1
|
Nguyen AT, Ratnasiri K, Barratt Heitmann G, Tazin S, Anderson C, Hanif S, Yeamin A, Shoab AK, Shanta IS, Jahan F, Hossain MS, Mahmud ZH, Jubair M, Rahman M, Rahman M, Ercumen A, Benjamin-Chung J. Potential pathogens and antimicrobial resistance genes in household environments: a study of soil floors and cow dung in rural Bangladesh. Appl Environ Microbiol 2025:e0066925. [PMID: 40422288 DOI: 10.1128/aem.00669-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025] Open
Abstract
In low- and middle-income countries, living in homes with soil floors and animal cohabitation may expose children to fecal organisms, increasing the risk of enteric and antimicrobial-resistant infections. Our objective was to understand whether cow cohabitation in homes with soil floors in rural Bangladesh contributed to the presence and diversity of potential pathogens and antimicrobial resistance genes (ARGs) in the home. In 10 randomly selected households in rural Sirajganj District, we sampled floor soil and cow dung, which is commonly used as sealant in soil floors. We extracted DNA and performed shotgun metagenomic sequencing to explore potential pathogens and ARGs in each sample type. We detected 7 potential pathogens in soil only, 38 pathogens in cow dung only, and 182 pathogens in both soil and cow dung. Cow dung exhibited modestly higher potential pathogen genus richness compared to soil floors (Wilcoxon signed-rank test, P = 0.002). Using Bray-Curtis dissimilarity, potential pathogen species community composition differed between floors and cow dung (permutational multivariate analysis of variance, P < 0.001). All soil floor and cow dung samples contained ARGs; detected ARGs confer resistance to antibiotic classes including sulfonamides, rifamycin, aminoglycosides, lincosamides, and tetracycline. Paired floor and cow dung samples shared ARGs against rifamycin and glycopeptides, but otherwise, there was little overlap in resistomes between sample types. Our findings contribute to the growing literature on household soil and domestic animals as potentially important contributors to disease transmission and as reservoirs of antimicrobial resistance in low-income country settings.IMPORTANCEIn low-income countries, inadequate housing materials and animal cohabitation can lead to fecal contamination of rural homes. Contaminated soil floors are difficult to clean and may harbor organisms causing illness and antibiotic resistance, especially in young children, who frequently ingest soil. We sequenced soil floor and cow dung samples from households in Sirajganj district, Bangladesh, and identified potential pathogens and antibiotic resistance genes. We detected 182 potential pathogens in both soil and cow dung; organisms present in both sample types at the highest relative abundances were Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, and Pseudomonas aeruginosa. Antibiotic resistance genes were found in all samples. In cow dung, the most common genes conferred resistance to the antibiotics lincosamide, rifamycin, cephamycin, tetracycline, and multiple antibiotics. In soil floors, the most common genes conferred resistance to rifamycin, sulfonamides, and multiple antibiotics. Household soil and cow dung may be important reservoirs of pathogens and antimicrobial resistance in low-income country settings with high levels of animal cohabitation compared to settings with finished household floors and minimal animal cohabitation.
Collapse
Affiliation(s)
- Anna T Nguyen
- Department of Epidemiology & Population Health, Stanford University, Stanford, California, USA
| | - Kalani Ratnasiri
- Department of Epidemiology & Population Health, Stanford University, Stanford, California, USA
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, California, USA
| | | | - Sumaiya Tazin
- Department of Forestry and Environmental Resources, NC State University, Raleigh, North Carolina, USA
| | - Claire Anderson
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| | - Suhi Hanif
- Department of Epidemiology & Population Health, Stanford University, Stanford, California, USA
| | - Afsana Yeamin
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abul Kasham Shoab
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ireen Sultana Shanta
- Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Farjana Jahan
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Md Sakib Hossain
- Laboratory of Environmental Health, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mohammad Jubair
- Genomics Centre, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mustafizur Rahman
- Genomics Centre, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, NC State University, Raleigh, North Carolina, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology & Population Health, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
2
|
Saraceno M, Frankel N, Graziano M. Genomic Features of E. ruysiae Associated with the Ecological Origin: Implications for the Environmental Hypothesis. Curr Microbiol 2025; 82:291. [PMID: 40382489 DOI: 10.1007/s00284-025-04268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Escherichia cryptic clades represent a relatively unexplored taxonomic cluster believed to exhibit characteristics associated with a free-living lifestyle, which is known as the environmental hypothesis. This hypothesis suggests that certain Escherichia strains harbour traits that favour their environmental persistence, thus expanding the ecological commensal niche of the genus. While surveying Escherichia diversity in an urban South American stream we isolated the first environmental cryptic clade IV strain in South America (339_SF). Here we report the genomic characterization of 339_SF strain in the context of existing genomic information for E. ruysiae (cryptic clades III and IV). A comparative analysis of genomes within the same species stemming from diverse ecological sources and geographical locations reveals close phylogenetic proximity between our isolate and strains of environmental origin. Based on genetic content, we observed two clusters associated with the environmental source within E. ruysiae. In addition, we identified genes relatively more represented in the environmental strains: genes associated with carbohydrate metabolism (ydjG), stress response and DNA damage repair (such as umuD, higA and yddM). On the other hand, the gene rrrQ, associated with defense against other microorganisms, was significatively enriched in genomes of commensal origin. Our findings suggest that genomic features within E. ruysiae favoring its persistence in open environments may have arisen more than once, with these events being associated with the use of alternative energy sources and the resistance to various stressors specific to these environments.
Collapse
Affiliation(s)
- Martín Saraceno
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET - Universidad de Buenos Aires, 2160 Intendente Güiraldes St., C1428EGA, Buenos Aires, Argentina
- Departamento de Ecología, Facultad de Ciencias Exactas y Naturales, Genética y Evolución, Universidad de Buenos Aires, 2160 Intendente Güiraldes St., C1428EGA, Buenos Aires, Argentina
| | - Nicolás Frankel
- Departamento de Ecología, Facultad de Ciencias Exactas y Naturales, Genética y Evolución, Universidad de Buenos Aires, 2160 Intendente Güiraldes St., C1428EGA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, 2160 Intendente Güiraldes St., C1428EGA, Buenos Aires, Argentina
| | - Martín Graziano
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET - Universidad de Buenos Aires, 2160 Intendente Güiraldes St., C1428EGA, Buenos Aires, Argentina.
- Departamento de Ecología, Facultad de Ciencias Exactas y Naturales, Genética y Evolución, Universidad de Buenos Aires, 2160 Intendente Güiraldes St., C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
White HL, Fellows R, Woodford L, Ormsby MJ, van Biervliet O, Law A, Quilliam RS, Willby NJ. The impact of beaver dams on distribution of waterborne Escherichia coli and turbidity in an agricultural landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178871. [PMID: 39993369 DOI: 10.1016/j.scitotenv.2025.178871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Globally, freshwater environments are threatened by point source and diffuse pollution, habitat loss, and climate change. Enhancing water quality and reducing microbial pollution are priorities to realise their ecosystem services potential but challenging to achieve and require creative solutions. Beavers are receiving increasing attention as ecosystem engineers, their dams benefitting aquatic ecosystems via improved biodiversity, water quality, and flow regulation. However, effects on microbial water quality remain uncertain. Here, we investigated the influence of engineering by Eurasian beaver (Castor fiber L.) on variation in Escherichia coli concentrations and turbidity in an agricultural stream. Water samples were collected over a period of two years (2017-2019, encompassing 11 sampling dates), from a sequence of 14 beaver dams and associated ponds to quantify fluxes of turbidity and E. coli. On average, dam structures were a source whereas ponds acted as a sink for both turbidity and E. coli. The sink effect of ponds strengthened with upstream load, increasingly outweighing the source effect of dams while being moderated by season and antecedent flow and rainfall. To complement these findings, in 2023, an in-situ pollution event was simulated by adding a slurry of livestock manure (25 l) to two nearby closely comparable streams, one beaver-engineered, the other not (control), and tracking the downstream distribution of waterborne E. coli. Consistent with our field sampling campaign, E. coli was strongly attenuated in beaver ponds, which reduced peak concentrations by >95 % and slowed the flushing of E. coli compared to the control stream. Our study demonstrates that beaver dams exert a range of effects on microbial and associated pollution but, importantly, under peak loading can significantly decrease pollution reaching downstream receptors. Beaver dams, and potentially their analogues, could therefore support environmental management strategies in agricultural systems as part of a suite of nature-based approaches.
Collapse
Affiliation(s)
- Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK.
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Ollie van Biervliet
- Department of Geography, University College London, London WC1E 6BT, UK; Wildfowl & Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT, UK
| | - Alan Law
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Nigel J Willby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| |
Collapse
|
4
|
Malla B, Shrestha S, Sthapit N, Hirai S, Raya S, Rahmani AF, Angga MS, Siri Y, Ruti AA, Haramoto E. Evaluation of plasmid pBI143 for its optimal concentration methods, seasonal impact, and potential as a normalization parameter in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178661. [PMID: 39893813 DOI: 10.1016/j.scitotenv.2025.178661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Plasmid pBI143, abundant in the human gut, is a promising human-specific fecal marker. However, studies on its optimal concentration methods, seasonal variations, and potential as a normalization parameter for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remain limited. Among the three concentration methods compared, polyethylene glycol (PEG) precipitation and centrifugation demonstrated comparable efficiencies (9.3 ± 0.6 and 9.2 ± 0.6 log10 copies/L, respectively; n = 8 each), outperforming membrane filtration (8.0 ± 0.6 log10 copies/L; n = 8). PEG precipitation was further applied to quantify pBI143, together with other human-specific fecal markers (crAssphage and pepper mild mottle virus (PMMoV)), in 52 wastewater samples collected weekly over a one year from a wastewater treatment plant in Yamanashi Prefecture, Japan, by quantitative polymerase chain reaction. The higher pBI143 concentrations (9.6 ± 0.5 log10 copies/L) compared to PMMoV (8.2 ± 0.2 log10 copies/L) and crAssphage (8.0 ± 0.2 log10 copies/L) highlighted its potential as a robust marker for human fecal contamination. Unlike PMMoV and crAssphage that remained stable across seasons, pBI143 showed seasonal fluctuations, especially during summer and autumn, suggesting its greater sensitivity to environmental conditions. The study evaluated the suitability of pBI143, crAssphage, and PMMoV for normalizing SARS-CoV-2 concentrations in wastewater; however, non-normalized SARS-CoV-2 concentrations showed the highest correlation with COVID-19 cases (ρ = 0.74), whereas normalization reduced this correlation (PMMoV-normalized, ρ = 0.72; crAssphage-normalized, ρ = 0.70; and pBI143-normalized, ρ = 0.50), likely due to differences in the persistence and structural properties of the markers, indicating that these markers are less effective for SARS-CoV-2 normalization. This study underscores the promising utility of pBI143 in wastewater surveillance but highlights the need for further research across diverse regions to validate its applicability.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
5
|
Zeng J, Nakanishi T, Hara A, Itoh S. Influence of sewage effluent discharge on putative pathogen community in drinking water sources: insights from full-length 16S rRNA gene amplicon sequencing. JOURNAL OF WATER AND HEALTH 2025; 23:43-57. [PMID: 39882853 DOI: 10.2166/wh.2024.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed. Mountain streams primarily harbored environmental pathogens, whereas urban rivers exhibited significantly higher concentrations of fecal indicator bacteria (FIB) (i.e., Escherichia coli and Clostridium perfringens) along with markedly more diverse enteric pathogens with a higher relative abundance. Furthermore, within urban rivers, the putative pathogen communities displayed significant variation, closely aligning with the sewage effluent mixing ratios. The effectiveness of FIBs as indicators of enteric pathogens was found to be largely dependent on the levels of fecal pollution. This study offers novel insights into the impact of sewage effluent discharge on putative pathogenic bacterial communities with enhanced species-level resolution.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Tomohiro Nakanishi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan E-mail:
| | - Ayato Hara
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| |
Collapse
|
6
|
Cookson AL, Marshall JC, Biggs PJ, Rogers LE, Collis RM, Devane M, Stott R, Brightwell G. Impact of land-use and fecal contamination on Escherichia populations in environmental samples. Sci Rep 2024; 14:32099. [PMID: 39738760 PMCID: PMC11685573 DOI: 10.1038/s41598-024-83594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Understanding the composition of complex Escherichia coli populations from the environment is necessary for identifying strategies to reduce the impacts of fecal contamination and protect public health. Metabarcoding targeting the hypervariable gene gnd was used to reveal the complex population diversity of E. coli and phenotypically indistinct Escherichia species in water, soil, sediment, aquatic biofilm, and fecal samples from native forest and pastoral sites. The resulting amplicons were cross-referenced against a database containing over 700 different partial gnd sequences from E. coli/non-E. coli Escherichia species. Alpha and beta measures of diversity of Escherichia populations were lowest in feces, soil and sediment compared to water and aquatic biofilm samples. Escherichia populations recovered from extensive freshwater catchments dominated by sheep, beef and dairy farming were extremely diverse but well-separated from a wetland dairy site. In contrast, Escherichia populations from the low-impact native forest site with fewer fecal sources were less diverse. Metabarcoding distinguished E. coli populations important to fecal contamination monitoring from non-E. coli Escherichia environmental populations. These data represent in-depth analysis and geographic stability of Escherichia populations from environmental samples with extensive heterogeneity, and reveal links with diverse fecal sources, land-use and the overall burden of fecal contamination at sample sites.
Collapse
Affiliation(s)
- Adrian L Cookson
- Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand.
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - Jonathan C Marshall
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Mathematics and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Lynn E Rogers
- Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Rose M Collis
- Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Megan Devane
- Environmental Science and Research Limited, Christchurch, New Zealand
| | - Rebecca Stott
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Gale Brightwell
- Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Hoang J, Stoebel DM. The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae. mSystems 2024; 9:e0078524. [PMID: 39589147 DOI: 10.1128/msystems.00785-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type Escherichia coli, Salmonella enterica, Citrobacter rodentium, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens, as well as ∆rpoS strains of E. coli and S. enterica. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both E. coli and S. enterica, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature. IMPORTANCE We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using de novo-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
8
|
Nguyen AT, Ratnasiri K, Heitmann GB, Tazin S, Anderson C, Hanif S, Yeamin A, Shoab AK, Shanta IS, Jahan F, Hossain S, Mahmud ZH, Jubair M, Rahman M, Rahman M, Ercumen A, Benjamin-Chung J. Pathogens and Antimicrobial Resistance Genes in Household Environments: A Study of Soil Floors and Cow Dung in Rural Bangladesh. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627269. [PMID: 39677809 PMCID: PMC11642972 DOI: 10.1101/2024.12.06.627269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In low- and middle-income countries, living in homes with soil floors and animal cohabitation may expose children to fecal organisms, increasing risk of enteric and antimicrobial-resistant infections. Our objective was to understand whether cow cohabitation in homes with soil floors in rural Bangladesh contributed to the presence and diversity of potential pathogens and antimicrobial resistance genes (ARGs) in the home. In 10 randomly selected households in rural Sirajganj District, we sampled floor soil and cow dung, which is commonly used as sealant in soil floors. We extracted DNA and performed shotgun metagenomic sequencing to explore potential pathogens and ARGs in each sample type. We detected 6 potential pathogens in soil only, 49 pathogens in cow dung only, and 167 pathogens in both soil and cow dung. Pathogen species with relative abundances >5% in both soil floors and cow dung from the same households included E. coli (N=8 households), Salmonella enterica (N=6), Klebsiella pneumoniae (N=2), and Pseudomonas aeruginosa (N=1). Cow dung exhibited modestly higher pathogen genus richness compared to soil floors (Wilcoxon signed-rank test p=0.002). Using Bray-Curtis dissimilarity, pathogen species community composition differed between floors and cow dung (PERMANOVA p<0.001). All soil floors and cow dung samples contained ARGs against antibiotic classes including sulfonamides, rifamycin, aminoglycosides, lincosamides, and tetracycline. Paired floor and cow dung samples shared ARGs against rifamycin. Our findings support the development of interventions to reduce soil and animal feces exposure in rural, low-income settings.
Collapse
Affiliation(s)
- Anna T. Nguyen
- Department of Epidemiology & Population Health, Stanford University
| | - Kalani Ratnasiri
- Department of Epidemiology & Population Health, Stanford University
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sumaiya Tazin
- Department of Forestry and Environmental Resources, North Carolina State University
| | - Claire Anderson
- Department of Civil & Environmental Engineering, Stanford University
| | - Suhi Hanif
- Department of Epidemiology & Population Health, Stanford University
| | - Afsana Yeamin
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Abul Kasham Shoab
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Ireen Sultana Shanta
- Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Farjana Jahan
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Sakib Hossain
- Laboratory of Environmental Health, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mohammad Jubair
- Genomics Centre, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mustafizur Rahman
- Genomics Centre, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mahbubur Rahman
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
- Global Health and Migration Unit, Department of Women’s and Children’s Health, Uppsala University, Sweden
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University
| | - Jade Benjamin-Chung
- Department of Epidemiology & Population Health, Stanford University
- Chan Zuckerberg Biohub San Francisco
| |
Collapse
|
9
|
Britt VH, Liao MK, Lewis GP. Abundance of fecal indicator bacteria and diversity of Escherichia coli associated with poultry farms and pasture land cover in streams of northwestern South Carolina. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:15. [PMID: 39630299 PMCID: PMC11618215 DOI: 10.1007/s10661-024-13499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Livestock can contribute fecal indicator bacteria (FIB) to waterbodies. However, few studies have examined the relationship between watershed land use or land cover involving livestock production and the genetic diversity of Escherichia coli in freshwater ecosystems. Our major goal was to determine if FIB abundance and E. coli phylogenetic group distributions in headwater streams are related to livestock production in rural watersheds in South Carolina. In both 2017 and 2018, grab samples were collected from streams at summer baseflow. In 2017, we collected samples from watersheds with or without poultry rearing facilities (PRFs). In 2018, we collected samples from streams draining watersheds with mixed forest and pasture cover and from streams in mostly forested watersheds. In both summers, we measured concentrations of total coliforms, E. coli, and Enterococcus. We also categorized E. coli isolates into one of four phylogenetic groups (A, B1, B2, D). Streams with PRFs in their watersheds had significantly higher concentrations of Enterococcus but not total coliforms or E. coli than streams in watersheds without PRFs. Also, B2 isolates were less frequent and B1 isolates were more frequent in watersheds with PRFs than in those without. Streams draining mixed forest/pasture watersheds had significantly higher concentrations of total coliforms and E. coli but not Enterococcus, as well as higher frequencies of B1 isolates, than streams in mostly forested watersheds. Overall, the most frequent E. coli phylogenetic groups in watersheds with animal production appeared consistent with the phylogenetic groups that are especially abundant in poultry or mammalian livestock feces.
Collapse
Affiliation(s)
| | - Min-Ken Liao
- Department of Biology, Furman University, Greenville, SC, USA
| | - Gregory P Lewis
- Department of Biology, Furman University, Greenville, SC, USA.
| |
Collapse
|
10
|
Li J, Bai M, He Y, Wang S, Wang G. Decay kinetics of human-associated pathogens in the marine microcosms reveals their new dynamics and potential indicators in the coastal waters of northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124936. [PMID: 39265768 DOI: 10.1016/j.envpol.2024.124936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Pathogens in coastal waters cause infectious diseases and endanger public sanitation safety in humans and animals worldwide. To avoid these risks, timely detection of human-associated pathogens in waters is crucial. In this study, the decay kinetics of the molecular markers for human-associated pathogens, including enteric bacteria (Escherichia coli, Enterococcus, and Bacteroides), non-enteric bacteria (Staphylococcus aureus), crAssphage, and polyomavirus, were monitored over time at different temperatures and background microbes in seawater microcosms. The results indicated that temperature and native marine microbes were the main influential factors in attenuating bacterial pathogens. Remarkably, the effect of native microorganisms was more evidentially striking. Furthermore, Enterococcus was a more reliable and suitable fecal indicator bacterium than E. coli for the marine environment. The decay of crAssphage was like that of polyomavirus, indicating that it may be a good indicator of enterovirus in seawater. More importantly, the 16S amplicon sequencing data highlighted the decay kinetics of multiple bacterial pathogens in parallel with the dynamic changes of the whole bacterial communities. This study provides valuable information for public health risk management and a new approach to understanding the fate of bacteria in the coastal environment.
Collapse
Affiliation(s)
- Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yaodong He
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Suisui Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
11
|
Rabiu AG, Marcus AJ, Olaitan MO, Falodun OI. Systematic review and meta-analyses of the role of drinking water sources in the environmental dissemination of antibiotic-resistant Escherichia coli in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3720-3734. [PMID: 38379376 DOI: 10.1080/09603123.2024.2320934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Escherichia coli are pathogenic and antibiotic-resistant organisms that can spread to humans through water. However, there is sparse synthesised information on the dissemination of antibiotic-resistant E. coli through drinking water in Africa. This review provides an overview of the environmental spread of antimicrobial-resistant E. coli through drinking water in Africa. We performed a systematic review based on PRISMA guidelines, and 40 eligible studies from 12 countries were identified until June 2023. Four electronic databases (PubMed, Elsevier, AJOL, and DOAJ) were searched. Studies that employed phenotypic tests (n = 24/40) in identifying the bacterium outstripped those that utilised genome-based methods (n = 13). Of the 40 studies, nine and five, respectively, assessed the bacterium for antimicrobial resistance (AMR) phenotype and genotype. Multiple antibiotic resistance indices of 0.04-0.1 revealed a low level of antibiotic resistance. The detection of multidrug-resistant E. coli carrying resistance genes in certain water sources suggests that AMR-surveillance expansion should include drinking water.
Collapse
Affiliation(s)
- Akeem Ganiyu Rabiu
- Department of Microbiology, Federal University of Health Sciences, Ila-Orangun, Nigeria
| | | | | | | |
Collapse
|
12
|
Alali WQ, Scheuerman P, McClure C, Ghimire A, Owusu-Mensah P, Schultz J, Joyner TA. Prevalence of Antimicrobial Resistant Escherichia coli from Sinking Creek in Northeast Tennessee. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1285. [PMID: 39457258 PMCID: PMC11508131 DOI: 10.3390/ijerph21101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Antibiotic resistance (AR) is a critical global health threat exacerbated by complex human-animal-environment interactions. Aquatic environments, particularly surface water systems, can serve as reservoirs and transmission routes for AR bacteria. This study investigated the prevalence of AR E. coli in Sinking Creek, a pathogen-impacted creek in Northeast Tennessee. Water samples were collected monthly from four sites along the creek over a 6-month period. E. coli isolates were cultured, identified, and tested for susceptibility to eight antibiotics using the Kirby-Bauer disk diffusion method and broth disk elution method for colistin. Data were analyzed to determine the prevalence of AR and multidrug resistance (MDR) among isolates. Of the 122 water samples, 89.3% contained E. coli. Among the 177 isolates tested, resistance was highest to ciprofloxacin (64.2%) and nitrofurantoin (62.7%), and lowest to fosfomycin (14.1%) and colistin (6.0%). Significant differences in resistance to ceftriaxone and amoxicillin/clavulanic acid were observed between sampling sites. MDR was prevalent in 47.5% of isolates, with 5.1% resistant to seven antibiotics. The most frequent MDR patterns (6.8%) included three antibiotics: ceftriaxone, ciprofloxacin, and nitrofurantoin. The high prevalence of AR E. coli in Sinking Creek poses a significant public health risk, highlighting the need for ongoing surveillance and intervention strategies to prevent the spread of AR bacteria.
Collapse
Affiliation(s)
- Walid Q. Alali
- Department of Biostatistics & Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Phillip Scheuerman
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Clara McClure
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Achala Ghimire
- Department of Biostatistics & Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Priscilla Owusu-Mensah
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Jacob Schultz
- Department of Environmental and Occupational Health and Safety Sciences, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA; (P.S.); (C.M.); (P.O.-M.); (J.S.)
| | - Timothy Andrew Joyner
- Department of Geosciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN 37614, USA;
| |
Collapse
|
13
|
Gopalakrishnappa C, Li Z, Kuehn S. Environmental modulators of algae-bacteria interactions at scale. Cell Syst 2024; 15:838-853.e13. [PMID: 39236710 PMCID: PMC11412779 DOI: 10.1016/j.cels.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Interactions between photosynthetic and heterotrophic microbes play a key role in global primary production. Understanding phototroph-heterotroph interactions remains challenging because these microbes reside in chemically complex environments. Here, we leverage a massively parallel droplet microfluidic platform that enables us to interrogate interactions between photosynthetic algae and heterotrophic bacteria in >100,000 communities across ∼525 environmental conditions with varying pH, carbon availability, and phosphorus availability. By developing a statistical framework to dissect interactions in this complex dataset, we reveal that the dependence of algae-bacteria interactions on nutrient availability is strongly modulated by pH and buffering capacity. Furthermore, we show that the chemical identity of the available organic carbon source controls how pH, buffering capacity, and nutrient availability modulate algae-bacteria interactions. Our study reveals the previously underappreciated role of pH in modulating phototroph-heterotroph interactions and provides a framework for thinking about interactions between phototrophs and heterotrophs in more natural contexts.
Collapse
Affiliation(s)
| | - Zeqian Li
- Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA; National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL 60637, USA; Center for Living Systems, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Yoneda I, Nishiyama M, Watanabe T. Comparative experiment to select water quality parameters for modelling the survival of Escherichia coli in lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124423. [PMID: 38909774 DOI: 10.1016/j.envpol.2024.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Numerical health risk assessment models have been developed to describe faecal contamination of water using Escherichia coli as an indicator bacterium. Although many previously established numerical models for E. coli in aquatic environments have only considered the effects of one or two water quality parameters such as temperature and sunlight, it is difficult to simulate E. coli survival with only one or two parameters because the aquatic environment is a complex system. This study conducted a series of comparative experiments to select water quality parameters that should be preferentially considered in a numerical model for E. coli survival in lakes. The parameters considered were temperature, pH, dissolved oxygen (DO), total dissolved solids (TDS), suspended solids (SS), coexisting microbes, and light intensity. In the laboratory experiments, the survival of E. coli was observed by controlling two of these seven parameters, and the effects of these parameters on the rate of E. coli population change were statistically compared. Consequently, light intensity affected the survival of E. coli most significantly, followed by the presence of coexisting microbes, temperature, pH, and TDS. However, DO and SS had smaller effects on survival than other parameters. High-impact interactions on E. coli survival were observed between temperature and TDS and temperature and coexisting microbes. These results suggest that existing numerical models for simulating E. coli survival in lakes should be modified to consider the independent and interactive effects of multiple parameters such as sunlight, coexisting microbes, temperature, pH, and TDS.
Collapse
Affiliation(s)
- Ichiro Yoneda
- Department of Regional Environment Creation, United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3-Chome, Morioka, 020-8850, Japan.
| | - Masateru Nishiyama
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, 997-0037, Japan
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, 997-0037, Japan
| |
Collapse
|
15
|
Yoneda I, Nishiyama M, Watanabe T. Significant Factors for Modelling Survival of Escherichia coli in Lake Sediments. Microorganisms 2024; 12:1192. [PMID: 38930574 PMCID: PMC11206117 DOI: 10.3390/microorganisms12061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Currently available numerical models that describe the fecal contamination of aquatic environments using Escherichia coli as an indicator bacterium did not consider its survival in sediments. We conducted a series of comparative experiments to reveal the independent and interactive effects of sediment factors, including temperature, pH, water-extractable total dissolved solids (TDSs), coexisting microbes, and sampling sites, in lake environments on E. coli survival. In experiments, E. coli survival was observed by controlling any two factors at a time. Consequently, the decrease in pH and presence of coexisting microbes enhanced E. coli die-off, whereas the addition of water-extractable TDSs promoted its growth. To select factors to be considered for modelling E. coli survival in sediments, the independent effects of each factor and the interaction effect of the two factors were statistically compared based on their effect sizes (η2). As a result, pH (η2 = 59.5-89.0%) affected E. coli survival most significantly, followed by coexisting microbes (1.7-48.4%). Among the interactions affecting E. coli survival, including pH or coexisting microbes-which had larger independent effects-relatively larger statistically significant interactions were observed between pH and coexisting microbes (31.1%), coexisting microbes and water-extractable TDSs (85.4%), and coexisting microbes and temperature (26.4%).
Collapse
Affiliation(s)
- Ichiro Yoneda
- Department of Regional Environment Creation, United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3-Chome, Morioka 020-8850, Japan;
| | - Masateru Nishiyama
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Japan;
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Japan;
| |
Collapse
|
16
|
Yu D, Stothard P, Neumann NF. Emergence of potentially disinfection-resistant, naturalized Escherichia coli populations across food- and water-associated engineered environments. Sci Rep 2024; 14:13478. [PMID: 38866876 PMCID: PMC11169474 DOI: 10.1038/s41598-024-64241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The Escherichia coli species is comprised of several 'ecotypes' inhabiting a wide range of host and natural environmental niches. Recent studies have suggested that novel naturalized ecotypes have emerged across wastewater treatment plants and meat processing facilities. Phylogenetic and multilocus sequence typing analyses clustered naturalized wastewater and meat plant E. coli strains into two main monophyletic clusters corresponding to the ST635 and ST399 sequence types, with several serotypes identified by serotyping, potentially representing distinct lineages that have naturalized across wastewater treatment plants and meat processing facilities. This evidence, taken alongside ecotype prediction analyses that distinguished the naturalized strains from their host-associated counterparts, suggests these strains may collectively represent a novel ecotype that has recently emerged across food- and water-associated engineered environments. Interestingly, pan-genomic analyses revealed that the naturalized strains exhibited an abundance of biofilm formation, defense, and disinfection-related stress resistance genes, but lacked various virulence and colonization genes, indicating that their naturalization has come at the cost of fitness in the original host environment.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB, Canada.
- Antimicrobial Resistance-One Health Consortium, Calgary, AB, Canada.
| | - Paul Stothard
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance-One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
17
|
Ahmed W, Korajkic A, Gabrewold M, Payyappat S, Cassidy M, Harrison N, Besley C. Assessing the nucleic acid decay of human wastewater markers and enteric viruses in estuarine waters in Sydney, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171389. [PMID: 38432386 PMCID: PMC11070875 DOI: 10.1016/j.scitotenv.2024.171389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This research investigated the in-situ decay rates of four human wastewater-associated markers (Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembling phage (crAssphage), pepper mild mottle virus (PMMoV) and three enteric viruses (human adenovirus 40/41 (HAdV 40/41), enterovirus (EV) and human norovirus GII (HNoV GII) in two estuarine water environments (Davidson Park (DP) and Hen and Chicken Bay (HCB) in temperate Sydney, NSW, Australia, employing qPCR and RT-qPCR assays. The study also aimed to compare decay rates observed in mesocosms with previously published laboratory microcosms, providing insights into the persistence of markers and viruses in estuarine environments. Results indicated varying decay rates between DP and HCB mesocosms, with HF183 exhibiting relatively faster decay rates compared to other markers and enteric viruses in sunlight and dark mesocosms. In DP mesocosms, HF183 decayed the fastest, contrasting with PMMoV, which exhibited the slowest. Sunlight induced higher decay rates for all markers and viruses in DP mesocosms. In HCB sunlight mesocosms, HF183 nucleic acid decayed most rapidly compared to other markers and enteric viruses. In dark mesocosms, crAssphage showed the fastest decay, while PMMoV decayed at the slowest rate in both sunlight and dark mesocosms. Comparisons with laboratory microcosms revealed faster decay of markers and enteric viruses in laboratory microcosms than the mesocosms, except for crAssphage and HAdV 40/41 in dark, and PMMoV in sunlight mesocosms. The study concludes that decay rates of markers and enteric viruses vary between estuarine mesocosms, emphasizing the impact of sunlight exposure, which was potentially influenced by the elevated turbidity at HCB estuarine waters. The generated decay rates contribute valuable insights for establishing site-specific risk-based thresholds of human wastewater-associated markers.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, United States
| | - Metasebia Gabrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
18
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
19
|
Javed MQ, Kovalchuk I, Yevtushenko D, Yang X, Stanford K. Relationship between Desiccation Tolerance and Biofilm Formation in Shiga Toxin-Producing Escherichia coli. Microorganisms 2024; 12:243. [PMID: 38399647 PMCID: PMC10891874 DOI: 10.3390/microorganisms12020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities.
Collapse
Affiliation(s)
- Muhammad Qasim Javed
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Dmytro Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, AB T4L 1V7, Canada;
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| |
Collapse
|
20
|
Ahmed W, Korajkic A, Smith WJ, Payyappat S, Cassidy M, Harrison N, Besley C. Comparing the decay of human wastewater-associated markers and enteric viruses in laboratory microcosms simulating estuarine waters in a temperate climatic zone using qPCR/RT-qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167845. [PMID: 37879463 PMCID: PMC11070876 DOI: 10.1016/j.scitotenv.2023.167845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study investigated the decay rates of wastewater-associated markers and enteric viruses in laboratory microcosms mimicking estuarine water environments in temperate Sydney, NSW, Australia using qPCR and RT-qPCR assays. The results demonstrated the reduction in concentrations of Bacteroides HF183, Lachnospiraceae Lachno3, cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), human adenovirus (HAdV 40/41), and enterovirus (EV) over a span of 42 days under spring/summer temperatures, presence/absence of microbiota, and different light conditions. The study found that HF183, Lachno3, crAssphage, PMMoV, HAdV 40/41, and EV exhibited varying decay rates depending on the experimental conditions. The average T90 values ranged from a few days to several months, indicating the rapid decay or prolonged persistence of these markers and enteric viruses in the estuarine environment. Furthermore, the study examined the effects of indigenous microbiota and spring/summer temperatures on wastewater-associated markers and enteric viruses decay rates. It was found that the presence of microbiota and temperature significantly influenced the decay rates of HF183 and PMMoV. Additionally, the study compared the effects of artificial sunlight and spring/summer temperatures on marker decay rates. Bacterial markers decayed faster than viral markers, although among viral markers crAssphage decay rates were relatively faster when compared to PMMoV. The exposure to artificial sunlight significantly accelerated the decay rates of bacterial markers, viral markers, and enteric viruses. Temperature also had an impact on the decay rates of Lachno3, crAssphage, and HAdV 40/41. In conclusion, this study provides valuable insights into the decay rates of wastewater-associated markers and enteric viruses under different experimental conditions that mimicked temperate environmental conditions. The findings contribute to our understanding of the fate and persistence of these markers in the environment which is crucial for assessing and managing risks from contamination by untreated human wastewater.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, United States
| | - Wendy J Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
21
|
Liu B, Lee CW, Bong CW, Wang AJ. Investigating Escherichia coli habitat transition from sediments to water in tropical urban lakes. PeerJ 2024; 12:e16556. [PMID: 38223759 PMCID: PMC10788090 DOI: 10.7717/peerj.16556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024] Open
Abstract
Background Escherichia coli is a commonly used faecal indicator bacterium to assess the level of faecal contamination in aquatic habitats. However, extensive studies have reported that sediment acts as a natural reservoir of E. coli in the extraintestinal environment. E. coli can be released from the sediment, and this may lead to overestimating the level of faecal contamination during water quality surveillance. Thus, we aimed to investigate the effects of E. coli habitat transition from sediment to water on its abundance in the water column. Methods This study enumerated the abundance of E. coli in the water and sediment at five urban lakes in the Kuala Lumpur-Petaling Jaya area, state of Selangor, Malaysia. We developed a novel method for measuring habitat transition rate of sediment E. coli to the water column, and evaluated the effects of habitat transition on E. coli abundance in the water column after accounting for its decay in the water column. Results The abundance of E. coli in the sediment ranged from below detection to 12,000 cfu g-1, and was about one order higher than in the water column (1 to 2,300 cfu mL-1). The habitat transition rates ranged from 0.03 to 0.41 h-1. In contrast, the E. coli decay rates ranged from 0.02 to 0.16 h-1. In most cases (>80%), the habitat transition rates were higher than the decay rates in our study. Discussion Our study provided a possible explanation for the persistence of E. coli in tropical lakes. To the best of our knowledge, this is the first quantitative study on habitat transition of E. coli from sediments to water column.
Collapse
Affiliation(s)
- Boyu Liu
- Laboratory of Microbial Ecology, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Laboratory of Microbial Ecology, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chui Wei Bong
- Laboratory of Microbial Ecology, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ai-Jun Wang
- Laboratory of Coastal and Marine Geology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Marine Physical and Geological Processes, Xiamen, Fujian, China
| |
Collapse
|
22
|
Bagra K, Bellanger X, Merlin C, Singh G, Berendonk TU, Klümper U. Environmental stress increases the invasion success of antimicrobial resistant bacteria in river microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166661. [PMID: 37652387 DOI: 10.1016/j.scitotenv.2023.166661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Environmental microbiomes are constantly exposed to invasion events through foreign, antibiotic resistant bacteria that were enriched in the anthropic sphere. However, the biotic and abiotic factors, as well as the natural barriers that determine the invasion success of these invader bacteria into the environmental microbiomes are poorly understood. A great example of such invasion events are river microbial communities constantly exposed to resistant bacteria originating from wastewater effluents. Here, we aim at gaining comprehensive insights into the key factors that determine their invasion success with a particular focus on the effects of environmental stressors, regularly co-released in wastewater effluents. Understanding invasion dynamics of resistant bacteria is crucial for limiting the environmental spread of antibiotic resistance. To achieve this, we grew natural microbial biofilms on glass slides in rivers for one month. The biofilms were then transferred to laboratory, recirculating flume systems and exposed to a single pulse of a model resistant invader bacterium (Escherichia coli) either in presence or absence of stress induced by Cu2+. The invasion dynamics of E. coli into the biofilms were then monitored for 14 days. Despite an initially successful introduction of E. coli into the biofilms, independent of the imposed stress, over time the invader perished in absence of stress. However, under stress the invading strain successfully established and proliferated in the biofilms. Noteworthy, the increased establishment success of the invader coincided with a loss in microbial community diversity under stress conditions, likely due to additional niche space becoming available for the invader.
Collapse
Affiliation(s)
- Kenyum Bagra
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany; Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Xavier Bellanger
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Christophe Merlin
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Thomas U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany.
| |
Collapse
|
23
|
Chen W, Zhang JW, Qin BX, Xie HT, Zhang Z, Qiao XZ, Li SK, Asif M, Guo S, Cui LX, Wang PP, Dong LH, Guo QG, Jiang WJ, Ma P, Xia ZY, Lu CH, Zhang LQ. Quantitative detection of the Ralstonia solanacearum species complex in soil by qPCR combined with a recombinant internal control strain. Microbiol Spectr 2023; 11:e0021023. [PMID: 37966217 PMCID: PMC10715031 DOI: 10.1128/spectrum.00210-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE DNA-based detection and quantification of soil-borne pathogens, such as the Ralstonia solanacearum species complex (RSSC), plays a vital role in risk assessment, but meanwhile, precise quantification is difficult due to the poor purity and yield of the soil DNA retrieved. The internal sample process control (ISPC) strain RsPC we developed solved this problem and significantly improved the accuracy of quantification of RSSC in different soils. ISPC-based quantitative PCR detection is a method especially suitable for the quantitative detection of microbes in complex matrices (such as soil and sludge) containing various PCR inhibitors and for those not easy to lyse (like Gram-positive bacteria, fungi, and thick-wall cells like resting spores). In addition, the use of ISPC strains removes additional workload on the preparation of high-quality template DNA and facilitates the development of high-throughput quantitative detection techniques for soil microbes.
Collapse
Affiliation(s)
- Wei Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Jun-Wei Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Bi-Xia Qin
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Xixiangtang District, Nanning, China
| | - Hui-Ting Xie
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Xixiangtang District, Nanning, China
| | - Zhi Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Xiu-Ze Qiao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Shan-Kui Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Muhammad Asif
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Song Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Li-Xian Cui
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Xixiangtang District, Nanning, China
| | - Pei-Pei Wang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Li-Hong Dong
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Qing-Gang Guo
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Wen-Jun Jiang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Ping Ma
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Zhen-Yuan Xia
- Yunnan Academy of Tobacco Agricultural Sciences, Wuhua District, Kunming, China
| | - Can-Hua Lu
- Yunnan Academy of Tobacco Agricultural Sciences, Wuhua District, Kunming, China
| | - Li-Qun Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
24
|
Jordan MA, Ojeda AS, Larson EA, Rogers SR. Investigating the Relationship between Surface Water Pollution and Onsite Wastewater Treatment Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17042-17050. [PMID: 37878501 DOI: 10.1021/acs.est.2c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Onsite wastewater treatment systems (OWTSs) are important nonpoint sources (NPSs) of pollution to consider in watershed management. However, limited OWTS data availability makes it challenging to account for them as an NPS of water pollution. In this study, we succeeded in obtaining OWTS permits and integrated them with environmental data to model the pollution potential from OWTSs at the watershed scale using GIS-based multicriteria decision analysis. Then, in situ water quality parameters─Escherichia coli (E. coli), total nitrogen, total phosphorus, temperature, and pH─were measured along the main tributary at base-flow conditions. Three general linear models were developed to relate E. coli to water quality parameters and OWTS pollution indicators. It was found that the model with the OWTS pollution potential had the lowest corrected Akaike information criterion (AICc) value (35.01) compared to the models that included classified OWTS pollution potential input criteria (AICc = 36.76) and land cover (AICc = 36.74). These results demonstrate that OWTSs are a significant contributor to surface water pollution, and future efforts should be made to improve access to OWTS data (i.e., location and age) to account for these systems as an NPS of water pollution.
Collapse
Affiliation(s)
- Mallory A Jordan
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Eleanore A Larson
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Stephanie R Rogers
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
25
|
Moreira J, McCarter K, Benitez JA, Fontenot K, King JM, Adhikari A. Effect of Type of Mulch on Microbial Food Safety Risk on Cucumbers Irrigated with Contaminated Water. J Food Prot 2023; 86:100164. [PMID: 37739314 DOI: 10.1016/j.jfp.2023.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Mulches are used to block light and retain soil moisture which may affect the survival of bacterial pathogens on soil. This study examined the effectiveness of different types of mulches to minimize microbial risk from contaminated water used for irrigation of cucumbers. A production bed of 120 ft2 with 18 beds (30 ft long) covered with five different types of mulch (paper, paper with fertilizer incorporated (PF), maize-based mulch, biodegradable plastic covering, and conventional plastic) including three beds with no cover was planted with Dasher 2 Variety cucumber. Soil samples from each bed were collected for the first five weeks to examine natural E. coli and coliforms. Well water contaminated with or without nalidixic acid-resistant mutant of E. coli (8 Log CFU/mL) was used for drip irrigation for 7 days before harvesting. Prior to irrigation with contaminated water, naturally present E. coli and coliform in the soil samples with or without mulch were in the range of 3.45-3.78 Log CFU/g and 4.18-5.31 Log CFU/g, respectively. E. coli levels on cucumbers harvested from mulched beds and irrigated with contaminated irrigation water had significantly higher (P < 0.05) levels of E. coli as compared with samples from similar beds irrigated with noncontaminated water. However, Cucumber, harvested within each irrigation water quality were not significantly different regardless of the type of mulch with E. coli levels from 1.72 to 3.30 Log CFU/cm2 (contaminated water) and 0.28-1.86 Log CFU/cm2 (noncontaminated water). A significant die-off of inoculated E. coli was observed on cucumber within 3 days (>1.17 Log CFU/cm2) and >1.38 Log CFU/cm2 after 4 days. Beds with maize mulch were effective on minimizing E. coli contamination on cucumber from contaminated irrigation water.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Kevin McCarter
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Julysa Abril Benitez
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Kathryn Fontenot
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Joan M King
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
26
|
Li M, Chen L, Zhao F, Tang J, Bu Q, Feng Q, Yang L. An innovative risk evaluation method on soil pathogens in urban-rural ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132286. [PMID: 37595464 DOI: 10.1016/j.jhazmat.2023.132286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
28
|
Fang Y, Tran F, Stanford K, Yang X. Stress Resistance and Virulence Gene Profiles Associated with Phylogeny and Phenotypes of Escherichia coli from Cattle. J Food Prot 2023; 86:100122. [PMID: 37355007 DOI: 10.1016/j.jfp.2023.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Seven serogroups of E. coli (Top seven E. coli) are frequently implicated in foodborne outbreaks in North America, largely due to their carriage of Shiga toxin genes (stx). This study aimed to profile resistance genes and virulence factors (VF), and their potential association with phylogeny and phenotypes of Top seven E. coli originating from cattle in Canada. 155 Top seven E. coli isolates previously characterized for heat and acid resistance and biofilm-forming ability were whole-genome sequenced and analyzed for phylogeny, VF, and stress resistance genes. The 155 E. coli strains belonged to six phylogroups: A (n = 32), B1 (n = 93), C (n = 3), D (n = 11), E (n = 15), and G (n = 1). Different phylogroups were clearly separated on the core genome tree, with strains of the same serotype closely clustered. The carriage of stx and the transmissible locus of stress tolerance (tLST), the extreme heat resistance marker, was mutually exclusive, in 33 and 15 genomes, respectively. A novel O84:H2 strain carrying stx1a was also identified. In total, 70, 41, and 32 VF, stress resistance genes and antibiotic resistance genes were identified. The stress resistance genes included those for metal (n = 29), biocides/acid (n = 4), and heat (n = 8) resistance. All heat resistance genes and most metal-resistance genes that were differentially distributed among the phylogroups were exclusively in phylogroup A. VF were least and most present in phylogroups A and D, respectively. No specific genes associated with acid resistance or biofilm formation phenotypes were identified. VF were more abundant (P < 0.05) in the non-biofilm-forming population and acid-resistant population.
Collapse
Affiliation(s)
- Yuan Fang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| | - Frances Tran
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| | - Kim Stanford
- University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada.
| |
Collapse
|
29
|
Zhurilov PA, Andriyanov PA, Tutrina AI, Razheva IV, Liskova EA, Gladkova NA, Kashina DD, Yashin IV, Blokhin AA. Characterization and comparative analysis of the Escherichia marmotae M-12 isolate from bank vole (Myodes glareolus). Sci Rep 2023; 13:13949. [PMID: 37626115 PMCID: PMC10457355 DOI: 10.1038/s41598-023-41223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
The Escherichia marmotae is a bacterium of the Enterobacterales order, which was first isolated from the Himalayan marmot (Marmota himalayana). Recently E. marmotae has been shown to cause severe infections in humans. Wild animals were suggested to be a natural reservoir of this bacterium. The present study describes the first case of E. marmotae isolation from an apparently healthy wild bank vole (Myodes glareolus). Phenotype, as well as genotype-based techniques, were applied to characterize E. marmotae M-12 isolate. E. marmotae M-12 had the capsule-positive phenotype, high adhesion to human erythrocytes and HEp-2 cells as well as a low invasion into HEp-2 cells. E. marmotae M-12 was avirulent in mice. The phylogenomic analyses of E. marmotae showed dispersed phylogenetic structure among isolates of different origins. Virulome analysis of M-12 isolate revealed the presence of the following factors: siderophores, heme uptake systems, capsule synthesis, curli and type I fimbriae, flagella proteins, OmpA porin, etc. Comparative virulome analysis among available E. marmotae genomes revealed the presence of capsule K1 genes mostly in pathogenic isolates and OmpA porin presence among all strains. We assume that the K1 capsule and OmpA porin play a key role in the virulence of E. marmotae. Pathogenesis of the latter might be similar to extraintestinal pathogenic E. coli.
Collapse
Affiliation(s)
- Pavel A Zhurilov
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia.
| | - Pavel A Andriyanov
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Anastasia I Tutrina
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Irina V Razheva
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Elena A Liskova
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Nadezda A Gladkova
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Daria D Kashina
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Ivan V Yashin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Andrey A Blokhin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| |
Collapse
|
30
|
Caetano S, Correia C, Vidal AFT, Matos A, Ferreira C, Cravo A. Fate of microbial contamination in a South European Coastal Lagoon (Ria Formosa) under the influence of treated effluents dispersal. J Appl Microbiol 2023; 134:lxad166. [PMID: 37516448 DOI: 10.1093/jambio/lxad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
AIM Assessment of the fate of microbial contamination driven from treated wastewater disposal at a highly productive zone on a South European coastal lagoon (Ria Formosa). METHODS AND RESULTS Microbial indicators of contamination (Total coliforms, Escherichia coli, and Enterococci) were evaluated monthly during September 2018-September 2020 at three study areas (Faro, Olhão, and Tavira) under different wastewater discharge flows and hydrodynamic conditions. Additional data on E. coli monitoring in bivalves, available from the national institution responsible for their surveillance was also considered. The maximum microbial contamination was found at Faro, the highest-load and less-flushed study area, contrasting the lowest contamination at Olhão, a lower-load and strongly flushed area. The wastewater impact decreased along the spatial dispersal gradients and during high water, particularly at Faro and Tavira study areas, due to a considerable dilution effect. Microbial contamination at Olhão increased during the summer, while at the other study areas seasonal evidence was not clear. Data also indicate that E. coli in bivalves from bivalve production zones next to the three study areas reflected the differentiated impact of the wastewater treatment plants effluents on the water quality of those areas. CONCLUSIONS Effluent loads together with local hydrodynamics, water temperature, solar radiation, precipitation, and land runoff as well as seabirds populations and environmentally adapted faecal or renaturelized bacterial communities, contributed to microbial contamination of the study areas.
Collapse
Affiliation(s)
- Sandra Caetano
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
- School of Health (ESS), University of Algarve, Escola Superior de Saúde da Universidade do Algarve, Campus de Gambelas, Edifício 1, Piso 3, 8005-139 Faro, Portugal
| | - Cátia Correia
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Ana Flor Torres Vidal
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - André Matos
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Cristina Ferreira
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Alexandra Cravo
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
- Sciences and Technology Faculty (FCT), University of Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| |
Collapse
|
31
|
NandaKafle G, Blasius LA, Seale T, Brözel VS. Escherichia coli Strains Display Varying Susceptibility to Grazing by the Soil Amoeba Dictyostelium discoideum. Microorganisms 2023; 11:1457. [PMID: 37374960 DOI: 10.3390/microorganisms11061457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have shown that Escherichia coli can survive in different environments, including soils, and they can maintain populations in sterile soil for a long period of time. This indicates that growth-supporting nutrients are available; however, when grown in non-sterile soils, populations decline, suggesting that other biological factors play a role in controlling E. coli populations in soil. Free-living protozoa can affect the bacterial population by grazing. We hypothesized that E. coli strains capable of surviving in non-sterile soil possess mechanisms to protect themselves from amoeba predation. We determined the grazing rate of E. coli pasture isolates by using Dictyostelium discoideum. Bacterial suspensions applied to lactose agar as lines were allowed to grow for 24 h, when 4 μL of D. discoideum culture was inoculated in the center of each bacterial line. Grazing distances were measured after 4 days. The genomes of five grazing-susceptible and five grazing-resistant isolates were sequenced and compared. Grazing distance varied among isolates, which indicated that some E. coli are more susceptible to grazing by protozoa than others. When presented with a choice between grazing-susceptible and grazing-resistant isolates, D. discoideum grazed only on the susceptible strain. Grazing susceptibility phenotype did not align with the phylogroup, with both B1 and E strains found in both grazing groups. They also did not align by core genome phylogeny. Whole genome comparisons revealed that the five most highly grazed strains had 389 shared genes not found in the five least grazed strains. Conversely, the five least grazed strains shared 130 unique genes. The results indicate that long-term persistence of E. coli in soil is due at least in part to resistance to grazing by soil amoeba.
Collapse
Affiliation(s)
- Gitanjali NandaKafle
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Lane A Blasius
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Tarren Seale
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| | - Volker S Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| |
Collapse
|
32
|
Bhowmik A, Shah SMT, Goswami S, Sirajee AS, Ahsan S. Predominance of Multidrug Resistant Escherichia coli of Environmental Phylotype in Different Environments of Dhaka, Bangladesh. Trop Med Infect Dis 2023; 8:tropicalmed8040226. [PMID: 37104351 PMCID: PMC10145502 DOI: 10.3390/tropicalmed8040226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
Considering the ecological diversity of E. coli, the main aim of this study was to determine the prevalence, phylogroup diversity, and antimicrobial susceptibility of E. coli isolated from 383 different clinical and environmental sources. In total, varied prevalence was observed of the 197 confirmed E. coli that were isolated (human-100%, animal-67.5%, prawn-49.23%, soil-30.58%, and water-27.88%). Of these isolates, 70 (36%) were multidrug-resistant (MDR). MDR E. coli was significantly associated with their sources (χ2 = 29.853, p = 0.001). Humans (51.67%) and animals (51.85%) carried more MDR E. coli than other environments. The eae gene indicative of recent fecal contamination was not detected in any isolate, indicating that these E. coli isolates could be present in these environments for a long time and became naturalized. Phylogroup B1 (48.22%) was the predominant group, being present in all hosts analyzed and with the commensal E. coli group A (26.9%) representing the second predominant group. According to chi-square analysis, phylogroup B1 was significantly associated with E. coli from humans (p = 0.024), soil (p < 0.001) and prawn samples (p < 0.001). Human samples were significantly associated with phylogroup B1 (p = 0.024), D (p < 0.001), and F (p = 0.016) of E. coli strains, whereas phylogroup A (p < 0.001), C (p < 0.001), and E (p = 0.015) were associated with animal samples. Correspondence analysis results also indicated the association of these phylogroups with their hosts/sources. The findings of this study exhibited a non-random distribution of phylogenetic groups, though the diversity index was highest for human E. coli phylogroups.
Collapse
Affiliation(s)
- Anindita Bhowmik
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - S M Tanjil Shah
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Sunjukta Ahsan
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
33
|
Sather LM, Zamani M, Muhammed Z, Kearsley JVS, Fisher GT, Jones KM, Finan TM. A broadly distributed predicted helicase/nuclease confers phage resistance via abortive infection. Cell Host Microbe 2023; 31:343-355.e5. [PMID: 36893733 DOI: 10.1016/j.chom.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 03/11/2023]
Abstract
There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.
Collapse
Affiliation(s)
- Leah M Sather
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Zahed Muhammed
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Jason V S Kearsley
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Gabrielle T Fisher
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
34
|
Chen Z, Duan Y, Yin L, Chen Y, Xue Y, Wang X, Mao D, Luo Y. Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130005. [PMID: 36179618 DOI: 10.1016/j.jhazmat.2022.130005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Discharged wastewater treatment plant (WWTP) effluents can contaminate receiving water bodies with human feces and alter the abundance of antibiotic resistance genes (ARGs). In this study, we examined the co-occurrence of ARGs, human fecal pollution indicator crAssphage, and antibiotics in human feces and a series of connected receiving water bodies affected by human feces, including water from different treatment units of a WWTP, river, lake, and tap waters. Results showed that crAssphage was detected in 68.2 % of the studied water bodies, confirming widespread human fecal contamination. Both ARG and crAssphage abundances exhibited a distance-decay effect from the emission source to the receiving environment. Interestingly, the detected ARG abundance in the water bodies was significantly correlated with crAssphage abundance but not with the residual antibiotic concentration, demonstrating that the presence of ARG could largely be explained by the extent of fecal pollution, with no clear signs of antibiotic selection. In addition, 14 ARGs co-shared by human feces and water bodies were significantly correlated with crAssphage. Furthermore, a close evolutionary relationship was observed between the blaTEM-1 gene from human feces and aquatic environments. These results imply a potential ARG exchange between human feces and receiving water bodies. Overall, this study provides important insights into the distribution and sources of ARGs in water bodies affected by human fecal contamination.
Collapse
Affiliation(s)
- Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yujing Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ying Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingang Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213003, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
35
|
Cheng KH, Luo X, Jiao JJ, Yu S. Storm accelerated subsurface Escherichia coli growth and exports to coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129893. [PMID: 36084468 DOI: 10.1016/j.jhazmat.2022.129893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Storm significantly deteriorates coastal water fecal pollution now and beyond. Questions relating to storm exerting on coastal water safety are often intertwined with both surface water and subsurface processes. Stormwater runoff is a vital metric for coastal water fecal pollution under current cognition, while the controls of subsurface system remain unclear. Here, this study leveraged two time-series field data collected in a sandy beach during storm and non-storm periods to probe subsurface Escherichia coli (E. coli) growth and exports to coastal waters under storm events. Results demonstrated that storm events can not only stimulate subsurface E. coli growth, but also accelerate subsurface E. coli exports into the receiving water. Storm-intensified rainfall injected more oxygenous rainwater in the shallow groundwater, subsequently stimulating subsurface E. coli growth. Storm-strengthened wave energy was responsible for accelerating subsurface E. coli exports through enhanced wave-induced recirculated seawater. This study proposes a new insight for the stress of storm events on microbial pollution in coastal waters. The findings are constructive to the prevention of beach ecosystem pollution and can pave the way for coastal safety management to future extreme weather.
Collapse
Affiliation(s)
- K H Cheng
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shengchao Yu
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Breckell GL, Silander OK. Growth condition-dependent differences in methylation imply transiently differentiated DNA methylation states in Escherichia coli. G3 (BETHESDA, MD.) 2022; 13:6858946. [PMID: 36454087 PMCID: PMC9911048 DOI: 10.1093/g3journal/jkac310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
DNA methylation in bacteria frequently serves as a simple immune system, allowing recognition of DNA from foreign sources, such as phages or selfish genetic elements. However, DNA methylation also affects other cell phenotypes in a heritable manner (i.e. epigenetically). While there are several examples of methylation affecting transcription in an epigenetic manner in highly localized contexts, it is not well-established how frequently methylation serves a more general epigenetic function over larger genomic scales. To address this question, here we use Oxford Nanopore sequencing to profile DNA modification marks in three natural isolates of Escherichia coli. We first identify the DNA sequence motifs targeted by the methyltransferases in each strain. We then quantify the frequency of methylation at each of these motifs across the entire genome in different growth conditions. We find that motifs in specific regions of the genome consistently exhibit high or low levels of methylation. Furthermore, we show that there are replicable and consistent differences in methylated regions across different growth conditions. This suggests that during growth, E. coli transiently differentiate into distinct methylation states that depend on the growth state, raising the possibility that measuring DNA methylation alone can be used to infer bacterial growth states without additional information such as transcriptome or proteome data. These results show the utility of using Oxford Nanopore sequencing as an economic means to infer DNA methylation status. They also provide new insights into the dynamics of methylation during bacterial growth and provide evidence of differentiated cell states, a transient analog to what is observed in the differentiation of cell types in multicellular organisms.
Collapse
Affiliation(s)
- Georgia L Breckell
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| | - Olin K Silander
- Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. ; Corresponding author: School of Natural and Sciences, Massey University, Auckland 0745, New Zealand. Present address: Ministry for Primary Industries, Auckland 2022, New Zealand
| |
Collapse
|
37
|
Capone D, Barker T, Cumming O, Flemister A, Geason R, Kim E, Knee J, Linden Y, Manga M, Meldrum M, Nala R, Smith S, Brown J. Persistent Ascaris Transmission Is Possible in Urban Areas Even Where Sanitation Coverage Is High. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15969-15980. [PMID: 36288473 PMCID: PMC9671051 DOI: 10.1021/acs.est.2c04667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
In low-income, urban, informal communities lacking sewerage and solid waste services, onsite sanitation (sludges, aqueous effluent) and child feces are potential sources of human fecal contamination in living environments. Working in informal communities of urban Maputo, Mozambique, we developed a quantitative, stochastic, mass-balance approach to evaluate plausible scenarios of localized contamination that could explain why the soil-transmitted helminth Ascaris remains endemic despite nearly universal coverage of latrines that sequester most fecal wastes. We used microscopy to enumerate presumptively viable Ascaris ova in feces, fecal sludges, and soils from compounds (i.e., household clusters) and then constructed a steady-state mass-balance model to evaluate possible contamination scenarios capable of explaining observed ova counts in soils. Observed Ascaris counts (mean = -0.01 log10 ova per wet gram of soil, sd = 0.71 log10) could be explained by deposits of 1.9 grams per day (10th percentile 0.04 grams, 90th percentile 84 grams) of child feces on average, rare fecal sludge contamination events that transport 17 kg every three years (10th percentile 1.0 kg, 90th percentile 260 kg), or a daily discharge of 2.7 kg aqueous effluent from an onsite system (10th percentile 0.09 kg, 90th percentile 82 kg). Results suggest that even limited intermittent flows of fecal wastes in this setting can result in a steady-state density of Ascaris ova in soils capable of sustaining transmission, given the high prevalence of Ascaris shedding by children (prevalence = 25%; mean = 3.7 log10 per wet gram, sd = 1.1 log10), the high Ascaris ova counts in fecal sludges (prevalence = 88%; mean = 1.8 log10 per wet gram, sd = 0.95 log10), and the extended persistence and viability of Ascaris ova in soils. Even near-universal coverage of onsite sanitation may allow for sustained transmission of Ascaris under these conditions.
Collapse
Affiliation(s)
- Drew Capone
- Department
of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana47401, United States
| | - Troy Barker
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Oliver Cumming
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, U.K.
| | - Abeoseh Flemister
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Riley Geason
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Elizabeth Kim
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, U.K.
| | - Yarrow Linden
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Musa Manga
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Mackenzie Meldrum
- Department
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Rassul Nala
- Ministério
da Saúde, Instituto Nacional de Saúde
Maputo, Maputo1102, Mozambique
| | - Simrill Smith
- Department
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Joe Brown
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| |
Collapse
|
38
|
Ahmed W, Bivins A, Payyappat S, Cassidy M, Harrison N, Besley C. Distribution of human fecal marker genes and their association with pathogenic viruses in untreated wastewater determined using quantitative PCR. WATER RESEARCH 2022; 226:119093. [PMID: 36252296 DOI: 10.1016/j.watres.2022.119093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Quantitative microbial risk assessment (QMRA) of human health risks using human fecal marker genes (HFMGs) is an useful water quality management tool. To inform accurate QMRA analysis, generation of probability distribution functions for HFMGs, and reference pathogenic viruses can be improved by input of correlation and ratios based upon measurement of HFMGs and gene copies (GC) of pathogenic viruses in untreated wastewater. The concentrations of four HFMGs (Bacteroides HF183, Lachnospiraceae Lachno3, CrAssphage and pepper mild mottle virus (PMMoV)), and GC of three reference pathogenic viruses human adenovirus 40/41 (HAdV 40/41), human norovirus GI + GII HNoV GI + GII and enterovirus (EV) were measured in untreated wastewater samples collected over a period of 12 months from two wastewater treatment plants in Sydney, Australia using quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR (RT-qPCR). Over the course of the study, the GC of potential pathogenic viruses were 3-5 orders of magnitude lower than HFMGs in untreated wastewater. The GC of pathogenic viruses were highly variable over the course of the study, which contrasted with the concentrations of HFMGs that were quite stable with little variation observed within and between WWTPs. Among the HFMGs, HF183, CrAssphage and PMMoV correlated well with pathogenic virus GC, whereas weak or negative correlations were observed between Lachno3 and pathogenic virus GC. While the two assessed WWTPs had dissimilar population service sizes, the ratios between log10 transformed pathogenic virus GC and HFMGs demonstrated similar central tendency and variability for the same combinations between WWTP A and WWTP B with no difference between the WWTPs. This suggests the widespread presence of these HFMGs in both populations serviced by these two WWTPs. The observed correlation and ratios of HFMGs and GC of reference pathogenic viruses can contribute to improved QMRA of human health risks in environmental waters subject to fresh sewer overflows.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
39
|
Cyterski M, Shanks OC, Wanjugi P, McMinn B, Korajkic A, Oshima K, Haugland R. Bacterial and viral fecal indicator predictive modeling at three Great Lakes recreational beach sites. WATER RESEARCH 2022; 223:118970. [PMID: 35985141 PMCID: PMC9724166 DOI: 10.1016/j.watres.2022.118970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Coliphage are viruses that infect Escherichia coli (E. coli) and may indicate the presence of enteric viral pathogens in recreational waters. There is an increasing interest in using these viruses for water quality monitoring and forecasting; however, the ability to use statistical models to predict the concentrations of coliphage, as often done for cultured fecal indicator bacteria (FIB) such as enterococci and E. coli, has not been widely assessed. The same can be said for FIB genetic markers measured using quantitative polymerase chain reaction (qPCR) methods. Here we institute least-angle regression (LARS) modeling of previously published concentrations of cultured FIB (E. coli, enterococci) and coliphage (F+, somatic), along with newly reported genetic concentrations measured via qPCR for E. coli, enterococci, and general Bacteroidales. We develop site-specific models from measures taken at three beach sites on the Great Lakes (Grant Park, South Milwaukee, WI; Edgewater Beach, Cleveland, OH; Washington Park, Michigan City, IN) to investigate the efficacy of a statistical predictive modeling approach. Microbial indicator concentrations were measured in composite water samples collected five days per week over a beach season (∼15 weeks). Model predictive performance (cross-validated standardized root mean squared error of prediction [SRMSEP] and R2PRED) were examined for seven microbial indicators (using log10 concentrations) and water/beach parameters collected concurrently with water samples. Highest predictive performance was seen for qPCR-based enterococci and Bacteroidales models, with F+ coliphage consistently yielding poor performing models. Influential covariates varied by microbial indicator and site. Antecedent rainfall, bird abundance, wave height, and wind speed/direction were most influential across all models. Findings suggest that some fecal indicators may be more suitable for water quality forecasting than others at Great Lakes beaches.
Collapse
Affiliation(s)
- Mike Cyterski
- U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, 30605, United States.
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Pauline Wanjugi
- New York State Department of Health, Center for Environmental Health, Bureau of Water Supply Protection, New York City Watershed Section, Albany, NY 12201, United States
| | - Brian McMinn
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Asja Korajkic
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Kevin Oshima
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Rich Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| |
Collapse
|
40
|
Cheng KH, Jiao JJ, Luo X, Yu S. Effective coastal Escherichia coli monitoring by unmanned aerial vehicles (UAV) thermal infrared images. WATER RESEARCH 2022; 222:118900. [PMID: 35932703 DOI: 10.1016/j.watres.2022.118900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Coastal Escherichia coli (E. coli) significantly influence ocean safety and public health, thus requiring an effective E. coli pollution monitoring. However conventional detection relying on manual field sampling is time-consuming. Here, this study established an E. coli estimation model based on thermal remote sensing of unmanned aerial vehicles (UAV). This model was developed against one-year comprehensive field work in a representative sandy beach and further validated against 50 beaches in Hong Kong to evaluate its applicability. The estimated E. coli concentrations were in a reliable agreement with direct measurements. For this model, this study deployed the radon-222 (222Rn) as a bridging tracer to couple UAV thermal images and coastal E. coli concentrations. Coastal 222Rn can be reflected on the UAV thermal images, and there was a good positive correlation between the 222Rn activity and coastal E. coli concentration via one-year field data. Hence, coupling the 222Rn activity estimated from UAV thermal images and the relationship between 222Rn and E. coli, this study can readily monitor coastal E. coli by UAV. These findings highlighted that UAV technology is an effective approach to measure the E. coli concentrations and can further pave the way for an efficient coastal E. coli monitoring and public health risk warning.
Collapse
Affiliation(s)
- K H Cheng
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Shengchao Yu
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Behruznia M, Gordon DM. Molecular and metabolic characteristics of wastewater associated Escherichia coli strains. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:646-654. [PMID: 35638456 PMCID: PMC9543349 DOI: 10.1111/1758-2229.13076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/04/2023]
Abstract
We previously characterized the genetic diversity of Escherichia coli strains isolated from septic tanks in the Canberra region, Australia. In this study, we used repetitive element palindromic (REP) PCR fingerprinting to identify dominant REP-types belonging to phylogroups A and B1 strains across septic tanks. Subsequently, 76 E. coli strains were selected for whole-genome sequencing and phenotype microarrays. Comparative genome analysis was performed to compare septic tank E. coli genomes with a collection of 433 E. coli isolates from different hosts and freshwater. Clonal complexes (CCs) 10 (n = 15) and 399 (n = 10) along with sequence type (ST) 401 (n = 9) were the common lineages in septic tanks. CC10 strains have been detected from animal hosts and freshwater, whereas CC399 and ST401 strains appeared to be associated with septic tanks as they were uncommon in isolates from other sources. Comparative genome analysis revealed that CC399 and ST401 were genetically distinct from other isolates and carried an abundance of niche-specific traits involved in environmental adaptation. These strains also showed distinct metabolic characteristics, such as the ability to utilize pectin, which may provide a fitness advantage under nutrient-limited conditions. The results of this study characterized the adaptive mechanisms allowing E. coli to persist in wastewater.
Collapse
Affiliation(s)
- Mahboobeh Behruznia
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - David M. Gordon
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
42
|
Observations and Correlations from a 3-Year Study of Fecal Indicator Bacteria in the Mohawk River in Upstate NY. WATER 2022. [DOI: 10.3390/w14132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fecal indicator bacteria (FIB), such as E. coli and Enterococci, are used to indicate the potential of fecal contamination in waterways. One known source of FIB in urbanized areas is the occurrence of combined sewer overflows (CSOs). To explore the impact of CSOs on local water quality and FIB presence, sampling was conducted during the summers of 2017–2019 of two cities, one with CSOs and one without, on the Mohawk River in upstate New York, USA. Sampling included in situ physiochemical parameters of pH, temperature, and dissolved oxygen and laboratory tests for E. coli, Enterococci, nitrates, and total organic carbon (TOC). Correlations between parameters were explored using the Wilcoxon rank sum test and Spearman’s Rank correlation with and without considerations of site and city location. Overall, positive correlations between FIB and rainfall were identified in one city but were less significant in the other, suggesting a buffering of FIB concentrations likely due to inflow contributions from a reservoir. Samples collected downstream from an active CSO reached the detection limit of the FIB tests, demonstrating a 2-log or greater increase in FIB concentrations from dry weather conditions. The city with CSOs demonstrated greater FIB concentrations, which are likely a combination of greater urban runoff, CSOs, and the potential resuspension of sediment during high flow events. Due to the widespread presence of FIB in the region, future research includes utilizing microbial source tracking to identify the sources of contamination in the region.
Collapse
|
43
|
Harrison L, Tyson GH, Strain E, Lindsey RL, Strockbine N, Ceric O, Fortenberry GZ, Harris B, Shaw S, Tillman G, Zhao S, Dessai U. Use of Large-Scale Genomics to Identify the Role of Animals and Foods as Potential Sources of Extraintestinal Pathogenic Escherichia coli That Cause Human Illness. Foods 2022; 11:foods11131975. [PMID: 35804790 PMCID: PMC9265580 DOI: 10.3390/foods11131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) cause urinary tract and potentially life-threatening invasive infections. Unfortunately, the origins of ExPEC are not always clear. We used genomic data of E. coli isolates from five U.S. government organizations to evaluate potential sources of ExPEC infections. Virulence gene analysis of 38,032 isolates from human, food animal, retail meat, and companion animals classified the subset of 8142 non-diarrheagenic isolates into 40 virulence groups. Groups were identified as low, medium, and high relative risk of containing ExPEC strains, based on the proportion of isolates recovered from humans. Medium and high relative risk groups showed a greater representation of sequence types associated with human disease, including ST-131. Over 90% of food source isolates belonged to low relative risk groups, while >60% of companion animal isolates belonged to medium or high relative risk groups. Additionally, 18 of the 26 most prevalent antimicrobial resistance determinants were more common in high relative risk groups. The associations between antimicrobial resistance and virulence potentially limit treatment options for human ExPEC infections. This study demonstrates the power of large-scale genomics to assess potential sources of ExPEC strains and highlights the importance of a One Health approach to identify and manage these human pathogens.
Collapse
Affiliation(s)
- Lucas Harrison
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
- Correspondence: (L.H.); (U.D.)
| | - Gregory H. Tyson
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Errol Strain
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Rebecca L. Lindsey
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.L.L.); (N.S.)
| | - Nancy Strockbine
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.L.L.); (N.S.)
| | - Olgica Ceric
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Gamola Z. Fortenberry
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250, USA; (G.Z.F.); (S.S.)
| | - Beth Harris
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Ames, IA 50010, USA;
| | - Sheryl Shaw
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250, USA; (G.Z.F.); (S.S.)
| | - Glenn Tillman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, GA 30605, USA;
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Uday Dessai
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250, USA; (G.Z.F.); (S.S.)
- Correspondence: (L.H.); (U.D.)
| |
Collapse
|
44
|
Gene regulation in Escherichia coli is commonly selected for both high plasticity and low noise. Nat Ecol Evol 2022; 6:1165-1179. [PMID: 35726087 DOI: 10.1038/s41559-022-01783-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Bacteria often respond to dynamically changing environments by regulating gene expression. Despite this regulation being critically important for growth and survival, little is known about how selection shapes gene regulation in natural populations. To better understand the role natural selection plays in shaping bacterial gene regulation, here we compare differences in the regulatory behaviour of naturally segregating promoter variants from Escherichia coli (which have been subject to natural selection) to randomly mutated promoter variants (which have never been exposed to natural selection). We quantify gene expression phenotypes (expression level, plasticity and noise) for hundreds of promoter variants across multiple environments and show that segregating promoter variants are enriched for mutations with minimal effects on expression level. In many promoters, we infer that there is strong selection to maintain high levels of plasticity, and direct selection to decrease or increase cell-to-cell variability in expression. Taken together, these results expand our knowledge of how gene regulation is affected by natural selection and highlight the power of comparing naturally segregating polymorphisms to de novo random mutations to quantify the action of selection.
Collapse
|
45
|
Cheng KH, Luo X, Jiao JJ, Yu S. Delineating E. coli occurrence and transport in the sandy beach groundwater system by radon-222. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128618. [PMID: 35278964 DOI: 10.1016/j.jhazmat.2022.128618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Fecal pollution poses a global threat to environmental safety and ecosystem, but the mechanism of microbial transport and occurrence in the beach groundwater system is still poorly explored. Here, we leveraged one-year field data of Escherichia coli (E. coli) and radon-222 (222Rn) and found that E. coli occurrence and transport in the sandy beach groundwater system can be delineated by 222Rn. The underlying mechanism behind this phenomenon is due to similar half-lives of 222Rn and E. coli in the sandy beach groundwater system. Thus, the unique relationship between 222Rn and E. coli can provide additional critical context to the microbial water quality assessments and ecosystem resilience. Also, the beach aquifer in this study is found to be a vital compartment for E. coli removal. The net E. coli removal/production capacity is identified to be highly impacted by submarine groundwater discharge. Finally, a conceptual model is constructed for a better understanding of the occurrences and characteristics of E. coli and 222Rn at multiple spatial scales. These findings are constructive to mitigate the hazardous influences of microbe on water quality, especially in recreational sandy beaches and mariculture zones.
Collapse
Affiliation(s)
- K H Cheng
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China.
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Shengchao Yu
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Yu D, Ryu K, Zhi S, Otto SJG, Neumann NF. Naturalized Escherichia coli in Wastewater and the Co-evolution of Bacterial Resistance to Water Treatment and Antibiotics. Front Microbiol 2022; 13:810312. [PMID: 35707173 PMCID: PMC9189398 DOI: 10.3389/fmicb.2022.810312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance represents one of the most pressing concerns facing public health today. While the current antibiotic resistance crisis has been driven primarily by the anthropogenic overuse of antibiotics in human and animal health, recent efforts have revealed several important environmental dimensions underlying this public health issue. Antibiotic resistant (AR) microbes, AR genes, and antibiotics have all been found widespread in natural environments, reflecting the ancient origins of this phenomenon. In addition, modern societal advancements in sanitation engineering (i.e., sewage treatment) have also contributed to the dissemination of resistance, and concerningly, may also be promoting the evolution of resistance to water treatment. This is reflected in the recent characterization of naturalized wastewater strains of Escherichia coli-strains that appear to be adapted to live in wastewater (and meat packing plants). These strains carry a plethora of stress-resistance genes against common treatment processes, such as chlorination, heat, UV light, and advanced oxidation, mechanisms which potentially facilitate their survival during sewage treatment. These strains also carry an abundance of common antibiotic resistance genes, and evidence suggests that resistance to some antibiotics is linked to resistance to treatment (e.g., tetracycline resistance and chlorine resistance). As such, these naturalized E. coli populations may be co-evolving resistance against both antibiotics and water treatment. Recently, extraintestinal pathogenic strains of E. coli (ExPEC) have also been shown to exhibit phenotypic resistance to water treatment, seemingly associated with the presence of various shared genetic elements with naturalized wastewater E. coli. Consequently, some pathogenic microbes may also be evolving resistance to the two most important public health interventions for controlling infectious disease in modern society-antibiotic therapy and water treatment.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Kanghee Ryu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo, China
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Simon J. G. Otto
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
- Human-Environment-Animal Transdisciplinary Antimicrobial Resistance Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments, Centre for Health Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Norman F. Neumann
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
47
|
Zooplankton as a Transitional Host for Escherichia coli in Freshwater. Appl Environ Microbiol 2022; 88:e0252221. [PMID: 35416683 PMCID: PMC9088391 DOI: 10.1128/aem.02522-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study shows that Escherichia coli can be temporarily enriched in zooplankton under natural conditions and that these bacteria can belong to different phylogroups and sequence types (STs), including environmental, clinical, and animal isolates. We isolated 10 E. coli strains and sequenced the genomes of two of them. Phylogenetically, the two isolates were closer to strains isolated from poultry meat than to freshwater E. coli, albeit their genomes were smaller than those of the poultry isolates. After isolation and fluorescent protein tagging of strains ED1 and ED157, we show that Daphnia sp. can take up these strains and release them alive again, thus becoming a temporary host for E. coli. In a chemostat experiment, we show that this association does not prolong bacterial long-term survival, but at low abundances it also does not significantly reduce bacterial numbers. We demonstrate that E. coli does not belong to the core microbiota of Daphnia, suffers from competition by the natural Daphnia microbiota, but can profit from its carapax to survive in water. All in all, this study suggests that the association of E. coli with Daphnia is only temporary, but the cells are viable therein, and this might allow encounters with other bacteria for genetic exchange and potential genomic adaptation to the freshwater environment. IMPORTANCE The contamination of freshwater with feces-derived bacteria is a major concern regarding drinking water acquisition and recreational activities. Ecological interactions promoting their persistence are still very scarcely studied. This study, which analyses the survival of E. coli in the presence of zooplankton, is thus of ecological and water safety relevance.
Collapse
|
48
|
Thom C, Smith CJ, Moore G, Weir P, Ijaz UZ. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap. WATER RESEARCH 2022; 212:118106. [PMID: 35091225 DOI: 10.1016/j.watres.2022.118106] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
A meta-analysis of existing and available Illumina 16S rRNA datasets from drinking water source, treatment and drinking water distribution systems (DWDS) were collated to compare changes in abundance and diversity throughout. Samples from bulk water and biofilm were used to assess principles governing microbial community assembly and the value of amplicon sequencing to water utilities. Individual phyla relationships were explored to identify competitive or synergistic factors governing DWDS microbiomes. The relative importance of stochasticity in the assembly of the DWDS microbiome was considered to identify the significance of source and treatment in determining communities in DWDS. Treatment of water significantly reduces overall species abundance and richness, with chlorination of water providing the most impact to individual taxa relationships. The assembly of microbial communities in the bulk water of the source, primary treatment process and DWDS is governed by more stochastic processes, as is the DWDS biofilm. DWDS biofilm is significantly different from bulk water in terms of local contribution to beta diversity, type and abundance of taxa present. Water immediately post chlorination has a more deterministic microbial assembly, highlighting the significance of this process in changing the microbiome, although elevated levels of stochasticity in DWDS samples suggest that this may not be the case at customer taps. 16S rRNA sequencing is becoming more routine, and may have several uses for water utilities, including: detection and risk assessment of potential pathogens such as those within the genera of Legionella and Mycobacterium; assessing the risk of nitrification in DWDS; providing improved indicators of process performance and monitoring for significant changes in the microbial community to detect contamination. Combining this with quantitative methods like flow cytometry will allow a greater depth of understanding of the DWDS microbiome.
Collapse
Affiliation(s)
- Claire Thom
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK.
| | - Cindy J Smith
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| | - Graeme Moore
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Paul Weir
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| |
Collapse
|
49
|
Magaña-Lizárraga JA, Gómez-Gil B, Rendón-Maldonado JG, Delgado-Vargas F, Vega-López IF, Báez-Flores ME. Genomic Profiling of Antibiotic-Resistant Escherichia coli Isolates from Surface Water of Agricultural Drainage in North-Western Mexico: Detection of the International High-Risk Lineages ST410 and ST617. Microorganisms 2022; 10:microorganisms10030662. [PMID: 35336237 PMCID: PMC8948617 DOI: 10.3390/microorganisms10030662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aquatic environments are recognized as one of the main reservoirs for the emergence and dissemination of high-risk lineages of multidrug-resistant (MDR) bacteria of public health concern. However, the genomic characteristics of antibiotic-resistant Escherichia coli isolates from aquatic origins remain limited. Herein, we examined the antibiotic resistance and virulence genomic profiles of three E. coli recovered from surface water in northwest Mexico. Antimicrobial susceptibility testing, whole-genome sequencing (WGS), and in-depth in silico analysis were performed. Two E. coli exhibited MDR phenotypes. WGS-based typing revealed genetic diversity, and phylogenetic analysis corroborated a notable divergent relationship among the studied E. coli. One E. coli strain, harboring enterotoxigenic and extraintestinal pathogenic-associated virulence genes, was assigned to the ST4 lineage. MDR E. coli, belonging to the international high-risk clones ST410 and ST617, carried genes and mutations conferring resistance to aminoglycosides, β-lactams, quinolones, sulfonamides, tetracyclines, and trimethoprim. This study describes, for the first time, the detection and genomic profiling of high-risk lineages of E. coli ST410 and ST617 from surface water in Mexico. Additionally, our results underscore the role of surface water as a reservoir for critical pathogenic and MDR E. coli clones and the need for the surveillance and monitoring of aquatic environments via WGS from the One Health perspective.
Collapse
Affiliation(s)
- José Antonio Magaña-Lizárraga
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, AP.711, Mazatlan 82112, Mexico;
| | - José Guadalupe Rendón-Maldonado
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
| | - Francisco Delgado-Vargas
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
| | | | - María Elena Báez-Flores
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacan 80013, Mexico; (J.A.M.-L.); (J.G.R.-M.); (F.D.-V.)
- Correspondence: ; Tel.: +52-667-752-0460
| |
Collapse
|
50
|
Bong CW, Low KY, Chai LC, Lee CW. Prevalence and Diversity of Antibiotic Resistant Escherichia coli From Anthropogenic-Impacted Larut River. Front Public Health 2022; 10:794513. [PMID: 35356018 PMCID: PMC8960044 DOI: 10.3389/fpubh.2022.794513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs that provide an ideal condition for the acquisition and dissemination of antibiotic resistance genetic determinants. We investigated the prevalence and diversity of antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml) CFU 100 ml−1 to Est 1 to 4.1 × 105 CFU 100 ml−1 with phylogenetic group B1 (46.72%), and A (34.39%) being the most predominant. The prevalence of multiple antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance genes, was higher in wastewater effluents than in the river waters. These findings suggested that E. coli could be an important carrier of the resistance genes in freshwater river environments. The phylogenetic composition of E. coli and resistance genes was associated with physicochemical properties and antibiotic residues. These findings indicated that the anthropogenic inputs exerted an effect on the E. coli phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and the distribution of resistance genes in the Larut River.
Collapse
Affiliation(s)
- Chui Wei Bong
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Chui Wei Bong ;
| | - Kyle Young Low
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lay Ching Chai
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|