1
|
Xie T, Li J, Wang G. Tailoring CotA Laccase Substrate Specificity by Rationally Reshaping Pocket Edge. Chembiochem 2024; 25:e202400660. [PMID: 39548650 DOI: 10.1002/cbic.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
CotA is a bacterial multicopper oxidase, capable of oxidizing lots of substrates. In previous work, small size lignin phenol derivates were found to lie only in the partially covered part of pocket. However, big size substate would occupy the whole pocket to react. In this work, five residues sitting at the edge of the pocket were selected to study their roles in regulating activities against different size substrates. All mutants showed impaired activities against small size sinapic acid, however, A227E, G321F and G321P showed around 25 % increase of activities against big size ditaurobilirubin compared to wild type (WT). T262F/G321F showed moderate increased activity to alazin red S. kcat/Kms against ditaurobilirubin of A227E, T262F and G321F are around 1.5, 3 and 1.5 folds of WT's. Unexpectedly, heterologous expression yields of T262F, T262F/G321F and T262F/G321P in Escherichia coli greatly increased by around 5, 7 and 21 folds compared to WT, respectively. It is speculated positive mutants would provide a beneficial orientation for big size substrates. Substituting semi-buried residue T262 by a hydrophobic amino acid might enhance expression yields mainly by increasing van der waals and hydrophobic interaction. This work exemplified rationally regulating specific activities of laccase and is valuable for industrial application.
Collapse
Affiliation(s)
- Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Jiakun Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
2
|
Xu J, Knight T, Boone D, Saleem M, Finley SJ, Gauthier N, Ayariga JA, Akinrinlola R, Pulkoski M, Britt K, Tolosa T, Rosado-Rivera YI, Iddrisu I, Thweatt I, Li T, Zebelo S, Burrack H, Thiessen L, Hansen Z, Bernard E, Kuhar T, Samuel-Foo M, Ajayi OS. Influence of Fungicide Application on Rhizosphere Microbiota Structure and Microbial Secreted Enzymes in Diverse Cannabinoid-Rich Hemp Cultivars. Int J Mol Sci 2024; 25:5892. [PMID: 38892079 PMCID: PMC11172691 DOI: 10.3390/ijms25115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.
Collapse
Affiliation(s)
- Junhuan Xu
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Tyson Knight
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Donchel Boone
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Sheree J. Finley
- Department of Physical and Forensic Sciences, Alabama State University, 915 S. Jackson Street, Montgomery, AL 36104, USA
| | - Nicole Gauthier
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA;
| | - Joseph A. Ayariga
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Rufus Akinrinlola
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Melissa Pulkoski
- Department of Crop Science, North Carolina State University, Raleigh, NC 27962, USA
| | - Kadie Britt
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, 220 Price Hall, Blacksburg, VA 24061, USA; (K.B.)
| | - Tigist Tolosa
- Department of Agriculture Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | | | - Ibrahim Iddrisu
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Ivy Thweatt
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Ting Li
- Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Simon Zebelo
- Department of Agriculture Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Hannah Burrack
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey Thiessen
- Department of Crop Science, North Carolina State University, Raleigh, NC 27962, USA
- USDA-APHIS-PPQ, Raleigh, NC 27606, USA
| | - Zachariah Hansen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
- Emerging Pests and Pathogens Research Unit, USDA-ARS, 538 Tower Rd., Ithaca, NY 14850, USA
| | - Ernest Bernard
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Thomas Kuhar
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, 220 Price Hall, Blacksburg, VA 24061, USA; (K.B.)
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA (J.A.A.)
| |
Collapse
|
3
|
Zhang W, Zhang J, Fan S, Zhang L, Liu C, Liu J. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Yang Y, Lu Z, Azari M, Kartal B, Du H, Cai M, Herbold CW, Ding X, Denecke M, Li X, Li M, Gu JD. Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance. WATER RESEARCH 2022; 226:119165. [PMID: 36257158 DOI: 10.1016/j.watres.2022.119165] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In the past 20 years, there has been a major stride in understanding the core mechanism of anaerobic ammonium-oxidizing (anammox) bacteria, but there are still several discussion points on their survival strategies. Here, we discovered a new genus of anammox bacteria in a full-scale wastewater-treating biofilm system, tentatively named "Candidatus Loosdrechtia aerotolerans". Next to genes of all core anammox metabolisms, it encoded and transcribed genes involved in the dissimilatory nitrate reduction to ammonium (DNRA), which coupled to oxidation of small organic acids, could be used to replenish ammonium and sustain their metabolism. Surprisingly, it uniquely harbored a new ferredoxin-dependent nitrate reductase, which has not yet been found in any other anammox genome and might confer a selective advantage to it in nitrate assimilation. Similar to many other microorganisms, superoxide dismutase and catalase related to oxidative stress resistance were encoded and transcribed by "Ca. Loosdrechtia aerotolerans". Interestingly, bilirubin oxidase (BOD), likely involved in oxygen resistance of anammox bacteria under fluctuating oxygen concentrations, was identified in "Ca. Loosdrechtia aerotolerans" and four Ca. Brocadia genomes, and its activity was demonstrated using purified heterologously expressed proteins. A following survey of oxygen-active proteins in anammox bacteria revealed the presence of other previously undetected oxygen defense systems. The novel cbb3-type cytochrome c oxidase and bifunctional catalase-peroxidase may confer a selective advantage to Ca. Kuenenia and Ca. Scalindua that face frequent changes in oxygen concentrations. The discovery of this new genus significantly broadens our understanding of the ecophysiology of anammox bacteria. Furthermore, the diverse oxygen tolerance strategies employed by distinct anammox bacteria advance our understanding of their niche adaptability and provide valuable insight for the operation of anammox-based wastewater treatment systems.
Collapse
Affiliation(s)
- Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhongyi Lu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Mohammad Azari
- Department of Aquatic Environmental Engineering, Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen 28359, Germany
| | - Huan Du
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Xinghua Ding
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Martin Denecke
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, Essen 45141, Germany
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People's Republic of China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People's Republic of China.
| |
Collapse
|
5
|
Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, Tang N, Toto Nienguesso A, Ziegler J, Imre R, Mechtler K, Dagdas Y, Hoehenwarter W, Sawers G, Quint M, Abel S. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr Biol 2022; 32:2189-2205.e6. [PMID: 35472311 PMCID: PMC9168544 DOI: 10.1016/j.cub.2022.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 μM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Carolin Alfs
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Nancy Tang
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Richard Imre
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
6
|
Duskaev G, Rakhmatullin S, Kvan O. Effects of Bacillus cereus and coumarin on growth performance, blood biochemical parameters, and meat quality in broilers. Vet World 2020; 13:2484-2492. [PMID: 33363345 PMCID: PMC7750213 DOI: 10.14202/vetworld.2020.2484-2492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Aim: Progressive antibiotic resistance has become the primary threat to public health. The search for alternative substances with similar effects is now a global challenge for poultry farming. The aim of this study was to investigate the action of the probiotic Bacillus cereus (BC) and coumarin (CO) on broiler productivity, biochemical indicators of blood, and muscular and liver tissues. Materials and Methods: The trial of this study included Arbor Acres cross broiler chickens that were grown up to the age of 42 days. The experiment was conducted on 200 broiler chickens divided into four experimental groups of 50 individuals each: The control group received ration without additives (main ration [MR]), the first experimental group received MR+BC, the second received MR+CO, and the third received −MR+BC+CO. A biochemical and hematological analyzer was used to estimate elemental concentrations using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Results: Inclusion of CO and CO+BC in the diet improved growth rates and reduced feed consumption (FC) per kg of live weight gain. Decreased white blood cell count, increased creatinine and triglycerides (CO), changes in aminotransferase and transpeptidase activity, and increases in chemical elements in the liver and pectoral muscles (BC+CO) were observed. The inclusion of BC+CO in the diet contributed to increases in a greater number of chemical elements in the liver (calcium [Ca], K, magnesium, Mn, Si, and Zn) and the pectoral muscles (Ca, Na, Co, Cu, Fe, Mn, Ni, and Zn). Conclusion: The inclusion of CO and CO+BC in the diet improves growth rates and reduces FC in broilers against a background of the absence of mortality during the experiment.
Collapse
Affiliation(s)
- Galimzhan Duskaev
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the RAS, Orenburg, Russia
| | - Shamil Rakhmatullin
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the RAS, Orenburg, Russia
| | - Olga Kvan
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agrotechnologies of the RAS, Orenburg, Russia
| |
Collapse
|
7
|
Activity enhancement of multicopper oxidase from a hyperthermophile via directed evolution, and its application as the element of a high performance biocathode. J Biotechnol 2020; 325:226-232. [PMID: 33164755 DOI: 10.1016/j.jbiotec.2020.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022]
Abstract
Although multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum (McoP) can be particularly useful in biotechnological applications, e.g., as a specific catalyst at the biocathode of biofuel cells (BFCs), owing to its high stability against extremely high temperatures and across a wide range of pH values, this application potential remains limited due to the enzyme's low catalytic activity. A directed evolution strategy was conducted to improve McoP catalytic activity, and the No. 571 mutant containing four amino acid substitutions was identified, with specific activity approximately 9-fold higher than that of the wild type enzyme. Among the substitutions, the single amino acid mutant F290I was essential in enhancing catalytic activity, with a specific activity approximately 12-fold higher than that of the wild type enzyme. F290I thermostability and pH stability were notably comparable with values obtained for the wild type. Crystal structure analysis suggested that the F290I mutant increased loop flexibility near the T1 Cu center, and affected electron transfer between the enzyme and substrate. Additionally, electric current density of the F290I mutant-immobilized electrode was 7-fold higher than that of the wild type-immobilized one. These results indicated that F290I mutant was a superior catalyst with potential in practical biotechnological applications.
Collapse
|
8
|
Wu J, Choi J, Asiegbu FO, Lee YH. Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases. MYCOBIOLOGY 2020; 48:373-382. [PMID: 33177916 PMCID: PMC7594830 DOI: 10.1080/12298093.2020.1816151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac.kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.
Collapse
Affiliation(s)
- Jiayao Wu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Molecular Cloning and Heterologous Expression of Manganese(II)-Oxidizing Enzyme from Acremonium strictum Strain KR21-2. Catalysts 2020. [DOI: 10.3390/catal10060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diverse ascomycete fungi oxidize manganese(II) [Mn(II)] and produce Mn(III, IV) oxides in terrestrial and freshwater environments. Although multicopper oxidase (MCO) is considered to be a key catalyst in mediating Mn(II) oxidation in ascomycetes, the responsible gene and its product have not been identified. In this study, a gene, named mco1, encoding Mn(II)-oxidizing MCO from Acremonium strictum strain KR21-2 was cloned and heterologously expressed in the methylotrophic yeast Pichia pastoris. Based on the phylogenetic relationship, similarity of putative copper-binding motifs, and homology modeling, the gene product Mco1 was assigned to a bilirubin oxidase. Mature Mco1 was predicted to be composed of 565 amino acids with a molecular mass of 64.0 kDa. The recombinant enzyme oxidized Mn(II) to yield spherical Mn oxides, several micrometers in diameter. Zinc(II) ions added to the reaction mixture were incorporated by the Mn oxides at a Zn/Mn molar ratio of 0.36. The results suggested that Mco1 facilitates the growth of the micrometer-sized Mn oxides and affects metal sequestration through Mn(II) oxidation. This is the first report on heterologous expression and identification of the Mn(II) oxidase enzyme in Mn(II)-oxidizing ascomycetes. The cell-free, homogenous catalytic system with recombinant Mco1 could be useful for understanding Mn biomineralization by ascomycetes and the sequestration of metal ions in the environment
Collapse
|
10
|
Sadeghian I, Rezaie Z, Rahmatabadi SS, Hemmati S. Biochemical insights into a novel thermo/organo tolerant bilirubin oxidase from Thermosediminibacter oceani and its application in dye decolorization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
12
|
Feng H, Wang M, Wang B, Zhang L, Zhang F, Xu J, Tian Y, Gao J, Peng R, Yao Q. Heterologous expression and characterization of a bilirubin oxidase gene from Myrothecium verrucaria in Arabidopsis thaliana. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1766378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huijuan Feng
- Department of Biology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Mingqing Wang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Ling Zhang
- Department of Pomology, College of Horticulture, Nanjing Agricultural University, Nanjing, P.R. China
| | - Fujian Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| |
Collapse
|
13
|
Zhang Y, Lv Z, Zhou J, Fang Y, Wu H, Xin F, Zhang W, Ma J, Xu N, He A, Dong W, Jiang M. Amperometric Biosensors Based on Recombinant Bacterial Laccase CotA for Hydroquinone Determination. ELECTROANAL 2019. [DOI: 10.1002/elan.201900395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
| | - Ziyao Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
| | - Yan Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University Nanjing 211800 P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University Nanjing 211800 P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University Nanjing 211800 P.R. China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University Nanjing 211800 P.R. China
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme TechnologyHuaiyin Normal University Huaian 223300 P.R. China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme TechnologyHuaiyin Normal University Huaian 223300 P.R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University Nanjing 211800 P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing 211800 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University Nanjing 211800 P.R. China
| |
Collapse
|
14
|
Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Arch Biochem Biophys 2018; 660:97-107. [DOI: 10.1016/j.abb.2018.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022]
|
15
|
Taguchi T, Ebihara K, Yanagisaki C, Yoshikawa J, Horiguchi H, Amachi S. Decolorization of recalcitrant dyes by a multicopper oxidase produced by Iodidimonas sp. Q-1 with iodide as a novel inorganic natural redox mediator. Sci Rep 2018; 8:6717. [PMID: 29712927 PMCID: PMC5928188 DOI: 10.1038/s41598-018-25043-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
A multicopper oxidase (IOX) produced by Iodidimonas sp. Q-1 has high catalytic efficiency for iodide (I−) oxidation to form molecular iodine (I2). In this study, the potential capacity of IOX for decolorization of recalcitrant dyes was determined. Although IOX did not decolorize any dyes in the absence of redox mediator, significant decolorization of Orange G, Indigo Carmine, Amido Black, and Remazol Brilliant Blue R (RBBR) was observed in the presence of iodide. Addition of 0.1 mM iodide was sufficient to decolorize a total of 3 mM Indigo Carmine, suggesting that iodide functions as a mediator. Such mediator-like function of iodide was not observed in commercially available fungal laccases. The IOX-iodide decolorization system showed much alkaline pH optima of 5.5–6.5 and stronger salt tolerance than fungal laccases did. In addition, actual wastewater discharged from a dyeing factory could be decolorized more than 50% by the system. Since iodide is naturally occurring, non-toxic, and cheaper than common synthetic mediators, the IOX-iodide system is potentially more advantageous than fungal laccase-mediator systems for decolorization of recalcitrant dyes.
Collapse
Affiliation(s)
- Taro Taguchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo City, Chiba, 271-8510, Japan
| | - Kyota Ebihara
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo City, Chiba, 271-8510, Japan
| | - Chihiro Yanagisaki
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo City, Chiba, 271-8510, Japan
| | - Jun Yoshikawa
- GODO SHUSEI Co. Ltd., 250 Nakahara, Kamihongo, Matsudo City, Chiba, 271-0064, Japan
| | - Hirofumi Horiguchi
- GODO SHUSEI Co. Ltd., 250 Nakahara, Kamihongo, Matsudo City, Chiba, 271-0064, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo City, Chiba, 271-8510, Japan.
| |
Collapse
|
16
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
17
|
Kimura N, Kamagata Y. A Thermostable Bilirubin-Oxidizing Enzyme from Activated Sludge Isolated by a Metagenomic Approach. Microbes Environ 2016; 31:435-441. [PMID: 27885197 PMCID: PMC5158116 DOI: 10.1264/jsme2.me16106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A gene coding for a multicopper oxidase (BopA) was identified through the screening of a metagenomic library constructed from wastewater treatment activated sludge. The recombinant BopA protein produced in Escherichia coli exhibited oxidation activity toward 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in the presence of copper, suggesting that BopA is laccase. A bioinformatic analysis of the bopA gene sequence indicated that it has a phylogenetically bacterial origin, possibly derived from a bacterium within the phylum Deinococcus-Thermus. Purified BopA exhibited maximum activity at pH 7.5 with bilirubin as its substrate and was found to be active over a markedly broad pH range from 6 to 11. It also showed notable thermostability; its activity remained intact even after a heat treatment at 90°C for 60 min. This enzyme is a thermostable-bilirubin oxidase that exhibits markedly higher thermostability than that previously reported for laccases.
Collapse
Affiliation(s)
- Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | |
Collapse
|
18
|
Fan L, Wang Y, Zhao M, Song J, Wang J, Jin Z. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:122-129. [PMID: 27058768 DOI: 10.1016/j.jhazmat.2016.03.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/12/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe3O4 nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe3O4 nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75mg/g when the CotA concentration was 1.2mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1h decolorization, 99% of the indigo carmine has been removed by 10mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.
Collapse
Affiliation(s)
- Lili Fan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zijing Jin
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
19
|
Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol 2015; 99:9987-99. [DOI: 10.1007/s00253-015-6843-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/06/2015] [Accepted: 07/12/2015] [Indexed: 01/11/2023]
|
20
|
Martins LO, Durão P, Brissos V, Lindley PF. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 2015; 72:911-22. [PMID: 25572294 PMCID: PMC11113980 DOI: 10.1007/s00018-014-1822-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The ubiquitous members of the multicopper oxidase family of enzymes oxidize a range of aromatic substrates such as polyphenols, methoxy-substituted phenols, amines and inorganic compounds, concomitantly with the reduction of molecular dioxygen to water. This family of enzymes can be broadly divided into two functional classes: metalloxidases and laccases. Several prokaryotic metalloxidases have been described in the last decade showing a robust activity towards metals, such as Cu(I), Fe(II) or Mn(II) and have been implicated in the metal metabolism of the corresponding microorganisms. Many laccases, with a superior efficiency for oxidation of organic compounds when compared with metals, have also been identified and characterized from prokaryotes, playing roles that more closely conform to those of intermediary metabolism. This review aims to present an update of current knowledge on prokaryotic multicopper oxidases, with a special emphasis on laccases, anticipating their enormous potential for industrial and environmental applications.
Collapse
Affiliation(s)
- Lígia O Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2781-901, Oeiras, Portugal,
| | | | | | | |
Collapse
|
21
|
de Poulpiquet A, Ranava D, Monsalve K, Giudici-Orticoni MT, Lojou E. Biohydrogen for a New Generation of H2/O2Biofuel Cells: A Sustainable Energy Perspective. ChemElectroChem 2014. [DOI: 10.1002/celc.201402249] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Brander S, Mikkelsen JD, Kepp KP. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS One 2014; 9:e99402. [PMID: 24915287 PMCID: PMC4051777 DOI: 10.1371/journal.pone.0099402] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/13/2014] [Indexed: 01/25/2023] Open
Abstract
The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ∼0.5–2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (KM) but to pH dependence of catalytic turnover: The kcat of B. clausii cotA was 1 s−1 at pH 6 and 5 s−1 at pH 8 in contrast to 6 s−1 at pH 6 and 2 s−1 at pH 8 for of B. subtilis cotA. Overall, kcat/KM was 10-fold higher for B. subtilis cotA at pHopt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500–700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ∼20 minutes half-life at 80°C, less than the ∼50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH∼8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization.
Collapse
Affiliation(s)
- Søren Brander
- Technical University of Denmark, DTU Chemical Engineering, Kongens Lyngby, Denmark
- Technical University of Denmark, DTU Chemistry, Kongens Lyngby, Denmark
| | - Jørn D. Mikkelsen
- Technical University of Denmark, DTU Chemical Engineering, Kongens Lyngby, Denmark
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
23
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1219] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
24
|
Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 2013; 8:e65633. [PMID: 23755261 PMCID: PMC3670849 DOI: 10.1371/journal.pone.0065633] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term "laccase-like multi-copper oxidase" (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera.
Collapse
|
25
|
Su J, Bao P, Bai T, Deng L, Wu H, Liu F, He J. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One 2013; 8:e60573. [PMID: 23577125 PMCID: PMC3618234 DOI: 10.1371/journal.pone.0060573] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal.
Collapse
Affiliation(s)
- Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Peng Bao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Tenglong Bai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Lin Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Hui Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
26
|
Mano N. Features and applications of bilirubin oxidases. Appl Microbiol Biotechnol 2012; 96:301-7. [DOI: 10.1007/s00253-012-4312-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
27
|
Han X, Zhao M, Lu L, Liu Y. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190. Fungal Biol 2012; 116:863-71. [DOI: 10.1016/j.funbio.2012.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/26/2022]
|
28
|
Bilirubin oxidase from Magnaporthe oryzae: an attractive new enzyme for biotechnological applications. Appl Microbiol Biotechnol 2012; 96:1489-98. [PMID: 22350257 DOI: 10.1007/s00253-012-3926-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 02/03/2023]
Abstract
A novel bilirubin oxidase (BOD), from the rice blast fungus Magnaporthe oryzae, has been identified and isolated. The 64-kDa protein containing four coppers was successfully overexpressed in Pichia pastoris and purified to homogeneity in one step. Protein yield is more than 100 mg for 2 L culture, twice that of Myrothecium verrucaria. The k(cat)/K(m) ratio for conjugated bilirubin (1,513 mM⁻¹ s⁻¹) is higher than that obtained for the BOD from M. verrucaria expressed in native fungus (980 mM⁻¹ s⁻¹), with the lowest K(m) measured for any BOD highly desirable for detection of bilirubin in medical samples. In addition, this protein exhibits a half-life for deactivation >300 min at 37 °C, high stability at pH 7, and high tolerance towards urea, making it an ideal candidate for the elaboration of biofuel cells, powering implantable medical devices. Finally, this new BOD is efficient in decolorizing textile dyes such as Remazol brilliant Blue R, making it useful for environmentally friendly industrial applications.
Collapse
|
29
|
Glykys DJ, Szilvay GR, Tortosa P, Suárez Diez M, Jaramillo A, Banta S. Pushing the limits of automatic computational protein design: design, expression, and characterization of a large synthetic protein based on a fungal laccase scaffold. SYSTEMS AND SYNTHETIC BIOLOGY 2011; 5:45-58. [PMID: 22654993 DOI: 10.1007/s11693-011-9080-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 11/12/2010] [Accepted: 02/19/2011] [Indexed: 01/29/2023]
Abstract
UNLABELLED The de novo engineering of new proteins will allow the design of complex systems in synthetic biology. But the design of large proteins is very challenging due to the large combinatorial sequence space to be explored and the lack of a suitable selection system to guide the evolution and optimization. One way to approach this challenge is to use computational design methods based on the current crystallographic data and on molecular mechanics. We have used a laccase protein fold as a scaffold to design a new protein sequence that would adopt a 3D conformation in solution similar to a wild-type protein, the Trametes versicolor (TvL) fungal laccase. Laccases are multi-copper oxidases that find utility in a variety of industrial applications. The laccases with highest activity and redox potential are generally secreted fungal glycoproteins. Prokaryotic laccases have been identified with some desirable features, but they often exhibit low redox potentials. The designed sequence (DLac) shares a 50% sequence identity to the original TvL protein. The new DLac gene was overexpressed in E. coli and the majority of the protein was found in inclusion bodies. Both soluble protein and refolded insoluble protein were purified, and their identity was verified by mass spectrometry. Neither protein exhibited the characteristic T1 copper absorbance, neither bound copper by atomic absorption, and neither was active using a variety of laccase substrates over a range of pH values. Circular dichroism spectroscopy studies suggest that the DLac protein adopts a molten globule structure that is similar to the denatured and refolded native fungal TvL protein, which is significantly different from the natively secreted fungal protein. Taken together, these results indicate that the computationally designed DLac expressed in E. coli is unable to utilize the same folding pathway that is used in the expression of the parent TvL protein or the prokaryotic laccases. This sequence can be used going forward to help elucidate the sequence requirements needed for prokaryotic multi-copper oxidase expression. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11693-011-9080-9) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Matos IO, Ferreira TL, Paixão TR, Lima AS, Bertotti M, Alves WA. Approaches for multicopper oxidases in the design of electrochemical sensors for analytical applications. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.04.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Güven G, Prodanovic R, Schwaneberg U. Protein Engineering - An Option for Enzymatic Biofuel Cell Design. ELECTROANAL 2010. [DOI: 10.1002/elan.200980017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Magnotti RA, Connell JL, Marietta PM. Automated colorimetric gadolinium assay for verification of clearance and estimation of glomerular filtration rate. Clin Chim Acta 2009; 399:59-63. [DOI: 10.1016/j.cca.2008.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 08/28/2008] [Accepted: 09/10/2008] [Indexed: 11/29/2022]
|
33
|
Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 2006; 273:2308-26. [PMID: 16650005 DOI: 10.1111/j.1742-4658.2006.05247.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A phylogenetic analysis of more than 350 multicopper oxidases (MCOs) from fungi, insects, plants, and bacteria provided the basis for a refined classification of this enzyme family into laccases sensu stricto (basidiomycetous and ascomycetous), insect laccases, fungal pigment MCOs, fungal ferroxidases, ascorbate oxidases, plant laccase-like MCOs, and bilirubin oxidases. Within the largest group of enzymes, formed by the 125 basidiomycetous laccases, the gene phylogeny does not strictly follow the species phylogeny. The enzymes seem to group at least partially according to the lifestyle of the corresponding species. Analyses of the completely sequenced fungal genomes showed that the composition of MCOs in the different species can be very variable. Some species seem to encode only ferroxidases, whereas others have proteins which are distributed over up to four different functional clusters in the phylogenetic tree.
Collapse
Affiliation(s)
- Patrik J Hoegger
- Georg-August-University Göttingen, Institute of Forest Botany, Göttingen, Germany.
| | | | | | | | | |
Collapse
|