3H/HeN ASF compared to C3H/HeN CONV mice. GI inflammation was significantly elevated (P<0.05) in the cecum of EHEC 278F2-colonized compared to E. coli MG1655-colonized C3H/HeN ASF mice. In addition, EHEC 278F2 differentially modulated inflammatory-associated genes in colonic tissue of C3H/HeN ASF mice compared to E. coli MG1655-colonized mice. This approach allowed for prolonged colonization of the murine GI tract by pathogenic and non-pathogenic Ecoli strains, and for evaluation of host inflammatory processes. Overall, this system can be used as a powerful tool for future studies to assess therapeutics, microbe-microbe interactions, and strategies for preventing EHEC infections.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Meghan J Wymore Brand
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
31
|
Medlock GL, Carey MA, McDuffie DG, Mundy MB, Giallourou N, Swann JR, Kolling GL, Papin JA. Inferring Metabolic Mechanisms of Interaction within a Defined Gut Microbiota. Cell Syst 2018; 7:245-257.e7. [PMID: 30195437 PMCID: PMC6166237 DOI: 10.1016/j.cels.2018.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/15/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
The diversity and number of species present within microbial communities create the potential for a multitude of interspecies metabolic interactions. Here, we develop, apply, and experimentally test a framework for inferring metabolic mechanisms associated with interspecies interactions. We perform pairwise growth and metabolome profiling of co-cultures of strains from a model mouse microbiota. We then apply our framework to dissect emergent metabolic behaviors that occur in co-culture. Based on one of the inferences from this framework, we identify and interrogate an amino acid cross-feeding interaction and validate that the proposed interaction leads to a growth benefit in vitro. Our results reveal the type and extent of emergent metabolic behavior in microbial communities composed of gut microbes. We focus on growth-modulating interactions, but the framework can be applied to interspecies interactions that modulate any phenotype of interest within microbial communities.
Collapse
Affiliation(s)
- Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Maureen A Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Dennis G McDuffie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Michael B Mundy
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Natasa Giallourou
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Diseases, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Jonathan R Swann
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Diseases, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Skalski JH, Limon JJ, Sharma P, Gargus MD, Nguyen C, Tang J, Coelho AL, Hogaboam CM, Crother TR, Underhill DM. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog 2018; 14:e1007260. [PMID: 30235351 PMCID: PMC6147580 DOI: 10.1371/journal.ppat.1007260] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal microbiota influences immune function throughout the body. The gut-lung axis refers to the concept that alterations of gut commensal microorganisms can have a distant effect on immune function in the lung. Overgrowth of intestinal Candida albicans has been previously observed to exacerbate allergic airways disease in mice, but whether subtler changes in intestinal fungal microbiota can affect allergic airways disease is less clear. In this study we have investigated the effects of the population expansion of commensal fungus Wallemia mellicola without overgrowth of the total fungal community. Wallemia spp. are commonly found as a minor component of the commensal gastrointestinal mycobiota in both humans and mice. Mice with an unaltered gut microbiota community resist population expansion when gavaged with W. mellicola; however, transient antibiotic depletion of gut microbiota creates a window of opportunity for expansion of W. mellicola following delivery of live spores to the gastrointestinal tract. This phenomenon is not universal as other commensal fungi (Aspergillus amstelodami, Epicoccum nigrum) do not expand when delivered to mice with antibiotic-depleted microbiota. Mice with Wallemia-expanded gut mycobiota experienced altered pulmonary immune responses to inhaled aeroallergens. Specifically, after induction of allergic airways disease with intratracheal house dust mite (HDM) antigen, mice demonstrated enhanced eosinophilic airway infiltration, airway hyperresponsiveness (AHR) to methacholine challenge, goblet cell hyperplasia, elevated bronchoalveolar lavage IL-5, and enhanced serum HDM IgG1. This phenomenon occurred with no detectable Wallemia in the lung. Targeted amplicon sequencing analysis of the gastrointestinal mycobiota revealed that expansion of W. mellicola in the gut was associated with additional alterations of bacterial and fungal commensal communities. We therefore colonized fungus-free Altered Schaedler Flora (ASF) mice with W. mellicola. ASF mice colonized with W. mellicola experienced enhanced severity of allergic airways disease compared to fungus-free control ASF mice without changes in bacterial community composition.
Collapse
Affiliation(s)
- Joseph H. Skalski
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jose J. Limon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Purnima Sharma
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew D. Gargus
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jie Tang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ana Lucia Coelho
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Cory M. Hogaboam
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Timothy R. Crother
- Division of Pediatric Infectious Diseases, Department of Medicine, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David M. Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
33
|
Pinzon-Guzman C, Meyer AR, Wise R, Choi E, Muthupalani S, Wang TC, Fox JG, Goldenring JR. Evaluation of Lineage Changes in the Gastric Mucosa Following Infection With Helicobacter pylori and Specified Intestinal Flora in INS-GAS Mice. J Histochem Cytochem 2018; 67:53-63. [PMID: 29969055 DOI: 10.1369/0022155418785621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gastric adenocarcinoma develops in metaplastic mucosa associated with Helicobacter pylori infection in the stomach. We have sought to evaluate the precise lineage changes in the stomachs of insulin-gastrin (INS-GAS) mice infected with H. pylori and/or intestinal flora (Altered Schaedler's Flora; ASF). Stomachs from groups infected with H. pylori contained progressive spasmolytic polypeptide-expressing metaplasia (SPEM) compared with germ-free and mice infected with ASF alone. The overall phenotype of the H. pylori-infected mice was dominated by Ulex europaeus lectin (UEAI)-positive foveolar hyperplasia that was distinct from GSII/CD44v9-positive SPEM. However, in the mice with H. pylori co-infected with ASF, we identified a subpopulation of UEAI-positive foveolar cells that co-expressed intestinal mucin 4 (MUC4). These regions of foveolar cells were variably positive for CD44v9 as well as TFF3. Interestingly, an intravascular lesion identified in a dual H. pylori/ASF-infected mouse expressed both UEAI and Muc4. Finally, we identified an increase in the number of tuft cells within the mucosa of H. pylori-infected groups. Our findings suggest that H. pylori infection promotes foveolar hyperplasia as well as metaplasia, while co-infection may promote progressive foveolar and metaplastic lesions as well as dysplasia. Grading of gastric lesions in mice as preneoplastic requires multiple immunostaining markers to assign lineage derivation and behavior.
Collapse
Affiliation(s)
- Carolina Pinzon-Guzman
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Anne R Meyer
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Rachel Wise
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eunyoung Choi
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Nashville, Tennessee.,Nashville Veterans Affairs (VA) Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
Chassaing B, Gewirtz AT. Mice harboring pathobiont-free microbiota do not develop intestinal inflammation that normally results from an innate immune deficiency. PLoS One 2018; 13:e0195310. [PMID: 29617463 PMCID: PMC5884553 DOI: 10.1371/journal.pone.0195310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inability to maintain a stable and beneficial microbiota is associated with chronic gut inflammation, which classically manifests as colitis but may more commonly exist as low-grade inflammation that promotes metabolic syndrome. Alterations in microbiota, and associated inflammation, can originate from dysfunction in host proteins that manage the microbiota, such as the flagellin receptor TLR5. That the complete absence of a microbiota (i.e. germfree conditions) eliminates all evidence of inflammation in TLR5-deficient mice demonstrates that this model of gut inflammation is microbiota-dependent. We hypothesize that such microbiota dependency reflects an inability to manage pathobionts, such as Adherent-Invasive E. coli (AIEC). Herein, we examined the extent to which microbiota mismanagement and associated inflammation in TLR5-deficient mice would manifest in a limited and pathobiont-free microbiota. For this purpose, WT and TLR5-deficient mice were generated and maintained with the 8-member consortium of bacteria referred to as "Altered Schaedler Flora" (ASF). Such ASF animals were subsequently inoculated with AIEC reference strain LF82. Feces were assayed for bacterial loads, fecal lipopolysaccharide and flagellin loads, fecal inflammatory marker lipocalin-2 and microbiota composition. RESULTS Relative to similarly maintained WT mice, mice lacking TLR5 (T5KO) did not display low-grade intestinal inflammation nor metabolic syndrome under ASF conditions. Concomitantly, the ASF microbial community was similar between WT and T5KO mice, while inoculation with AIEC strain LF82 resulted in alteration of the ASF community in T5KO mice compared to WT control animals. AIEC LF82 inoculation in ASF T5KO mice resulted in microbiota components having elevated levels of bioactive lipopolysaccharide and flagellin, a modest level of low-grade inflammation and increased adiposity. CONCLUSIONS In a limited-complexity pathobiont-free microbiota, loss of the flagellin receptor TLR5 does not impact microbiota composition nor its ability to promote inflammation. Addition of AIEC to this ecosystem perturbs microbiota composition, increases levels of lipopolysaccharide and flagellin, but only modestly promotes gut inflammation and adiposity, suggesting that the phenotypes previously associated with loss of this innate immune receptor require disruption of complex microbiota.
Collapse
Affiliation(s)
- Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
35
|
Yin X, Heeney D, Srisengfa Y, Golomb B, Griffey S, Marco M. Bacteriocin biosynthesis contributes to the anti-inflammatory capacities of probiotic Lactobacillus plantarum. Benef Microbes 2017; 9:333-344. [PMID: 29065706 DOI: 10.3920/bm2017.0096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plantaricin EF (PlnEF) is a class IIb bacteriocin produced by Lactobacillus plantarum. We compared L. plantarum NCIMB8826 and LM0419, a plnEFI deletion mutant of that strain lacking plnEF and the gene for the cognate immunity protein plnI, in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced mouse model of acute inflammatory bowel disease. Mice fed either L. plantarum NCIMB8826 or LM0419 were not protected against TNBS according to either disease activity or histology (Ameho) scores. Mice consuming NCIMB8826 exhibited intermediate (non-significant) levels of colonic tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) that ranged between the TNBS-treated animals and healthy controls. By comparison, TNF-α and IL-6 quantities were elevated in mice given L. plantarum LM0419 and equivalent to mice given TNBS alone. Both strains survived digestive tract transit in equal numbers and did not result in global changes to the bacterial composition in the intestine according to 16S rRNA gene sequencing either prior to or after TNBS administration. Examination of intestinal taxa showed that mice consuming wild-type L. plantarum, but not LM0419 contained lower proportions of Mucispirillum (Deferribacteres phylum) in the faeces prior to TNBS administration and Parabacteroides (Bacteroidetes phylum) in the caecum after disease induction. Parabacteroides also positively correlated with disease activity and histology scores. These findings suggest a role for PlnEFI production by L. plantarum in benefiting digestive tract health.
Collapse
Affiliation(s)
- X Yin
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.,2 Department of Plant Pathology, University of California, One Shields Avenue, Davis CA 95616-8751, USA
| | - D Heeney
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Y Srisengfa
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - B Golomb
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.,3 Bayer U.S. LLC, Crop Science Division, 890 Embarcadero Dr, West Sacramento, CA 95605, USA
| | - S Griffey
- 4 Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, 944 Garrod Dr. 2045 Davis, CA 95616, USA
| | - M Marco
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
36
|
Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc Natl Acad Sci U S A 2017; 114:E9105-E9114. [PMID: 29073107 DOI: 10.1073/pnas.1711596114] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Knowledge of the spatial organization of the gut microbiota is important for understanding the physical and molecular interactions among its members. These interactions are thought to influence microbial succession, community stability, syntrophic relationships, and resiliency in the face of perturbations. The complexity and dynamism of the gut microbiota pose considerable challenges for quantitative analysis of its spatial organization. Here, we illustrate an approach for addressing this challenge, using (i) a model, defined 15-member consortium of phylogenetically diverse, sequenced human gut bacterial strains introduced into adult gnotobiotic mice fed a polysaccharide-rich diet, and (ii) in situ hybridization and spectral imaging analysis methods that allow simultaneous detection of multiple bacterial strains at multiple spatial scales. Differences in the binding affinities of strains for substrates such as mucus or food particles, combined with more rapid replication in a preferred microhabitat, could, in principle, lead to localized clonally expanded aggregates composed of one or a few taxa. However, our results reveal a colonic community that is mixed at micrometer scales, with distinct spatial distributions of some taxa relative to one another, notably at the border between the mucosa and the lumen. Our data suggest that lumen and mucosa in the proximal colon should be conceptualized not as stratified compartments but as components of an incompletely mixed bioreactor. Employing the experimental approaches described should allow direct tests of whether and how specified host and microbial factors influence the nature and functional contributions of "microscale" mixing to the dynamic operations of the microbiota in health and disease.
Collapse
|
37
|
A Gut Microbial Mimic that Hijacks Diabetogenic Autoreactivity to Suppress Colitis. Cell 2017; 171:655-667.e17. [DOI: 10.1016/j.cell.2017.09.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022]
|
38
|
Yin X, Lee B, Zaragoza J, Marco ML. Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Sci Rep 2017; 7:7267. [PMID: 28779118 PMCID: PMC5544775 DOI: 10.1038/s41598-017-07428-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
Host diet is a major determinant of the composition and function of the intestinal microbiome. Less understood is the importance of diet on ingested strains with probiotic significance. We investigated the population dynamics of exogenous Lactobacillus plantarum and its interactions with intestinal bacteria in mice undergoing switches between high-fat, high-sugar (HFHSD) and low-fat, plant-polysaccharide rich (LFPPD) diets. The survival and persistence of ingested L. plantarum WCFS1 was significantly improved during mouse consumption of HFHSD and was negatively associated with the numbers of indigenous Lactobacillus species. Diet also rapidly changed the composition of the indigenous microbiota, but with some taxa differentially affected between HFHSD periods. L. plantarum was not integrated into indigenous bacterial community networks according to co-occurrence patterns but still conferred distinct effects on bacterial species diversity and microbiota stability largely in a diet-dependent manner. Metagenome predictions supported the premise that L. plantarum dampens the effects of diet on the microbiome. This strain also consistently altered the predicted genetic content in the distal gut by enriching for genes encoding glyosyltransferases and bile salt hydrolases. Our findings demonstrate the interactions between ingested, transient probiotic bacteria and intestinal bacterial communities and how they can differ depending on host diet.
Collapse
Affiliation(s)
- Xiaochen Yin
- Department of Food Science and Technology, University of California, Davis, USA.,Department of Plant Pathology, Univeristy of California, Davis, CA, USA
| | - Bokyung Lee
- Department of Food Science and Technology, University of California, Davis, USA.,Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jose Zaragoza
- Department of Food Science and Technology, University of California, Davis, USA.,Bayer Crop Science, West Sacramento, CA, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, USA.
| |
Collapse
|
39
|
Microbiota and reproducibility of rodent models. Lab Anim (NY) 2017; 46:114-122. [PMID: 28328896 DOI: 10.1038/laban.1222] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiota (GM) plays a critical role in human health and disease. Likewise, it is becoming increasingly evident that changes or disruptions to the GM can have significant effects on animal models and their expressed phenotypes, adding a complex and important variable into basic research and preclinical studies. In this article, we review some of the most common sources of GM variability in rodent models, and discuss measures to address this variability for improved reproducibility.
Collapse
|
40
|
Gomes-Neto JC, Mantz S, Held K, Sinha R, Segura Munoz RR, Schmaltz R, Benson AK, Walter J, Ramer-Tait AE. A real-time PCR assay for accurate quantification of the individual members of the Altered Schaedler Flora microbiota in gnotobiotic mice. J Microbiol Methods 2017; 135:52-62. [PMID: 28189782 DOI: 10.1016/j.mimet.2017.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 01/22/2023]
Abstract
Changes in the gastrointestinal microbial community are frequently associated with chronic diseases such as Inflammatory Bowel Diseases. However, understanding the relationship of any individual taxon within the community to host physiology is made complex due to the diversity and individuality of the gut microbiota. Defined microbial communities such as the Altered Schaedler Flora (ASF) help alleviate the challenges of a diverse microbiota by allowing one to interrogate the relationship between individual bacterial species and host responses. An important aspect of studying these relationships with defined microbial communities is the ability to measure the population abundance and dynamics of each member. Herein, we describe the development of an improved ASF species-specific and sensitive real-time quantitative polymerase chain reaction (qPCR) for use with SYBR Green chemistry to accurately assess individual ASF member abundance. This approach targets hypervariable regions V1 through V3 of the 16S rRNA gene of each ASF taxon to enhance assay specificity. We demonstrate the reproducibility, sensitivity and application of this new method by quantifying each ASF bacterium in two inbred mouse lines. We also used it to assess changes in ASF member abundance before and after acute antibiotic perturbation of the community as well as in mice fed two different diets. Additionally, we describe a nested PCR assay for the detection of lowly abundant ASF members. Altogether, this improved qPCR method will facilitate gnotobiotic research involving the ASF community by allowing for reproducible quantification of its members under various physiological conditions.
Collapse
Affiliation(s)
- João Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Mantz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kyler Held
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rohita Sinha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew K Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
41
|
Biggs MB, Medlock GL, Moutinho TJ, Lees HJ, Swann JR, Kolling GL, Papin JA. Systems-level metabolism of the altered Schaedler flora, a complete gut microbiota. THE ISME JOURNAL 2017; 11:426-438. [PMID: 27824342 PMCID: PMC5270571 DOI: 10.1038/ismej.2016.130] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/08/2016] [Accepted: 08/17/2016] [Indexed: 02/08/2023]
Abstract
The altered Schaedler flora (ASF) is a model microbial community with both in vivo and in vitro relevance. Here we provide the first characterization of the ASF community in vitro, independent of a murine host. We compared the functional genetic content of the ASF to wild murine metagenomes and found that the ASF functionally represents wild microbiomes better than random consortia of similar taxonomic composition. We developed a chemically defined medium that supported growth of seven of the eight ASF members. To elucidate the metabolic capabilities of these ASF species-including potential for interactions such as cross-feeding-we performed a spent media screen and analyzed the results through dynamic growth measurements and non-targeted metabolic profiling. We found that cross-feeding is relatively rare (32 of 3570 possible cases), but is enriched between Clostridium ASF356 and Parabacteroides ASF519. We identified many cases of emergent metabolism (856 of 3570 possible cases). These data will inform efforts to understand ASF dynamics and spatial distribution in vivo, to design pre- and probiotics that modulate relative abundances of ASF members, and will be essential for validating computational models of ASF metabolism. Well-characterized, experimentally tractable microbial communities enable research that can translate into more effective microbiome-targeted therapies to improve human health.
Collapse
Affiliation(s)
- Matthew B Biggs
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Thomas J Moutinho
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Hannah J Lees
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | - Jonathan R Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
42
|
Lifestyle and Horizontal Gene Transfer-Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota. mSystems 2017; 2:mSystems00171-16. [PMID: 28168224 PMCID: PMC5285517 DOI: 10.1128/msystems.00171-16] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/04/2017] [Indexed: 01/01/2023] Open
Abstract
Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease. Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. IMPORTANCE Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease.
Collapse
|
43
|
Brown K, Zaytsoff SJM, Uwiera RRE, Inglis GD. Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota. Sci Rep 2016; 6:38377. [PMID: 27929072 PMCID: PMC5144068 DOI: 10.1038/srep38377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023] Open
Abstract
Antibiotics can promote growth in livestock (antimicrobial growth promoters, AGPs), however lack of knowledge regarding mechanisms has hampered the development of effective non-antibiotic alternatives. Antibiotics affect eukaryotic cells at therapeutic concentrations, yet effects of AGPs on host physiology are relatively understudied, partially due to the complexity of host-microorganism interactions within the gastrointestinal tract. To determine the direct effects of AGPs on the host, we generated Altered Schaedler Flora (ASF) mice, and administered chlortetracycline (CTC) and tylosin phosphate (TYL) in feed. Mice were challenged with Citrobacter rodentium to determine how AGPs alter host responses to physiological stress. Although CTC and TYL had inconsistent effects on the ASF taxa, AGPs protected mice from weight loss following C. rodentium inoculation. Mice treated with either CTC or TYL had lower expression of βd1 and Il17a in the intestine and had a robust induction of Il17a and Il10. Furthermore, AGP administration resulted in a lower hepatic expression of acute phase proteins (Saa1, Hp, and Cp) in liver tissue, and ameliorated C. rodentium-induced reductions in the expression of genes involved in lipogenesis (Hmgcl and Fabp1). Collectively, this indicates that AGPs directly affect host physiology, and highlights important considerations in the development of non-antibiotic alternatives.
Collapse
Affiliation(s)
- Kirsty Brown
- Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB, Canada
| | - Sarah J. M. Zaytsoff
- Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB, Canada
- Department of Agricultural Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB, Canada
| |
Collapse
|
44
|
Helicobacter bilis Infection Alters Mucosal Bacteria and Modulates Colitis Development in Defined Microbiota Mice. Inflamm Bowel Dis 2016; 22:2571-2581. [PMID: 27755267 PMCID: PMC5123692 DOI: 10.1097/mib.0000000000000944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helicobacter bilis infection of C3H/HeN mice harboring the altered Schaedler flora (ASF) triggers progressive immune responsiveness and the development of colitis. We sought to investigate temporal alterations in community structure of a defined (ASF-colonized) microbiota in normal and inflamed murine intestines and to correlate microbiota changes to histopathologic lesions. METHODS The colonic mucosal microbiota of healthy mice and ASF mice colonized with H. bilis for 3, 6, or 12 weeks were investigated by fluorescence in situ hybridization targeting the 16S ribosomal RNA genes of total bacteria, group-specific organisms, and individual ASF bacterial species. Microbial profiling of ASF and H. bilis abundance was performed on cecal contents. RESULTS Helicobacter bilis-colonized mice developed colitis associated with temporal changes in composition and spatial distribution of the mucosal microbiota. The number of total bacteria, ASF519, and helicobacter-positive bacteria were increased (P < 0.05), whereas ASF360/361-positive bacteria were decreased (P < 0.05) versus controls. Adherent biofilms in colitic mice were most often (P < 0.05) composed of total bacteria, ASF457, and H. bilis. Total numbers of ASF519 and H. bilis bacteria were positively correlated (P = 0.03, r = 0.39 and P < 0.0001, r = 0.73), and total numbers of ASF360/361 bacteria were negatively correlated (P = 0.003, r = -0.53) to histopathologic score. Differences in cecal abundance of ASF members were not observed. CONCLUSIONS Altered community structure with murine colitis is characterized by distinct ASF bacteria that interact with the colonic mucosa, by formation of an isolating interlaced layer, by attachment, or by invasion, and this interaction is differentially expressed over time.
Collapse
|
45
|
Response of germ-free mice to colonization with O. formigenes and altered Schaedler flora. Appl Environ Microbiol 2016; 82:6952-6960. [PMID: 27663026 DOI: 10.1128/aem.02381-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Colonization with Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stone disease. To improve our limited understanding of host/O.formigenes and microbe/O.formigenes interactions, germ-free or altered Schaedler flora (ASF) mice were colonized with O.formigenes Germ-free mice were stably colonized with O.formigenes suggesting O.formigenes does not require other organisms to sustain its survival. Examination of intestinal material indicated no viable O.formigenes in the small intestine, ∼4 × 106 O.formigenes per 100mg contents in the cecum and proximal colon, and ∼0.02% of total cecal O. formigenes cells were tightly associated to the mucosa. O.formigenes did not alter the overall microbial composition of ASF, and ASF did not impact O.formigenes capacity to degrade dietary oxalate in the cecum. 24-hour urine and fecal collections within metabolic cages in semi-rigid isolators demonstrated that introduction of ASF into germ-free mice significantly reduced urinary oxalate excretion. These experiments also showed that mono-colonized O.formigenes mice excrete significantly more urinary calcium compared to germ-free mice, which may be due to degradation of calcium oxalate crystals by O.formigenes and the subsequent intestinal absorption of free calcium. In conclusion, the successful establishment of defined-flora O.formigenes mouse models should improve our understanding of O.formigenes host and microbe interactions. These data support the use of O.formigenes as a probiotic that has limited impact on the composition of the resident microbiota but providing efficient oxalate degrading function. IMPORTANCE Despite evidence suggesting a lack of O. formigenes colonization is a risk factor for calcium oxalate stone formation, little is known about O. formigenes biology. This study is the first to utilize germ-free mice to examine the response to mono-colonization with O. formigenes and the impact of a defined bacterial cocktail, altered Schaedler flora, on O. formigenes colonization. This study demonstrates that germ-free mice on their regular diet remain mono-colonized with O. formigenes, and suggests that further studies with O. formigenes gnotobiotic mouse models could improve our understanding of O. formigenes biology and host/O. formigenes and microbe/O. formigenes interactions.
Collapse
|
46
|
Wymore Brand M, Wannemuehler MJ, Phillips GJ, Proctor A, Overstreet AM, Jergens AE, Orcutt RP, Fox JG. The Altered Schaedler Flora: Continued Applications of a Defined Murine Microbial Community. ILAR J 2016; 56:169-78. [PMID: 26323627 DOI: 10.1093/ilar/ilv012] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal (GI) microbiota forms a mutualistic relationship with the host through complex and dynamic interactions. Because of the complexity and interindividual variation of the GI microbiota, investigating how members of the microbiota interact with each other, as well as with the host, is daunting. The altered Schaedler flora (ASF) is a model community of eight microorganisms that was developed by R.P. Orcutt and has been in use since the late 1970s. The eight microorganisms composing the ASF were all derived from mice, can be cultured in vitro, and are stably passed through multiple generations (at least 15 years or more by the authors) in gnotobiotic mice continually bred in isolator facilities. With the limitations associated with conventional, mono- or biassociated, and germfree mice, use of mice colonized with a consortium of known bacteria that naturally inhabit the murine gut offers a powerful system to investigate mechanisms governing host-microbiota relationships, and how members of the GI microbiota interact with one another. The ASF community offers significant advantages to study homeostatic as well as disease-related interactions by taking advantage of a well-defined, limited community of microorganisms. For example, quantification and spatial distribution of individual members, microbial genetic manipulation, genomic-scale analysis, and identification of microorganism-specific host immune responses are all achievable using the ASF model. This review compiles highlights associated with the 37-year history of the ASF, including descriptions of its continued use in biomedical research to elucidate the complexities of host-microbiome interactions in health and disease.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| | - Michael J Wannemuehler
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| | - Gregory J Phillips
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| | - Alexandra Proctor
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| | - Anne-Marie Overstreet
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| | - Albert E Jergens
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| | - Roger P Orcutt
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| | - James G Fox
- Meghan Wymore Brand, DVM, is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Michael J. Wannemuehler, MS, PhD, is Professor and Chair in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Gregory J. Phillips, MA, PhD, is a professor in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Alexandra Proctor is a graduate student in the Department of Veterinary Microbiology and Preventive Medicine at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Anne-Marie Overstreet, PhD, is a postdoctoral fellow in the Department of Microbiology and Immunology at Indiana University School of Medicine-South Bend in South Bend, Indiana. Albert E. Jergens, DVM, MS, PhD, is Professor and Associate Chair for Research and Graduate Studies in the Department of Veterinary Clinical Sciences at the College of Veterinary Medicine at Iowa State University in Ames, Iowa. Roger P. Orcutt, PhD, is a consultant at Biomedical Research Associates in Dunkirk, New York. James G. Fox, MS, DVM, is Director of the Division of Comparative Medicine and Professor in the Department of Biological Engineering at Massachusetts Institute of Technology in Cambridge, Massachusetts
| |
Collapse
|
47
|
The Impact of Dietary Energy Intake Early in Life on the Colonic Microbiota of Adult Mice. Sci Rep 2016; 6:19083. [PMID: 26744222 PMCID: PMC4705468 DOI: 10.1038/srep19083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
The complex and dynamic interactions between diet, gut microbiota (GM) structure and function, and colon carcinogenesis are only beginning to be elucidated. We examined the colonic microbiota and aberrant crypt foci (ACF) in C57BL/6N female mice fed various dietary interventions (control, energy restricted and high-fat) provided during two phases (initiation and progression) of azoxymethane (AOM)-induced early colon carcinogenesis. During progression (wks. 22–60), a high-fat diet enhanced ACF formation compared to a control or energy restricted diet. In contrast, energy restriction during initiation phase (wks. 3–21) enhanced ACF burden at 60 weeks, regardless of the diet in progression phase. Alterations in GM structure during the initiation phase diet were partially maintained after changing diets during the progression phase. However, diet during the progression phase had major effects on the mucosal GM. Energy restriction in the progression phase increased Firmicutes and reduced Bacteroidetes compared to a high-fat diet, regardless of initiation phase diet, suggesting that diet may have both transient effects as well as a lasting impact on GM composition. Integration of early life and adult dietary impacts on the colonic microbial structure and function with host molecular processes involved in colon carcinogenesis will be key to defining preventive strategies.
Collapse
|
48
|
Hoy YE, Bik EM, Lawley TD, Holmes SP, Monack DM, Theriot JA, Relman DA. Variation in Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time. PLoS One 2015; 10:e0142825. [PMID: 26565698 PMCID: PMC4643986 DOI: 10.1371/journal.pone.0142825] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Genetics, diet, and other environmental exposures are thought to be major factors in the development and composition of the intestinal microbiota of animals. However, the relative contributions of these factors in adult animals, as well as variation with time in a variety of important settings, are still not fully understood. We studied a population of inbred, female mice fed the same diet and housed under the same conditions. We collected fecal samples from 46 individual mice over two weeks, sampling four of these mice for periods as long as 236 days for a total of 190 samples, and determined the phylogenetic composition of their microbial communities after analyzing 1,849,990 high-quality pyrosequencing reads of the 16S rRNA gene V3 region. Even under these controlled conditions, we found significant inter-individual variation in community composition, as well as variation within an individual over time, including increases in alpha diversity during the first 2 months of co-habitation. Some variation was explained by mouse membership in different cage and vendor shipment groups. The differences among individual mice from the same shipment group and cage were still significant. Overall, we found that 23% of the variation in intestinal microbiota composition was explained by changes within the fecal microbiota of a mouse over time, 12% was explained by persistent differences among individual mice, 14% by cage, and 18% by shipment group. Our findings suggest that the microbiota of controlled populations of inbred laboratory animals may not be as uniform as previously thought, that animal rearing and handling may account for some variation, and that as yet unidentified factors may explain additional components of variation in the composition of the microbiota within populations and individuals over time. These findings have implications for the design and interpretation of experiments involving laboratory animals.
Collapse
Affiliation(s)
- Yana Emmy Hoy
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elisabeth M. Bik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Trevor D. Lawley
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan P. Holmes
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie A. Theriot
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Insights into environmental factors impacting celiac disease: microbiota modulation of disease pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2864-6. [PMID: 26404513 DOI: 10.1016/j.ajpath.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022]
Abstract
This commentary highlights the article by Galipeau et al exploring the role of microbiota in modulating gluten immune response and celiac disease-like pathology in a humanized mouse model.
Collapse
|
50
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|